Science.gov

Sample records for 3d position-sensitive detectors

  1. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  2. READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

    SciTech Connect

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P.; HE, Z.; HERMAN, C.; ZHANG, F.

    2007-10-27

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.

  3. Beam tests of a 3-D position sensitive scintillation detector

    SciTech Connect

    Labanti, C.; Hall, C.J.; Agrinier, B.; Byard, K.; Dean, A.J.; Goldwurm, A.; Harding, J.S.

    1989-02-01

    An array of 30 position sensitive scintillator bars has been tested in a gamma-ray beam from I.N.S.T.N. Van de Graff facility at the Centre d'Etudes Nucleaires, Saclay, France. The gamma-ray energies ranged from 6 MeV to 17 MeV. The bars are similar to those proposed for use in the GRASP gamma-ray telescope satellite imaging plane. They are manufactured from CsI(T1) covered with a highly reflective diffusive wrapping, and are read out using large area PIN photodiodes. Each bar measures 15.0 cm by 1.3 cm by 1.3 cm. The beam test unit was comprised of 30 bars stacked in a 5 by 6 array. The photodiodes were optically coupled to the end face of each bar and were connected to a processing chain comprised of a low noise preamplifier, a high gain shaping amplifier, and a digitisation and data collection system. Several experiments were performed with the unit to assess the spectral response, position resolution, and background rejection capabilities of the complete detector. The test procedure is explained and some results are presented.

  4. Development of Gamma-Ray Compton Imager Using Room-Temperature 3-D Position Sensitive Semiconductor Detectors

    SciTech Connect

    Zhong He; David Whe; Glenn Knoll

    2003-05-14

    During the three years of this project, two 3-dimensional position sensitive CdZnTe spectrometers were upgraded in collaboration with Johns Hopkins University Applied Physics Laboratory. A prototype Compton-scattering gamma-ray imager was assembled using the two upgraded CdZnTe detectors. The performance of both gamma-ray spectrometers were individually tested. The angular resolution and detection sensitivity of the imaging system were measured using both a point and a line-shaped 137 Cs radiation source. The measurement results are consistent with that obtained from Monte-Carlo simulations performed during the early phase of the project.

  5. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  6. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, John T.

    1994-01-01

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wave length shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event.

  7. Two-dimensional position sensitive radiation detectors

    DOEpatents

    Mihalczo, J.T.

    1994-02-22

    Nuclear reaction detectors capable of position sensitivity with submillimeter resolution in two dimensions are each provided by placing arrays of scintillation or wavelength shifting optical fibers formed of a plurality of such optical fibers in a side-by-side relationship in X and Y directions with a layer of nuclear reactive material operatively associated with surface regions of the optical fiber arrays. Each nuclear reaction occurring in the layer of nuclear reactive material produces energetic particles for simultaneously providing a light pulse in a single optical fiber in the X oriented array and in a single optical fiber in the Y oriented array. These pulses of light are transmitted to a signal producing circuit for providing signals indicative of the X-Y coordinates of each nuclear event. 6 figures.

  8. Emulation workbench for position sensitive gaseous scintillation detectors

    NASA Astrophysics Data System (ADS)

    Pereira, L.; Margato, L. M. S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-12-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations.

  9. Large area position sensitive β-detector

    NASA Astrophysics Data System (ADS)

    Vaintraub, S.; Hass, M.; Edri, H.; Morali, N.; Segal, T.

    2015-03-01

    A new conceptual design of a large area electron detector, which is position and energy sensitive, was developed. This detector is designed for beta decay energies up to 4 MeV, but in principle can be re-designed for higher energies. The detector incorporates one large plastic scintillator and, in general, a limited number of photomultipliers (7 presently). The current setup was designed and constructed after an extensive Geant4 simulation study. By comparison of a single hit light distribution between the various photomultipliers to a pre-measured accurate position-response map, the anticipated position resolution is around 5 mm. The first benchmark experiments have been conducted in order to calibrate and confirm the position resolution of the detector. The new method, results of the first test experiments and comparison to simulations are presented.

  10. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  11. Development of a fast position-sensitive laser beam detector

    SciTech Connect

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G.

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  12. Self-Balancing Position-Sensitive Detector (SBPSD).

    PubMed

    Porrazzo, Ryan; Lydecker, Leigh; Gattu, Suhasini; Bakhru, Hassaram; Tokranova, Natalya; Castracane, James

    2015-01-01

    Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that. PMID:26205266

  13. Self-Balancing Position-Sensitive Detector (SBPSD)

    PubMed Central

    Porrazzo, Ryan; Lydecker, Leigh; Gattu, Suhasini; Bakhru, Hassaram; Tokranova, Natalya; Castracane, James

    2015-01-01

    Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that. PMID:26205266

  14. Integrated cooling channels in position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Boronat, M.; Fuster, J.; Garcia, I.; Gomis, P.; Marinas, C.; Ninkovic, J.; Perelló, M.; Villarejo, M. A.; Vos, M.

    2016-06-01

    We present an approach to construct position-sensitive silicon detectors with an integrated cooling circuit. Tests on samples demonstrate that a very modest liquid flow very effectively cool the devices up to a power dissipation of over 10 W/cm2. The liquid flow is found to have a negligible impact on the mechanical stability. A finite-element simulation predicts the cooling performance to an accuracy of approximately 10%.

  15. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  16. Spectroscopy of Actinide Nuclei - Perspectives with Position Sensitive HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Reiter, P.; Birkenbach, B.; Kotthaus, T.

    Recent advances in in-beam gamma-ray spectroscopy of actinide nuclei are based on highly efficient arrays of escape-suppressed spectrometers. The sensitivity of these detector arrays is greatly enhanced by the combination with powerful mass separators or particle detector systems. This technique is demonstrated by an experiment to investigate excited states in 234U after the one-neutron-transfer reaction 235U(d,t). In coincidence with the outgoing tritons, γ-rays were detected with the highly efficient MINIBALL spectrometer. In the near future an even enhanced sensitivity will be achieved by utilizing position sensitive HPGe detectors which will exploit the novel detection method of gamma-ray energy tracking in electrically segmented germanium detectors. An example for this novel approach is the investigation neutron-rich actinide Th and U nuclei after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL, Italy. A primary 136Xe beam hitting a 238U target was used to produce the nuclei of interest. Beam-like reaction products after neutron transfer were selected by the PRISMA spectrometer. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique, which was successfully exploited in this region.

  17. Development of a novel position-sensitive microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2015-10-01

    Position sensitive microchannel plate (MCP) detectors which measure the position of an incident electron, ion, or photon, are useful in imaging applications. Recently, a novel detector, which utilizes an induced approach to provide position sensitivity, has been developed. In the prototype detector, using only the zero-crossing point of the inherently bipolar signals, a position resolution of 466 μm (FWHM) has been achieved. Implementing a differential readout may improve on this resolution. To realize this differential approach, a better understanding of the dependence of the induced signal shape on the position of the electron cloud is required. To characterize the dependence of the induced signal shape on position a resistive anode (RA) has been incorporated into the detector. The RA will allow determination of the centroid of the electron cloud. Factors impacting the position resolution obtained with the RA will be discussed and the achieved position resolution of 157 μm (FWHM) will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  18. Positron camera using position-sensitive detectors: PENN-PET

    SciTech Connect

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    A single-slice positron camera has been developed with good spatial resolution and high count rate capability. The camera uses a hexagonal arrangement of six position-sensitive NaI(Tl) detectors. The count rate capability of NaI(Tl) was extended to 800k cps through the use of pulse shortening. In order to keep the detectors stationary, an iterative reconstruction algorithm was modified which ignores the missing data in the gaps between the six detectors and gives artifact-free images. The spatial resolution, as determined from the image of point sources in air, is 6.5 mm full width at half maximum. We have also imaged a brain phantom and dog hearts.

  19. A position-sensitive alpha detector using a thin plastic scintillator combined with a position-sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Iida, Takao

    1998-12-01

    A position-sensitive alpha detector was developed and tested. The alpha detector consists of a thin plastic scintillator, a position-sensitive photomultiplier tube, a position calculation circuit and a personal computer based data acquisition system. Because the thin plastic scintillator has high-detection efficiency for alpha particles while it has low-sensitivity for beta particles or gamma ray, the detector can selectively detect alpha particles with low background counts. The spatial resolution of the detector was approximately 3 mm FWHM. An autoradiographic images of plutonium distribution in the lung of an animal as well as an image of an uranium particle were successively obtained. Spatial and energy distribution of radon daughters could also be measured. We conclude that the developed position-sensitive alpha detector is useful for some applications such as plutonium detection or alpha autoradiography as well as distribution analysis of radon daughters.

  20. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  1. Position Sensitive Detectors Mounted with Scintillators and Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Carvalhaes, Roberto P. M.; Bonifácio, Daniel A. B.; Moralles, Maurício

    2011-08-01

    This work presents the first results obtained in the "Assembly and characterization of position sensitive detectors composed of scintillators coupled to silicon photomultipliers" project. The development of new x and γ radiation detectors have found several technological applications, especially in medical physics, where γ detectors that can be used in high intensity magnetic field are of particular importance. The experimental setup consisted of coupling of two silicon photomultipliers (SiPM) to the small sides of a 3×3×100 mm3 scintillator and the coupling of one SiPM to one of the small sides of a 3×3×10 mm3 scintillator. We found that the detectors used in this study presented an energy resolution that is in agreement with those observed in scintillators of the same family coupled to conventional photomultipliers. Besides that, there is a strong correlation between the difference of the light intensity in both SiPMs of the long detector and the position of the γ source. The results confirm the great potential of application of such detectors.

  2. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Chen, E.; Cheng, S.; Cui, Y.; Gul, R.; Gallagher, R.; Dedic, V.; De Geronimo, G.; Ocampo Giraldo, L.; Fried, J.; Hossain, A.; MacKenzie, J. M.; Sellin, P.; Taherion, S.; Vernon, E.; Yang, G.; El-hanany, U.; James, R. B.

    2016-02-01

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm2 and 6 × 6 mm2 and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  3. A three dimensionally position sensitive large area detector

    NASA Astrophysics Data System (ADS)

    Pochodzalla, J.; Butsch, R.; Heck, B.; Hlawatsch, G.; Miczaika, A.; Rabe, H. J.; Rosner, G.

    1985-01-01

    A large area detector consisting of a parallel plate avalanche counter (PPAC) and a trapezohedral ionization chamber (TIC) is described. Its active area is 184 cm 2. The time resolution of the PPAC is 175 ps. The energy resolution of the TIC is 0.4%, the energy loss resolution 2.8%, the nuclear charge resolution 2.3%. The TIC is position sensitive in three dimensions. The position x is measured via a saw-tooth anode with a resolution of 0.7 mm; the drift time coordinate shows a resolution of δy ≅ mm. The range z is determined by a new technique, a graded density Frisch grid. It enlarges the dynamic range of the charge measurement down to the Bragg maximum at E/ A ˜ 1 MeV. The resolution is δZ/ Z ≅ 3.5%

  4. Cryogenic 3-D Detectors for Solar Physics

    NASA Astrophysics Data System (ADS)

    Stern, R. A.; Martinez-Galarce, D.; Rausch, A.; Shing, L.; Deiker, S.; Boerner, P.; Metcalf, T.; Cabrera, B.; Leman, S. W.; Brink, P.; Irwin, K.; Alexander, D.

    2005-05-01

    Cryogenic microcalorimeters operating in the sub-Kelvin temperature range provide non-dispersive energy resolution at optical through gamma ray energies (e.g, E/Δ E ~ 1500 at 6 keV). Microcalorimeters also have high time resolution (msec or better), and can be made into imaging arrays through SQUID multiplexing of individual pixels or employing position sensitive detector structures. The application of such "3-D" detector technology to solar physics will lead to significant advances in our understanding of magnetic reconnection in the Sun, including X-ray jet phenomena, and active region heating and dynamics. An Explorer-class solar mission within the next 5-10 years, based upon these detectors, is rapidly becoming technically feasible. LMSAL currently has an internally funded laboratory research program to investigate TES (Transition Edge Sensor) microcalorimeters; we recently saw our first X-ray photons using TES detectors supplied by NIST. In addition, we have recently been funded by NASA to begin work with NIST on position-sensitive X-ray strip detectors for solar physics applications. Finally, we are collaborating with with Stanford and NIST on a solar sounding rocket. In this presentation, we will discuss the current status of these programs and their applicability to future Explorer missions and Roadmap missions such as RAM.

  5. A multiplex readout method for position sensitive boron coated straw neutron detector

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Gong, Hui; Li, Jianmin; Wang, Yongqiang; Wang, Xuewu; Li, Yuanjing; Kang, Kejun

    2015-10-01

    A 1 m×1 m boron coated straw neutron detector is expected to be used to build the small-angle neutron scattering (SANS) instrument of the Compact Pulsed Hadron Source (CPHS) in Tsinghua University. A multiplex readout method based on summing circuits in columns and rows is studied for this large area position sensitive detector. In this method, the outputs of charge sensitive preamplifiers are combined by columns and rows at two ends of the detector, and then the shaped signals are sampled by flash ADCs. With the position reconstructed algorithm implemented in FPGA which analyzes the charge division and column and row number of signals, the 3-D position information of neutron events can be obtained. The position resolution and counting rate performance of this method are analyzed, and the comparison to the delay-line readout method is also given. With the multiplex readout method, the scale of readout electronics can be greatly reduced and a good position resolution can be reached. A readout electronics system for a detector module which consists 4 × 10 straw tubes is designed based on this method, and the test with neutron beam shows an average 3-D spatial resolution of 4 × 4 × 6.8mm3.

  6. Position-sensitive detectors of the detector group at Jülich

    NASA Astrophysics Data System (ADS)

    Engels, R.; Clemens, U.; Kemmerling, G.; Nöldgen, H.; Schelten, J.

    2009-06-01

    The detector group of the Central Institute of Electronics at the Forschungszentrum Jülich GmbH was founded in 1968. First developments aimed at a detector system with a position-sensitive BF 3 proportional counter for small-angle neutron scattering, which was later used at a beamline of the research reactor FRJ2. At the end of the 1970s first measurements were carried out with photomultiplier (PM)-based detector systems linked with a LiI crystal from Harshaw. Based on this experience we started with the spectrum of position-sensitive neutron scintillation detectors, which have been developed and designed in our institute during the last three decades comprising several high-resolution linear and two-dimensional detectors. The general design of those detectors is based on a modified Anger principle using an array of PMs and a 1 mm 6Li glass scintillator. The sensitive detector area varies on the type of the PMs used and is related to the spatial resolution of the detector type. The neutron sensitivity at 1 Å is about 65% and the remaining gamma sensitivity is less than 10 -4 with a maximum count rate up to 500 kHz depending on the used detector system.

  7. A position sensitive detector for EUV remote sensing

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Chakrabarti, S.; Cotton, D. M.; Lampton, M.

    1989-01-01

    The authors describe a photon-counting extreme ultraviolet (EUV) detector system used in a rocket-borne spectroscopic instrument for remote sensing of upper atmospheric composition and temperature. The detector uses a KBr coated microchannel plate (MCP) Z stack in combination with a wedge-and-strip image readout system. Three separate detector fields of view are used to sense the Earth dayglow spectrum (980 A to 1040 A, and 1300 A to 1360 A) and the solar EUV spectrum (250 A to 1400 A). The authors demonstrate high gain (2 x 107), tight pulse-height distribution (35 percent FWHM), and a spatial resolution of about 35 microns FWHM (full width at half maximum), which is the highest resolution for a wedge-and-strip anode MCP detector flown to date. The background, image linearity, and flat-field performance are discussed. Raw spectra from the rocket flight are also presented.

