3D Radiative Transfer in Cloudy Atmospheres
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Davis, Anthony
Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6
Cloud Property Retrieval and 3D Radiative Transfer
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.
2003-01-01
Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.
A 3D radiative transfer framework. VI. PHOENIX/3D example applications
NASA Astrophysics Data System (ADS)
Hauschildt, P. H.; Baron, E.
2010-01-01
Aims: We demonstrate the application of our 3D radiative transfer framework in the model atmosphere code PHOENIX for a number of spectrum synthesis calculations for very different conditions. Methods: The 3DRT framework discussed in the previous papers of this series was added to our general-purpose model atmosphere code PHOENIX/1D and an extended 3D version PHOENIX/3D was created. The PHOENIX/3D code is parallelized via the MPI library using a hierarchical domain decomposition and displays very good strong scaling. Results: We present the results of several test cases for widely different atmosphere conditions and compare the 3D calculations with equivalent 1D models to assess the internal accuracy of the 3D modeling. In addition, we show the results for a number of parameterized 3D structures. Conclusions: With presently available computational resources it is possible to solve the full 3D radiative transfer (including scattering) problem with the same micro-physics as included in 1D modeling.
Computing Radiative Transfer in a 3D Medium
NASA Technical Reports Server (NTRS)
Von Allmen, Paul; Lee, Seungwon
2012-01-01
A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.
3D Thermal Infrared Radiative Transfer in Mountains
NASA Astrophysics Data System (ADS)
Lee, W.; Liou, K.; Hall, A.
2007-12-01
We developed a 3D Monte Carlo photon tracing program for radiative transfer in inhomogeneous and irregular terrain coupled with the correlated k-distribution method for gaseous absorption in the atmosphere for the calculation of broadband thermal infrared (IR) fluxes at mountain surfaces. The thermal IR radiative transfer program includes emission from the atmosphere to the surface and vice versa as well as emissions between mountain surfaces. Both the atmosphere and the land surface are discretized by using finite cubic cells characterized by the spectral optical properties of molecules and background aerosols (absorption coefficient, single-scattering albedo, and scattering phase function) and terrain configuration (albedo, elevation, slope, and orientation). The emissivity of gases is parameterized in terms of the vertical optical depth of cubic cell. We selected an area of 100×100 km2 in the Tibetan Plateau near Lhasa city with a horizontal resolution of 1 km2 and used the surface temperature and albedo available from MODIS/Terra dataset for this study. We show that surface temperature is the dominating factor in radiative transfer calculations and that subgrid variability of the net surface IR flux distribution relative to a flat surface (1D) with average elevation and temperature can be as large as 50 W/m2 at cold mountain surfaces.
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
3D Monte Carlo radiation transfer modelling of photodynamic therapy
NASA Astrophysics Data System (ADS)
Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry
2015-06-01
The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.
Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report
Jerry Y. Harrington
2012-09-21
This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.
Parameterization and analysis of 3-D radiative transfer in clouds
Varnai, Tamas
2012-03-16
This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and
NASA Astrophysics Data System (ADS)
Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore
2014-09-01
We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
A Monte Carlo method for 3D thermal infrared radiative transfer
NASA Astrophysics Data System (ADS)
Chen, Y.; Liou, K. N.
2006-09-01
A 3D Monte Carlo model for specific application to the broadband thermal radiative transfer has been developed in which the emissivities for gases and cloud particles are parameterized by using a single cubic element as the building block in 3D space. For spectral integration in the thermal infrared, the correlated k-distribution method has been used for the sorting of gaseous absorption lines in multiple-scattering atmospheres involving 3D clouds. To check the Monte-Carlo simulation, we compare a variety of 1D broadband atmospheric fluxes and heating rates to those computed from the conventional plane-parallel (PP) model and demonstrate excellent agreement between the two. Comparisons of the Monte Carlo results for broadband thermal cooling rates in 3D clouds to those computed from the delta-diffusion approximation for 3D radiative transfer and the independent pixel-by-pixel approximation are subsequently carried out to understand the relative merits of these approaches.
3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.
We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.
NASA Astrophysics Data System (ADS)
Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.
2014-04-01
At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.
3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds
NASA Astrophysics Data System (ADS)
Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent
2015-08-01
We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.
