Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.
3D Particle-In-Cell (PIC) simulations of plasma sheath formation above lunar craters
NASA Astrophysics Data System (ADS)
Likhanskii, A.; Poppe, A. R.; Piquette, M.; Amyx, K.; Messmer, P.; Horanyi, M.
2010-12-01
Comprehensive investigation of plasma sheath formation and consequent dust levitation on lunar surface is important for interpretation of results of future lunar missions (such as LADEE and ARTEMIS). Until recently, most of such studies were done in experimental laboratories at reduced scales. Due to the complexity and nonlinearity of the problem, only simplified theories, describing this effect, were developed. However, recent progress in high-performance kinetic plasma simulations allowed tackling the problem of plasma sheath formation numerically. In this poster we will present the simulation results of plasma sheath formation above the lunar craters in presence of solar wind and photoelectron emission. These results were obtained using 3D Particle-In-Cell (PIC) code VORPAL. In the simulations we considered plasma sheath formation for normal, 45 and 90 degree incidence solar wind. Sample distribution of electric field in plasma sheath is shown in Figure 1. In the second part of the poster, we will present results of simulations of the LASP (Laboratory for Atmospheric and Space Physics at University of Colorado) experiments on study of plasma sheath formation above hemispherical isolated dimple. Figure 1. Electric field distribution in the plasma sheath above the lunar crater
NASA Astrophysics Data System (ADS)
Baraka, S. M.; Ben-Jaffel, L. B.
2014-12-01
We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere
A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn
2008-10-01
A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.
NASA Astrophysics Data System (ADS)
Dalichaouch, Thamine; Yu, Peicheng; Davidson, Asher; Mori, Warren; Vieira, Jorge; Fonseca, Ricardo
2015-11-01
Laser wakefield acceleration (LWFA) has attracted a lot of interest as a possible compact particle accelerator. However, 3D simulations of plasma-based accelerators are computationally intensive, sometimes taking millions of core hours on today's computers. A quasi-3D particle-In-cell (PIC) approach has been developed to take advantage of azimuthal symmetry in LWFA (and PWFA) simulations by using a particle-in-cell description in r-z and a Fourier description in φ. Quasi-3D simulations of LWFA are computationally more efficient and faster than Full-3D simulations because only first few azimuthal harmonics are needed to capture the physics of the problem. We have developed a cylindrical mode decomposition diagnostic for 3D Cartesian geometry simulations to analyze the agreement between full-3D and quasi-3D PIC simulations of laser and beam-plasma interactions. The diagnostic interpolates field data from Full-3D PIC simulations onto an irregular cylindrical grid (r , φ , z). A Fourier decomposition is then performed on the interpolated 3D simulation data along the azimuthal direction. This diagnostic has the added advantage of separating out the wakefields from the laser field. Preliminary results for this diagnostic of LWFA and PWFA simulations with symmetric and nearly symmetric spot sizes as well as of laser-plasma interactions using lasers with orbital angular momentum (higher order Laguerre-Gaussian modes) will be presented.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
3D implicit PIC simulations of solar wind - moon interactions
NASA Astrophysics Data System (ADS)
Deca, J.; Markidis, S.; Divin, A.; Lapenta, G.; Vapirev, A.
2012-04-01
We present three-dimensional Particle-in-Cell simulations of an unmagnetized insulating Moon-sized body immersed in the solar wind. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, 2009]. Multiscale kinetic physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind - body interaction studies. Particles are injected at the inflow side of the computational domain and absorbed at all others. A bow shock is not formed upstream of the body, but the obstacle generates faint dispersive waves propagating parallel to the magnetic field lines, in agreement with numerical simulations done in MHD approach. Polarization electric field is generated in the wake. In addition, plasma flows filling the wake tend to excite streaming instabilities, which lead to bipolar signatures in the parallel electric field. Our future work includes updating the physical model to include photoionization and re-emission at the object's surface.
NASA Astrophysics Data System (ADS)
Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.
2014-12-01
With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.
Fully 3D Particle-in-Cell Simulation of Double Post-Hole Convolute on PTS Facility
NASA Astrophysics Data System (ADS)
Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Institute of Fluid Physics Collaboration; Institute of Applied Physics; Computational Mathematics Collaboration
2015-11-01
In order to get better understand of energy transforming and converging process during High Energy Density Physics (HEDP) experiments, fully 3D particle-in-cell (PIC) simulation code NEPTUNE3D was used to provide numerical approach towards parameters which could hardly be acquired through diagnostics. Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) on the primary test stand (PTS) facility was chosen to perform a series of fully 3D PIC simulations, calculating ability of codes were tested and preliminary simulation results about DPHC on PTS facility were discussed. Taking advantages of 3D simulation codes and large-scale parallel computation, massive data (~ 250GB) could be acquired in less than 5 hours and clear process of current transforming and electron emission in DPHC were demonstrated with the help of visualization tools. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated to be 0.46% ~ 0.48% by comparisons between output magnetic field profiles with or without electron emission. Project supported by the National Natural Science Foundation of China (Grant No. 11205145, 11305015, 11475155).
NASA Astrophysics Data System (ADS)
Hofmann, I.; Boine-Frankenheim, O.
2014-12-01
The numerical noise inherent to particle-in-cell (PIC) simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994)]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial "collisions" caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.
Hewett, D.W.; Francis, G.E.; Max, C.E.
1990-06-29
Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.
Birdsall, C.K. . Dept. of Electrical Engineering and Computer Sciences)
1991-04-01
Many-particle (meaning 100's) charged-particle plasma simulations using spatial meshes for the electromagnetic field solutions, particle-in-cell (PIC) merged with Monte Carlo collision (MCC) calculations, are coming into wide use for application to partially ionized gases. This paper emphasizes the development of PIC computer experiments since the 1950's starting with one-dimensional (1-D) charged-sheet models, the addition of the mesh, and fast direct Poisson equation solvers for 2-D and 3-D. The finite-size particle-in-mesh (finite {Delta}{chi}, {Delta}t) theory of Langdon is presented in part to display the effects of too small {lambda}{sub D}/{Delta}{chi}, even for Maxwellian velocity distributions, as a caution, for example, when some ions are cooled to background gas temperatures by charge exchange. Early work on adding collisions to 1-D charge-sheet models by Burger and Shanny et al. are presented, with many of the elements of current Monte Carlo codes. Bounded plasma modeling is presented with electrode charges and external R, L, C, and V(t), I(t) sources now in use on fast desktop computers as real-time computer experiments, complementing analytic modeling and laboratory experiments. This paper reports that the addition of Monte Carlo collisions (usually done with irregular timesteps) to PIC (usually done with uniform {Delta}t's) is displayed as a developing art, relying on experimental total cross sections and approximate analytical differential cross sections to produce changes in charged-particle speed and direction due to collisions with neutrals, so far including elastic, excitation, ionization, charge exchange, and attachment processes.
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2016-07-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.
NASA Astrophysics Data System (ADS)
Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.
2013-12-01
Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons
Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids
Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.
1998-01-01
New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
Dipp, T.M. |
1993-12-01
The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code.
Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006
Particle-in-Cell (PIC) simulation of CW industrial heating magnetron.
Andreev, Andrey D; Hendricks, Kyle J
2010-01-01
Modern CW industrial heating magnetrons are capable for producing as high as 300 kW of continuous-wave microwave power at frequencies around 900 MHz and are sold commercially [Wynn et al., 2004]. However, to utilize these magnetrons in some specific research and scientific applications being of interest for the Air Force, the necessary adaptation and redesign are required. It means that the detailed knowledge of principles of their operation and full understanding of how the changes of the design parameters affect their operational characteristics are necessary. We have developed and tested computer model of a 10-vane high-power strapped magnetron, which geometrical dimensions and design parameters are close to those of the California Tube Laboratory's commercially produced CWM-75/100L tube. The computer model is built by using the 3-D Improved Concurrent Electromagnetic Particle-in-Cell (ICEPIC) code. Simulations of the strapped magnetron operation are performed and the following operational characteristics are obtained during the simulation: frequency and mode of magnetron oscillations, output microwave power and efficiency of magnetron operation, anode current and anode-cathode voltage dynamics. The developed computer model of a non-relativistic high-power strapped magnetron may be used by the industrial magnetron community for designing following generations of the CW industrial heating high-power magnetrons. PMID:21721323
3-D Particl-in-Cell Simulations of Transport Driven Currents
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Dawson, J. M.
1997-11-01
In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Although bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents, the corresponding transport theory does not accurately predict the transport of particles and heat in present-day tokamak experiments. Furthermore, in our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. Because the preferential loss mechanism assumes the conservation of toroidal angular momentum, we have extended these simulations to three dimensions to study the effects of toroidal assymetries. A parallel, 3-D electromagnetic PIC code running on the IBM SP, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations, and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present these results at the meeting.
Self-consistent Nonlinear Analysis and 3D Particle-In-Cell Simulation of a W-band Gyro-TWT
NASA Astrophysics Data System (ADS)
Tang, Yong; Luo, Yong; Xu, Yong; Yan, Ran
2014-10-01
The self-consistent nonlinear analysis and CST 3D particle-in-cell (PIC) simulation of a W-band gyrotron traveling wave tube (gyro-TWT) are presented in this paper. Both the simulation results of the two codes are excellent agreement with each other. The gyro-TWT loaded with periodic lossy dielectric in the circuit for suppressing potential spurious oscillations. It is driven by a 70kV, 10A gyrating electron beam with velocity ratio of 1.0. PIC simulation results are: the maximum peak output power of 198kW, statured gain of 62.3dB and efficiency of 28.3% at 92.5GHz. Only the operating mode TE 01 is observed in the CST 3D simulation and the potential competing backward wave oscillations are effectively suppressed. The CST simulation also predicts that the device works stably under the condition of the beam current lower than 14A and B 0 /B g lower than 1.05. The simulated bandwidth with peak power greater than 100kW is 6.8GHz without axial velocity spread, and 4.1GHz with 6% axial velocity spread.
Progress in 3D Particle-In-Cell Modeling of Space-Charge-Dominated Ion Beams for Heavy-Ion Fusion
NASA Astrophysics Data System (ADS)
Friedman, A.; Callahan, D. A.; Grote, D. P.; Langdon, A. B.; Lund, S. M.; Haber, I.
1996-11-01
The ion beam in an induction accelerator for HIF is a non-neutral plasma, and is effectively simulated using familiar particle-in-cell (PIC) techniques, with the addition of a description of the accelerating and confining elements. The WARP code incorporates electrostatic 3D and r,z PIC models; a number of techniques are used in the 3D package, WARP3d, to increase accuracy and efficiency. These include solution of Poisson's equation with subgrid-scale resolution of internal boundary placement, a bent-system model using ``warped'' coordinates, and parallel processing. In this paper we describe recent applications to HIF experiments, including a high-current electrostatic-quadrupole injector at LBNL, and bending and recirculation experiments at LLNL. We also describe new computational techniques being studied, including higher-order integrators and subcycling methods aimed at allowing larger timesteps, and a ``fat-slice'' model which affords efficient examination of collective modes that transfer thermal energy between degrees of freedom.
Study on Low-Frequency Oscillations in a Gyrotron Using a 3D CFDTD PIC Method
NASA Astrophysics Data System (ADS)
Lin, M. C.; Smithe, D. N.
2010-11-01
Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. 2D Particle-in-cell simulations quasi-statically model the development of oscillations of the space charge in the adiabatic trap, but the physics of the electron dynamics in the adiabatic trap is only partially understood. Therefore, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a high average power gyrotron. As the CFDTD method exhibits a second order accuracy, complicated structures, such as a magnetron injection gun, can be well described. Employing a highly parallelized computation, the model can be simulated in time domain more realistically.
NASA Astrophysics Data System (ADS)
Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph
2016-09-01
Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.
DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni
2011-06-01
A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling
NASA Astrophysics Data System (ADS)
Serafini, David B.; McCorquodale, Peter; Colella, Phillip
2005-01-01
We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the load
3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron
NASA Astrophysics Data System (ADS)
Lin, M. C.; Smithe, D. N.
2011-10-01
Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.
Particle-In-Cell (PIC) simulation of long-anode magnetron
NASA Astrophysics Data System (ADS)
Verma, Rajendra Kumar; Maurya, Shivendra; Singh, Vindhyavasini Prasad
2016-03-01
Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was `Virtual Prototyped' using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were - hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.
3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method
NASA Astrophysics Data System (ADS)
Lin, Ming-Chieh; Song, Heather
2015-11-01
Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2013-10-01
The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.
NASA Astrophysics Data System (ADS)
Genco, Filippo
Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving
Parallel 3-D particle-in-cell modelling of charged ultrarelativistic beam dynamics
NASA Astrophysics Data System (ADS)
Boronina, Marina A.; Vshivkov, Vitaly A.
2015-12-01
> ) in supercolliders. We use the 3-D set of Maxwell's equations for the electromagnetic fields, and the Vlasov equation for the distribution function of the beam particles. The model incorporates automatically the longitudinal effects, which can play a significant role in the cases of super-high densities. We present numerical results for the dynamics of two focused ultrarelativistic beams with a size ratio 10:1:100. The results demonstrate high efficiency of the proposed computational methods and algorithms, which are applicable to a variety of problems in relativistic plasma physics.