  8. Performance of a position-sensitive scintillation detector.

    PubMed

    Karp, J S; Muehllehner, G

    1985-07-01

    The spatial resolution of a NaI(T1), 25 mm thick bar detector designed for use in positron emission tomography has been studied. The position along the 500 mm long detector is determined from the centroid of the light distribution in the crystal as measured by a linear array of photomultiplier tubes. A Monte Carlo computer simulation was performed to investigate the factors limiting the spatial resolution. The program allowed us to study the effect of various phototube configurations and crystal surfaces. Since the resolution is affected by the width of the light distribution, we studied the effect of sharpening the distribution by modifying the front crystal surface with grooves cut perpendicular to the long axis of the crystal and by using non-linear preamplifiers. The simulation predicts a spatial resolution (FWHM) of 3 mm with this crystal. Experimental measurements of spatial resolution were performed concurrently with the simulations. In particular, a modified grooved crystal was measured to have 4.0 mm spatial resolution, an improvement over the original crystal without grooves. With delay line pulse shortening, which increases the count rate capability of the detector, the grooved crystal was measured to have 5.5 mm spatial resolution. PMID:3895256

  9. POSITION SENSITIVE GERMANIUM DETECTORS FOR GAMMA-RAY IMAGING AND SPECTROSCOPY

    EPA Science Inventory

    Gamma-ray imaging with position-sensitive germanium detectors offers the advantages of excellent energy resolution, high detection efficiency, and potentially good sptial resolution. The development of the amorphous-semiconductor electrical contact technology for germanium detec...

  10. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  11. Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Kato, T.; Nakamori, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Yamamoto, K.

    2013-12-01

    The release of radioactive isotopes (mainly 137Cs, 134Cs and 131I) from the crippled Fukushima Daiichi Nuclear Plant remains a serious problem in Japan. To help identify radiation hotspots and ensure effective decontamination operation, we are developing a novel Compton camera weighting only 1 kg and measuring just ∼10 cm2 in size. Despite its compactness, the camera realizes a wide 180° field of vision with a sensitivity about 50 times superior to other cameras being tested in Fukushima. We expect that a hotspot producing a 5 μSv/h dose at a distance of 3 m can be imaged every 10 s, with angular resolution better than 10° (FWHM). The 3D position-sensitive scintillators and thin monolithic MPPC arrays are the key technologies developed here. By measuring the pulse-height ratio of MPPC-arrays coupled at both ends of a Ce:GAGG scintillator block, the depth of interaction (DOI) is obtained for incident gamma rays as well as the usual 2D positions, with accuracy better than 2 mm. By using two identical 10 mm cubic Ce:GAGG scintillators as a scatterer and an absorber, we confirmed that the 3D configuration works well as a high-resolution gamma camera, and also works as spectrometer achieving typical energy resolution of 9.8% (FWHM) for 662 keV gamma rays. We present the current status of the prototype camera (weighting 1.5 kg and measuring 8.5×14×16 cm3 in size) being fabricated by Hamamatsu Photonics K.K. Although the camera still operates in non-DOI mode, angular resolution as high as 14° (FWHM) was achieved with an integration time of 30 s for the assumed hotspot described above.

  12. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.; Sato, K.; Sato, S.; Suzuki, S.

    2013-12-01

    As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  13. Data acquisition system for an advanced x-ray imaging crystal spectrometer using a segmented position-sensitive detector.

    PubMed

    Nam, U W; Lee, S G; Bak, J G; Moon, M K; Cheon, J K; Lee, C H

    2007-10-01

    A versatile time-to-digital converter based data acquisition system for a segmented position-sensitive detector has been developed. This data acquisition system was successfully demonstrated to a two-segment position-sensitive detector. The data acquisition system will be developed further to support multisegmented position-sensitive detector to improve the photon count rate capability of the advanced x-ray imaging crystal spectrometer system. PMID:17979416

  14. 3D IC for Future HEP Detectors

    SciTech Connect

    Thom, J.; Lipton, R.; Heintz, U.; Johnson, M.; Narain, M.; Badman, R.; Spiegel, L.; Triphati, M.; Deptuch, G.; Kenney, C.; Parker, S.; Ye, Z.; Siddons, D.

    2014-11-07

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. Here we describe ongoing R&D efforts to demonstrate functionality of components of such detectors. This also includes the study of integrated 3D electronics with active edge sensors to produce "active tiles" which can be tested and assembled into arrays of arbitrary size with high yield.

  15. 3D IC for future HEP detectors

    NASA Astrophysics Data System (ADS)

    Thom, J.; Lipton, R.; Heintz, U.; Johnson, M.; Narain, M.; Badman, R.; Spiegel, L.; Triphati, M.; Deptuch, G.; Kenney, C.; Parker, S.; Ye, Z.; Siddons, D. P.

    2014-11-01

    Three dimensional integrated circuit technologies offer the possibility of fabricating large area arrays of sensors integrated with complex electronics with minimal dead area, which makes them ideally suited for applications at the LHC upgraded detectors and other future detectors. We describe ongoing R&D efforts to demonstrate functionality of components of such detectors. This includes the study of integrated 3D electronics with active edge sensors to produce "active tiles" which can be tested and assembled into arrays of arbitrary size with high yield.

  16. Characterization of multilayer reflectors and position sensitive detectors in the 45--300 A region

    SciTech Connect

    Yamashita, K.; Takahashi, S. ); Kitamoto, S.; Takahama, S.; Tamura, K. ); Hatsukade, I. ); Sakurai, M. ); Watanabe, M. ); Yamaguchi, A. ); Nagata, H.; Ohtani, M. )

    1992-01-01

    Multilayer reflectors and position sensitive detectors have been developed in constructing imaging optical systems in the 45--300 A region. Molybdenum-silicon (2{ital d}=140 A, {ital N}=20) and nickel--carbon (2{ital d}=100 A, {ital N}=20) multilayers were deposited on a spherical mirror (25 cm in diameter) for the normal incidence and on a segment of paraboloidal mirror (20 cm{times}10 cm) for 30{degree} grazing incidence. Their optical characteristics were evaluated by using characteristic x rays and monochromatized synchrotron radiation in the 45--300 A region. A position sensitive detector is made of a tandem microchannel plate (MCP) with a CsI photocathode and resistive plate, which is placed at the focal plane of each mirror. The detection efficiency and position resolution were measured by using characteristic x rays of C{ital K}{alpha} and monochromatized synchrotron radiation in the 45--200 A region.

  17. Unconventional double bent-crystal diffractometer equipped by position-sensitive detector

    NASA Astrophysics Data System (ADS)

    Mikula, Pavel; Lukas, Petr; Kulda, Jiri; Strunz, Pavel; Saroun, Jan; Wagner, Volker; Scherm, Reinhard; Alefeld, Berthold; Reinartz, Richard

    1992-11-01

    Using Bragg diffraction optics, an unconventional DBC diffractometer was tested for medium resolution small-angle neutron scattering experiments. The diffraction geometry of the analyzer enables to transform the angular beam distribution into the positional distribution and, consequently, to analyze it by means of a one-dimensional position sensitive detector. First experimental results obtained with a sample of PE+graphite proves a compatibility and a higher speed of data collection compared to a standard DBC diffractometer.

  18. In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: Feasibility study

    SciTech Connect

    Reniers, B.; Landry, G.; Eichner, R.; Hallil, A.; Verhaegen, F.

    2012-04-15

    Purpose: In gynecological radiotherapy with high dose rate (HDR){sup 192}Ir brachytherapy, the treatment complexity has increased due to improved optimization techniques and dose constraints. As a consequence, it has become more important to verify the dose delivery to the target and also to the organs at risk (e.g., the bladder). In vivo dosimetry, where dosimeters are placed in or on the patient, is one way of verifying the dose but until recently this was hampered by motion of the radiation detectors with respect to the source. The authors present a novel dosimetry method using a position sensitive radiation detector. Methods: The prototype RADPOS system (Best Medical Canada) consists of a metal oxide field effect transistor (MOSFET) dosimeter coupled to a position-sensor, which deduces its 3D position in a magnetic field. To assess the feasibility of in vivo dosimetry based on the RADPOS system, different characteristics of the detector need to be investigated. Using a PMMA phantom, the positioning accuracy of the RADPOS system was quantified by comparing position readouts with the known position of the detector along the x and y-axes. RADPOS dose measurements were performed at various distances from a Nucletron{sup 192}Ir source in a PMMA phantom to evaluate the energy dependence of the MOSFET. A sensitivity analysis was performed by calculating the dose after varying (1) the position of the RADPOS detector to simulate organ motion and (2) the position of the first dwell position to simulate errors in delivery. The authors also performed an uncertainty analysis to determine the action level (AL) that should be used during in vivo dosimetry. Results: Positioning accuracy is found to be within 1 mm in the 1-10 cm range from the origin along the x-axis (away from the transmitter), meeting the requirements for in vivo dosimetry. Similar results are obtained for the other axes. The ALs are chosen to take into account the total uncertainty on the measurements. As a

  19. Position-sensitive CdTe detector using improved crystal growth method

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  20. Position-sensitive CdTe detector using improved crystal growth method

    NASA Astrophysics Data System (ADS)

    1988-09-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  1. A fast position sensitive microstrip-gas-chamber detector at high count rate operation

    NASA Astrophysics Data System (ADS)

    Dolbnya, I. P.; Alberda, H.; Hartjes, F. G.; Udo, F.; Bakker, R. E.; Konijnenburg, M.; Homan, E.; Cerjak, I.; Goedtkindt, P.; Bras, W.

    2002-11-01

    Testing of a newly developed position sensitive high count rate microstrip gas chamber (MSGC) detector at high count rate operation has been carried out at the Dutch-Belgian x-ray scattering beamline at the European Synchrotron Radiation Facility (Grenoble, France) with a high intensity x-ray beam. The measurements show local count rate capabilities up to approx4.5 x105 counts/s/channel. Experimental data taken with this detector are also shown. These tests show that both time resolution down to 1.5 ms/frame and a reliable operation at high counting rates can be achieved.

  2. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors

    SciTech Connect

    Mazin, Benjamin A.; Bumble, Bruce; Day, Peter K.; Eckart, Megan E.; Golwala, Sunil; Zmuidzinas, Jonas; Harrison, Fiona A.

    2006-11-27

    The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. The authors present results on position sensitive x-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

  3. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.

    1986-10-21

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole and means for collimating the scattered gamma rays onto the detector.

  4. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Bumble, Bruce; Day, Peter K.; Eckart, Megan E.; Golwala, Sunil; Zmuidzinas, Jonas; Harrison, Fiona A.

    2006-11-01

    The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. The authors present results on position sensitive x-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

  5. A position sensitive time of flight detector for heavy ion ERD

    NASA Astrophysics Data System (ADS)

    Eschbaumer, S.; Bergmaier, A.; Dollinger, G.

    2016-03-01

    A new 2D position sensitive time of flight detector for heavy ion ERD has been developed. The detector features separate time and position measurement in a straight geometry. An electrostatic lens focuses the secondary electrons ejected from a carbon foil onto a channel plate stack maintaining the position information despite the electron momentum distribution. For position readout a 2D Backgammon anode is used. A position resolution of <0.6 mm (FWHM) and a time resolution of 96 ps (FWHM) is demonstrated.

  6. A Prototype Three-Dimensional Position Sensitive CdZnTe Detector Array

    SciTech Connect

    Zhang, Feng; He, Zhong; Seifert, Carolyn E.

    2007-08-01

    A new CdZnTe gamma-ray spectrometer system that employs two layers of modular detector arrays is being developed under the collaboration between the University of Michigan and the Pacific Northwest National Labaratory (PNNL). Each layer can accommodate up to three by three 3-dimensional position sensitive CdZnTe gamma-ray spectrometers. This array system is based on the newly developed VAS_UM/TAT4 ASIC readout electronics. Each of the nine detector modules consists of a pixellated CdZnTe detector and a VAS_UM/TAT4 ASIC frontend board. Each 1.5´1.5´1.0 cm3 CdZnTe detector employs an array of 11 by 11 pixellated anodes and a planar cathode. The energy depositions and 3-dimensional positions of individual interactions of each incident gamma ray can be obtained from pulse amplitude, location of each pixel anode and the drift time of electrons. Ten detectors were tested individually and half of them achieved resolution of <1.0% FWHM at 662 keV for single-pixel events (~30% of all 662 keV full energy deposition events). Two of them were tested in a simple array to verify that the upgrade to an array system does not sacrifice the performance of individual detectors. Experimental results of individual detectors and a twodetector array system are presented, and possible causes for several worse performing detectors are discussed.

  7. Development of a one-dimensional Position Sensitive Detector for tracking applications

    NASA Astrophysics Data System (ADS)

    Lydecker, Leigh Kent, IV

    Optical Position Sensitive Detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS processing, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. Because they are non-contact, they do not degrade over time from surface friction due to repetitive sliding motion associated with standard full contact sliding potentiometers. This results in long, reliable device lifetimes. In this work, an innovative PSD was developed to replace the linear hard contact potentiometer currently being used in a human-computer interface architecture. First, a basic lateral effect PSD was developed to provide real-time positioning of the mouthpiece used in the interface architecture which tracks along a single axis. During the course of this work, multiple device geometries were fabricated and analyzed resulting in a down selection of a final design. This final device design was then characterized in terms of resolution and responsivity and produced in larger quantities as initial prototypes for the test product integration. Finally, an electronic readout circuit was developed in order to interface the dual- line lateral effect PSD developed in this thesis with specifications required for product integration. To simplify position sensing, an innovative type of optical position sensor was developed using a linear photodiodes with back-to-back connections. This so- called Self-Balancing Position Sensitive Detector (SBPSD) requires significantly fewer processing steps than the basic lateral effect position sensitive detector discussed above and eliminates the need for external readout circuitry entirely. Prototype devices were fabricated in this work, and the performance characteristics of these devices were established paving the way for ultimate integration into the target product as well as additional applications.

  8. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  9. Characterization of two resistive anode encoder position sensitive detectors for use in ion microscopy

    NASA Astrophysics Data System (ADS)

    Brigham, Robert H.; Bleiler, Roger J.; McNitt, Paul J.; Reed, David A.; Fleming, Ronald H.

    1993-02-01

    Both the standard resistive anode encoder (RAE) position sensitive ion detector and a new faster version have been adapted for use with CAMECA IMS-3f/4f imaging secondary-ion mass spectroscopy instruments. Each detector includes a dual microchannel plate image intensifier mounted in front of a resistive anode. The conversion efficiencies of the standard and fast detectors are 60% and 55%, respectively. The high count rates attainable with the fast detector require high strip-current microchannel plates for optimum performance. The mass bias of these detectors is proportional to (mass)1/2 and can be compensated by adjustment of detector supply voltage. The response across the active area of these detectors is uniform to within 3% with the greatest deviations occurring at the periphery. Distortion and pixel-to-pixel bias are negligible with the standard RAE, but noticeable in the prototype of the fast RAE. Software has been developed that corrects pixel-to-pixel bias. The dead times of the standard and fast RAE systems are 4.3±0.1 μs and 330±2 ns which limit practical count rates to about 40 000 and 600 000 Hz, respectively. For many applications, the higher ion arrival rates and dynamic range of the fast RAE imaging system more than compensate for the increased pixel-to-pixel bias and distortion and the small decrease in conversion efficiency.

  10. Characterization of contamination through the use of position sensitive detectors and digital image processing

    SciTech Connect

    Shonka, J.J.; DeBord, D.M.; Bennett, T.E.; Weismann, J.J.

    1996-06-01

    This report describes development of a significant new method for monitoring radioactive surface contamination. A floor monitor prototype has been designed which uses position sensitive proportional counter based radiation detectors. The system includes a novel operator interface consisting of an enhanced reality display providing the operator with 3 dimensional contours of contamination and background subtracted stereo clicks. The process software saves electronic files of survey data at very high rates along with time stamped video recording and provides completely documented surveys in a visualization oriented data management system. The data management system allows simple re-assembly of strips of data that are taken with a linear PSPC and allows visualization and treatment of the data using algorithms developed for processing images from earth resource satellites. This report includes a brief history of the development path for the floor monitor, a discussion of position sensitive proportional counter technology, and details concerning the process software, post processor and hardware. The last chapter discusses the field tests that were conducted at five sites and an application of the data management system for data not associated with detector systems.

  11. Development of a simple test device for spindle error measurement using a position sensitive detector

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Hung; Jywe, Wen-Yuh; Lee, Hau-Wei

    2004-09-01

    A new spindle error measurement system has been developed in this paper. It employs a design development rotational fixture with a built-in laser diode and four batteries to replace a precision reference master ball or cylinder used in the traditional method. Two measuring devices with two position sensitive detectors (one is designed for the measurement of the compound X-axis and Y-axis errors and the other is designed with a lens for the measurement of the tilt angular errors) are fixed on the machine table to detect the laser point position from the laser diode in the rotational fixture. When the spindle rotates, the spindle error changes the direction of the laser beam. The laser beam is then divided into two separated beams by a beam splitter. The two separated beams are projected onto the two measuring devices and are detected by two position sensitive detectors, respectively. Thus, the compound motion errors and the tilt angular errors of the spindle can be obtained. Theoretical analysis and experimental tests are presented in this paper to separate the compound errors into two radial errors and tilt angular errors. This system is proposed as a new instrument and method for spindle metrology.

  12. An improved method of energy calibration for position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Huang, Tian-Heng; Liu, Zhong; Ding, Bing; Yang, Hua-Bin; Zhang, Zhi-Yuan; Wang, Jian-Guo; Ma, Long; Yu, Lin; Wang, Yong-Sheng; Gan, Zai-Guo; Xiao-Hong, Zhou

    2016-04-01

    Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced. The energy resolution of the 8.088 MeV α decay of 213Rn is determined to be about 87 keV (FWHM), which is better than the result of the traditional method, 104 keV (FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances. Supported by ‘100 Person Project’ of the Chinese Academy of Sciences and the National Natural Science Foundation of China (11405224 and 11435014)

  13. Fourier synthesis image reconstruction by use of one-dimensional position-sensitive detectors.

    PubMed

    Kotoku, Jun'ichi; Makishima, Kazuo; Okada, Yuu; Negoro, Hitoshi; Terada, Yukikatsu; Kaneda, Hidehiro; Oda, Minoru

    2003-07-10

    An improvement of Fourier synthesis optics for hard x-ray imaging is described, and the basic performance of the new optics is confirmed through numerical simulations. The original concept of the Fourier synthesis imager utilizes nonposition-sensitive hard x-ray detectors coupled to individual bigrid modulation collimators. The improved concept employs a one-dimensional position-sensitive detector (such as a CdTe strip detector) instead of the second grid layer of each bigrid modulation collimator. This improves the imaging performance in several respects over the original design. One performance improvement is a two-fold increase in the average transmission, from 1/4 to 1/2. The second merit is that both the sine and cosine components can be derived from a single grid-detector module, and hence the number of imaging modules can be halved. Furthermore, it provides information along the depth direction simultaneously. This in turn enables a three-dimensional imaging hard x-ray microscope for medical diagnostics, incorporating radioactive tracers. A conceptual design of such a microscope is presented, designed to provide a field of view of 4 mm and a spatial resolution of 400 microm. PMID:12856730

  14. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; Sad (eor. K/ E/); Figueroa-Feliciano, E.

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  15. Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    PubMed Central

    Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel

    2010-01-01

    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648

  16. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration. PMID:22163434

  17. Gamma ray measurement of earth formation properties using a position sensitive scintillation detector

    SciTech Connect

    Sonne, D.S.; Beard, W.J.

    1987-01-20

    This patent describes a system for measuring properties of earth formations in the vicinity of a well borehole at different radial distances from the borehole, comprising: a fluid tight hollow body member sized and adapted for passage through a well borehole and housing therein; a source of gamma rays and means for directing gamma rays from the source outwardly from the body member into earth formations in the vicinity of the borehole; and a position sensitive scintillation detector for detecting gamma rays scattered back into the body member from the earth formation in the vicinity of the borehole, means for collimating the scattered gamma rays onto the detector. The detector comprises scintillation crystal means having discrete longitudinally spaced active regions or bins and is longitudinally spaced from the gamma ray source. It has a longitudinal length L and two opposite ends and photomultiplier tubes optically coupled to the opposite ends for providing output voltage signals having voltage amplitudes A and B representative of the intensity of scintillation events occurring in the crystal and impinging at the opposite ends thereof. A means separates the bins for selectively attenuating light passing therebetween, and a means combines the output voltage signals A and B according to a predetermined relationship to derive the discrete bin along the length L of each of the scintillation events in the crystal, thereby providing measurements of the gamma ray scattering properties of the earth formations at different radial distances from the borehole.

  18. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    NASA Astrophysics Data System (ADS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S. I.; Flaminio, V.; Golovkin, S. V.; Gorin, A. M.; Medvedkov, A. M.; Pyshev, A. I.; Tyukov, V. E.; Vasilchenko, V. G.; Zymin, K. V.

    1995-02-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20 μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ = 170 μm, a two-track resolution of the same value and a hit density of n = 1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200 μm, the two-track resolution 600 μm and the hit density n = 1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking.

  19. Mathematical modelling and study of the encoding readout scheme for position sensitive detectors

    NASA Astrophysics Data System (ADS)

    Yue, Xiaoguang; Zeng, Ming; Zeng, Zhi; Wang, Yi; Wang, Xuewu; Zhao, Ziran; Cheng, Jianping; Kang, Kejun

    2016-04-01

    Encoding readout methods based on different schemes have been successfully developed and tested with different types of position-sensitive detectors with strip-readout structures. However, how to construct an encoding scheme in a more general and systematic way is still under study. In this paper, we present a graph model for the encoding scheme. With this model, encoding schemes can be studied in a more systematic way. It is shown that by using an encoding readout method, a maximum of n (n - 1)/2 + 1 strips can be processed with n channels if n is odd, while a maximum of n (n - 2)/2 + 2 strips can be processed with n channels if n is even. Furthermore, based on the model, the encoding scheme construction problem can be translated into a problem in graph theory, the aim of which is to construct an Eulerian trail such that the length of the shortest subcycle is as long as possible. A more general approach to constructing the encoding scheme is found by solving the associated mathematical problem. In addition, an encoding scheme prototype has been constructed, and verified with MRPC detectors.

  20. Performance of resistive-charge position sensitive detectors for RBS/Channeling applications

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Wahl, U.; Catarino, N.; Ribeiro da Silva, M.; Alves, E.

    2014-10-01

    The performance of two types of 1×1 cm2 photodiode position sensitive detectors (PSDs) based on resistive charge division was evaluated for their use in Rutherford Backscattering/Channeling (RBS/C) experiments in blocking geometry. Their energy resolution was first determined for ~ 5.5 MeV alpha particles from a radioactive sources, and values of full width half maximum (FWHM) of 22 keV and 33 keV were achieved using a shaping time constant of τ = 2.0 μs. Additional tests were performed using backscattered 4He particles from the 2.0 MeV beam of a Van de Graaff accelerator. While the 22 keV FWHM detector failed after exposure to less than 5×106 cm-24He particles, the other did not show any noticeable deterioration due to radiation damage for a fluence of 4×108 cm-2. For this type of PSD position resolution (τ = 0.5 μs) standard deviations of ΔL = 0.072 mm at ~ 5.5 MeV and ΔL = 0.247 mm at 1.1 MeV were achieved. RBS/Channeling experiments using PSD were performed on several crystalline samples, showing that this setup seems suitable for lattice location studies, particularly for heavy ions implantation (D ≳1015 at /cm2) on light substrates like Si, SiC, and AlN.

  1. Position-Sensitive CZT Detectors for High Energy X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Matteson, J.; Coburn, W.; Heindl, W.; Peterson, L.; Pelling, M.; Rothschild, R.; Skelton, R.; Hink, P.; Slavis, K.

    1998-05-01

    We report recent progress on CZT (Cadmium Zinc Telluride) detectors by the UCSD/WU collaboration. CZT, a room- temperature semiconductor, is a very promising detector material for high energy X-ray astronomy. It can operate from <10 keV to >200 keV, and give sub-keV energy resolution and sub-mm spatial resolution. We have developed an advanced CZT detector that uses two innovations to improve spectral response, give it 3-D localization of energy loss events, and reduce background at high altitudes and in space. The detector measures 12 x 12 x 2 mm(3) and was manufactured by eV Products. Each face has a strip readouts with 500 micron pitch electrodes. The 2 faces' strips are orthogonal, which provides x-y localization into 500 micron pixels. One innovation is "steering electrodes", which are located between the anode strips. They improve the anode charge collection and energy resolution, and tailing due to hole trapping is nearly totally eliminated. The energy resolution at 60 keV is 4 keV and the peak to valley ratio is 50. The other innovation is 3-D localization of energy losses. This is done by comparing the signals from the anode strips, cathode strips, and steering electrodes. There is a strong depth of interaction signature, which can be used to accept events which interact close to the cathode strips (where X-rays of interest are incident) and reject deeper interactions (which are likely to be background). The detector was tested in a balloon flight at 108,000 feet in October 1997. Background was reduced by passive shielding, consisting of lead graded with tin and copper. The lead thickness was changed by command during the flight, and was 7, 2, and 0 mm thick. With the 2 mm thickness the 20 - 40 keV background for the central 30 pixels was 8x10(-4) c/cm(2) -s-keV when the depth of interaction signature was used to reject background, and 7 times greater when this information was not used. The lower background is 12 times less than other workers have obtained

  2. Measuring the cantilever-position-sensitive detector distance and cantilever curvature for cantilever sensor applications.

    PubMed

    Xu, Meng; Tian, Ye; Coates, M L; Beaulieu, L Y

    2009-09-01

    Measuring cantilever sensor deflections using an optical beam deflection system is more complicated than often assumed. The direction of the reflected beam is dependent on the surface normal of the cantilever, which in turn is dependent on the state of the cantilever. It is often assumed that the cantilever is both straight and perfectly level before the onset of sensing experiments although this assumption, especially the former, is rarely true. Failure to characterize the initial state of the cantilever can lead to irreproducibility in cantilever sensor measurements. We have developed three new methods for characterizing the initial state of the cantilever. In the first case we show how to define the initial angle of inclination beta of the chip on which the cantilever is attached. This method was tested using an aluminum block with a known angle of inclination. A new method for determining the initial distance L(o) between the cantilever and the position-sensitive detector (PSD) is also presented. This parameter which behaves as an amplification factor of the PSD signal is critical for obtaining precise cantilever sensor data. Lastly, we present a method for determining the initial curvature of the cantilever which often results from depositing the sensing platform on the lever. Experiments conducted using deflected cantilevers showed the model to be accurate. The characterization methods presented in this work are simple to use, easy to implement, and can be incorporated into most cantilever sensor setups. PMID:19791971

  3. Performance of BF{sub 3} Filled Position Sensitive Neutron Detector

    SciTech Connect

    Desai, Shraddha S.; Devan, Shylaja; Krishna, P. S. R.

    2011-07-15

    {sup 3}He filled position sensitive detectors (PSD)s developed in-house are successfully used for neutron scattering studies at Dhruva. However recent global scarcity of {sup 3}He has made it essential to find an alternative. It is very difficult to meet performance capabilities of {sup 3}He for neutron detection in any of the alternate materials. Among various alternatives, BF{sub 3} gas can be one. We have recently put an effort to evaluate performance of BF{sub 3} based PSD. For that a PSD filled with BF{sub 3} gas at 0.8 bar pressure is fabricated and characterized. Performances of the same with Pu-Be source and at Hi-Q Diffractometer, Dhruva are reported in this paper. Diffraction spectra from standard samples Fe and Si at wavelength 0.783 A were recorded. It is found that while position resolution of the BF{sub 3} filled PSD is comparable but the efficiency is 20 times less than that of a {sup 3}He(12 bar) filled PSD.

  4. High spatial resolution two-dimensional position sensitive detector for the performance of coincidence experiments

    SciTech Connect

    Ceolin, D.; Chaplier, G.; Lemonnier, M.; Garcia, G.A.; Miron, C.; Nahon, L.; Simon, M.; Leclercq, N.; Morin, P.

    2005-04-01

    A position sensitive detector (PSD) adapted to the technical and mechanical specifications of our angle and energy resolved electron-ion(s) coincidence experiments is described in this article. The device, whose principle is very similar to the one detailed by J. H. D. Eland [Meas. Sci. Technol. 5, 1501 (1994)], is composed by a set of microchannel plates and a delay line anode. The originality comes from the addition in front of the encoding surface of a ceramic disk covered by a resistive surface. The capacitive coupling between the anode and the resistive plane has the double advantage of eliminating the spatial modulations due to the lattice of the anode and also of sensitizing a greater number of electrodes, increasing thus considerably the accuracy of the position measurements. The tests carried out with a time to digital conversion module of 250 ps resolution showed that a spatial resolution better than 50 {mu}m and a dead time of 160 ns can be achieved. Typical images obtained with the help of the EPICEA and DELICIOUS coincidence setups are also shown.

  5. Development of Position-Sensitive Magnetic Calorimeter X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Porst, Jan-Patrick; Bandler, Simon R.; Adams, Joseph S.; Hsieh, Wen-Ting; Rotzinger, Hannes; Seidel, George M.; Smith, Stephen J.; Stevenson, Thomas R.

    2009-12-01

    We are developing arrays of position-sensitive magnetic calorimeter (PoSM) X-ray detectors for future astronomy missions. The PoSM consists of multiple absorbers thermally coupled to one magnetic sensor. Each absorber element has a different thermal coupling to the sensor. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. PoSMs are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels without compromising on spatial sampling. Optimizing the performance of PoSMs requires careful design of key parameters such as the thermal conductances between the absorbers, magnetic sensor and the heat sink, as well as the absorber heat capacities. We report on the first experimental results from four-absorber PoSMs, each absorber consisting of a two layer composite of bismuth and gold. The measured energy resolution (FWHM) was less than 5 eV for 6 keV X-rays into all four absorbers. Straightforward position discrimination by means of rise-time is also demonstrated.

  6. Performance characteristics of a compact position-sensitive LSO detector module.

    PubMed

    Vaquero, J J; Seidel, J; Siegel, S; Gandler, W R; Green, M V

    1998-12-01

    We assembled a compact detector module comprised of an array of small, individual crystals of lutetium oxyorthosilicate:Ce (LSO) coupled directly to a miniature, metal-can, position-sensitive photomultiplier tube (PSPMT). We exposed this module to sources of 511-keV annihilation radiation and beams of 30- and 140-keV photons and measured spatial linearity; spatial variations in module gain, energy resolution, and event positioning; coincidence timing; the accuracy and sensitivity of identifying the crystal-of-first-interaction at 511 keV; and the effects of intercrystal scatter and LSO background radioactivity. The results suggest that this scintillator/phototube combination should be highly effective in the coincidence mode and can be used, with some limitations, to image relatively low-energy single photon emitters. Photons that are completely absorbed on their first interaction at 511 keV are positioned by the module at the center of a crystal. Intercrystal scatter events, even those that lead to total absorption of the incident photon, are placed by the module in a regular "connect-the-dot" pattern that joins crystal centers. As a result, the accuracy of event positioning can be made to exceed 90%, though at significantly reduced sensitivity, by retaining only events that occur within small regions-of-interest around each crystal center and rejecting events that occur outside these regions in the connect-the-dot pattern. PMID:10048853

  7. Development of Position-Sensitive Magnetic Calorimeter X-ray Detectors

    SciTech Connect

    Porst, Jan-Patrick; Bandler, Simon R.; Adams, Joseph S.; Smith, Stephen J.; Hsieh, W.-T.; Stevenson, Thomas R.; Rotzinger, Hannes; Seidel, George M.