2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU
NASA Astrophysics Data System (ADS)
Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre
2012-10-01
A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.
Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.
2015-06-15
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.
NASA Astrophysics Data System (ADS)
Zharkova, V. V.; Siversky, T.
2015-09-01
Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir
3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures
NASA Astrophysics Data System (ADS)
Teunissen, Jannis; Ebert, Ute
2016-08-01
We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.
NASA Astrophysics Data System (ADS)
Innocenti, M.; Beck, A.; Lapenta, G.; Markidis, S.
2012-12-01
The kinetic simulation of intrinsically multi scale processes such as magnetic reconnection events with realistic mass ratios is a daunting task for explicit Particle In Cell (PIC) codes, which require to use resolutions of the order of the electron Debye length even when simulating dramatically bigger domains. As an example, a simulation of reconnection in the magnetotail, with domain sizes of the order of 20 di x 10 di (˜ 7.2 106 m x 3.6 106 m, with di being the ion skin depth) and a resolution of λD,e= 687 m, with λD,e the electron Debye length, requires the astounding number of 10500 x 5240 cells. Higher grid spacings can be used if the simulation is performed with an implicit PIC code, which substitutes a much less strict accuracy constraint to the stability constraint of explicit PIC codes. The same reconnection problem as before can be simulated, with an implicit PIC code resolving the scale of interest of de /2 instead of the electron Debye length (de is the electron skin depth), with the much more manageable number of 1920 x 958 cells. However, an even smaller number of cells can be used if, instead of using the same, high resolution on the entire domain, the domain to simulate is divided into subdomains each resolved with a grid spacing related to the physical scale of interest in the specific subdomain. In the case of reconnection, the division which immediately springs to mind is between electron diffusion region, ion diffusion region and outer region, where resolutions respectively of the order of fractions of the electron skin depth, of the ion skin depth and bigger can be used. We present here a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle In Cell (PIC) code, Parsek2D-MLMD, able to perform simulations of magnetic reconnection where the expensive high resolutions are used only when needed, while the rest of the domain is simulated with grid spacings chosen according to the local scales of interest. The major difference
NASA Astrophysics Data System (ADS)
Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.; Ippolito, N.
2016-02-01
The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported.
Taccogna, F; Minelli, P; Cavenago, M; Veltri, P; Ippolito, N
2016-02-01
The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported. PMID:26932027
S. Ethier; Z. Lin
2003-09-15
Several years of optimization on the super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the CRAY/NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. Early performance results are shown and compared to the same test done on the IBM SP Power 3 and Power 4 machines.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.
2015-04-01
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.
2015-04-08
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.
2005-03-15
The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.
NASA Astrophysics Data System (ADS)
Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.
2005-03-01
The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.
NASA Astrophysics Data System (ADS)
Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.
2013-12-01
Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
NASA Astrophysics Data System (ADS)
Lehe, Rémi; Kirchen, Manuel; Andriyash, Igor A.; Godfrey, Brendan B.; Vay, Jean-Luc
2016-06-01
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
3D-PIC simulation of an inductively coupled ion source
NASA Astrophysics Data System (ADS)
Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian
2015-09-01
Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.
Multiple platform application of 3D CAD PIC simulations in pulsed power
Peratt, A.L.; Mostrom, M.A.
1995-12-31
With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk is to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.
NASA Astrophysics Data System (ADS)
Grant, Edwin J.; Posada, Chrystian M.; Castaño, Carlos H.; Lee, Hyoung K.
2011-03-01
A novel x-ray source based on carbon nanotubes (CNTs) field emitters is being developed as an alternative for medical imaging diagnostic technologies. The design is based on an array of millions of micro sized x-ray sources similar to the way pixels are arranged in flat panel displays. The trajectory and focusing characteristics of the field emitted electrons, as well as the x-ray generation characteristics of each one of the proposed micro-sized x-ray tubes are simulated. The electron field emission is simulated using the OOPIC PRO particle-in-cell code. The x-ray generation is analyzed with the MCNPX Monte Carlo code. MCNPX is used to optimize both the bremsstrahlung radiation energy spectra and to verify the angular distribution for 0.25-12 μm thick molybdenum, rhodium and tungsten targets. Also, different extracting, accelerating and focusing voltages, as well as different focusing structures and geometries of the micro cells are simulated using the OOPIC Pro particle-in-cell code. The electron trajectories, beam spot sizes, I-V curves, bremsstrahlung radiation energy spectra, and angular distribution are all analyzed for a given cell. The simulation results show that micro x-ray cells can be used to generate suitable electron currents using CNT field emitters and strike a thin tungsten target to produce an adequate bremsstrahlung spectrum. The shape and trajectory of the electron beam was modified using focusing structures in the microcell. Further modifications to the electron beam are possible and can help design a better x-ray transmission source.
Fubiani, G. Boeuf, J. P.
2014-07-15
Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.
Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Mori, W. B.; Winjum, B. J.
2014-10-01
We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.
NASA Astrophysics Data System (ADS)
Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.
2008-12-01
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
Conformal Electromagnetic Particle in Cell: A Review
Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam
2015-10-26
We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.
NASA Astrophysics Data System (ADS)
Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni
2016-04-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.
Fully implicit particle-in-cell algorithm.
NASA Astrophysics Data System (ADS)
Kim, Hyung; Chacon, Luis
2005-10-01
Most current particle-in-cell (PIC) algorithms employ an explicit approach. Explicit PIC approaches are not only time-step limited for numerical stability, but also grid-intensive due to the so-called finite-grid instability.ootnotetextC. Birdsall and A. Langdon, Plasma physics via computer simulation, McGraw-Hill, New York, 1985 As a result, explicit PIC methods are very hardware-intensive, and become prohibitive for system scale simulations even with modern supercomputers. To avoid such stringent time-step and grid-size requirements, the implicit moment method PIC approach (IM-PIC) was developed.ootnotetextJ. Brackbill and D. Forslund, J. Comput. Phys. 46, 271 (1982). IM-PIC advances the required moments (density, current) using Chapman-Enskop-based fluid equations, and then advances the particles with such moments. While being able to employ much larger time steps and grid spacings than explicit PIC methods, IM-PIC is limited in that the time-advanced moments and the particle moments are inconsistent, resulting in lack of energy conservation. To remedy this, we propose here a fully implicit, fully nonlinear PIC approach (FI-PIC) where the particles and the moments are converged simultaneously using Newton-Krylov techniques. This guarantees the consistency of moments and particles upon convergence. We will demonstrate the feasibility of the concept using a purely electrostatic Vlasov-Poisson model, and will show its effectiveness with several fully kinetic examples.
Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC
NASA Astrophysics Data System (ADS)
Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin
2015-04-01
We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Wavelet-based Poisson Solver for use in Particle-In-CellSimulations
Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.
2005-05-13
We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.
Global particle-in-cell simulations of Alfvenic modes
Mishchenko, A.; Koenies, A.; Hatzky, R.
2008-11-01
Global linear gyro-kinetic particle-in-cell (PIC) simulations of electromagnetic modes in pinch and tokamak geometries are reported. The Toroidal Alfven Eigenmode and the Kinetic Ballooning Mode have been simulated. All plasma species have been treated kinetically (i.e. no hybrid fluid-kinetic or reduced-kinetic model has been applied). The main intention of the paper is to demonstrate that the global Alfven modes can be treated with the gyro-kinetic PIC method.
NASA Astrophysics Data System (ADS)
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
Contemporary particle-in-cell approach to laser-plasma modelling
NASA Astrophysics Data System (ADS)
Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P.
2015-11-01
Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these high-order shape functions for particles, Poisson preserving field updates, collisions, ionisation, a hybrid scheme for solid density and high-field QED effects. In addition to these physics packages, the increase in computing power now allows simulations with real mass ratios, full 3D dynamics and multi-speckle interaction. This paper presents a review of the core algorithms used in current laser-plasma specific PIC codes. Also reported are estimates of self-heating rates, convergence of collisional routines and test of ionisation models which are not readily available elsewhere. Having reviewed the status of PIC algorithms we present a summary of recent applications of such codes in laser-plasma physics, concentrating on SRS, short-pulse laser-solid interactions, fast-electron transport, and QED effects.
Particle-In-Cell simulation of laser irradiated two-component microspheres in 2 and 3 dimensions
NASA Astrophysics Data System (ADS)
Pauw, Viktoria; Ostermayr, Tobias M.; Bamberg, Karl-Ulrich; Böhl, Patrick; Deutschmann, Fabian; Kiefer, Daniel; Klier, Constantin; Moschüring, Nils; Ruhl, Hartmut
2016-09-01
We examine proton acceleration from spherical carbon-hydrogen targets irradiated by a relativistic laser pulse. Particle-In-Cell (PIC) simulations are carried out in 2 and 3 dimensions (2D and 3D) to compare fast proton spectra. We find very different final kinetic energies in 2D and 3D simulations. We show that they are caused by the different Coulomb fields in 2D and 3D. We propose a correction scheme for the proton energies to test this hypothesis. In the case of sub-focus diameter targets comparison of corrected 2D energies with 3D results show good agreement. This demonstrates that caution is required when modeling experiments with simulations of reduced dimensionality.
NASA Astrophysics Data System (ADS)
Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.
2015-12-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.
2015-09-01
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.
2015-09-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
Particle Acceleration in 3D Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Dahlin, J.; Drake, J. F.; Swisdak, M.
2015-12-01
Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.
NASA Astrophysics Data System (ADS)
Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.
2013-12-01
Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven
Numerical experiments on unstructured PIC stability.
Day, David Minot
2011-04-01
Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.
Adaptable Particle-in-Cell Algorithms for Graphical Processing Units
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Singh, Tajendra
2010-11-01
Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).
Concurrent Algorithm For Particle-In-Cell Simulations
NASA Technical Reports Server (NTRS)
Liewer, Paulett C.; Decyk, Viktor K.
1990-01-01
Separate decompositions used for particle-motion and field calculations. General Concurrent Particle-in-Cell (GCPIC) algorithm used to implement motions of individual plasma particles (ions and electrons) under influence of particle-in-cell (PIC) computer codes on concurrent processors. Simulates motions of individual plasma particles under influence of electromagnetic fields generated by particles themselves. Performed to study variety of nonlinear problems in plasma physics, including magnetic and inertial fusion, plasmas in outer space, propagation of electron and ion beams, free-electron lasers, and particle accelerators.
NASA Astrophysics Data System (ADS)
Ngirmang, Gregory K.; Orban, Chris; Feister, Scott; Morrison, John T.; Frische, Kyle D.; Chowdhury, Enam A.; Roquemore, W. M.
2016-04-01
We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution; the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.
Global gyrokinetic particle-in-cell simulations of internal kink instabilities
Mishchenko, Alexey; Zocco, Alessandro
2012-12-15
Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.
Particle-in-cell simulations with charge-conserving current deposition on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren
2011-10-01
Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.
Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.
2016-02-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
Particle-in-cell simulations of whistler turbulence: A review (Invited)
NASA Astrophysics Data System (ADS)
Gary, S. P.; Chang, O.; Hughes, R. S.; Wang, J.
2013-12-01
Measurements of broadband magnetic fluctuations in the solar wind at wavelengths shorter than the ion inertial length indicate that the primary constituent of such turbulence is kinetic Alfven waves at frequencies well below the proton cyclotron frequency. Nevertheless, it is possible that much higher frequency whistler fluctuations also contribute to this short-wavelength turbulence. To better understand such potential contributions to solar wind turbulence, we have carried out a series of three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence in a collisionless, homogeneous, magnetized plasma [Chang et al., 2011, 2013; Gary et al., 2012]. We here review the properties of these simulations, which address turbulence driven by both an initial ensemble of whistler waves and by the whistler anisotropy instability. Our results include the consequences due to both forward and inverse cascades, to variations in the amplitudes of the initial fluctuations and to variations in βe. We describe the magnetic fluctuation spectral properties as well as dissipation on the electrons, which are heated primarily in directions parallel and antiparallel to the background magnetic field. Magnetic fluctuation energy spectra exhibit a break to steeper slopes which scales as the inverse electron inertial length. The simulation results are consistent with the interpretation that the forward cascade is due to nonlinear three-wave interactions. Chang, O., S. P. Gary, and J. Wang (2011), Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations, Geophys. Res. Lett., 38, L22102. Chang, O., S. P. Gary, and J. Wang (2013), Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations, J. Geophys. Res., 118, 2824. Gary, S. P., O. Chang, and J. Wang (2012), Forward cascade of whistler turbulence: Three-dimensional particle-in-cell simulations, Ap. J., 755, 142.
Propagation of numerical noise in particle-in-cell tracking
NASA Astrophysics Data System (ADS)
Kesting, Frederik; Franchetti, Giuliano
2015-11-01
Particle-in-cell (PIC) is the most used algorithm to perform self-consistent tracking of intense charged particle beams. It is based on depositing macroparticles on a grid, and subsequently solving on it the Poisson equation. It is well known that PIC algorithms occupy intrinsic limitations as they introduce numerical noise. Although not significant for short-term tracking, this becomes important in simulations for circular machines over millions of turns as it may induce artificial diffusion of the beam. In this work, we present a modeling of numerical noise induced by PIC algorithms, and discuss its influence on particle dynamics. The combined effect of particle tracking and noise created by PIC algorithms leads to correlated or decorrelated numerical noise. For decorrelated numerical noise we derive a scaling law for the simulation parameters, allowing an estimate of artificial emittance growth. Lastly, the effect of correlated numerical noise is discussed, and a mitigation strategy is proposed.
Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M
2014-04-18
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs. PMID:24785022
Electromagnetic direct implicit PIC simulation
Langdon, A.B.
1983-03-29
Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.
Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model
Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Fukano, A.
2015-04-08
In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Cao. D/ S/; Lembege, B.
2008-01-01
Three dimensional PIC simulations are performed in order to analyse the dynamics of the magnetotail as the interplanetary magnetic field (IMF) rotates from northward to southward direction. This dynamics reveals to be quite different within meridian/equatorial planes over two successive phases of this rotation. First, as IMF rotates from North to Dawn-Dusk direction, the X-Point (magnetic reconnection) evidenced in the magnetotail (meridian plane) is moving earthward (from x=-35 Re to x=-17.5 ) distance at which it stabilizes. This motion is coupled with the formation of "Crosstail-S" patterns (within the plane perpendicular to the Sun-Earth mine) through the neutral sheet in the nearby magnetotail. Second, as IMF rotates from dawn-dusk to South, the minimum B field region is expanding within the equatorial plane and forms a ring. This two-steps dynamics is analyzed in strong association with the cross field magnetotail current Jy, in order to recover the signatures of substorms triggering.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
Fubiani, G.; Boeuf, J. P.
2013-11-15
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)
Two- and three-dimensional particle-in-cell simulations of ExB discharges
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander; Raitses, Yevgeny; Smolyakov, Andrei
2015-09-01
The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. Work funded by AFOSR and ARPA-E.
Two- and three-dimensional particle-in-cell simulations of ExB discharges
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Kaganovich, Igor D.; Khrabrov, Alexander V.; Raitses, Yevgeny; Smolyakov, Andrei
2015-11-01
The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. L. Ellison, Y. Raitses and N. J. Fisch, ``Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster,'' Physics of Plasmas 19, 013503 (2012). Research supported by the U.S. Air Force Office of Scientific Research.
Accelerating particle-in-cell simulations using multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Ricketson, Lee
2015-11-01
Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
Saito, S.; Gary, S. Peter; Narita, Y.
2010-12-15
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
Classical radiation reaction in particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.
2016-07-01
Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.
PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED ACCELERATOR LIBRARY.
D'IMPERIO, N.L.; LUCCIO, A.U.; MALITSKY, N.
2006-06-26
The paper presents the integration of the SIMBAD space charge module in the UAL framework. SIMBAD is a Particle-in-Cell (PIC) code. Its 3-D Parallel approach features an optimized load balancing scheme based on a genetic algorithm. The UAL framework enhances the SIMBAD standalone version with the interactive ROOT-based analysis environment and an open catalog of accelerator algorithms. The composite package addresses complex high intensity beam dynamics and has been developed as part of the FAIR SIS 100 project.
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
PIC simulation of high efficiency and high power 14 vane industrial magnetron
NASA Astrophysics Data System (ADS)
Vyas, Sandeep; Maurya, Shivendra; Singh, V. V. P.
2016-03-01
This paper presents a 3D Particle in cell (PIC) simulation of a CW 2.450±0.050 GHz 10 kW industrial magnetron. The electromagnetic and PIC simulation of magnetron has been carried out using CST microwave studio andCST particle studio. A virtual prototype of 14 vane magnetron has been simulated on computer. The cold frequency of magnetron is found 2.495 GHz. The unloaded quality factor and circuit efficiency are found 1970 and 92% from electromagnetic simulation. The output power is achieved 12.4 KW for anode voltage 12.7 kV and magnetic field 2900 Gauss. The anode current is found anode current 1.22 A. The total efficiency is 78.76 %.
NASA Astrophysics Data System (ADS)
Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio
2012-12-01
We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.
NASA Astrophysics Data System (ADS)
Wang, Yue; Wang, Jianguo; Chen, Zaigao; Cheng, Guoxin; Wang, Pan
2016-08-01
To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional (3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of the time step. Particles are emitted from conformal boundaries with the charge conserving emission scheme and moved by using the relativistic Newton-Lorentz force equation. The symplectic formulas of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are given for truncating the open boundaries, numerical results show that the maximum relative error of truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of conformal signals' injection are given, numerical results show that the algorithms can give the right mode patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms, a magnetically insulated line oscillator is simulated, and the results are compared to those provided by using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order symplectic integration method can suppress the numerical Cherenkov radiation.
NASA Astrophysics Data System (ADS)
Lucca Fabris, Andrea; Young, Christopher; Manente, Marco; Pavarin, Daniele; Cappelli, Mark
2014-10-01
This work aims to provide new insight into the physical mechanisms occurring in the discharge channel and acceleration region of a cusped field plasma thruster through a combined experimental and computational approach. Simulations are performed using the 3D particle-in-cell code F3MPIC, comprised of a PIC core coupled with a finite element electrostatic field solver over an unstructured mesh of tetrahedra. The cusped field structure is also included to resolve magnetized particle dynamics. We perform simulations with two ionization schemes: one where constant particle source rates are assigned to certain regions, and a more rigorous approach based on Monte Carlo collision events. The simulation results reveal correlations between the particle density distributions, electrostatic potential, and magnetic field topology inside the thruster discharge channel that are confirmed through experiments. Laser induced fluorescence measurements have resolved xenon ion velocities at several points near the thruster exit plane. Faraday and floating emissive probe measurements indicate this velocity field is correlated with the measured ion beam current profile and electrostatic potential field. This work sponsored by the U.S.A.F. Office of Scientific Research, with Dr. Mitat Birkan as program manager. F3MPIC developed under the European Union FP7 HPH.com project. C.V.Y. acknowledges the DOE NNSA SSGF fellowship under Contract DE-FC52-08NA28752.
GPU acceleration of particle-in-cell methods
NASA Astrophysics Data System (ADS)
Cowan, Benjamin; Cary, John; Meiser, Dominic
2015-11-01
Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
Chacon, Luis
2015-07-16
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ω_{pe}Δt >> 1, and Δx >> λ_{D}. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N_{FE}, leading to an optimal algorithm.
Laser-plasma interactions with a Fourier-Bessel particle-in-cell method
NASA Astrophysics Data System (ADS)
Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin
2016-03-01
A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.
Particle-In-Cell simulations of high pressure plasmas using graphics processing units
NASA Astrophysics Data System (ADS)
Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter
2009-10-01
Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.
2016-06-07
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
On the numerical dispersion and the spectral fidelity of the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Meyers, M. D.; Zeng, Y.; Yi, S.; Albright, B. J.
2015-11-01
The Particle-In-Cell (PIC) method is widely used in plasma modeling. However, the PIC method exhibits grid type numerical instabilities, including the finite grid instability and the numerical Cherenkov instability that can render unphysical simulation results or disrupt the simulation. A faithful numerical dispersion of the electromagnetic PIC algorithm is obtained and analyzed to obtain the insight about the numerical instabilities inherent in such a computation model. Using this dispersion, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. Compared with the gridless model, we show that the lack of spectral fidelity relative to the real system due to the aliasing effect is a major cause of the numerical instabilities in the PIC model. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.
On the use of particle-in-cell methods for the study of magnetically-confined fusion plasmas
Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)
1991-06-12
The applicability of electrostatic particle-in-cell (PIC) methods for the simulation of magnetically-confined fusion plasmas is investigated. The aspects of the PIC methodology which allow one to accurately model the representative charge separations found in hot fusion plasmas with far fewer simulation particles are discussed. The number of simulation particles required to resolve the collective effects of interest (such as the ambipolar potential) above the statistical fluctuations is also analyzed. 8 refs., 1 fig.
NASA Astrophysics Data System (ADS)
Daldorff, Lars K. S.; Tóth, Gábor; Gombosi, Tamas I.; Lapenta, Giovanni; Amaya, Jorge; Markidis, Stefano; Brackbill, Jeremiah U.
2014-07-01
Computational models based on a fluid description of the plasma, such as magnetohydrodynamic (MHD) and extended magnetohydrodynamic (XMHD) codes are highly efficient, but they miss the kinetic effects due to the assumptions of small gyro radius, charge neutrality, and Maxwellian thermal velocity distribution. Kinetic codes can properly take into account the kinetic effects, but they are orders of magnitude more expensive than the fluid codes due to the increased degrees of freedom. If the fluid description is acceptable in a large fraction of the computational domain, it makes sense to confine the kinetic model to the regions where kinetic effects are important. This coupled approach can be much more efficient than a pure kinetic model. The speed up is approximately the volume ratio of the full domain relative to the kinetic regions assuming that the kinetic code uses a uniform grid. This idea has been advocated by [1] but their coupling was limited to one dimension and they employed drastically different grid resolutions in the fluid and kinetic models. We describe a fully two-dimensional two-way coupling of a Hall MHD model BATS-R-US with an implicit Particle-in-Cell (PIC) model iPIC3D. The coupling can be performed with identical grid resolutions and time steps. We call this coupled computational plasma model MHD-EPIC (MHD with Embedded PIC regions). Our verification tests show that MHD-EPIC works accurately and robustly. We show a two-dimensional magnetosphere simulation as an illustration of the potential future applications of MHD-EPIC.
Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H.
2012-07-15
Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 Degree-Sign ). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 {mu}m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields {approx}50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.
Foust, F. R.; Bell, T. F.; Spasojevic, M.; Inan, U. S.
2011-06-15
We present results showing the measured Landau damping rate using a high-order discontinuous Galerkin particle-in-cell (DG-PIC) [G. B. Jacobs and J. S. Hesthaven, J. Comput. Phys. 214, 96 (2006)] method. We show that typical damping rates measured in particle-in-cell (PIC) simulations can differ significantly from the linearized Landau damping coefficient and propose a simple numerical method to solve the plasma dispersion function exactly for moderate to high damping rates. Simulation results show a high degree of agreement between the high-order PIC results and this calculated theoretical damping rate.
Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas
Shadwick, B. A.; Schroeder, C. B.
2009-01-22
The connection between macro-particle shape functions and non-physical phase-space 'heating' in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phase-space structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.
Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas
Shadwick, B.A.; Schroeder, C.B.
2008-08-01
The connection between macro-particle shape functions and non-physical phase-space"heating" in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phasespace structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.
John A. Krommes
2007-10-09
The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály
2014-05-01
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centred just below the lunar surface under various solar wind and plasma conditions and focus on the kinetic effects. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie supercomputer). This research was supported by the Swedish National Space Board, Grant No. 136/11. JD has received support through the HPC-Europa2 visitor programme (project HPC08SSG85) and
Particle-in-cell simulations of Hall plasma thrusters
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre
2016-07-01
Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.
3-D Dynamic Behavior of Generalized Polar Wind
NASA Astrophysics Data System (ADS)
Barakat, A. R.; Schunk, R. W.; Demars, H. G.
2003-12-01
The dynamic behavior of the high-latitude plasma during a representative geomagnetic storm is investigated using a 3-D macroscopic particle-in-cell (mac-PIC) model. In this study, we simulate the behavior of a large number ( ˜100 to 1000) of plasma-filled geomagnetic flux tubes. Each flux tube extends from 1200 km to several Earth radii, includes ˜106 simulation particles, and is followed for ˜12 hours. The lower boundary conditions of the model are provided by a 3-D fluid-like model that extends down to 100 km. Several physical mechanisms are included such as wave-particle interactions, ion-ion collisions, low-altitude ion energization, and magnetospheric particles. The computing-intensive nature of the model requires the utilization of parallel programming techniques. We use a cluster of five nodes, with two (1.6 GHz) processors each, that is available at Utah State University, with the intention of transferring the code to a bigger facility in the future. A 3-D picture is assembled from the temporal evolution of the individual flux tubes by keeping track of their locations. This 3-D picture facilitates comparison with observations, such as radar and satellite measurements. The model and its preliminary results are presented.
Accuracy Analysis of the PIC Method
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Cartwright, K. L.
2000-10-01
The discretization errors for many steps of the classical Particle-in-Cell (PIC) model have been well-studied (C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, NY (1985).) (R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, NY (1981).). In this work, the errors in the interpolation algorithms, which provide the connection between continuum particles and discrete fields, are described in greater detail. In addition, the coupling of errors between steps in the method is derived. The analysis is carried out for both electrostatic and electromagnetic PIC models, and the results are demonstrated using a bounded one-dimensional electrostatic PIC code (J. P. Verboncoeur et al., J. Comput. Phys. 104, 321-328 (1993).), as well as a bounded two-dimensional electromagnetic PIC code (J. P. Verboncoeur et al., Comp. Phys. Comm. 87, 199-211 (1995).).
Chen, Guangye; Chacon, Luis; Knoll, Dana Alan; Barnes, Daniel C
2015-07-31
A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω_{pe}Δt >>1, and Δx >> λ_{D}), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylov (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
The use of electromagnetic particle-in-cell codes in accelerator applications
Eppley, K.