    2009-12-16

    We are developing arrays of position-sensitive magnetic calorimeter (PoSM) X-ray detectors for future astronomy missions. The PoSM consists of multiple absorbers thermally coupled to one magnetic sensor. Each absorber element has a different thermal coupling to the sensor. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. PoSMs are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels without compromising on spatial sampling. Optimizing the performance of PoSMs requires careful design of key parameters such as the thermal conductances between the absorbers, magnetic sensor and the heat sink, as well as the absorber heat capacities. We report on the first experimental results from four-absorber PoSMs, each absorber consisting of a two layer composite of bismuth and gold. The measured energy resolution (FWHM) was less than 5 eV for 6 keV X-rays into all four absorbers. Straightforward position discrimination by means of rise-time is also demonstrated.

  8. A location system based on two-dimensional position sensitive detector used in interactive projection systems

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Zhou, Qian; Chen, Liangjun; Sun, Peng; Xu, Honglei; Gao, Yuan; Ma, Jianshe; Li, Yi; Liu, Minxia

    2010-11-01

    The interactive projection systems have been widely used in people's life. Currently the major type is based on interactive whiteboard (IWB). In recent years, a new type based on CCD/CMOS sensor is greatly developed. Compared to IWB, CCD/CMOS implements non-contact sensing, which can use any surface as the projection screen. This makes them more flexible in many applications. However, the main defect is that the location accuracy and tracing speed are limited by the resolution and frame rate of the CCD/CMOS. In this paper, we introduced our recent progress on constructing a new type of non-contact interactive projection system by using a two-dimensional position sensitive detector (PSD). The PSD is an analog optoelectronic position sensor utilizing photodiode surface resistance, which provides continuous position measuring and features high position resolution (better than 1.5μm) and high speed response (less than 1μs). By using the PSD, both high positioning resolution and high tracing speed can be easily achieved. A specially designed pen equipped with infrared LEDs is used as a cooperative target. A high precision signal processing system is designed and optimized. The nonlinearity of the PSD as well as the aberration of the camera lens is carefully measured and calibrated. Several anti-interference methods and algorithms are studied. Experimental results show that the positioning error is about 2mm over a 1200mm×1000mm projection screen, and the sampling rate is at least 100Hz.

  9. Semiconductor diodes as neutron detectors for position-sensitive measurements and for application in personal neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Balzhaeuser, Michael; Dehoff, A.; Engels, R.; Hoengesberg, F.; Lauter, J.; Luth, Hans; Reetz, M.; Reinartz, Richard; Richter, H.; Schelten, Jim; Schmitz, Th.; Steffen, A.; Vockenberg, Th.

    1997-02-01

    A new design for a position-sensitive detector system for thermal neutrons is introduced. The detection principle with a thin 6LiF converter on the surface of a semiconductor diode is described. In experiments with thermal neutrons, a spatial resolution of 1.25 mm was obtained. The detector is insensitive to (gamma) -rays with energies up to 1.5 MeV. The design of a detector with an improvement of the detection efficiency for thermal neutrons from 2.5 percent up to 35 percent is also proposed and the present state of the process development for its fabrication is described.

  10. Software modules of DAQ PCI board (DeLiDAQ) for positive-sensitive MWPC detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Levchanovsky, F. V.; Litvinenko, E. I.; Nikiforov, A. S.; Gebauer, B.; Schulz, Ch.; Wilpert, Th.

    2006-12-01

    The data acquisition system for the position-sensitive delay line detectors on basis of the reprogrammable PCI DAQ board (DeLiDAQ) began to be used for scientific measurements with one- and two-dimensional position-sensitive MWPC detectors on the neutron reactors IBR-2 (JINR, Dubna) and BERII (HMI, Berlin). A stand-alone version of the system with the graphical user interface on the basis of packet ROOT can be used on any PC with the operating system Windows 2000 or Windows XP. Architecture of the created software ensures several ways of interfacing to experiment control systems. In the paper we provide a description of the DeLiDAQ software modules, their features and results of some performance tests.

  11. A position-sensitive germanium detector for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Varnell, L. S.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.; Pehl, R. H.; Goulding, F. S.; Landis, D. A.; Luke, P. N.; Madden, N. W.

    1984-01-01

    The critical problem in high-resolution cosmic gamma-ray spectroscopy in the energy range from 0.02 to 10 MeV is the limited spectral sensitivity of the detectors used. This results from the small effective area of the detectors and the high background noise due to induced radioactivity and scattering in the detectors' high-energy particle environment. The effective area can be increased by increasing the number of detectors, but this becomes prohibitive because of the size and expense of the resulting instrument. We have taken a new approach: a segmented large-volume germanium gamma-ray detector which can effectively discriminate against internal background yet maintain the high spectral resolution and efficiency of conventional coaxial Ge detectors. To verify this concept, a planar detector divided into two segments has been fabricated and laboratory measurements agree well with Monte Carlo calculations. A large coaxial detector which will be divided into five segments is being built using the techniques developed for the planar detector. Monte Carlo calculations show that the sensitivity (minimum detectable flux) of the segmented coaxial detector is a factor of 2-3 better than conventional detectors because of the reduction in the internal background.

  12. 3D circuit integration for Vertex and other detectors

    SciTech Connect

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  13. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    SciTech Connect

    Nelson, R.; Sandoval, J.

    1996-10-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled {sup 3}He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source.

  14. Position sensitive detectors for synchrotron radiation studies: the tortoise and the hare?

    NASA Astrophysics Data System (ADS)

    Lewis, Rob

    2003-11-01

    The huge gulf between the high photon fluxes available from synchrotrons and the capabilities of detectors to measure the resulting photon, electron or ion signals is well known. Whilst accelerator technology continues to advance at a rapid pace, it is detector performance which represents the limiting factor for many synchrotron experiments. In some cases there are still single channel counting detectors based on 40-year-old designs operational on synchrotron beamlines. The dream of many researchers is a detector which is able to simultaneously image and perform spectroscopy at the required data rates. A solution is the massive integration of parallel electronics into detectors on a pixel by pixel basis. These ideas have been in gestation for very many years awaiting sufficient funding, nevertheless, several prototypes are now at the testing stage. The current status of these and other detector developments targeted at synchrotron science are briefly reviewed.

  15. A Monte Carlo simulation comparing hydrocarbons as stopping gases for position sensitive neutron detectors

    NASA Astrophysics Data System (ADS)

    Doumas, A.; Smith, G. C.

    2009-12-01

    Various neutron detectors are being developed for the next generation user facilities, which incorporate new as well as existing approaches for the detection of thermal neutrons. Improvements in neutron detector efficiency, detector size and position resolution have occurred over the last three decades and further advances are expected in the next ten years. Since gas detectors are expected to continue in a key role for future thermal neutron experiments, it is advantageous to review some of the criteria for the choice of proton/triton stopping gases for gas-based detectors. Monte Carlo simulations, using the group of programs "Stopping and Range of Ions in Matter", have been run to determine key performance characteristics for neutron detectors which utilize the reaction 3He(n,p)t. This paper will focus on investigating the use of three common hydrocarbons and CF 4 as stopping gases for thermal neutron detectors. A discussion of these gases will include their behavior in terms of proton and triton range, ion distribution and straggle.

  16. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  17. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  18. 3D sensors and micro-fabricated detector systems

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia

    2014-11-01

    Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development.

  19. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  20. Position Sensitivity of the SuN (Summing NaI(Tl)) Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Beskin, Ilya; Spyrou, Artemis; Quinn, Stephen; Peace, Jessica; Simon, Anna; SuN Team

    2011-10-01

    The astrophysical p-process is responsible for the synthesis of many proton rich nuclei. It involves photo disintegration reactions such as (gamma,alpha), (gamma,n) and (gamma,p) reactions. To try to understand the reaction flow and reproduce the p-nuclei abundances, we will try to study the inverse reactions, namely (p,gamma) and (alpha,gamma). A beam of a heavy nuclei will be impinging on a H or He rich target, and by using the 4 π γ-summing method, the cross section of (p,gamma) and (alpha,gamma) reactions will be measured. To do so, the Nuclear Astrophysics group at NSCL (National Superconducting Cyclotron Laboratory) is developing a scintillation detector. The SuN (Summing NaI) detector consists of eight semicircular segments, each with three PMTs (photomultiplier tubes) attached. This 4 π gamma-summing detector will allow us to measure the cross sections of important p-process reactions. The goal of my research was to find the correlation between the position of an event in the crystal and the signal recorded by each PMT. By correcting for this position dependence of the signals the energy resolution of the detector was improved. First results from this investigation will be presented. NSF.

  1. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    SciTech Connect

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.

  2. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    SciTech Connect

    V. Popov

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  3. Fluorescence detector for capillary separations fabricated by 3D printing.

    PubMed

    Prikryl, Jan; Foret, Frantisek

    2014-12-16

    A simple inexpensive light-emitting diode (LED)-based fluorescence detector for detection in capillary separations is described. The modular design includes a separate high power LED source, detector head, designed in the epifluorescence arrangement, and capillary detection cells. The detector head and detection cells were printed using a 3D printer and assembled with commercially available optical components. Optical fibers were used for connecting the detector head to the LED excitation source and the photodetector module. Microscope objective or high numerical aperture optical fiber were used for collection of the fluorescence emission from the fused silica separation capillary. As an example, mixture of oligosaccharides labeled by 8-aminopyrene-1,3,6-trisulfonate (APTS) was separated by capillary zone electrophoresis and detected by the described detector. The performance of the detector was compared with both a semiconductor photodiode and photomultiplier as light sensing elements. The main advantages of the 3D printed parts, compared to the more expensive alternatives from the optic component suppliers, include not only cost reduction, but also easy customization of the spatial arrangement, modularity, miniaturization, and sharing of information between laboratories for easy replication or further modifications of the detector. All information and files necessary for printing the presented detector are enclosed in the Supporting Information. PMID:25427247

  4. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  5. Development of a scintillating-fibre detector with position-sensitive photomultipliers for high-rate experiments

    NASA Astrophysics Data System (ADS)

    Horikawa, S.; Daito, I.; Gorin, A.; Hasegawa, T.; Horikawa, N.; Iwata, T.; Kuroda, K.; Manuilov, I.; Matsuda, T.; Miyachi, Y.; Riazantsev, A.; Sidorov, A.; Takabayashi, N.; Toeda, T.

    2004-01-01

    An extensive study was performed on the development of fast and precise scintillating-fibre detectors with position-sensitive photomultipliers (PSPM) for application in high-rate experiments. Several detector prototypes with Kuraray multi-cladding fibres of 0.5 mm diameter and Hamamatsu 16-channel H6568 PSPMs were constructed and tested under different beam conditions at the CERN PS and SPS beam lines. High time resolution of the order of 300 ps (r.m.s.) was obtained with spatial resolution of about 125 μm (r.m.s.) and with detection efficiency in excess of 98%. The detector prototype equipped with a 3-m-long light guide was also tested and showed a time resolution of about 540 ps (r.m.s.). Results of tests using a high-intensity muon beam show excellent stability of the detector performances in time and spatial resolutions as well as in detection efficiency under beam fluxes of up to 1.4×10 8 muons per 2.4-second spill.

  6. The sources of inspiration in research on position-sensitive detectors

    NASA Astrophysics Data System (ADS)

    Charpak, G.

    1988-12-01

    The high-energy experimental physicist is constantly confronted with the problem of identifying and localizing particles, charged or neutral. The community of high-energy physicists has thus produced a variety of original methods which have found, or are beginning to find, applications in many fields that are remote from this discipline. New hadron accelerators which are foreseen for the year 2000 raise formidable problems. To take an extreme case, beams crossing at 5 ns intervals are being considered, with several interactions per crossing and with collision multiplicities close to 100. Should a high-energy experimental physicist who is interested in research on particle detectors, limit his horizon to these questions? Even if most of his effort is legitimately concentrated on solving the specific problems encountered with the projected accelerators, it would be a mistake for him to limit his activity to reaching only this goal. In many fields there is considerable demand for improvement in the methods of radiation imaging. I will list some of them, and illustrate my point — which is that contributing of this field is both fruitful and cross-fertilizing — with examples from the activity of our own group at CERN. I apologize for not doing justice to the many other efforts made in the same direction by other groups or laboratories, but the proceedings of this conference will already be illuminating in this respect.

  7. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    SciTech Connect

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  8. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  9. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  10. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  11. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude

    SciTech Connect

    Urbain, X. Bech, D.; Van Roy, J.-P.; Géléoc, M.; Weber, S. J.

    2015-02-15

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H{sub 3} into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme.

  12. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude.

    PubMed

    Urbain, X; Bech, D; Van Roy, J-P; Géléoc, M; Weber, S J; Huetz, A; Picard, Y J

    2015-02-01

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H3 into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme. PMID:25725834

  13. A zero dead-time multi-particle time and position sensitive detector based on correlation between brightness and amplitude

    NASA Astrophysics Data System (ADS)

    Urbain, X.; Bech, D.; Van Roy, J.-P.; Géléoc, M.; Weber, S. J.; Huetz, A.; Picard, Y. J.

    2015-02-01

    A new multi-particle time and position sensitive detector using only a set of microchannel plates, a waveform digitizer, a phosphor screen, and a CMOS camera is described. The assignment of the timing information, as taken from the microchannel plates by fast digitizing, to the positions, as recorded by the camera, is based on the COrrelation between the BRightness of the phosphor screen spots, defined as their integrated intensity and the Amplitude of the electrical signals (COBRA). Tests performed by observing the dissociation of HeH, the fragmentation of H3 into two or three fragments, and the photo-double-ionization of Xenon atoms are presented, which illustrate the performances of the COBRA detection scheme.

  14. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.

    2014-07-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.

  15. 3D positioning germanium detectors for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne; Amrose, Susan; Boggs, Steven E.; Lin, Robert P.; Amman, Mark S.; Burks, Morgan T.; Hull, Ethan L.; Luke, Paul N.; Madden, Norman W.

    2003-01-01

    We have developed germanium detector technologies for use in the Nuclear Compton Telescope (NCT) - a balloon-borne soft γ-ray (0.2-10 MeV) telescope to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of twelve large volume cross strip germanium detectors, designed to provide 3-D positions for each photon interaction with ~1mm resolution while maintaining the high spectral resolution of germanium. Here we discuss the detailed performance of our prototype 19x19 strip detector, including laboratory tests, calibrations, and numerical simulations. In addition to the x and y positions provided by the orthogonal strips, the interaction depth (z-position) in the detector is measured using the relative timing of the anode and cathode charge collection signals. We describe laboratory calibrations of the depth discrimination using collimated sources with different characteristic energies, and compare the measurements to detailed Monte Carlo simulations and charge collection routines tracing electron-hole pairs from the interaction site to the electrodes. We have also investigated the effects of charge sharing and loss between electrodes, and present these in comparison to charge collection simulations. Detailed analysis of strip-to-strip uniformity in both efficiency and spectral resolution are also presented.

  16. Development of a 3D CZT detector prototype for Laue Lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea

    2010-07-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.