1988-12-01
The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
NASA Astrophysics Data System (ADS)
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-01
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
NASA Astrophysics Data System (ADS)
Chacon, Luis; Chen, Guangye
2015-11-01
We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Genoni, T. C.; Mehlhorn, T. A.; Campbell, R. B.
2008-03-01
Particle-based numerical simulations are required to study the dynamics and evolution of inhomogeneous nonequilibrium multispecies strongly coupled plasmas. Molecular dynamics (MD) and particle-in-cell (PIC) techniques and been compared previously [K. Y. Sanbonmatsu, et al., J. Phys. IV (France) 10, Pr5-259 (2000)], with the PIC methodology demonstrating the capability of improved accuracy over the MD simulations at high resolution. However, the PIC simulations were significantly slower, limiting their utility. Here we explore several schemes to improve the computational speed of such calculations including non-iterative, implicit EM field solvers and subgrid models. The simulations are compared directly with the results of Sanbonmatsu, et al., and a new theoretical analysis of the hypernetted chain model where all inter-species correlations are retained [V. Schwarz, et al., Contrib. Plasma Phys. 47, 324 (2007)].
Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav
2016-04-01
In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)
NASA Astrophysics Data System (ADS)
Vu, H. X.; Bezzerides, B.; Dubois, D. F.
1998-11-01
A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal WKB envelopes in order to model low-frequency and high-frequency parametric instabilities. Because temporal WKB approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. Although RPIC is fully three dimensional, it has been implemented in only two dimensions on a CRAY-T3D with 512 processors and on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. Given the current computers available to the authors, one and two dimensional simulations are feasible to, and have been, performed. Three dimensional simulations are much more expensive, and are not feasible at this time. However, with rapidly advancing computer technologies, three dimensional simulations may be feasible in the near future. We believe this code is the first PIC code capable of simulating the interaction between low-frequency and high-frequency parametric instabilites in multiple dimensions. Test simulations of stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and Langmuir decay instability (LDI), are presented.
Transport of 3D space charge dominated beams
NASA Astrophysics Data System (ADS)
Lü, Jian-Qin
2013-10-01
In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code.
NASA Astrophysics Data System (ADS)
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
Electrostatic PIC with adaptive Cartesian mesh
NASA Astrophysics Data System (ADS)
Kolobov, Vladimir; Arslanbekov, Robert
2016-05-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence
Nevins, W M; Dimits, A; Hammett, G
2005-05-24
Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with flux-tube continuum codes vs. the global particle-in-cell (PIC) code GTC yielded different results despite similar plasma parameters. Differences between the simulations results were attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations. We have reproduced the results of the global PIC code using the flux-tube PIC code PG3EQ, thereby eliminating global effects as the cause of the discrepancy. We show that the late-time decay of ETG turbulence and the steady-state heat transport observed in these PIC simulations results from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and the previous GTC simulations have nothing to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work we develop three diagnostics which can help to determine if a particular PIC simulation has become dominated by discrete particle noise.
Electromagnetic ''particle-in-cell'' plasma simulation
Langdon, A.B.
1985-04-22
''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs.
PIC simulations of whistler wave generation using plasma conditions from the RAM-SCB model
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Zhao, Lei; Peng, Bo; Delzanno, Gian Luca; Jordanova, Vania; Markidis, Stefano
2014-10-01
Wave-particle interactions play an important role in the Earth's inner magnetospheric dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy and are unstable to whistler wave excitation. By using plasma parameters from RAM-SCB, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We find that with an electron temperature anisotropy of 4, electron density of 6 cm-3, and parallel temperature of 1 keV on the dayside around L ~ 5 . 5 , whistler waves are rapidly excited and propagate along the background magnetic field. Comparisons with linear theory show good agreement. The electron velocity distribution is significantly changed after wave generation, with smaller anisotropy due to the pitch-angle scattering. Furthermore, test particles are tracked in the whistler wave environment and the pitch-angle diffusion coefficient is extracted. The coefficient generally agrees with quasi-linear theory prediction with slight deviation even when the wave amplitude is as large as 5 % of the background magnetic field.
Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.
2011-03-15
A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.
PICsar: Particle in cell pulsar magnetosphere simulator
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.
2016-07-01
PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.
PIC: Protein Interactions Calculator.
Tina, K G; Bhadra, R; Srinivasan, N
2007-07-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791
Model and particle-in-cell simulation of ion energy distribution in collisionless sheath
Zhou, Zhuwen; Kong, Bo; Luo, Yuee; Chen, Deliang; Wang, Yuansheng
2015-06-15
In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, the IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.
Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.
2008-01-01
Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.
Load management strategy for Particle-In-Cell simulations in high energy particle acceleration
NASA Astrophysics Data System (ADS)
Beck, A.; Frederiksen, J. T.; Dérouillat, J.
2016-09-01
In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.
Particle-in-Cell Modeling of Laser-Plasma Interactions in Three Dimensions
NASA Astrophysics Data System (ADS)
Wen, H.; Maximov, A. V.; Yan, R.; Li, J.; Ren, C.; Myatt, J. F.
2014-10-01
In the direct-drive method of inertial confinement fusion, the laser-plasma interactions (LPI's) near quarter-critical density are very important for laser absorption and fast-electron generation. Three-dimensional simulations with the particle-in-cell (PIC) code OSIRIS have allowed us to study different parametric instabilities including two-plasmon decay, stimulated Raman scattering, and stimulated Brillouin scattering. These instabilities may coexist and interact in the region near quarter-critical density. The spectra of forward-going and backward-going scattered light and fast electrons in two-dimensional and three-dimensional PIC simulations have been studied. Characteristics of LPI driven by a plane-wave laser and by an incoherent laser beam are compared. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis
2015-11-01
We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).
Particle-In-Cell modeling of Fast Ignition experiments on the Titan Laser
NASA Astrophysics Data System (ADS)
Link, Anthony; Akli, K. U.; Beg, F.; Chen, C. D.; Davies, J. R.; Freeman, R. R.; Kemp, G. E.; Li, K.; McLean, H. S.; Morace, A.; Patel, P. K.; Schumacher, D. W.; Sorokovikova, A. V.; Stephens, R.; Streeter, M. J. V.; Wertepny, D.; Westhover, B.
2012-10-01
We report on particle-in-cell-modeling (PIC) of fast ignition experiments conducted on the Titan laser. The Titan laser was used to irradiate multilayer planar targets at intensities greater than 10^20 Wcm-2 to diagnose the laser to electron coupling, electron beam divergence, and energy spectrum of the hot electrons at relativistic intensities. Hot electron beam properties were inferred through buried fluors, escaping electrons and bremsstrahlung measurements. The PIC simulations of the experiment were conducted in two stages: a high resolution laser plasma interaction (LPI) simulation using measured on shot laser parameters but with a subscale target; and a lower resolution transport simulation containing the full scale multilayer target. The transport simulation utilized the electron source based on the output of the LPI simulation and included necessary models to simulate the experimental diagnostics. Comparison of the predicted electron source properties and the experimental data will be presented.
Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum
Charles, C. Hawkins, R.; Boswell, R. W.
2015-03-02
The effect of a pressure gradient (∼133 Pa–0.133 Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56 MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018 m long plasma cavity and the total simulation time is 1 ms. Ion heating and acceleration up to a drift velocity about 2000 m s{sup −1} are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.
Particle in cell simulation of laser-accelerated proton beams for radiation therapy.
Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M
2002-12-01
In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy. PMID:12512712
NASA Astrophysics Data System (ADS)
Feng, Bing
Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Kol'tsov, S. N.; Gall, L. N.; Gall, N. R.
2016-03-01
Applicability limits of the particle-in-cell (PIC) method for the calculation of jet gasdynamic flows under conditions of pressure variations by four or five orders of magnitude are studied. Three approaches permitting one to determine real limits of the model adequacy from the side of low pressures are considered. Based on the analysis of the results, it is shown that the PIC method adequately operates in the pressure range of 5-105 Pa in spite of the fact that, formally, the PIC method can operate also at lower pressures.
Two-dimensional particle-in-cell simulations of transport in a magnetized electronegative plasma
Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.
2010-11-15
Particle transport in a uniformly magnetized electronegative plasma is studied in two-dimensional (2D) geometry with insulating (dielectric) boundaries. A 2D particle-in-cell (PIC) code is employed, with the results compared to analytic one-dimensional models that approximate the end losses as volume losses. A modified oxygen reaction set is used to scale to the low densities used in PIC codes and also to approximately model other gases. The principal study is the limiting of the transverse electron flow due to strong electron magnetization. The plasma in the PIC calculation is maintained by axial currents that vary across the transverse dimension. For a cosine current profile nearly uniform electron temperature is obtained, which at the B-fields studied (600-1200 G) give a small but significant fraction (0.25 or less) of electron to negative ion transverse loss. For a more transverse-confined current, and approximating the higher mass and attachment reaction rate of iodine, the fraction of electron to negative ion transverse loss can be made very small. The models which have been constructed reasonably approximate the PIC results and indicate that the cross-field transport is nearly classical.
Numerical simulation of quantum systems using the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas
2014-10-01
The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.
Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Chacon, Luis
2015-09-01
We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.
PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)
NASA Astrophysics Data System (ADS)
Vincenti, Henri
2016-03-01
The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Particle-In-Cell simulations on spacecraft charging mitigation by plasma injection
NASA Astrophysics Data System (ADS)
Usui, Hideyuki; Imasato, Koujirou; Kuninaka, Hitoshi
By performing three-dimensional Particle-In-Cell simulations, we have been investigating the time-dependent process of spacecraft charging mitigation by plasma injection. We particularly focus on the differential charging occurring between solar panel and spacecraft conducting part of spacecraft in the polar environment. In the presence of aurora electron beam, the absolute charging of spacecraft becomes the order of KeV as the worst case and the differential charging between the conducting surface of the spacecraft and the dielectric material on the solar panel can become several hundreds volts. To mitigate the charging, active plasma release from a plasma contactor onboard the spacecraft is proposed as one of the effective methods. In order to understand the charging mitigation process we started to examine the transient plasma process in terms of electron/ion flux to the spacecraft surface and the corresponding potential variation by performing 3D PIC simulations. In the simulation space, we set a spacecraft consisting of conducting body and dielectric film on the solar panels. This spacecraft system is immersed in isothermal magnetized plasma environment. We assume the aurora beam energy is around 100 eV. We started a simulation with no plasma emission from the body in order for the spacecraft to achieve a floating potential. Then, we start emitting plasma from the spacecraft surface from one side of the spacecraft. Due to the aurora current, the conducting part of the spacecraft was negatively charged around -50 V while the dielectric surface of the solar panel is about -30 V because of ion flux impinging at the ram side. In this case, approximately 20V differential charging occurs at the dielectric surface. In such a situation, we started emitting electrons from the spacecraft surface. Because of negative charge emission, the spacecraft potential increases and approaches to the plasma potential. This implies the absolute charging of spacecraft has been
A Radiation Transport Coupled Particle-In-Cell Model for Hg-Ar Discharges
NASA Astrophysics Data System (ADS)
Lee, Hae June; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.
2000-10-01
We simulate a radial slice of the fluorescent lamp discharge in the positive column with a radiation transport coupled particle-in-cell (RT-PIC) code. In this model, the radiative and meta stable excited states of Hg-Ar mixture and their collisions as well as radiation transport are simulated by the fluid equations. The motions of electrons and ions and collisions with neutral or excited states are simulated by the conventional particle-in-cell method. We consider radiation transport of excited states using the Holstein equation[1] including the time varying nonuniform background gas density. The background gas density is calculated from the temperature profile by solving the heat transfer equation. The motion of charged particles are simulated by using the 1-D cylindrical particle-in-cell code, XPDC1[2]. Separate time scales are used for the charged particles, the excited states, and the neutral gas, respectively, and parallel processing can be used for the expensive calculation including radiation transport. This work was supported in part by General Electric Company contract GE-20000181. [1] T. Holstein, Phys. Rev. 72, 1213 (1947). [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104(2), 321, (1993).
NASA Astrophysics Data System (ADS)
Bao, Rong; Wang, Hongguang; Li, Yongdong; Liu, Chunliang
2016-07-01
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.
NASA Astrophysics Data System (ADS)
Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.
2016-03-01
In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 ; Yu, Zhi
2013-10-15
Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.
2008-09-08
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.
2009-01-22
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.
Numerical stability of pseudo-spectral PIC code generalizations
NASA Astrophysics Data System (ADS)
Godfrey, Brendan B.; Vay, Jean-Luc
2014-10-01
Laser Plasma Accelerator (LPA) particle-in-cell (PIC) simulations are computationally demanding, because they require beam transport over times and distances long compared with the natural scales of the acceleration mechanism and because they are prone to numerical instabilities. To provide greater flexibility in LPA PIC simulations, we have generalized the Pseudo-Spectral Time Domain (PSTD) algorithm to accommodate arbitrary order spatial derivative approximations and substantially longer time steps. Here, we show that, by extending approaches developed by us for other PIC algorithms, numerical Cherenkov instabilities can be suppressed for the generalized PSTD algorithm. We also illustrate the relationships between the generalized PSTD and other PIC algorithms, such as Finite Difference Time Domain (FDTD) and Pseudo-Spectral Analytical Time Domain (PSATD) algorithms. Background information can be found at http://hifweb.lbl.gov/public/BLAST/Godfrey/. Work supported in part by DOE under Contract DE-AC02-05CH11231.
3D kinetic simulations of the global interaction between the solar wind and the magnetosphere
NASA Astrophysics Data System (ADS)
Amaya, Jorge; Maneva, Yana; Deca, Jan; Lapenta, Giovanni
2015-04-01
We performed three dimensional simulations of the interaction between the solar wind and the magnetosphere, using the self-consistent fully kinetic code iPic3D. The main objective of our simulations is to link the global interaction phenomena to the local turbulence and reconnection processes in the magnetosphere. Other numerical approaches have been used before to study this problem, including MHD, hybrid and Vlasov codes. However, only particle-in-cell codes offer the possibility to study the kinetic effects of the diffusion regions of the Earth environment that drive the energy transfer from the solar wind to the magnetosphere. Previous attempts to perform such kinds of simulations were limited to unphysical thermal velocities of the ion and electron species, small simulation boxes or cell sizes that do not capture the local kinetic effects at the magnetopause. Using the implicit moment Particle-in-Cell approach we performed simulations that can capture these small scale effects and, at the same time, allow to study large scale phenomena such as the bow shock and the development of the magnetotail. We expect that these results will be used to maximize the impact of future space missions, such as THOR, MMS and BepiColombo, by improving our understanding of the planetary environment, from the conditions observed in the solar wind to the turbulence and reconnection processes downstream of the bow shock.
Modeling Laser Wake Field Acceleration with the Quasi-Static PIC Code QuickPIC
Vieira, J.; Antonsen, T. Jr.; Cooley, J.; Silva, L. O.
2006-11-27
We use the Quasi-static Particle-In-Cell code QuickPIC to model laser wake field acceleration, in both uniform and parabolic plasma channels within current state of the art experimental laser and plasma parameters. QuickPIC uses the quasi-static approximation, which allows the separation of the plasma and laser evolution, as they respond in different time scales. The laser is evolved with a larger time step, that correctly resolves distances of the order of the Rayleigh length, according to the ponderomotive guiding center approximation, while the plasma response is calculated through a quasi-static field solver for each transverse 2d slice. We have performed simulations that show very good agreement between QuickPIC and three dimensional simulations using the full PIC code OSIRIS. We have scanned laser intensities from those for which linear plasma waves are excited to those for which the plasma response is highly nonlinear. For these simulations, QuickPIC was 2-3 orders of magnitude faster than OSIRIS.
Recent advances in the modeling of plasmas with the Particle-In-Cell methods
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv
2015-11-01
The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.
On energy and momentum conservation in particle-in-cell plasma simulation
NASA Astrophysics Data System (ADS)
Brackbill, J. U.
2016-07-01
Particle-in-cell (PIC) plasma simulations are a productive and valued tool for the study of nonlinear plasma phenomena, yet there are basic questions about the simulation methods themselves that remain unanswered. Here we study energy and momentum conservation by PIC. We employ both analysis and simulations of one-dimensional, electrostatic plasmas to understand why PIC simulations are either energy or momentum conserving but not both, what role a numerical stability plays in non-conservation, and how errors in conservation scale with the numerical parameters. Conserving both momentum and energy make it possible to model problems such as Jeans'-type equilibria. Avoiding numerical instability is useful, but so is being able to identify when its effect on the results may be important. Designing simulations to achieve the best possible accuracy with the least expenditure of effort requires results on the scaling of error with the numerical parameters. Our results identify the central role of Gauss' law in conservation of both momentum and energy, and the significant differences in numerical stability and error scaling between energy-conserving and momentum-conserving simulations.
NASA Astrophysics Data System (ADS)
Shaw, J. L.; Lemos, N.; Marsh, K. A.; Tsung, F. S.; Mori, W. B.; Joshi, C.
2016-03-01
Many current laser wakefield acceleration (LWFA) experiments are carried out in a regime where the laser pulse length is on the order of or longer than the wake wavelength and where ionization injection is employed to inject electrons into the wake. In these experiments, the electrons can gain a significant amount of energy from the direct laser acceleration (DLA) mechanism as well as the usual LWFA mechanism. Particle-in-cell (PIC) codes are frequently used to discern the relative contribution of these two mechanisms. However, if the longitudinal resolution used in the PIC simulations is inadequate, it can produce numerical heating that can overestimate the transverse motion, which is important in determining the energy gain due to DLA. We have therefore carried out a systematic study of this LWFA regime by varying the longitudinal resolution of PIC simulations and then examining the energy gain characteristics of both the highest-energy electrons and the bulk electrons. By calculating the contribution of DLA to the final energies of the electrons produced from the LWFA, we find that even at the highest longitudinal resolutions, DLA contributes a significant portion of the energy gained by the highest-energy electrons and also contributes to accelerating the bulk of the charge in the electron beam produced by the LWFA.
Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures
Adam B. Sefkow and Samuel A. Cohen
2009-04-09
Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.
Performance of particle in cell methods on highly concurrent computational architectures
M.F.Adams; S. Ethier; N. Wichmann
2009-09-23
Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson’s equation or more generally Maxwell’s equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.
Kinetic properties of the particle-in-cell simulation of a Lorentz plasma
NASA Astrophysics Data System (ADS)
Lin-Liu, Y. R.; Lin, T. Y.; Chen, S. H.
2010-11-01
The phenomenon of numerical thermalization in the standard particle-in-cell (PIC) simulation of Vlasov plasmas has been extensively studied at the early stage of its development [1] and was considered well understood. However, it was recently reported [2] that the well-established scaling law for the thermalization time could be compromised by the presence of an additional stochastic force acting on the particles, which is used to simulate collisional processes in a weakly ionized gas. In the present work, we are interested in the problem of electron-ion collisions in a fully ionized plasma. We investigate the thermal relaxation phenomenon in the PIC simulation of a Lorentz plasma in one dimension [3]. The pitch-angle scattering of the electrons by the stationary ion background is modeled by a Monte-Carlo algorithm. The numerical results obtained indicate that the thermal relaxation time is proportional to ND (the number of particles per Debye length), and not ND^2 as in the standard PIC simulations. Our results appear to complement those found by the previous study [2]. [4pt] [1] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985). [0pt] [2] M. M. Turner, Phys. of Plasmas 13, 033506 (2006). [0pt] [3] R. Shanny, J. M. Dawson, and J. M. Greene, Phys. of Fluids 10, 1281 (1967).
Three-dimensional particle-in-cell simulations of laser channeling in fast ignition
Li, G.; Yan, R.; Ren, C.; Tonge, J.; Mori, W. B.
2011-04-15
Three-dimensional particle-in-cell simulations with an underdense plasma length up to 540 {mu}m are presented to show that laser channeling in 3D is qualitatively similar to that shown in previous 2D simulations [Li et al., Phys. Rev. Lett. 100, 125002 (2008)], but quantitative differences exist. Due to a larger laser ponderomotive force resulting from self-focusing and easier channel formation in 3D, the channeling speed in 3D is larger compared to 2D. Laser hosing and channel bending are also observed in 3D. Decoupling of the laser and plasma is observed when the electrons are heated to relativistic temperatures during the channeling process.
A 3d particle simulation code for heavy ion fusion accelerator studies
Friedman, A.; Bangerter, R.O.; Callahan, D.A.; Grote, D.P.; Langdon, A.B. ); Haber, I. )
1990-06-08
We describe WARP, a new particle-in-cell code being developed and optimized for ion beam studies in true geometry. We seek to model transport around bends, axial compression with strong focusing, multiple beamlet interaction, and other inherently 3d processes that affect emittance growth. Constraints imposed by memory and running time are severe. Thus, we employ only two 3d field arrays ({rho} and {phi}), and difference {phi} directly on each particle to get E, rather than interpolating E from three meshes; use of a single 3d array is feasible. A new method for PIC simulation of bent beams follows the beam particles in a family of rotated laboratory frames, thus straightening'' the bends. We are also incorporating an envelope calculation, an (r, z) model, and 1d (axial) model within WARP. The BASIS development and run-time system is used, providing a powerful interactive environment in which the user has access to all variables in the code database. 10 refs., 3 figs.
Relativistic Laser Pulse Intensification with 3D Printed Micro-Tube Plasma Target
NASA Astrophysics Data System (ADS)
Ji, Liangliang; Snyder, Joseph; Pukhov, Alexander; Akli, Kramer
2015-11-01
The potential and applications of laser-plasma interactions (LPI) are restricted by the parameter space of existing lasers and targets. Advancing the laser intensity to the extreme regime is motivated by the production of energetic particle beams and by the quest to explore the exotic regimes of light-matter interaction. Target density and dimensions can always be varied to optimize the outcome. Here, we propose to create another degree of freedom in the parameter space of LPI using recent advances in 3D printing of materials. Fine structures at nm scale with high repetition and accuracy can nowadays be manufactured, allowing for a full precise control of the target. We demonstrate, via particle-in-cell (PIC) simulations, that 3D-printed micro-tube plasma (MTP) targets yield an intensity enhancement factor of 2-5. The novel MTP targets not only act as a plasma optical device to reach the 1023W/cm2 threshold based on today's intensities, but can also boost the generation of secondary particle and radiation sources. This work demonstrates that the combination of high contrast high power lasers and nano-3D printing techniques opens new paths in the intensity frontier and LPI micro-engineering.
Hierarchical agglomerative sub-clustering technique for particles management in PIC simulations
NASA Astrophysics Data System (ADS)
Grasso, Giacomo; Frignani, Michele; Rocchi, Federico; Sumini, Marco
2010-08-01
The effectiveness of Particle-In-Cell (PIC) codes lies mainly in the robustness of the methods implemented, under the fundamental assumption that a sufficient number of pseudo-particles is concerned for a correct representation of the system. The consequent drawback is the huge increase of computational time required to run a simulation, to what concerns the particles charge assignment to the grid and the motion of the former through the latter. Moreover the coupling of such methods with Monte-Carlo-Collisional (MCC) modules causes another expensive computational cost to simulate particle multiple collisions with background gas and domain boundaries. Particles management techniques are therefore often introduced in PIC-MCC codes in order to improve the distribution of pseudo-particles in the simulation domain: as a matter of facts, the aim at managing the number of samples according to the importance of the considered region is a main question for codes simulating a local phenomenon in a larger domain or a strongly collisional system (e.g.: a ionizing plasma, where the number of particles increases exponentially). A clustering procedure based on the distribution function sampling applied to the 5D phase space (2D in space, 3D in velocity) is here proposed, representing the leading criterion for particles merging and splitting procedures guaranteeing the second order charge moments conservation. Applied to the study of the electrical breakdown in the early discharge phase of a Plasma Focus device, this technique is shown to increase performances of both PIC kernel and MCC module preserving the solution of the electric field and increasing samples representativeness in stochastic calculations (with respect to more traditional merging and splitting procedures).
Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
NASA Astrophysics Data System (ADS)
Baraka, Suleiman
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
Macroparticle merging algorithm for PIC
NASA Astrophysics Data System (ADS)
Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.
2014-10-01
With the development of large supercomputers (>1000000 cores), the complexity of the problems we are able to simulate with particle-in-cell (PIC) codes has increased substantially. However, localized density spikes can introduce load imbalance where a small fraction of cores is occupied, while the others remain idle. An additional challenge lies in self-consistent modeling of QED effects at ultra-high laser intensities (I > 1023 W/cm2), where the number of pairs produced sometimes grows exponentially and may reach beyond the maximum number of particles that each processor can handle. We can overcome this by resampling the 6D phase space: the macroparticles can be merged into fewer particles with higher particle weights. Existing merging scheme preserves the total charge, but not the particle distribution. Here we present a novel particle-merging algorithm that preserves the energy, momentum and charge locally and thereby minimizes the potential influence to the relevant physics. Through examples of classical plasma physics and more extreme scenarios, we show that the physics is not altered but we obtain an immense increase in performance.
NASA Astrophysics Data System (ADS)
Yu, Y.; Delzanno, G. L.; Jordanova, V.; Zhao, L.; Peng, B.; Markidis, S.
2014-12-01
Wave-particle interactions play an important role in influencing the Earth's inner magnetosphere dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy, implying that it is unstable to whistler wave excitation. By using plasma parameters from RAM-SCB results, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We found that with an electron temperature anisotropy of 4, electron density of 6 cm-3 , and parallel temperature T|| of 1keV on the dayside around L of 5.5, whistler waves are rapidly excited and propagate along the background magnetic field line. Comparisons with linear theory show good agreements on the wave mode and frequency at which the whistler waves are excited, as well as on the linear growth rate of the maximum wave mode. The electron velocity distribution is significantly changed after the wave generation, towards a smaller anisotropy due to the pitch-angle scattering transport process. Furthermore, test particles are tracked in the whistler wave environment developed during the linear growth phase (with an amplitude of 0.05 B0) to examine the pitch angle diffusion. The diffusion coefficient is calculated and found to be one to two orders of magnitude smaller than the quasi-linear theory, which implies that the quasi-linear theory may predict a much faster loss of the radiation belts. In addition, in contrast to the quasi-linear theory that shows monotonic dependence on the electron pitch angle, the coefficient calculated from iPIC simulations are rather insensitive to the pitch angle.