  17. Organic Position-Sensitive Detectors Based on ZnO:Al and CuPc:C60.

    PubMed

    Morimune, Taichiro; Kajii, Hirotake; Nishimaru, Hiroki; Ono, Shinji

    2016-04-01

    Organic position-sensitive detector (OPSD) based on copper phthalocyanine CuPc:fullerene C60 bulk-heterojunction with an inverted structure have been fabricated using aluminum doped ZnO (ZnO:Al) as a resistive layer, which is prepared by sol-gel method. The resistance length of the one-dimensional PSD is fixed at 5 mm, and the Ag common electrode is fabricated by vacuum evaporation within the 100-µm width. The current density-voltage characteristics with different structures of photodetector, the influence of ZnO:Al resistivity on the thickness and the position characteristics of PSDs are investigated. The experimental results indicate that the architecture, which uses an inverted structure, increases sensitivity under red light illumination compared to the conventional structure. In addition, the thickness of the ZnO:Al has influence on the position characteristics. The resistivity of ZnO:A film with Al doping concentration of 2 mol% prepared in this study is around 150 Ωcm and it increases from less than approximately 400 nm-thickness. These characteristics seem to be correlated with the properties of ZnO:AI resistive layer. For a device with a 620 nm-thick ZnO:Al layer, the measured position values obtained from the output photocurrent agree with the actual position values under red laser light illumination. CuPc:C60 OPSD with an inverted structure exhibits red light sensitivity, high incident-photon-to-current conversion efficiency of above 80% at -3 V and linearity error of 5.9% at -2 V. PMID:27451643

  18. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2015-04-01

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×106 Hz without any loses and will report a maximum event rate of 6.11×105 Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  19. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    NASA Astrophysics Data System (ADS)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  20. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zhong

    2008-11-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications. Supported by National Nature Science Foundation of China (10275063)

  1. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chau, C.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Costa, S.; Cumalat, J.; Dabrowski, A.; D`Alessandro, R.; de Boer, W.; Dehning, B.; Dobos, D.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gan, K. K.; Gastal, M.; Goffe, M.; Goldstein, J.; Golubev, A.; Gonella, L.; Gorišek, A.; Graber, L.; Grigoriev, E.; Grosse-Knetter, J.; Gui, B.; Guthoff, M.; Haughton, I.; Hidas, D.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Maazouzi, C.; Mandic, I.; Mathieu, C.; McFadden, N.; McGoldrick, G.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Oh, A.; Olivero, P.; Parrini, G.; Passeri, D.; Pauluzzi, M.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Riley, G.; Roe, S.; Sapinski, M.; Scaringella, M.; Schnetzer, S.; Schreiner, T.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Sfyrla, A.; Shimchuk, G.; Smith, D. S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weilhammer, P.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2016-07-01

    In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.

  2. 3-D Spreadsheet Simulation of a Modern Particle Detector

    ERIC Educational Resources Information Center

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  3. A BGO/GSO position sensitive block detector for a high resolution positron emission tomography with depth of interaction detection capability

    SciTech Connect

    Yamamoto, S.

    1996-12-31

    We developed a position sensitive block detector with depth of interaction detection capability for positron emission tomography (PET). The detector consists of 6 x 8 array of GSO scintillators, 6 x 8 array of BGO scintillators and two dual photomultiplier tubes (PMT). The GSO scintillators are optically coupled to front surface of the BGO scintillators. The position of 6 x 8 scintillators are determined by the Anger principle and depth of interaction position is determined by using the pulse shape analysis of GSOs and BGOs. Performance of the block detector was measured. Position distribution of the developed BGO/GSO block detector was little distorted. However the separation of the spots was still enough to distinguish the scintillators in transaxial and axial directions. Since pulse shape distribution using a developed simple pulse shape analyzer had two peaks, it is possible to separate the GSOs and BGOs for depth of interaction detection. With these results, a high resolution PET with depth of interaction detection capability will be possible using the developed BGO/GSO block detectors.

  4. Note: A large open ratio, time, and position sensitive detector for time of flight measurements in UHV

    SciTech Connect

    Lupone, S.; Damoy, S.; Husseen, A.; Briand, N.; Debiossac, M.; Tall, S.; Roncin, P.

    2015-12-15

    We report on the construction of an UHV compatible 40 mm active diameter detector based on micro channel plates and assembled directly on the feed-throughs of a DN63CF flange. It is based on the charge division technique and uses a standard 2 inch Si wafer as a collector. The front end electronic is placed directly on the air side of the flange allowing excellent immunity to noise and a very good timing signal with reduced ringing. The important aberrations are corrected empirically providing an absolute positioning accuracy of 500 μm while a 150 μm resolution is measured in the center.

  5. Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Menk, R. H.; Cucini, R.; Biasiol, G.

    2015-09-01

    Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 μm.

  6. Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode.

    PubMed

    Hirano, Yoshiyuki; Nitta, Munetaka; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2014-01-01

    Our purpose in this work was to evaluate the performance of a 4-layer depth-of-interaction (DOI) detector composed of GSO crystals by use of a position-sensitive photomultiplier tube (PMT) with a super-bialkali photocathode (SBA) by comparing it with a standard bialkali photocathode (BA) regarding the ability to identify the scintillating crystals, energy resolution, and timing resolution. The 4-layer DOI detector was composed of a 16 × 16 array of 2.9 × 2.9 × 7.5 mm(3) GSO crystals for each layer and an 8 × 8 multi-anode array type position-sensitive PMT. The DOI was achieved by a reflector control method, and the Anger method was used for calculating interacting points. The energy resolution in full width at half-maximum (FWHM) at 511 keV energy for the top layer (the farthest from the PMT) was improved and was 12.0% for the SBA compared with the energy resolution of 12.7% for the BA. As indicators of crystal identification ability, the peak-to-valley ratio and distance-to-width ratio were calculated; the latter was defined as the average of the distance between peaks per the average of the peak width. For both metrics, improvement of several percent was obtained; for example, the peak-to-valley ratio was increased from 1.78 (BA) to 1.86 (SBA), and the distance-to-width ratio was increased from 1.47 (BA) to 1.57 (SBA). The timing resolution (FWHM) in the bottom layer was improved slightly and was 2.4 ns (SBA) compared with 2.5 ns (BA). Better performance of the DOI detector is expected by use of a super bialkali photocathode. PMID:23963892

  7. Pixel detectors in 3D technologies for high energy physics

    SciTech Connect

    Deptuch, G.; Demarteau, M.; Hoff, J.; Lipton, R.; Shenai, A.; Yarema, R.; Zimmerman, T.; /Fermilab

    2010-10-01

    This paper reports on the current status of the development of International Linear Collider vertex detector pixel readout chips based on multi-tier vertically integrated electronics. Initial testing results of the VIP2a prototype are presented. The chip is the second embodiment of the prototype data-pushed readout concept developed at Fermilab. The device was fabricated in the MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  8. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources

    PubMed Central

    Markoff, Diane M.; Cianciolo, Vince; Britton, Chuck L.; Cooper, Ronald G.; Greene, Geoff L.

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented 3He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using 3He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  9. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources.

    PubMed

    Markoff, Diane M; Cianciolo, Vince; Britton, Chuck L; Cooper, Ronald G; Greene, Geoff L

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented (3)He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using (3)He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  10. A position-sensitive γ-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Nagai, Yasuyoshi; Muramatsu, Shinichi; Nagai, Shota; Masuda, Keisuke

    2002-07-01

    A new position-sensitive γ-ray detector to be used in a two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) apparatus has been developed. It consists of 36 compact position-sensitive photomultiplier tubes (PS-PMT: HAMAMATSU R5900-00-C8), a light guide, and 2676 Bi 4Ge 3O 12 (BGO) scintillator pieces of size 2.6 mm×2.6 mm×18 mm. A high detection efficiency for 511 keV γ-ray is achieved with the length of BGO scintillators used. The detection area is about 160 mm×160 mm. The 288 anode outputs of the PS-PMTs are wired and connected to resistor chains from which 16 outputs (8 outputs each along the X and Y directions) are taken to identify the incident position of the γ-ray. The spatial resolution is about 3 mm (FWHM). The timing signal taken from the last dynodes of the PS-PMTs gives a timing resolution of 7.7 ns (FWHM) for 511 keV positron annihilation γ-rays.

  11. MRI compatibility of position-sensitive photomultiplier depth-of-interaction PET detectors modules for in-line multimodality preclinical studies

    NASA Astrophysics Data System (ADS)

    Vaquero, J. J.; Sánchez, J. J.; Udías, J. M.; Cal-González, J.; Desco, M.

    2013-02-01

    This work addresses the feasibility of a small-animal, in-line PET/MR system based on Position-Sensitive Photo Multiplier Tubes (PS-PMTs). To this end, we measured the effects of static magnetic fields on the PS-PMTs performance in order to explore the minimal tandem separation between the PET and MR subsystems to preserve their respective performances. We concluded that it is possible to achieve minimal degradation of the PET scanner performance (after a system recalibration) if the magnetic field strength influencing the PET detectors is less than 1 mT and if it is oriented perpendicularly to the longitudinal axis of the tube. Therefore, we predict that it will be possible to maintain the PET image quality if it is placed outside the 1 mT line.

  12. 3D Dose Verification Using Tomotherapy CT Detector Array

    SciTech Connect

    Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul

    2012-02-01

    Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

  13. Comparison of 3D interest point detectors and descriptors for point cloud fusion

    NASA Astrophysics Data System (ADS)

    Hänsch, R.; Weber, T.; Hellwich, O.

    2014-08-01

    The extraction and description of keypoints as salient image parts has a long tradition within processing and analysis of 2D images. Nowadays, 3D data gains more and more importance. This paper discusses the benefits and limitations of keypoints for the task of fusing multiple 3D point clouds. For this goal, several combinations of 3D keypoint detectors and descriptors are tested. The experiments are based on 3D scenes with varying properties, including 3D scanner data as well as Kinect point clouds. The obtained results indicate that the specific method to extract and describe keypoints in 3D data has to be carefully chosen. In many cases the accuracy suffers from a too strong reduction of the available points to keypoints.

  14. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector.

    PubMed

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-06-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (Tm x Yb1-x )Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  15. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector

    PubMed Central

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-01-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (TmxYb1−x)Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  16. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  17. Recent results on 3D double sided detectors with slim edges

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Baselga, M.; Christophersen, M.; Ely, S.; Fadeyev, V.; Fleta, C.; Gimenez, A.; Grinstein, S.; Lopez, I.; Lozano, M.; Micelli, A.; Phlips, B. F.; Quirion, D.; Sadrozinski, H. F.-W.; Tsiskaridze, S.

    2013-12-01

    This paper reports on the first characterization of double sided 3D silicon radiation pixel detectors with slim edges. These detectors consist of a three-dimensional array of electrodes that penetrate into the detector bulk with the anode and cathode electrodes etched from opposite sides of the substrate. Different detectors were post-processed using the scribe-cleave-passivate (SCP) technology to make “slim edge” sensors. These sensors have only a minimal amount of inactive peripheral region, for the benefit of the construction of large-area tracker and imaging systems. The target application for this work is the use of 3D slim edge detectors for the ATLAS Forward Physics (AFP) CERN Project, where pixel detectors for position resolution and timing detectors for removal of pile up protons, will be placed as close as possible to the beam to detect diffractive protons at 220 m on either side of the ATLAS interaction point. For this reason the silicon areas should feature the narrowest possible insensitive zone on the sensor edge closest to the beam and withstand high nonuniform irradiation fluences.

  18. 3D imaging LADAR with linear array devices: laser, detector and ROIC

    NASA Astrophysics Data System (ADS)

    Kameyama, Shumpei; Imaki, Masaharu; Tamagawa, Yasuhisa; Akino, Yosuke; Hirai, Akihito; Ishimura, Eitaro; Hirano, Yoshihito

    2009-07-01

    This paper introduces the recent development of 3D imaging LADAR (LAser Detection And Ranging) in Mitsubishi Electric Corporation. The system consists of in-house-made key devices which are linear array: the laser, the detector and the ROIC (Read-Out Integrated Circuit). The laser transmitter is the high power and compact planar waveguide array laser at the wavelength of 1.5 micron. The detector array consists of the low excess noise Avalanche Photo Diode (APD) using the InAlAs multiplication layer. The analog ROIC array, which is fabricated in the SiGe- BiCMOS process, includes the Trans-Impedance Amplifiers (TIA), the peak intensity detectors, the Time-Of-Flight (TOF) detectors, and the multiplexers for read-out. This device has the feature in its detection ability for the small signal by optimizing the peak intensity detection circuit. By combining these devices with the one dimensional fast scanner, the real-time 3D range image can be obtained. After the explanations about the key devices, some 3D imaging results are demonstrated using the single element key devices. The imaging using the developed array devices is planned in the near future.

  19. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  20. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  1. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector.

    PubMed

    Brzymialkiewicz, Caryl N; Tornai, Martin P; McKinley, Randolph L; Bowsher, James E

    2005-07-01

    A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the detector are evaluated with Tc-99m (140 keV) filled flood sources, capillary line sources, and a 3-D frequency-resolution phantom. To mimic realistic human pendant, uncompressed breast imaging, two different phantom shapes of an average sized breast, and three different lesion diameters are imaged to evaluate the system for 3-D mammotomography. Acquisition orbits not possible with conventional emission, or transmission, systems are designed to optimize the viewable breast volume while improving sampling of the breast and anterior chest wall. Complications in camera positioning about the patient necessitate a compromise in these two orbit design criteria. Image quality is evaluated with signal-to-noise ratios and contrasts of the lesions, both with and without additional torso phantom background. Reconstructed results indicate that 3-D mammotomography, incorporating a compact CZT detector, is a promising, dedicated breast imaging technique for visualization of tumors < 1 cm in diameter. Additionally, there are no outstanding trajectories that consistently yield optimized quantitative lesion imaging parameters. Qualitatively, imaging breasts with realistic torso backgrounds (out-of-field activity) substantially alters image characteristics and breast morphology unless orbits which improve sampling are utilized. In practice, the sampling requirement may be less strict than initially anticipated. PMID:16011316

  2. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  3. Position Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Sadleir, J. E.; Hammock, C.; Figueroa-Feliciano, E.; Stahle, C. K.; Bandler, S.; Saab, T.; Lindeman, M.; Porter, F. S.; Chervenak, J.; Brown, G.

    2004-01-01

    A Position Sensitive Transition-Edge Sensor (PoST) is a microcalorimeter device capable of one-dimensional imaging spectroscopy. The device consists of two Transition-Edge Sensors (TESs) connected to the ends of a long X-ray absorbing strip. The energy of a photon hitting the absorber and the position of the absorption event along the strip is measured from the response in the two sensors by analyzing the relative signal sizes, pulse rise times, and the sum of the pulses measured at each sensor, We report on the recent PoST effort at Goddard for applications to large field of view, high-energy- resolution, X-ray astrophysics.

  4. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-01

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals

  5. 3D position estimation using an artificial neural network for a continuous scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, W.; Cheng, X.; Li, D.

    2013-03-01

    Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.

  6. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    NASA Astrophysics Data System (ADS)

    Lange, J.; Cavallaro, E.; Grinstein, S.; López Paz, I.

    2015-03-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 1015 neq/cm2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out.

  7. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  8. Performance of almost edgeless silicon detectors in CTS and 3D-planar technologies

    NASA Astrophysics Data System (ADS)

    Alagoz, E.; Anelli, G.; Antchev, G.; Avati, V.; Bassetti, V.; Berardi, V.; Boccone, V.; Bozzo, M.; Brücken, E.; Buzzo, A.; Catanesi, M. G.; Cuneo, S.; Da Vià, C.; Deile, M.; Dinapoli, R.; Eggert, K.; Eremin, V.; Ferro, F.; Hasi, J.; Haug, F.; Heino, J.; Jarron, P.; Kalliopuska, J.; Kašpar, J.; Kenney, C.; Kok, A.; Kundrát, V.; Kurvinen, K.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Luntama, T.; Macina, D.; Macrí, M.; Minutoli, S.; Mirabito, L.; Niewiadomski, H.; Noschis, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Parker, S.; Perrot, A.-L.; Radermacher, E.; Radicioni, E.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Sette, G.; Siegrist, P.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Watts, S.; Whitmore, J.

    2013-06-01

    The physics programme of the TOTEM experiment requires the detection of very forward protons scattered by only a few microradians out of the LHC beams. For this purpose, stacks of planar Silicon detectors have been mounted in moveable near-beam telescopes (Roman Pots) located along the beamline on both sides of the interaction point. In order to maximise the proton acceptance close to the beams, the dead space at the detector edge had to be minimised. During the detector prototyping phase, different sensor technologies and designs have been explored. A reduction of the dead space to less than 50 μm has been accomplished with two novel silicon detector technologies: one with the Current Terminating Structure (CTS) design and one based on the 3D edge manufacturing. This paper describes performance studies on prototypes of these detectors, carried out in 2004 in a fixed-target muon beam at CERN's SPS accelerator. In particular, the efficiency and accuracy in the vicinity of the beam-facing edges are discussed.

  9. Conceptual detector development and Monte Carlo simulation of a novel 3D breast computed tomography system

    NASA Astrophysics Data System (ADS)

    Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph

    2016-03-01

    A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.

  10. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector.

    PubMed

    Liu, Xingjian; Zhao, Hengshuang; Zhan, Guomin; Zhong, Kai; Li, Zhongwei; Chao, Yuhjin; Shi, Yusheng

    2016-07-20

    This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body. A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the computation cost, a GPU-Steger line detector was proposed to more rapidly detect the center of the laser pattern and at subpixel level. The processing time of line detection is significantly shortened by the GPU-Steger line detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and the experimental results are presented in this paper to illustrate the performance of the proposed system. The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin, and clothes with rich texture. PMID:27463902

  11. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications

    NASA Astrophysics Data System (ADS)

    Li, Zheng

    2011-12-01

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ("standard") 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name "Independent Coaxial Detector Array", or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  12. A 3-D Theoretical Model for Calculating Plasma Effects in Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Liu, Jing; Mei, Dongming; Cubed Collaboration

    2015-04-01

    In the detection of WIMP-induced nuclear recoil with Ge detectors, the main background source is the electron recoil produced by natural radioactivity. The capability of discriminating nuclear recoil (n) from electron recoil (γ) is crucial to WIMP searches. Digital pulse shape analysis is an encouraging approach to the discrimination of nuclear recoil from electron recoil since nucleus is much heavier than electron and heavier particle generates ionization more densely along its path, which forms a plasma-like cloud of charge that shields the interior from the influence of the electric field. The time needed for total disintegration of this plasma region is called plasma time. The plasma time depends on the initial density and radius of the plasma-like cloud, diffusion constant for charge carriers, and the strength of electric field. In this work, we developed a 3-D theoretical model for calculating the plasma time in Ge detectors. Using this model, we calculated the plasma time for both nuclear recoils and electron recoils to study the possibility for Ge detectors to realize n/ γ discrimination and improve detector sensitivity in detecting low-mass WIMPs. This work is supported by NSF in part by the NSF PHY-0758120, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  13. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    SciTech Connect

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  14. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  15. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector

    NASA Astrophysics Data System (ADS)

    Grinstein, S.; Baselga, M.; Boscardin, M.; Christophersen, M.; Da Via, C.; Dalla Betta, G.-F.; Darbo, G.; Fadeyev, V.; Fleta, C.; Gemme, C.; Grenier, P.; Jimenez, A.; Lopez, I.; Micelli, A.; Nelist, C.; Parker, S.; Pellegrini, G.; Phlips, B.; Pohl, D.-L.; Sadrozinski, H. F.-W.; Sicho, P.; Tsiskaridze, S.

    2013-12-01

    Pixel detectors with cylindrical electrodes that penetrate the silicon substrate (so called 3D detectors) offer advantages over standard planar sensors in terms of radiation hardness, since the electrode distance is decoupled from the bulk thickness. In recent years significant progress has been made in the development of 3D sensors, which culminated in the sensor production for the ATLAS Insertable B-Layer (IBL) upgrade carried out at CNM (Barcelona, Spain) and FBK (Trento, Italy). Based on this success, the ATLAS Forward Physics (AFP) experiment has selected the 3D pixel sensor technology for the tracking detector. The AFP project presents a new challenge due to the need for a reduced dead area with respect to IBL, and the in-homogeneous nature of the radiation dose distribution in the sensor. Electrical characterization of the first AFP prototypes and beam test studies of 3D pixel devices irradiated non-uniformly are presented in this paper.

  16. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    SciTech Connect

    Koybasi, Ozhan; Bortoletto, Daniela; Hansen, Thor-Erik; Kok, Angela; Hansen, Trond Andreas; Lietaer, Nicolas; Jensen, Geir Uri; Summanwar, Anand; Bolla, Gino; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  17. Linear, position-sensitive x-ray detector used for real-time calculations of small-angle scattering parameters with submillisecond resolution

    SciTech Connect

    Borso, C.S.

    1984-01-01

    The advent of high-intensity X-ray synchrotron sources has made possible the measurement of fluctuations in small-angle scattering parameters from typical specimens on a submillisecond time scale in real-time. The fundamental design of any fast detector system optimized for such measurements will incorporate some type of solid state detector array capable of rapid encoding algorithms. A prototype with a self-scanning photodiode array has been designed and tested at beamline 1 to 4 at the Stanford Synchrotron Radiation Laboratory (SSRL), and the results indicate that the device will operate at speeds yielding submillisecond temporal resolution in real-time.

  18. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGESBeta

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; et al

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  19. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  20. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E. Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.; Hodges, D.; Lee, W.; Petryk, M.

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  1. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects. PMID:26233363

  2. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm3 detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  3. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    SciTech Connect

    Tribble, Robert E.; Sobotka, Lee G.; Blackmon, Jeff C.; Bertulani, Carlos A.

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  4. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD) in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    PubMed Central

    Ivan, Ioan Alexandru; Ardeleanu, Mihai; Laurent, Guillaume J.

    2012-01-01

    When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs) have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second) response time which will enable future closed-loop control by using PSD. PMID:23223078

  5. Cardiac Multi-detector CT Segmentation Based on Multiscale Directional Edge Detector and 3D Level Set.

    PubMed

    Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna

    2016-05-01

    Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images. PMID:26319010

  6. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  7. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  8. Construction and test of an X-ray CT setup for material resolved 3D imaging with Medipix based detectors

    NASA Astrophysics Data System (ADS)

    Schioppa, Enrico, Jr.; Uher, Josef; Visser, Jan

    2012-10-01

    A prototype computerized tomography (CT) setup has been recently built at Nikhef in order to exploit the material resolved capabilities of Medipix based detectors in X-ray imaging. The CT scanner contains a Hamamatsu 90 kVp microfocus X-ray tube and an entirely remotely controllable sample alignment system. The complete setup is fully integrated with the detector operation software. Moreover the 120 frames/s RelaxD readout system [1] allows real time X-ray imaging of fast moving samples. In this work, the description of the setup is given and the first results obtained with Medipix2 [2] and Timepix [3] detectors are presented. They concern detector calibration with fluorescence lines, CT reconstruction of small biological and non-biological samples and material resolved 3D micro-imaging [4].

  9. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  10. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  11. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.

    PubMed

    Garrevoet, Jan; Vekemans, Bart; Tack, Pieter; De Samber, Björn; Schmitz, Sylvia; Brenker, Frank E; Falkenberg, Gerald; Vincze, Laszlo

    2014-12-01

    A new three-dimensional (3D) micro X-ray fluorescence (μXRF) methodology based on a novel 2D energy dispersive CCD detector has been developed and evaluated at the P06 beamline of the Petra-III storage ring (DESY) in Hamburg, Germany. This method is based on the illumination of the investigated sample cross-section by a horizontally focused beam (vertical sheet beam) while fluorescent X-rays are detected perpendicularly to the sheet beam by a 2D energy dispersive (ED) CCD detector allowing the collection of 2D cross-sectional elemental images of a certain depth within the sample, limited only by signal self-absorption effects. 3D elemental information is obtained by a linear scan of the sample in the horizontal direction across the vertically oriented sheet beam and combining the detected cross-sectional images into a 3D elemental distribution data set. Results of the 3D μXRF analysis of mineral inclusions in natural deep Earth diamonds are presented to illustrate this new methodology. PMID:25346101

  12. A novel 3D detector configuration enabling high quantum efficiency, low crosstalk, and low output capacitance

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2016-03-01

    The benefits of pixelated planar direct conversion semiconductor radiation detectors comprising a thick fully depleted substrate are that they offer low crosstalk, small output capacitance, and that the planar configuration simplifies manufacturing. In order to provide high quantum efficiency for high energy X-rays and Gamma-rays such a radiation detector should be as thick as possible. The maximum thickness and thus the maximum quantum efficiency has been limited by the substrate doping concentration: the lower the substrate doping the thicker the detector can be before reaching the semiconductor material's electric breakdown field. Thick direct conversion semiconductor detectors comprising vertical three-dimensional electrodes protruding through the substrate have been previously proposed by Sherwood Parker in order to promote rapid detection of radiation. An additional advantage of these detectors is that their thickness is not limited by the substrate doping, i.e., the size of the maximum electric field value in the detector does not depend on detector thickness. However, the thicker the substrate of such three dimensional detectors is the larger the output capacitance is and thus the larger the output noise is. In the novel direct conversion pixelated radiation detector utilizing a novel three dimensional semiconductor architecture, which is proposed in this work, the detector thickness is not limited by the substrate doping and the output capacitance is small and does not depend on the detector thickness. In addition, by incorporating an additional node to the novel three-dimensional semiconductor architecture it can be utilized as a high voltage transistor that can deliver current across high voltages. Furthermore, it is possible to connect a voltage difference of any size to the proposed novel three dimensional semiconductor architecture provided that it is thick enough—this is a novel feature that has not been previously possible for semiconductor

  13. Calculation of the potentials and 3D electric fields in a proton decay detector

    SciTech Connect

    Lari, R.J.; Dawson, J.W.; Turner, L.R.

    1987-01-01

    An electrostatic detector for measuring the lifetime of the proton has been modeled in three dimensions. Linear hexahedral finite elements were used and the potential obtained at all nodes. The three components of the electric field were calculated and used to determine field lines, calculate drift fields and drift times. Effective aperture calculations agreed with the measurements.

  14. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  15. The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.

    PubMed

    Yeoh, Catriona S M; Rossouw, David; Saghi, Zineb; Burdet, Pierre; Leary, Rowan K; Midgley, Paul A

    2015-06-01

    A simple model is proposed to account for the loss of collected X-ray signal by the shadowing of X-ray detectors in the scanning transmission electron microscope. The model is intended to aid the analysis of three-dimensional elemental data sets acquired using energy-dispersive X-ray tomography methods where shadow-free specimen holders are unsuitable or unavailable. The model also provides a useful measure of the detection system geometry. PMID:25790959

  16. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    SciTech Connect

    La Rosa, Alessandro; Boscardin, M.; Dalla Betta, G.-F.; Darbo, G.; Gemme, C.; Pernegger, H.; Piemonte, C.; Povoli, M.; Ronchin, S.; Zoboli, A.; Zorzi, N.; Bolle, E.; Borri, M.; Da Via, C.; Dong, S.; Fazio, S.; Grenier, P.; Grinstein, S.; Gjersdal, H.; Hansson, P.; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  17. NuLat: 3D Event Reconstruction of a ROL Detector for Neutrino Detection and Background Rejection

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary; NuLat Collaboration

    2015-04-01

    NuLat is a proposed very-short baseline reactor antineutrino experiment that employs a unique detector design, a Ragahavan Optical Lattice (ROL), developed for the LENS solar neutrino experiment. The 3D lattice provides high spatial and temporal resolution and allows for energy deposition in each voxel to be determined independently of other voxels, as well as the time sequence associated with each voxel energy deposition. This unique feature arises from two independent means to spatially locate energy deposits: via timing and via optical channeling. NuLat, the first application of a ROL detector targeting physics results, will measure the reactor antineutrino flux at very short baselines via inverse beta decay (IBD). The ROL design of NuLat makes possible the reconstruction of positron energy with little contamination due to the annihilation gammas which smear the positron energy resolution in a traditional detector. IBD events are cleanly tagged via temporal and spatial coincidence of neutron capture in the vertex voxel or nearest neighbors. This talk will present work on IBD event reconstruction in NuLat and its likely impact on sterile neutrino detection via operation in higher background locations enabled by its superior rejection of backgrounds. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.

  18. Modeling electric fields inside the LUX detector in 3D using 83mKr calibration data

    NASA Astrophysics Data System (ADS)

    Tvrznikova, Lucie; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) experiment is a 350 kg two-phase liquid/gas xenon time projection chamber designed for the direct detection of weakly interacting massive particles, a leading dark matter candidate. LUX operates on the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. Weekly calibrations using a homogeneous injection of a monoenergetic 83mKr source enable us to monitor xenon within the active region. For this project, a 3D model of the electric fields inside the LUX detector was created using COMSOL Multiphysics software. A simulation of electrons drifting in the detector then produces a set of computational predictions. These are then reconciled with the 83mKr data to confirm the accuracy of the field model. The result of this work is a more accurate understanding of the electric field inside the active region. This model, in conjuction with these methods, may now be used to study other phenomena such as possible surface charge buildup in detector materials.

  19. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc. PMID:19204999

  20. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  1. 3D reconstruction based on compressed-sensing (CS)-based framework by using a dental panoramic detector.

    PubMed

    Je, U K; Cho, H M; Hong, D K; Cho, H S; Park, Y O; Park, C K; Kim, K S; Lim, H W; Kim, G A; Park, S Y; Woo, T H; Cho, S I

    2016-01-01

    In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm × 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Δθ). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p≤2.0 and θ≤6°, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system. PMID:26494155

  2. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  3. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    PubMed Central

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 × 20 × 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 × 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT. PMID:22380355

  4. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    SciTech Connect

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-03-15

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 x 20 x 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 x 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT.

  5. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  6. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    NASA Astrophysics Data System (ADS)

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-12-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities.

  7. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector.

    PubMed

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  8. Optical absorption in 3D topological insulator Bi2Te3 with applications to THz detectors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Bellotti, Enrico

    2015-08-01

    Topological insulators (TI) are a new class of materials that have an energy gap in bulk but possess gapless states bound to the sample surface or edge that have been theoretically predicted and experimentally observed [1]. The topological state in Bi2Te3 is characterized by a linear dispersion and a Dirac cone at the Γpoint. The optical absorption on the surface of a TI is given by the standard graphene-like απ/2 when a linear dispersion is assumed. Realistically, at k-points away from Γ, higher order cubic terms in k that represent the underlying hexagonal symmetry [2] of the crystal dominate and give rise to warping of bands. The optical absorption of a ferromagnetic coated gapped 3D TI film with warping terms considered is longer απ/2 but significantly modified. We demonstrate, by using wave functions from a continuum-Hamiltonian and Fermi-golden rule, the absorption spectrum on the surface of a TI as a function of the chemical potential, film-thickness and incident photon energy. A linear response theory based calculation is also performed using the Kubo formula to determine the longitudinal optical conductivity whose real part gives absorption as a function of photon frequency. The absorption in materials with Dirac fermions which is significantly higher than in normal THz detectors [3] can be further modulated in a TI by explicitly including the warping term making them highly efficient and tunable photodetectors. [1] M.Hasan and C.Kane, Rev.Mod.Phys. 82, 3045(2010) [2] L.Fu, Phys.Rev.Lett.103, 266801(2009) [3] X.Zhang et al., Phys. Rev B, 82, 245107(2010)

  9. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    PubMed

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature. PMID:21934193

  10. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    NASA Astrophysics Data System (ADS)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  11. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  12. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  13. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Lemasson, A.; Rejmund, M.; Fremont, G.; Pancin, J.; Navin, A.; Michelagnoli, C.; Goupil, J.; Spitaels, C.; Jacquot, B.