A GeneralizedWeight-Based Particle-In-Cell Simulation Scheme
W.W. Lee, T.G. Jenkins and S. Ethier
2010-02-02
A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution (δf) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using δf in the linear stage stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.
Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.
2009-05-01
The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.
NASA Astrophysics Data System (ADS)
Tejero-del-Caz, A.; Fernández Palop, J. I.; Díaz-Cabrera, J. M.; Ballesteros, J.
2016-02-01
A particle-in-cell (PIC) simulation of the plasma sheath around a cylindrical Langmuir probe has been developed to evaluate the ion current collected by the probe. The simulation includes the positive ion thermal motion and has been optimized by solely describing the positive ion motion. A transition from the prediction of the radial model to the orbital-motion-limited model is observed. The transition is explained as an effect of the positive ion thermal motion and the radial model is recovered when the positive ion to electron temperature ratio is decreased. The behaviour of this transition strongly depends on the dimensionless probe radius.
NASA Astrophysics Data System (ADS)
Pekárek, Z.; Lahuta, M.; Hrach, R.
2007-04-01
In this contribution we estimate the performance of various Poisson equation solvers applied to the Particle-In-Cell plasma models. The solvers determine the practical usability of complex PIC models, especially in three dimensions. The performance is measured on 2D models with grids of various sizes, the methods studied are SOR, conjugate gradients, LU decomposition, FACR and multigrid methods. The results confirm the efficiency of the direct methods tested, namely the LU decomposition method and FACR. The advantages of using LU decomposition as a part of the multigrid method on larger grids are discussed as well.
NASA Astrophysics Data System (ADS)
Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.
2015-11-01
We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.
NASA Astrophysics Data System (ADS)
Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Cai, Dan
2016-03-01
The expansion of cathode plasma in magnetically insulated coaxial diode (MICD) is investigated in theory and particle-in-cell (PIC) simulation. The temperature and density of the cathode plasma are about several eV and 1013-1016 cm-3, respectively, and its expansion velocity is of the level of few cm/μs. Through hydrodynamic theory analysis, expressions of expansion velocities in axial and radial directions are obtained. The characteristics of cathode plasma expansion have been simulated through scaled-down PIC models. Simulation results indicate that the expansion velocity is dominated by the ratio of plasma density other than the static electric field. The electric field counteracts the plasma expansion reverse of it. The axial guiding magnetic field only reduces the radial transport coefficients by a correction factor, but not the axial ones. Both the outward and inward radial expansions of a MICD are suppressed by the much stronger guiding magnetic field and even cease.
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály
2015-04-01
We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of backstreaming ions, the deflection of magnetized electrons via the ExB-drift motion and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the latter mechanisms are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Lapenta, G.; Lembege, B.; Markidis, S.; Horanyi, M.
2014-12-01
We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. The dominant LMA interaction mechanism is also highly dependent on the solar wind and IMF conditions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie) and 2013091928 (SuperMUC). This research was supported
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Particle in cell simulations of tearing modes in reversed-field-pinch-like plasma
Svidzinski, Vladmir; Li, Hui; Albright, Brian
2008-01-01
Particle in cell (PIC) simulations of tearing modes in two-dimensional plane geometry in a force free reversed field pinch (RFP) like plasma equilibrium are performed to study possible kinetic effects on these modes in RFPs. Linear tearing modes are compared in the PIC and two fluid models. The results showed that the growth rates and the profiles of magnetic field components in the two models are very similar, indicating that the kinetic effects on the tearing modes are weak such that the two fluid approximation is rather accurate for modeling these instabilities in RFPs. During the nonlinear evolution of the tearing mode in this geometry small scale secondary instabilities located near the internal layer of the primary tearing instability are excited. These secondary instabilities appear to be driven by the nonlinearly induced local pressure gradient in the regions of unfavorable curvature of the nonlinearly evolved magnetic field. They could also appear in a realistic RFP geometry and play a role during sawtooth crashes in these machines.
An energy- and charge-conserving, nonlinearly implicit, electromagnetic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis; Knoll, Dana; Daughton, William; CoCoMans (LANL) Team
2013-10-01
A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension. The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations. An implicit, orbit-averaged central finite difference scheme is applied to both the Darwin field equations and the particle orbit equations to produce a discrete system that remains exactly charge-and energy-conserving. Furthermore, the canonical momentum in any ignorable direction is exactly conserved per particle by appropriate interpolations of the magnetic field. A fluid preconditioner targeting the stiffest electron waves has been developed to accelerate the linear GMRES solver of JFNK. We present 1D numerical experiments (e.g. the Weibel instability, kinetic Alfven wave ion-ion streaming instability, etc.) to demonstrate the accuracy and efficiency of the implicit Darwin PIC algorithm, and the performance of the fluid preconditioner.
Novel methods in the Particle-In-Cell accelerator Code-Framework Warp
Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.
2012-12-26
The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.
Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.
2015-09-01
Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2015-12-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.
Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn
2014-08-15
The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.
Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations
NASA Astrophysics Data System (ADS)
Bottino, A.; Sonnendrücker, E.
2015-10-01
> The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.
NASA Astrophysics Data System (ADS)
Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin
2016-07-01
A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm‑3) with a dense plasma (initial density of ~ 1021 cm‑3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)
Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.
2015-08-15
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)
NASA Astrophysics Data System (ADS)
Muñoz, P. A.; Told, D.; Kilian, P.; Büchner, J.; Jenko, F.
2015-08-01
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bg). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg ≳ 5). Kinetic PIC simulations using guide fields bg ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg ≲ 3).
ERIC Educational Resources Information Center
Armstrong, C. J.
1997-01-01
Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)
Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape
Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.
2014-12-15
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.
The Convergence of Particle-in-Cell Schemes for Cosmological Dark Matter Simulations
NASA Astrophysics Data System (ADS)
Myers, Andrew; Colella, Phillip; Van Straalen, Brian
2016-01-01
Particle methods are a ubiquitous tool for solving the Vlasov-Poisson equation in comoving coordinates, which is used to model the gravitational evolution of dark matter (DM) in an expanding universe. However, these methods are known to produce poor results on idealized test problems, particularly at late times, after the particle trajectories have crossed. To investigate this, we have performed a series of one- and two-dimensional “Zel’dovich pancake” calculations using the popular particle-in-cell (PIC) method. We find that PIC can indeed converge on these problems provided that the following modifications are made. The first modification is to regularize the singular initial distribution function by introducing a small but finite artificial velocity dispersion. This process is analogous to artificial viscosity in compressible gas dynamics, and, as with artificial viscosity, the amount of regularization can be tailored so that its effect outside of a well-defined region—in this case, the high-density caustics—is small. The second modification is the introduction of a particle remapping procedure that periodically reexpresses the DM distribution function using a new set of particles. We describe a remapping algorithm that is third-order accurate and adaptive in phase space. This procedure prevents the accumulation of numerical errors in integrating the particle trajectories from growing large enough to significantly degrade the solution. Once both of these changes are made, PIC converges at second order on the Zel’dovich pancake problem, even at late times, after many caustics have formed. Furthermore, the resulting scheme does not suffer from the unphysical, small-scale “clumping” phenomenon known to occur on the pancake problem when the perturbation wavevector is not aligned with one of the Cartesian coordinate axes.
Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape
NASA Astrophysics Data System (ADS)
Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.
2014-10-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
The Implicit Hyprid/PIC Code AMTHEM.
Mason, R. J.
2002-01-01
Recent inventions in pulse power switching, fast laser-driven thermonuclear ignition, and short pulse radiography have demanded a dramatic increase in the capabilities of plasma simulation tools. Multifluid, multi-component, fluid and kinetic models are needed for plasmas spanning thousands of Debye lengths and thousands of plasma periods. Such plasmas manifest both dense and tenuous regions, including or excluding magnetic fields and collisional resistivity. The problems of interest can dwell in a transition regime with limits traditionally treated by resistive MHD and and/or collisional particle-in-cell (PIC) methods. The ANTHEM implicit hybrid simulation model is under development to meet these challenges. This presentation will outline its past and current features, and review results typical of short-pulse laser applications.
Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method
Austin, T. M.; Smithe, D. N.; Ranjbar, V.
2009-11-26
Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.
NASA Astrophysics Data System (ADS)
Bai, Xianchen; Yang, Jianhua; Zhang, Jiande
2012-08-01
By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.
Bai Xianchen; Yang Jianhua; Zhang Jiande
2012-08-15
By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.
Particle-in-Cell Calculationsof the Electron Cloud in the ILCPositron Damping Ring Wigglers
Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.
2007-07-01
The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed.
NASA Astrophysics Data System (ADS)
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2016-01-01
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 109, degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani’s theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2015-12-14
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Zhang, Jie; Yang, Yang; Xu, Yan-Xia; Qi, Xin E-mail: duanws@nwnu.edu.cn; Duan, Wen-shan E-mail: duanws@nwnu.edu.cn; Yang, Lei
2014-10-15
The application scope of the Poincare-Lighthill-Kuo (PLK) method is suggested by using the Particle-in-cell (PIC) numerical method to study head-on collision of two solitary waves. Comparisons between the numerical results from PIC simulations and the analytical ones from the PLK method indicate that the both are in good agreement with each other. The dependence of the phase shifts after the head-on collision on both amplitudes of two solitary waves is given from our PIC method. It is found that the phase shifts depended on the amplitude of both waves. The maximum amplitude during the colliding process is approximately equal to the sum of both amplitudes for the small amplitude solitary waves.
Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa
2014-05-01
. [1] Ashour-Abdalla, Maha, et al. "Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events." Nature Physics 7.4 (2011): 360-365. [2] Markidis, Stefano, and Giovanni Lapenta. "Multi-scale simulations of plasma with iPIC3D." Mathematics and Computers in Simulation 80.7 (2010): 1509-1519. [3] Baumann, G., Troels Haugbølle, and Å. Nordlund. "Kinetic Modeling of Particle Acceleration in a Solar Null-point Reconnection Region." The Astrophysical Journal 771.2 (2013): 93. [4] Daldorff, L. K. S., et al. "Coupling the BATS-R-US global MHD code with the implicit particle-in-cell code iPIC3D." Bulletin of the American Physical Society 58 (2013).
PIC Simulation for ICF Plasma Sputter Coater
NASA Astrophysics Data System (ADS)
Wu, W.; Huang, H.; Parks, P. B.; Chan, V. S.; Walton, C. C.; Wilks, S. C.
2010-11-01
To satisfy mesh spacing constraint δ/λDebye<=1 particle In Cell (PIC) simulations at 25x reduced cathode currents levels are used to numerically model the distribution of currents, electrostatic potentials and particle kinetics in a Type II ``unbalanced'' cylindrically symmetric magnetron discharge used for Be sputter coating of ICF capsules. Simulation indicates a strong magnetic field confinement of the plasma in the closed field lines region adjacent to cathode, and accompanying cross-field line plasma diffusion into the open-field line region connected to wall/anode. A narrow Charles-Langmuir sheath and a pre-sheath that is ˜10x wider due to the existence of the B-field are observed. The effects of varying boundary conditions, e.g., the separation between the anode/cathode, the anode bias voltage, etc., are studied, which is expected to aid experimentalists in turning these ``knobs'' for better coating qualities. We also show that the etch rate due to sputtering of Be targets predicted by the results of our PIC simulations, after rescaling to experimental conditions, agrees with experiments.
NASA Astrophysics Data System (ADS)
Kakad, A.; Kakad, B. A.; Omura, Y.
2014-12-01
In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.
3D instabilities connected with reconnection in full 3D PIC simulations
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni
2013-10-01
Kinetic reconnection is characterized by a distinct behavior of electrons and ions with regions of strong relative speeds between the species. Electrons can flow at great speed relative to ions and can be characterized by a strong non-gyrotropy and anisotropy. When studied in full three dilensions, these electron peculiar properties can drive numerous instabilities that have been investigated by the suggested speaker and his collaborators in a number of recent published papers. Two regions have received most attention: 1) the separatrices where instabilities are caused by the electron flow and the electron phase space features, 2) the downstream fronts where an interchange instability leads to strong energy exchanges and secondary reconnection. In both situations the ions are demagnitezed but the electrons are not and their behaviour is rich in full kinetic processes. At the separatrices, two types of instabilities have been observed. The electron phase space is characterized by multiple populations at relative drifts (electron beams) and the whole electron species is drifting with respect to the ions. This condition is subject to different streaming instabilities. Additionally, the separatrices are regions of intense density and flow shear, with free energy available to drive Kelvin-Helmholtz-type instabilities. In the downstream fronts of reconnection, a density gradient develops in conditions where the acceleration is directed unfavourably for stability, leading to ballooning and interchange-type instabilities. Both cases are of great importance for the upcoming Magnetospheric Multiscale Mission that is bent on finding and analyzing the regions where the electron scale physics is dominant. The processes discussed above can provide key information for the operation of the mission and the interpretation of its results. Collaboration between the University of Colorado NASA-MMSIDS team (M. Goldman, D. Newman, L. Anderson, S. Erikson) and the KULeuven Swiff team (swiff.eu: S. Markidis, A. Divin, A. Vapirev).
Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects
NASA Astrophysics Data System (ADS)
Singh, Gursharn; Chaturvedi, S.
2011-06-01
We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due to the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of ˜2 cm/μs reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to ˜40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.
2014-06-01
Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Zimbardo, G.
2015-12-01
We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle particle-in-cell (PIC) simulations with a quasi-linear diffusion code. In the PIC approach, the waves are self-consistently generated by the temperature anisotropy instability that quickly saturates and relaxes the system toward marginal stability. We show that the quasi-linear diffusion and PIC results have significant quantitative mismatch in regions of energy/pitch angle where the resonance condition is not satisfied. Moreover, for pitch angles close to the loss cone the diffusion code overestimates the scattering, particularly at low energies. This suggests that higher-order nonlinear theories should be taken in consideration in order to capture non-resonant interactions, resonance broadening, and to account for scattering at angles close to 90 degree. Finally, we show that pitch angle diffusion is enhanced during the linear wave growth phase, and it rapidly saturates well before a single bounce period. We discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuse is bounded, and to the well-known problem of 90 degree diffusion barrier.
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce
2012-10-01
Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.
[PIC Program Evaluation Forms.
ERIC Educational Resources Information Center
Short, N. J.
These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…
ERIC Educational Resources Information Center
Montgomery, H. Wynn
1988-01-01
The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)
Load-balancing techniques for a parallel electromagnetic particle-in-cell code
PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.
2000-01-01
QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.
An Integrated Radiation Transport Particle-in-Cell Method
NASA Astrophysics Data System (ADS)
Lee, H. J.; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.
2000-10-01
The study of radiation transport is important to understand the basic physics and to calculate the efficiency in a lamp discharge or laser induced plasma. Many models neglect radiation transport effects in evolving the steady state. In this study, we established a basic model to calculate radiation transport, including the effects of nonuniform ground state density and atomic collisions in one dimensional cylindrical and planar geometries. We coupled radiation transport with the self-consistent kinetic particle-in-cell codes, XPDP1 and XPDC1[1]. We treat electrons and ions with a particle-in-cell method, and the neutral ground and excited states with a fluid model to calculate radiation transport and atomic collisions. The steady state result of this model compares well with the solution of Holstein equation[2]. [1] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104, 321 (1993). [2] T. Holstein, Phys. Rev. 72, 1213 (1947).
3D and r,z particle simulations of heavy ion fusion beams
NASA Astrophysics Data System (ADS)
Friedman, A.; Grote, D. P.; Callahan, D. A.; Langdon, A. B.; Haber, I.
1992-08-01
The space-charge-dominated beams in a heavy ion beam driven inertial fusion (HIF) accelerator must be focused onto small (few mm) spots at the fusion target, and so preservation of a small emittance is crucial. The nonlinear beam self-fields can lead to emittance growth; thus, a self-consistent field description is necessary. We have developed a multi-dimensional time-dependent discrete particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3d package combines features of an accelerator code and a particle-in-cell (PIC) plasma simulation. Novel techniques allow it to follow beams through many accelerator elements over long distances and around bends. We have used the code to understand the emittance growth observed in the MBE4 experiment at Lawrence Berkeley Laboratory (LBL) under conditions of aggressive drift-compression. We are currently applying it to LBL's planned ILSE experiments, and (most recently) to an ESQ injector option being evaluated for ILSE. The code's r, z package is being used to study the axial confinement afforded by the shaped ends of the accelerating pulses, and to study longitudinal instability induced by induction module impedance.
Characterization of an SRF gun: a 3D full wave simulation
Wang, E.; Ben-Zvi, I.; Wang, J.
2011-03-28
We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.
Three-dimensional plasma particle-in-cell calculations of ion thruster backflow contamination
Roy, R.I.S.; Hastings, D.E.; Taylor, S.
1996-10-01
A fully three-dimensional hybrid plasma particle-in-cell model for multi-computer environments was developed to assess the spacecraft backflow contamination of an ion thruster. Results of plume backflow are presented for a 13-cm xenon ion thruster operating with a current level of 0.4 A on a model spacecraft. The computational domain was over 40 m{sup 3} in volume, and used over 35 million particles representing charge-exchange (CEX) xenon ions produced in the plume. Results obtained on a massively parallel 256-node Cray T3D clearly show the plasma density enhancement around the spacecraft due to the CEX ions. Three-dimensional results are compared with the results of a two-dimensional axisymmetric model to explore the three-dimensionality of the backstreaming flowfield. 15 refs., 14 figs., 1 tab.
Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection
NASA Astrophysics Data System (ADS)
Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank
2016-07-01
Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.
Plume expansion of a laser-induced plasma studied with the particle-in-cell method
NASA Astrophysics Data System (ADS)
Ellegaard, O.; Nedelea, T.; Schou, J.; Urbassek, H. M.
2002-09-01
The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density profiles n( x, t), velocity distributions of ions u( x, t), distribution functions for velocities F( vx) of ions or electrons as well as the time dependence of kinetic energy Ekin( t) for both type of particles. We found a significant increase in the velocities of the ions at the expense of field potential energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface.
Particle-in-Cell Simulation of a Micro ECR Plasma Thruster
NASA Astrophysics Data System (ADS)
Ueno, Keisuke; Mori, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2015-09-01
Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have developed a new type of electromagnetic micro plasma thruster using electron cyclotron resonance (ECR) discharges. The microthruster consists of a microwave antenna and a quartz microplasma chamber 4.15 mm in inner diameter surrounded by two permanent magnet rings. The plasma is generated by 4-GHz microwaves of < 10 W with a propellant gas of Xe, where the ions are accelerated through divergent magnetic fields and the resulting ambipolar electric fields generated. To investigate plasma characteristics of the thruster, we simulated the plasma density, electrostatic potential, and ion velocity in the exhaust area by the particle-in-cell (PIC) method with a Monte Carlo calculation for particle collisions, where the electrostatic field and the ion velocity were obtained by solving the Poisson equation and the equation of motion, respectively. The numerical results showed that the ions generated in the plasma are well confined by the applied magnetic fields and diffuse out of the discharge tube, then being accelerated by a potential drop of ~7 V through divergent magnetic fields from < 1000 to > 3000 m/s (< 0 . 7 to > 6 eV) in the axial direction.
NASA Astrophysics Data System (ADS)
Cartwright, Keith
2015-09-01
Numerical error estimation is a key component in verification, validation, and uncertainty quantification. For ParticleIn-Cell (PIC) plasma simulations, error estimation is complicated due to the presence of stochastic noise and multiple convergence parameters (grid size, time step, macro particle weight). In this talk, we will discuss recent developments for the Stochastic Richardson Extrapolation Based Error Quantification method (StREEQ). This method at its core is a multi-regression technique, where nine regression models and multiple bootstrap samples propagate uncertainties due to the fit and the stochasticity of the underlying data for an appropriate error model with unknown convergence rates. Recently, automation of the convergence parameter domain selection has been implemented; this enables efficient error estimation for large data sets, including analysis of multiple quantities of interest and time dependent data. This method is demonstrated for verification of both steady and time-periodic electron diodes, as well as validation of radiation generated plasma in an end-radiated cylinder. In collaboration with Gregg Radtke, Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Particle-In-Cell Modeling for MegaJoule Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Link, Anthony
2015-11-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations are by far the most detailed and computationally intensive DPF simulations run to date. They incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50 + cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. An anode shape scan as well as a scan in stored energy/charging voltage has been performed. A comparison of MJ performance for different drivers will be presented. Validation assessments are being performed, comparing against experimental measurements of neutron yield, neutron anisotropy and plasma density. Prepared by LLNL under Contract DE-AC52-07NA27344. This work supported by the U.S. Department of Energy's National Nuclear Security Administration. Computing support for this work came from the LLNL
Comparing the O+ and H+ Escape Fluxes from Fluid and Particle-in-Cell Solutions of the Polar Wind
NASA Astrophysics Data System (ADS)
Eccles, J. V.; Schunk, R. W.; Barakat, A. R.
2015-12-01
There are different theoretical descriptions of the terrestrial polar wind. Fluid models of mass, momentum, and energy equations can be used to solve the field-aligned flow of H+ and O+ ions from the ionosphere into the earth's magnetosphere. Particle-in-cell (PIC) codes, which include kinetic processes, have also treated polar wind flow between an active ionospheric boundary condition and the outflow boundary into the magnetosphere. In study, we compare the O+ and H+ escape fluxes from the USU Ionosphere-Plasmasphere Model (IPM) [Schunk et al., 2003] with the escape fluxes from the macroscopic PIC solution of the Generalized Polar Wind (GPW) Model of Barakat and Schunk [2006]. The IPM model results at 1500km are used to supply the time-varying boundary conditions to the GPW model. The escape flux comparisons will be made at the 2.5 Re, which is a typical boundary condition radius for fluxes into MHD magnetosphere models. Classical fluid codes generate escape fluxes driven by the pressure gradients in the ionosphere, while the PIC code has additional energization processes for the polar wind fluxes. Differencing the two escape flux solutions at 2.5 Re will quantify the importance of the additional energization processes within the PIC GPW model. We will make the comparisons of escape fluxes using the model results of 4 different storm periods: an idealized storm period, April 5-8, 2000, 2002 September 27 to October 4, and 2002 October 22-29. These storm periods were chosen for the collaborative studies of the Outflow Measuring Modeling, and Merging GEM focus group. Barakat, A. R. and R. W. Schunk (2006), A three-dimensional model of the generalized polar wind, J. Geophys. Res., 111, A12314, doi:10.1029/2006JA011662. Schunk, R. W., J. V. Eccles, J. J. Sojka, D. C. Thompson, and L. Zhu (2003), Assimilation Ionosphere Model (AIM), Final report, Space Environment Corporation, Providence, Utah.
NASA Astrophysics Data System (ADS)
Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter
2016-04-01
This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used
Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.
2013-04-15
We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
NASA Astrophysics Data System (ADS)
Majzoobi, Alireza
The first magnetron as a vacuum-tube device, capable of generating microwaves, was invented in 1913. This thesis research focuses on numerical simulation-based analysis of magnetron performance. The particle-in-cell (PIC) based MAGIC software tool has been utilized to study the A6 and the Rising-Sun magnetron structures, and to obtain the optimized geometry for optimizing the device performance. The A6 magnetron is the more traditional structure and has been studied more often. The Rising-Sun geometry, consists of two alternating groups of short and long vanes in angular orientation, and was created to achieve mode stability. The effect of endcaps, changes in lengths of the cathode, the location of cathodes with respect to the anode block, and use of transparent cathodes have been probed to gauge the performance of the A6 magnetron with diffraction output. The simulations have been carried out with different types of endcaps. The results of this thesis research demonstrate peak output power in excess of 1GW, with efficiencies on the order of 66% for magnetic (B)-fields in the range of 0.4T - 0.42T. In addition, particle-in-cell simulations have been performed to provide a numerical evaluation of the efficiency, output power and leakage currents for a 12-cavitiy, Rising-Sun magnetron with diffraction output with transparent cathodes. The results demonstrate peak output power in excess of 2GW, with efficiencies on the order of 68% for B-fields in the 0.42T - 0.46T range. While slightly better performance for longer cathode length has been recorded. The results show the efficiency in excess of 70% and peak output power on the order of 2.1GW for an 18 cm cathode length at 0.45T magnetic field and 400 kV applied voltage. All results of this thesis conform to the definite advantage of having endcaps. Furthermore, the role of secondary electron emission (SEE) on the output performance of the12-cavity, 12-cathodes Rising-Sun magnetron has been probed. The results indicate
Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury
NASA Astrophysics Data System (ADS)
Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.
2015-12-01
The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming
NASA Astrophysics Data System (ADS)
Sewell, Stephen
This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.
Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
NASA Astrophysics Data System (ADS)
Gudmundsson, J. T.; Lieberman, M. A.; Wang, Ying; Verboncoeur, J. P.
2009-10-01
The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to simulate a capacitively coupled discharge in oxygen. oopd1 is a one-dimensional object-oriented PIC-MC code [1] in which the model system has one spatial dimension and three velocity components. It contains models for planar, cylindrical, and spherical geometries and replaces the XPDx1 series [2], which is not object-oriented. The revised oxygen model includes, in addition to electrons, the oxygen molecule in ground state, the oxygen atom in ground state, the negative ion O^-, and the positive ions O^+ and O2^+. The cross sections for the collisions among the oxygen species have been significantly revised from earlier work using the xpdp1 code [3]. Here we explore the electron energy distribution function (EEDF), the ion energy distribution function (IEDF) and the density profiles for various pressures and driving frequencies. In particular we investigate the influence of the O^+ ion on the IEDF, we explore the influence of multiple driving frequencies, and we do comparisons to the previous xpdx1 codes. [1] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Physics 104 (1993) 321 [2] V. Vahedi and M. Surendra, Comp. Phys. Comm. 87 (1995) 179
NASA Astrophysics Data System (ADS)
Wang, Liang; Hakim, Ammar H.; Bhattacharjee, A.; Germaschewski, K.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Three-dimensional particle-in-cell simulations of 300 GHz reflex klystrons
Jeon, S. G.; Jin, Y. S.; Kim, J. I.; Kim, G. J.; Shon, C. H.