    2016-03-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, the interaction position on the target and the velocity of reaction products detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) μm for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the γ-rays, detected in the γ-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  14. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.

    PubMed

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-07-11

    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm. PMID:27410800

  15. Experimental study on the 3D image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector and its image characteristics

    NASA Astrophysics Data System (ADS)

    Hong, Daeki; Cho, Heemoon; Cho, Hyosung; Choi, Sungil; Je, Uikyu; Park, Yeonok; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho

    2015-11-01

    In this work, we performed a feasibility study on the three-dimensional (3D) image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector for application to high-accurate, cost-effective dental x-ray imaging. Here an x-ray tube and a detector rotate together around the rotational axis several times and, concurrently, the detector moves horizontally in the detector coordinate at a constant speed to cover the whole imaging volume during the projection data acquisition. We established a table-top setup which mainly consists of an x-ray tube (60 kVp, 5 mA), a narrow CMOS-type detector (198-μm pixel resolution, 184 (W)×1176 (H) pixel dimension), and a rotational stage for sample mounting and performed a systematic experiment to demonstrate the viability of the proposed approach to volumetric dental imaging. For the image reconstruction, we employed a compressed-sensing (CS)-based algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate reconstruction. We successfully reconstructed 3D images of considerably high quality and investigated the image characteristics in terms of the image value profile, the contrast-to-noise ratio (CNR), and the spatial resolution.

  16. A position sensitive microchannel photomultiplier for ultraviolet space astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O. H. W.; Bixler, J.; Bowyer, S.

    1986-01-01

    The 25-mm microchannel-plate, position-sensitive UV astronomy photomultiplier tube presented is intended for the EOM-1 Spacelab Mission's FAUST payload and conducts wide-field imaging surveys in the VUV over the 1400-1800-A range. The sealed detector encompasses a CsI photocathode deposited on the inner surface of a MgF2 window, a stack of microchannel plates, and a wedge-and-strip two-dimensional position-sensing anode. Since the wedge-and-strip principle requires only three anode signals, flight electronics can be reduced to three charge amplifiers and three analog-to-digital converters.

  17. Position Sensitive Detection System for Charged Particles

    SciTech Connect

    Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E; Huerta, A.; Varela, A.; Shapira, Dan

    2012-01-01

    The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

  18. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    NASA Astrophysics Data System (ADS)

    Zumbiehl, A.; Hage-Ali, M.; Fougeres, P.; Koebel, J. M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P.

    2001-08-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a "pseudo-Monte Carlo" simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios ( W/ L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  19. SU-E-T-380: Particle Microdosimetry Study Based On 3D-Cylindrical Silicon Radiaton Detectors

    SciTech Connect

    Guardiola, C; Carabe-Fernandez, A; Gomez, F; Pellegrini, G; Fleta, C; Quirion, D; Lozano, M

    2014-06-01

    Purpose: A new design of a solid-state-microdetector based on silicon 3D microfabrication and its performance to characterise Lineal energy, Specific Energy, dose, LET and other microdosimetric variables required for modelling particle relative biological effectiveness (RBE) is presented. Methods: A microdosimeter formed by a matrix of independent sensors with well-defined micrometric cylindrical shape and with a volume similar to those of cellular dimensions is used to measure microdosimetric variables. Each sensor measures the radiation deposited energy which, divided by the mean cord length of the sensors, provides us with the Linear Energy (y) of the radiation as well as its energy distribution, and frequencymean. Starting from the these distributions in different points of a proton beam, we generate biophysical data (e.g. Linear Energy Transfer (LET), Specific Energy (z), etc…) needed for relative biological effectiveness (RBE) calculations radiation effect models used in particle radiotherapy treatment planning. In addition, a Tissue Equivalent Proportional Counter (TEPC) will be used as baseline to calibrate the “y” magnitude of the microdosimeter unit-cells. Results: The experimental measurements will soon be carried out at the Perelman Center for Advanced Medicine (University of Pennsylvania), which provides proton beam for clinical research proposals. The results of distributions measured of the microdosimetric variables from the first tests developed in the proton facility will be presented and compared with Monte Carlo simulations using the Geant4 code. Conclusion: The use of 3D microdosimeters such as the one presented here will enhance the accuracy of RBE calculations normally affected by the inherent uncertainty of monte carlo simulations due to the approximation of material composition and energy dependent physical laws involved in such calculations. The effect of such approximations will be quatified by comparison with absolute measurement of

  20. Theoretical Noise Analysis on a Position-sensitive Metallic Magnetic Calorimeter

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2007-01-01

    We report on the theoretical noise analysis for a position-sensitive Metallic Magnetic Calorimeter (MMC), consisting of MMC read-out at both ends of a large X-ray absorber. Such devices are under consideration as alternatives to other cryogenic technologies for future X-ray astronomy missions. We use a finite-element model (FEM) to numerically calculate the signal and noise response at the detector outputs and investigate the correlations between the noise measured at each MMC coupled by the absorber. We then calculate, using the optimal filter concept, the theoretical energy and position resolution across the detector and discuss the trade-offs involved in optimizing the detector design for energy resolution, position resolution and count rate. The results show, theoretically, the position-sensitive MMC concept offers impressive spectral and spatial resolving capabilities compared to pixel arrays and similar position-sensitive cryogenic technologies using Transition Edge Sensor (TES) read-out.

  1. FINAL REPORT. THREE-DIMENSIONAL POSITION-SENSITIVE GERMANIUM DETECTORS

    EPA Science Inventory

    A critical need within DOE is the ability to characterize radioactive contamination. Simultaneous high-resolution gamma-ray imaging and spectroscopy is a powerful technique for the in-situ, passive, and non-destructive characterization of equipment and building structures contain...

  2. THREE-DIMENSIONAL POSITION-SENSITIVE GERMANIUM DETECTORS

    EPA Science Inventory

    This proposal focuses on the radioactive materials characterization needs of DOE's decontamination and decommissioning effort. Gamma-ray imaging and spectroscopy together form a potentially powerful tool for the passive, non-destruction and non-intrusive-identification and spati...

  3. Space dosimetry with the application of a 3D silicon detector telescope: response function and inverse algorithm.

    PubMed

    Pázmándi, Tamás; Deme, Sándor; Láng, Edit

    2006-01-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation. PMID:16581928

  4. Position-Sensitive Scanning Fluorescence Correlation Spectroscopy

    PubMed Central

    Skinner, Joseph P.; Chen, Yan; Müller, Joachim D.

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells. PMID:15894645

  5. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems

    PubMed Central

    Freed, Melanie; Park, Subok; Badano, Aldo

    2010-01-01

    Purpose: Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems. Despite the detailed results that MANTIS produces, the long simulation times required make inclusion of these results impractical in rigorous optimization and reconstruction algorithms. As a result, there is a need for detector blur models that can be rapidly generated. Methods: In this study, the authors have derived an analytical model for deterministic detector blur functions, referred to here as point response functions (PRFs), of columnar CsI phosphor screens. The analytical model is x-ray energy and incidence angle dependent and draws on results from MANTIS to indirectly include complicated interactions that are not explicitly included in the mathematical model. Once the mathematical expression is derived, values of the coefficients are determined by a two-dimensional (2D) fit to MANTIS-generated results based on a figure-of-merit (FOM) that measures the normalized differences between the MANTIS and analytical model results averaged over a region of interest. A smaller FOM indicates a better fit. This analysis was performed for a monochromatic x-ray energy of 25 keV, a CsI scintillator thickness of 150 μm, and four incidence angles (0°, 15°, 30°, and 45°). Results: The FOMs comparing the analytical model to MANTIS for these parameters were 0.1951±0.0011, 0.1915±0.0014, 0.2266±0.0021, and 0.2416±0.0074 for 0°, 15°, 30°, and 45

  6. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  7. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm3 crystals

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm3 cubic crystals, in contrast to our previous development using 3.0 mm3 cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm3 in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm2, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  8. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals.

    PubMed

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons. PMID:21971079

  9. Two-dimensional position sensitive ionization chamber with GEM

    NASA Astrophysics Data System (ADS)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  10. Michrochannel plate for position sensitive alpha particle detection

    SciTech Connect

    Paul Hurley and James Tinsley

    2007-08-31

    This paper will describe the use of a microchannel plate (MCP) as the associated particle detector on a sealed tube neutron generator. The generator produces neutrons and associated alpha particles for use as a probe to locate and identify hidden explosives in associated particle imaging (API). The MCP measures the position in two dimensions and precise timing of the incident alpha particle, information which is then used to calculate the emission time and direction of the corresponding neutron. The MCP replaces the position-sensitive photomultipler tube (PSPMT) which, until recently, had been the only detector available for measuring position and timing for alpha particles in neutron generator applications. Where the PSPMT uses charge division for generating position information, a process that requires a first order correction to each pulse, the MCP uses delay-line timing, which requires no correction. The result is a device with an order of magnitude improvement in both position resolution and timing compared to the PSPMT. Hardware and software development and the measurements made to characterize the MCP for API applications are described.

  11. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  12. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  13. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  14. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  15. 43 CFR 422.11 - Position sensitivity and investigations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Position sensitivity and investigations. 422.11 Section 422.11 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF... Requirements § 422.11 Position sensitivity and investigations. Each law enforcement contract or...

  16. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  17. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  18. Position Ring System using Anger Type Detectors

    SciTech Connect

    Joel S. Karp, principal investigator

    2004-12-14

    The overall objective of our project was to develop PET scanners and imaging techniques that achieve high performance and excellent image quality. Our approach was based upon 3-D imaging (no septa) with position-sensitive Anger-logic detectors, whereby the encoding ratio of resolution elements to number of photo-multiplier tube channels is very high. This design led to a series of PET systems that emphasized cost-effectiveness and practicality in a clinical environment.

  19. Proportional counter for X-ray analysis of lunar and planetary surfaces. [a position sensitive scintillating imaging proportional counter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A position sensitive proportional scintillation detector was developed and evaluated for use in applications involving X-ray imaging as well as spectroscopy. Topics covered include limitations of the proportional scintillation counter for use in space; purification of the xenon gas in the detector, and the operation of the detector system. Results show that the light signal in a proportional scintillation detector remains well localized. With modest electric fields in xenon, the primary electrons from a photoelectric absorption of an X-ray can be brought a distance of a few millimeters to a higher field region without spreading more than a millimeter or so. Therefore, it is possible to make a proportional scintillation detector with good position sensitivity that could be used to calibrate out the difference in light collection over its sensitive volume.

  20. A Beta-Particle Hodoscope Constructed Using Scintillating Optical Fibers and Position Sensitive Photomultiplier Tubes

    SciTech Connect

    Orrell, John L.; Aalseth, Craig E.; Day, Anthony R.; Fast, Jim; Hossbach, Todd W.; Lidey, Lance S.; Ripplinger, Mike D.; Schrom, Brian T.

    2006-09-19

    A hodoscopic detector was constructed using a position-sensitive plastic scintillator active area to determine the location of beta-active micron-sized particulates on air filters. The ability to locate beta active particulates on airsample filters is a tool for environmental monitoring of anthropogenic production of radioactive material. A robust, field-deployable instrument can provide localization of radioactive particulate with position resolution of a few millimeters. The detector employs a novel configuration of scintillating plastic elements usually employed at much higher charged particle energies. A filter is placed on this element for assay. The detector is intended to be sensitive to activity greater than 1 Bq. The physical design, position reconstruction method, and expected detector sensitivity are reported.

  1. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  2. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. Construction and commissioning of a position-sensitive ionization chamber

    NASA Astrophysics Data System (ADS)

    Kwag, M. S.; Chae, K. Y.; Cha, S. M.; Kim, A.; Kim, M. J.; Lee, E. J.; Lee, J. H.

    2016-05-01

    A position-sensitive ionization chamber has been constructed and commissioned at the Physics Department of Sungkyunkwan University to extract position information on incident charged particles for future nuclear reaction measurements. By utilizing the newly-designed position-sensitive anodes and the previously-commissioned portable gas-filled ionization chamber by Chae et al., position information on incident particles could be obtained. The device was tested with an 241Am α-emitting source, and the standard deviation of the fitted Gaussian distribution was measured to be 1.76 mm when a collimator with a 2 mm hole was used.

  4. Development of position sensitive proportional counters for hot particle detection in laundry and portal monitors

    SciTech Connect

    Shonka, J.J.; Schwahn, S.O.; Bennett, T.E.; Misko, D.J.

    1992-09-01

    This report summarizes research which demonstrates the use of position sensitive proportional counters in contamination monitoring systems. Both laundry monitoring and portal monitoring systems were developed. The laundry monitor was deployed at a nuclear power plant where it was used to monitor clothing during an outage. Position sensitive proportional counter based contamination monitoring systems were shown to have significant advantages over systems using conventional proportional counters. These advantages include the ability to directly measure the area and quantity of contamination. This capability permits identification of hot particles. These systems are also capable of self calibration via internal check sources. Systems deployed with this technology should benefit from reduced complexity, cost and maintenance. The inherent reduction of background that occurs when the counter is electronically divided into numerous detectors permits operation in high background radiation fields and improves detection limits over conventional technology.

  5. New position sensitive photomultiplier tubes for high energy physics and nuclear medical applications

    SciTech Connect

    Suzuki, S.; Matsushita, T.; Suzuki, T.; Kimura, S.; Kume, H.

    1988-02-01

    New position sensitive photomultiplier tubes with fine mesh structured dynodes and discrete anode array configurations have been developed. One kind of the position sensitive photomultiplier tubes is being used as a photodetector for High Enegy Physics applications in high magnetic field environments. A photomultiplier tube constructed with 88 Multi-Anodes has a spatial resolution of less than 2.6 mm in FWHM in a magnetic field with a density of 500-2000 Gauss. The resolution includes an anode width of 2.6 mm. Another type of Multi-Anode photomultiplier tube which has been developed is the detector with a high spatial resolution for such applications as the PET system and hodoscope in scintillation systems. The tube, by applying additional electro-focusing electrodes, has an intrinsic spatial resolution of 1.4 mm in FWHM without the magnetic field.

  6. Position-sensitive detection of slow neutrons: Survey of fundamental principles

    SciTech Connect

    Crawford, R.K.

    1992-07-01

    This paper sets forth the fundamental principles governing the development of position-sensitive detection systems for slow neutrons. Since neutrons are only weakly interacting with most materials, it is not generally practical to detect slow neutrons directly. Therefore all practical slow neutron detection mechanisms depend on the use of nuclear reactions to ``convert`` the neutron to one or more charged particles, followed by the subsequent detection of the charged particles. The different conversion reactions which can be used are discussed, along with the relative merits of each. This is followed with a discussion of the various methods of charged particle detection, how these lend themselves to position-sensitive encoding, and the means of position encoding which can be applied to each case. Detector performance characteristics which may be of importance to the end user are discussed and related to these various detection and position-encoding mechanisms.

  7. Position-sensitive detection of slow neutrons: Survey of fundamental principles

    SciTech Connect

    Crawford, R.K.

    1992-01-01

    This paper sets forth the fundamental principles governing the development of position-sensitive detection systems for slow neutrons. Since neutrons are only weakly interacting with most materials, it is not generally practical to detect slow neutrons directly. Therefore all practical slow neutron detection mechanisms depend on the use of nuclear reactions to convert'' the neutron to one or more charged particles, followed by the subsequent detection of the charged particles. The different conversion reactions which can be used are discussed, along with the relative merits of each. This is followed with a discussion of the various methods of charged particle detection, how these lend themselves to position-sensitive encoding, and the means of position encoding which can be applied to each case. Detector performance characteristics which may be of importance to the end user are discussed and related to these various detection and position-encoding mechanisms.

  8. Development of position sensitive scintillation counter for balloon-borne hard x-ray telescope

    NASA Astrophysics Data System (ADS)

    Tamura, Keisuke; Kunieda, Hideyo; Ogasaka, Yasushi; Furuzawa, Akihiro; Shibata, Ryo; Nakamura, Tomokazu; Ohnishi, Katsuhiko; Kanou, Yasufumi; Miyata, Emi; Tsunemi, Hiroshi

    2006-06-01

    We have been developing position sensitive scintillation counter as focal plane detector of hard X-ray telescope onboard a balloon borne experiment. This detector consists NaI(TI) scintillator and position sensitive photo-multiplier tube. Focal plane detector has to have high efficiency in hard X-ray region, enough position resolution and detection area. 3mm thickness of NaI(TI) scintillator can achieve almost 100% efficiency below 80 keV. We measured position resolved energy and position resolution in synchrotron radiation facility SPring-8 BL20B2. Position resolution of 2.4mm at 60keV is about half of plate scale of half power diameter of X-ray telescope. The detector has 6 cm diameter window and it corresponds to 25 arcmin field of view, and it is enough lager than the that of telescope, which is 12 arcmin in FWHM. Balloon borne experiment for observation of the background was performed on May 24, 2005 from Sanriku balloon center. We could obtain background data for 3 hours at altitude of 40 km.

  9. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  10. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  11. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  12. 3D dose verification with polymer gel detectors of brain-spine match line for proton pencil beam cranio-spinal: A preliminary study

    NASA Astrophysics Data System (ADS)

    Avery, S.; Cardin, A.; Lin, L.; Kirk, M.; Kassaee, A.; Maryanski, M. J.

    2015-01-01

    This paper is intended as a preliminary study to demonstrate the quality assurance benefits from polymer gel detectors for proton pencil beam cranio-spinal treatments. A stable gel type was selected for protons to suppress the LET dependence at the end of the Bragg peak. The depth dose distributions in the gels were examined with regard of its dose dependences and compared to baseline measurements. The preliminary experimental results indicate polymer gel detectors may be able to verify dose in three dimensions along match line for proton therapy treatments.

  13. Measurement of spot dancing for focused beam in atmosphere using position sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoshan; Zhu, Wenyue; Rao, Ruizhong

    2005-05-01

    The spot dancing of the focused laser beam in the turbulent atmosphere was studied using a two dimensional position sensitive photomultiplier tube (PSPMT). The centroid position of the laser spot was evaluated by means of current-dividing center-of-gravity detection. The system has advantage over detector array system in spatial resolution and over the imaging system in dynamic range and sampling rate. Laser propagation experiments were carried out over 1000m path above the sea level and the fluctuations of laser intensity were measured simultaneously. The frequency spectra were calculated by fast Fourier tansform and the standard deviation of the spot dancing were analyzed.

  14. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  16. Position-sensitive photodetector for rotation-angle transducers

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Novikov, S. G.; Korneev, I. V.; Shtan'ko, A. A.; Rodionov, V. A.

    2011-03-01

    A new position-sensitive photodetector (PSPD) for photoelectric transducers of rotation angle is described, which is based on a three-layer ring sector structure. The output voltage of the PSPD is a linear function of the angle of rotation of a light-emitting diode relative to the PSPD contacts. The proposed device is highly reliable and ensures angle determination to within 7 min of arc. Rotation-angle transducers based on this PSPD are compatible with any measuring, matching, and processing equipment.

  17. Interdigited dual-cell position-sensitive device

    NASA Astrophysics Data System (ADS)

    Shie, Jin-Shown

    1992-10-01

    A special one-dimensional position-sensitive device for detection of a light-spot location is designed and fabricated. The device is composed of a pair of photodiodes with complementarily interdigited comb configuration. The width of comb teeth is characterized by a designated distributive function, hence, the coordination information of a light spot falling upon the device can be determined by photo-induced currents of the two diodes. This device is useful as the position sensing element in camera-autofocus application.

  18. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  19. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  20. Development of arrays of position-sensitive microcalorimeters for Constellation-X

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Kolbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.

    2008-01-01

    We are developing arrays of position-sensitive transition-edge sensor (POST) X-ray detectors for future astronomy missions such as NASA's Constellation-X. The POST consists of multiple absorbers thermally coupled to one or more transition-edge sensor (TES). Each absorber element has a different thermal coupling to the TES. This results in a distribution of different pulse shapes and enables position discrimination between the absorber elements. POST'S are motivated by the desire to achieve the largest possible focal plane area with the fewest number of readout channels and are ideally suited to increasing the Constellation-X focal plane area, without comprising on spatial sampling. Optimizing the performance of POST'S requires careful design of key parameters such as the thermal conductances between the absorbers, TES and the heat sink. as well as the absorber heat capacities. Using recently developed signal processing algorithms we have investigated the trade-off between position-sensitivity, energy resolution and pulse decay time. based on different device design parameters for PoST's. Our new generation of PoST's utilize technology successfully developed on high resolution (approximately 2.5eV) single pixels arrays of Mo/Au TESs. also under development for Constellation-X. This includes noise mitigation features on the TES and low resistivity electroplated absorbers. We report on the first experimental results from these new one and two-channel PoST"s, consisting of all Au and composite Au/Bi absorbers, which are designed to achieve an energy resolution of < 10 eV. coupled with count-rates of 100's per pixel per second and position sensitivity over the energy range 0.3-10 keV.

  1. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  2. Position sensitivity in 3"×3" Spectroscopic LaBr3:Ce Crystals

    NASA Astrophysics Data System (ADS)

    Blasi, N.; Giaz, A.; Boiano, C.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.

    2015-06-01

    The position sensitivity of a thick, cylindrical and continuous 3" × 3" (7.62 cm × 7.62 cm) LaBr3:Ce crystal with diffusive surfaces was investigated. Nuclear physics basic research uses thick LaBr3:Ce crystals (> 3cm) to measure medium or high energy gamma rays (0.5 MeV < Eγ< 20 MeV). In the first measurement the PMT photocathode entrance window was covered by black absorber except for a small window 1 cm × 1cm wide. A complete scan of the detector over a 0.5 cm step grid was performed. The data show that even in a 3" thick LaBr3:Ce crystal with diffusive surfaces the position of the full energy peak centroid depends on the source position. The position of the full energy peak centroids are sufficient to identify the collimated gamma source position. The crystal was then coupled to four Position Sensitive Photomultipliers (PSPMT). We acquired the signals from the 256 segments of the four PSPMTs grouping them into 16 elements. An event by event analysis shows a positon resolution of the order of 2 cm.

  3. Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays

    PubMed Central

    Contreras, Javier; Tornero, Josep; Ferreira, Isabel; Martins, Rodrigo; Gomes, Luis; Fortunato, Elvira

    2015-01-01

    A MATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array. PMID:26633403

  4. Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays.

    PubMed

    Contreras, Javier; Tornero, Josep; Ferreira, Isabel; Martins, Rodrigo; Gomes, Luis; Fortunato, Elvira

    2015-01-01

    A MATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array. PMID:26633403

  5. Read-out of scintillating fibres using a weak cross-talk position-sensitive photomultiplier

    NASA Astrophysics Data System (ADS)

    Agoritsas, V.; Akchurin, N.; Bing, O.; Bravar, A.; Drevenak, R.; Finger, Mic.; Finger, Mir.; Flaminio, V.; Digirolamo, B.; Gorin, A.; Kuroda, K.; Manuilov, I.; Okada, K.; Onel, Y.; Penzo, A.; Rappazzo, G. F.; Riazantsev, A.; Slunecka, M.; Takeutchi, F.; Yoshida, T.

    1998-02-01

    Fast and precise readout of scintillating fibres (SciFi) has a great potential for fast tracking and triggering at high-luminosity particle physics experiments. In the framework of the RD-17 experiment at CERN (FAROS) significant milestones in the development of SciFi detectors using position-sensitive photomultipliers have been achieved. Results obtained with a weak cross-talk multi-anode photomultiplier, Philips XP1724, and a parallel readout of the anodes are reported. With 0.5 mm diameter fibres a spatial resolution of about 125 μm and a detection efficiency in excess of 95% have been obtained. The time dispersion of signals from individual photomultiplier channels has been estimated to be about 1 ns. The possibility of digitising the track position in real time by a peak-sensing circuit is studied for the first time

  6. Canadian Penning Trap Mass Measurements using a Position Sensitive MCP

    NASA Astrophysics Data System (ADS)

    Kuta, Trenton; Aprahamian, Ani; Marley, Scott; Nystrom, Andrew; Clark, Jason; Perez Galvan, Adrian; Hirsh, Tsviki; Savard, Guy; Orford, Rodney; Morgan, Graeme

    2015-10-01

    The primary focus of the Canadian Penning Trap (CPT) located at Argonne National Lab is to determine the masses of various isotopes produced in the spontaneous fission of Californium. Currently, the CPT is operating in conjunction with CARIBU at the ATLAS facility in an attempt to measure neutron-rich nuclei produced by a 1.5 Curie source of Californium 252. The masses of nuclei produced in fission is accomplished by measuring the cyclotron frequency of the isotopes circling within the trap. This frequency is determined by a position sensitive MCP, which records the relative position of the isotope in the trap at different times. Using these position changes over time in connection with a center spot, angles between these positions are calculated and used to determine the frequency. Most of the work currently being conducted on the CPT is focused on the precision of these frequency measurements. The use of traps has revolutionized the measurements of nuclear masses to very high precision. The optimization methods employed here include focusing the beam in order to reduce the spread on the position of the isotope as well as the tuning of the MR-ToF, a mass separator that is intended on removing contaminants in the beam. This work was supported by the nuclear Grant PHY-1419765 for the University of Notre Dame.

  7. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE PAGESBeta

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  8. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    SciTech Connect

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; Blakeley, R. E.; Mader, D. M.; Hecht, A. A.

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.

  9. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  10. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  11. Hard x-ray polarimetry with a thick CdTe position sensitive spectrometer

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Bertuccio, Giuseppe; Cola, Adriano; Curado da Silva, R. M.; Donati, Ariano; Dusi, Waldes; Landini, Gianni; Siffert, Paul; Sampietro, Marco; Stephen, John B.

    2000-12-01

    Even though it is recognized that the study of polarization from cosmic high-energy sources can give very important information about the nature of the emission mechanism, to date very few measurements have been attempted. For several years we have proposed the use of a thick CdTe array as a position sensitive spectrometer for hard X- and soft gamma-ray astronomy, a design which is also efficient for use as a polarimeter at energies above approximately 100 keV. Herein we describe the preliminary results of our study of a polarimeter based on 4096 CdTe microcrystals that we would like to develop for a high altitude balloon experiment. We present the telescope concept with a description of each subsystem together with some results on activities devoted to the optimization of the CdTe detector units' response. Furthermore we give an evaluation of the telescope performance in terms of achievable spectroscopic and polarimetric performance. In particular we will show the results of Monte Carlo simulations developed to evaluate the efficiency of our detector as a hard X ray polarimeter.

  12. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    SciTech Connect

    Del Guerra, A.; Zavattini, G. |; Notaristefani, F. de |; Di Domenico, G. |; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-06-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO{sub 3}:Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm{sup 3}), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 {+-} 3)% with a 150 keV threshold and (20 {+-} 2)% with a 300 keV threshold.

  13. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  14. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  15. Three-dimensional, position-sensitive radiation detection

    DOEpatents

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  16. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ). PMID:26440264

  17. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  18. Extra dimensions: 3D in PDF documentation

    SciTech Connect

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  19. Extra dimensions: 3D in PDF documentation

    DOE PAGESBeta

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less

  20. Extra Dimensions: 3D in PDF Documentation

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2012-12-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  1. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  2. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  3. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  4. Development status of a CZT spectrometer prototype with 3D spatial resolution for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Auricchio, N.; Caroli, E.; Basili, A.; Benassi, G.; Budtz Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Kuvvetli, I.; Milano, L.; Moscatelli, F.; Stephen, J. B.; Zanichelli, M.; Zappettini, A.

    2012-07-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabilities. We describe a three dimensional (3D) position sensitive detector prototype suitable as the basic module for a high efficiency Laue lens focal plane detector. This detector configuration is currently under study for use in a balloon payload dedicated to performing a high significance measurement of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction. The anode is segmented into 8 detection cells, each comprising one collecting strip and 8 surrounding drift strips. The drift strips are biased by a voltage divider. The cathode is divided into 4 horizontal strips for the reconstruction of the Z interaction position. The detector readout electronics is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT prototype and shows the results of the electronics tests.

  5. Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors

    NASA Technical Reports Server (NTRS)

    Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.

    1981-01-01

    The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.

  6. New data collection subsystem for the position sensitive detectors of the KSN-2 neutron diffractometer.

    PubMed

    Dráb, Martin

    2010-01-01

    Project INDECS (integrated neutron diffraction experiment control system) is a newly developed software system created for the purpose of data acquisition from, and controlling of, the KSN-2 neutron diffractometer equipped with PSDs. For the actual data acquisition and initial data analysis of the raw sampled signals a special modular structure called the PSD acquisition path (or PSDAP) was designed. PSDAP also allows to store the raw data, which can be later replayed without actually performing the experiment again. PMID:19822436

  7. EMSP Project Number 65015 Final Report: Three-dimensional position-sensitive germanium detectors

    SciTech Connect

    Amman, Mark; Luke, Paul N.

    2001-12-07

    Critical to the DOE effort to deactivate and decommission the weapons complex facilities is the characterization of contaminated equipment and building structures. This characterization includes the isotopic identification of radioactive contaminants and the spatial mapping of these deposits. The penetrating nature of the gamma rays emitted by the radioactive contaminants provides a means to accomplish this task in a passive, non-destructive and non-intrusive manner. Through conventional gamma-ray spectroscopy, the radioactive isotopes in the contaminants can be identified by their characteristic gamma-ray signatures and the amount of each isotope by the intensity of the signature emission. With the addition of gamma-ray imaging, the spatial distributions of the isotopes can simultaneously be obtained. The ability to image radioactive contaminants can reduce waste as well as help ensure the adequate protection of workers and the environment. For example, if equipment and building materials have been subjected to radionuclide contamination, the entire structure must be treated as radioactive waste during demolition. However, only partial removal may be necessary if the contamination can be accurately located and identified. Hand-held survey instrumentation operated in the near vicinity of the contaminated objects is a common method to accomplish this task. This method necessitates long data acquisition times, direct close access, and considerable worker exposure, as well as leads to imprecise information. In contrast, imaging devices operated at a distance from the contaminated objects can accurately acquire the spatially dependent gamma-ray emission information in a single measurement. Consequently, the devices can more efficiently discriminate between contaminated and non-contaminated areas of heterogeneous objects while at the same time reducing worker exposure.

  8. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  9. Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection

    SciTech Connect

    Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

    1994-10-01

    Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

  10. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.