2007-03-01
Three-dimensional (3D) particle-in-cell simulations of 300 GHz reflex klystrons are presented. 300 GHz electromagnetic wave generation in a resonant cavity is analyzed by using a 3D simulation model in which all the geometric parameters (such as the grid thickness, repeller shape, beam radius, etc.) are described. When an electron beam of an energy of 1.0 keV and a net current of 8.9 mA is used, the maximum electronic efficiency of energy transfer is observed when the gap transit angle is 0.7{pi} rad, and the efficiency saturates when the beam current is over 10 mA. Space charge forces produce a shift in the optimum repeller voltage. It is also shown that the effect of the beam temperature is not critical, even though the bunching wavelength of the electron beam is several times smaller than that in conventional vacuum electron devices. Our simulation results show that a microfabricated 300 GHz reflex klystron can directly generate electromagnetic waves with output power levels of several tens of milliwatts.
Local Diagnosis of Reconnection in 3D
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Karimabadi, H.; Daughton, W. S.; Roytershteyn, V.
2014-12-01
We demonstrate (I,II) an approach to find reconnection sites in 3D where there is no flux function for guidance, and where local observational signatures for the ``violation of frozen flux'' are under developed, if not non-existent. We use 2D and 3D PIC simulations of asymmetric guide field reconnection to test our observational hierarchy of single spacecraft kinetic diagnostics - all possible with present state of the art instrumentation. The proliferation of turbulent, electron inertial scale layers in the realistic 3D case demonstrates that electron demagnetization, while necessary, is not sufficient to identify reconnection sites. An excellent local, observable, single spacecraft proxy is demonstrated for the size of the theoretical frozen flux violation. Since even frozen flux violations need not imply reconnection is at hand, a new calibrated dimensionless method is used to determine the importance of such violations. This measure is available in 2D and 3D to help differentiate reconnection layers from weaker frozen flux violating layers. We discuss the possibility that this technique can be implemented on MMS. A technique to highlight flow geometries conducive to reconnection in 3D simulations is also suggested, that may also be implementable with the MMS flotilla. We use local analysis with multiple necessary, but theoretically independent electron kinetic conditions to help reduce the probability of misidentification of any given layer as a reconnection site. Since these local conditions are all necessary for the site, but none is known to be sufficient, the multiple tests help to greatly reduce false positive identifications. The selectivity of the results of this approach using PIC simulations of 3D asymmetric guide field reconnection will be shown using varying numbers of simultaneous conditions. Scudder, J.D., H. Karimabadi, W. Daughton and V. Roytershteyn I, II, submitted Phys. Plasma., 2014
Gibbons, M.R.
1995-06-01
This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.
Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions
NASA Astrophysics Data System (ADS)
Rose, Laura P.
This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield
A split control variate scheme for PIC simulations with collisions
NASA Astrophysics Data System (ADS)
Sonnendrücker, Eric; Wacher, Abigail; Hatzky, Roman; Kleiber, Ralf
2015-08-01
When the distribution function of plasma particles stays close to some analytically known function, statistical noise inherent to Monte Carlo simulations can be greatly reduced by introducing this function as a control variate in the computation of the velocity moments. Such a method, even though it can be naturally applied to nonlinear simulations, has originally emerged from linearised simulations and is usually called the δf particle-in-cell (PIC) method. In the past, the method has been extended to also handle collisions. This resulted in a two weight scheme which is known to produce a pronounced weight growth problem which rapidly makes it inefficient as a control variate method for variance reduction. In this work we analyse the weight growth problem within a simple example, which allows us to overcome its pathological behaviour. We also introduce a new split algorithm based on switching the control variate for PIC simulations with collisions. A key element of our algorithm is a new weight smoothing operator which enables us to obtain a significant noise reduction both in the presence of collisions and in the deep nonlinear phase of PIC simulations.
Oblique electron fire hose instability: Particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.; Decyk, Victor K.; Schriver, David
2014-01-01
Nonlinear properties of the oblique resonant electron fire hose instability are investigated using two-dimensional particle-in-cell simulations in the Darwin approximation for weak initial growth rates. The weak electron fire hose instability has a self-destructive nonlinear behavior; it destabilizes a nonpropagating branch which only exists for a sufficiently strong temperature anisotropy. The nonlinear evolution leads to generation of nonpropagating waves which in turn scatter electrons and reduce their temperature anisotropy. As the temperature anisotropy is being reduced, the nonpropagating branch disappears and the generated standing waves are transformed to propagating whistler waves which are rapidly damped. Consequently, the oblique electron fire hose efficiently reduces the electron temperature anisotropy.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Three-Dimensional Particle-in-Cell Simulations of Laser WakefieldExperiments
Tsung, F.S.; Antonsen, T.; Bruhwiler, D.L.; Cary, J.R.; Decyk,V.K.; Esarey, E.; Geddes, C.G.R.; Huang, C.; Hakim, A.; Katsouleas, T.; Lu, W.; Messmer, P.; Mori, W.B.; Tzoufras, M.; Vieira, J.
2007-06-01
Plasma accelerator methods offer the potential to reduce thesize of moderate and high energy accelerators by factors of 1000. In thepast few years great advances have been made in the production of lowemittance, high quality (i.e., monoenergetic) electron beams withenergies between .1 and 1 GeV using ultra-fast (<50 femtoseconds),high power (>10TW) lasers. The most noticeable of these advances werethe experimental results presented in the "Dream Beam" issue of Natureand in a recent issues of Physical Review Letters, Nature, and NaturePhysics. The experimental progress have been made due to advances inlasers, diagnostics, plasma sources, and the knowledge of how to controlof this highly nonlinear acceleration process. And this experimentalprogress has occurred simultaneously with and been in part due toadvances in modeling capabilities. Using a hierarchy of particlein-cell(PIC) codes OSIRIS, VORPAL, and QuickPIC, we have performed numerous fullscale 3D simulations using parameters quoted from the Nature and NaturePhysics articles. Our simulations have predicted results, providedagreement between simulations and experiments (within the shot-to-shotvariations of the experiments), and provided insight into the complicatedphysics of the experiments. Most importantly, as our confidence in thefidelity of our methods increases we can now guide the planning of newexperiments, and probe parameters that are not yet available. Therebyproviding a "road map" for generating high quality, high-charge 10 to 100GeV electron beams for use in high-energy physics and lightsources.
Particle-in-cell Simulations with Charge-Conserving Current Deposition on Graphic Processing Units
NASA Astrophysics Data System (ADS)
Kong, Xianglong; Huang, Michael; Ren, Chuang; Decyk, Viktor
2010-11-01
We present an implementation of a fully relativistic, electromagnetic PIC code, with charge-conserving current deposition, on graphics processing units (GPUs) with NVIDIA's massively multithreaded computing architecture CUDA. A particle-based computation thread assignment was used in the current deposition scheme and write conflicts among the threads were resolved by a thread racing technique. A parallel particle sorting scheme was also developed and used. The implementation took advantage of fast on-chip shared memory. The 2D implementation achieved a one particle-step process time of 2.28 ns for cold plasma runs and 8.53 ns for extremely relativistic plasma runs on a GTX 280 graphic card, which were respectively 90 and 29 times faster than a single threaded state-of-art CPU code. A comparable speedup was also achieved for the 3D implementation.
Colliding Two Shocks: 1-D full Particle-in-Cell Simulation
NASA Astrophysics Data System (ADS)
Nakanotani, Masaru; Hada, T.; Matsukiyo, Shuichi; Mazelle, Christian
2016-07-01
Shock-shock interactions occur on various places in space and the interaction can produce high energy particles. A coronal mass ejection driven shock can collide with the Earth's bow shock [Hietala et al., 2011]. This study reported that ions are accelerated by the first Fermi acceleration between the two shocks before the collision. An electron acceleration through an interplanetary shock-Earth's bow shock interaction was also reported [Terasawa et al., 1997]. Shock-shock interactions can occur in astrophysical phenomena as well as in the heliosphere. For example, a young supernova shock can collide with the wind termination shock of a massive star if they are close to each other [Bykov et al., 2013]. Although hybrid simulations (ions and electrons treated as super-particles and mass-less fluid, respectively) were carried out to understand the kinetic nature of a shock-shock interaction [Cargill et al., 1986], hybrid simulations cannot resolve electron dynamics and non-thermal electrons. We, therefore, use one-dimensional full particle-in-cell (PIC) simulations to investigate a shock-shock interaction in which two shocks collide head-on. In a case of quasi-perpendicular shocks, electrons are accelerated by the mirror reflection between the two shocks before the collision (Fermi acceleration). On the other hand, because ions cannot go back upstream, the electron acceleration mechanism does not occur for ions. In a case of quasi-parallel shocks, ions can go back upstream and are accelerated at the shocks. The accelerated ions have great effect on the shock structure.
NASA Astrophysics Data System (ADS)
Melzani, Mickaël; Walder, Rolf; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M.
2014-10-01
Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs), a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low β ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma restmass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows are dominated by thermal agitation instead of bulk kinetic energy. (ii) At high inflow electron magnetization (σe ≥ 80), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far lower than the inflow E × B bulk velocity. (iv) Island centers are magnetically isolated from the rest of the flow and can present a density depletion at their center. (v) The reconnection rates are slightly higher than in non-relativistic studies. They are best normalized by the inflow relativistic Alfvén speed projected in the outflow direction, which then leads to rates in a close range (0.14-0.25), thus allowing for an easy estimation of the reconnection electric field.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Particle-in-cell simulations for fast ignition
NASA Astrophysics Data System (ADS)
Ren, C.; Tonge, J.; Li, G.; Fiuza, F.; Fonseca, R. A.; May, J.; Mori, W. B.; Silva, L. O.; Wang, T. L.; Yan, R.
2008-07-01
The hole-boring scheme in fast ignition is studied via largee-scale, two-dimensional particle-in-cell simulations in two steps. First, laser channeling in millimeter-scale underdense plasmas is simulated. The results show a highly nonlinear and dynamic process involving longitudinal plasma buildup, laser hosing, channel bifurcation and self-correction, and electron heating to relativistic temperatures. The channeling speed is much less than the linear group velocity of the laser. Low-intensity channeling pulses are preferred to minimize the required laser energy. The channel is also shown to significantly increase the transmission of an ignition pulse. In the second step, the interactions of the ignition pulse and a hundred-critical-density plasma are simulated to study hot electron generation and transport. The results show that at ultra-high intensities, I > 5 × 1019W/cm2, most of the electrons transporting energy through 50μm of 100 times critical density plasma are in a relatively low energy range. The fraction of laser power that transits the dense plasma and is deposited into a dense core increases with laser intensity. Overall these results show the promise of using ultra-high-intensity ignition pulses in the hole-boring scheme.
Particle-in-cell Simulation of Langmuir Probes
NASA Astrophysics Data System (ADS)
Iza, Felipe
2005-10-01
Ion kinetics in the sheath and pre-sheath of planar and cylindrical probes has been studied by means of 1-dimensional (1d3v) particle-in-cell Monte Carlo collision simulations. Collisionless and collisional regimes are considered and simulation results (floating potentials and the ion saturation currents) are compared with available theories. As pressure increases, the ion velocity at the sheath edge decreases below the Bohm velocity (uB). For planar probes, this velocity is ˜ uB(1+5λDe/λi) where λDe is the Debye length at the sheath edge and λi the ion mean free path. Although ionization can be neglected in the sheath region, it plays a key role in determining the voltage across the presheath. For planar probes and Maxwellian electrons, this voltage increases rapidly for electron temperatures below ˜2eV. For cylindrical probes, however, the voltage across the presheath can be drastically reduced by the geometrical increase of current density as ions approach the probe. At low pressure, simulation results lie between the Laframboise and the ABR theories. As pressure increases, however, collisions and ionization in the presheath becomes critical in determining the ion flux to the probe at a given bias voltage.
Second order gyrokinetic theory for particle-in-cell codes
NASA Astrophysics Data System (ADS)
Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric
2016-08-01
The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
PIC Simulations of Hypersonic Plasma Instabilities
NASA Astrophysics Data System (ADS)
Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.
2013-12-01
The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration
PIC simulation of electrodeless plasma thruster with rotating electric field
NASA Astrophysics Data System (ADS)
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-01
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
Bounded PIC-MCC simulation of an electgronegative RF discharge
Vahedi, V.; Lieberman, M.A.; Birdsall, C.K.
1992-12-01
The authors have developed a Monte Carlo Collision (MCC) scheme, as an addition to the Particle-in-Cell (PIC) method, to study oxygen RF discharges. The presence of negative ions and their effect on the plasma is being investigated at various pressures and input powers. Simulation results show that for low input powers, the negative ion density can be an order of magnitude higher than the electron density. This high concentration of negative ions affects the ambipolar diffusion conditions which can lead to lower ion loss rates and higher ion densities than in electropositive discharges. In this model, electrons, O{sub 2}{sup +}, O{sup {minus}}, and O are evolved as particles. These models can be used to model other processing discharges.
PIC simulation of electrodeless plasma thruster with rotating electric field
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-27
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.