3-D radiative transfer modeling of rotational modulations in the blue supergiant J Puppis
NASA Astrophysics Data System (ADS)
Lobel, Alex
2013-06-01
The fast increase of multi-CPU/core computing power over the last decade has dramatically advanced our understanding of the structuring mechanisms in the winds of the most massive stars. I present an overview of research results obtained with the Wind3D radiative transfer code that reveal intricate internal wind structures on both large and intermediate length-scales. Hydrodynamic models computed with Zeus3D of the so-called ``co-rotating interaction (wind) regions'' correctly fit Discrete Absorption Components observed in UV P Cygni-type wind lines of many massive hot stars. Recent 3-D radiative transfer modeling research with Wind3D shows that the enigmatic Rotational Modulations observed in wind lines of blue supergiants (such as J Puppis; HD 64760) are caused by a remarkably regular pattern of radial density enhancements that protrude almost linearly into the equatorial wind. I discuss very recent advanced hydrodynamical simulations of these radiatively-driven winds and demonstrate that the linearly shaped radial wind pattern is caused by mechanical wave action at the base of the wind, which can result from non-radial stellar pulsations.
3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure
NASA Astrophysics Data System (ADS)
Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.
2003-04-01
Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev
PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer
NASA Astrophysics Data System (ADS)
Štěpán, J.
2014-10-01
The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).
Hierarchical octree and k-d tree grids for 3D radiative transfer simulations
NASA Astrophysics Data System (ADS)
Saftly, W.; Baes, M.; Camps, P.
2014-01-01
Context. A crucial ingredient for numerically solving the three-dimensional radiative transfer problem is the choice of the grid that discretizes the transfer medium. Many modern radiative transfer codes, whether using Monte Carlo or ray tracing techniques, are equipped with hierarchical octree-based grids to accommodate a wide dynamic range in densities. Aims: We critically investigate two different aspects of octree grids in the framework of Monte Carlo dust radiative transfer. Inspired by their common use in computer graphics applications, we test hierarchical k-d tree grids as an alternative for octree grids. On the other hand, we investigate which node subdivision-stopping criteria are optimal for constructing of hierarchical grids. Methods: We implemented a k-d tree grid in the 3D radiative transfer code SKIRT and compared it with the previously implemented octree grid. We also considered three different node subdivision-stopping criteria (based on mass, optical depth, and density gradient thresholds). Based on a small suite of test models, we compared the efficiency and accuracy of the different grids, according to various quality metrics. Results: For a given set of requirements, the k-d tree grids only require half the number of cells of the corresponding octree. Moreover, for the same number of grid cells, the k-d tree is characterized by higher discretization accuracy. Concerning the subdivision stopping criteria, we find that an optical depth criterion is not a useful alternative to the more standard mass threshold, since the resulting grids show a poor accuracy. Both criteria can be combined; however, in the optimal combination, for which we provide a simple approximate recipe, this can lead to a 20% reduction in the number of cells needed to reach a certain grid quality. An additional density gradient threshold criterion can be added that solves the problem of poorly resolving sharp edges and strong density gradients. Conclusions: We advocate the use
A study of the 3D radiative transfer effect in cloudy atmospheres
NASA Astrophysics Data System (ADS)
Okata, M.; Teruyuki, N.; Suzuki, K.
2015-12-01
Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.
A 3-D multiband closure for radiation and neutron transfer moment models
Ripoll, J.-F. Wray, A.A.
2008-02-01
We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new closure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a Wien shape for the intensity when used in the Eddington tensor. In the multi-band approach, the opacity is re-arranged (binned) according to the opacity value. The multi-band model propagates identically all photons/neutrons having the same opacity. This has been found to be a good approximation on average since the transport is mostly determined by the opacities and less by the frequencies. This same concept is used to derive the closure. We prove on two complex test atmospheres (the solar atmosphere and an artificial atmosphere) that the closure we have derived has good accuracy. All approximations made in deriving the model have been carefully numerically checked and quantified.
3D Shortwave Radiative Transfer in Mountains: Application to the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Lee, W.-L.; Liou, K. N.
2009-04-01
Surface fluxes over complex terrain are strongly affected by variation in elevation, slope, and albedo. However, these factors are generally neglected in most of the existing radiative transfer schemes which assume that the lower boundary is flat and homogeneous. We developed a new 3D Monte Carlo photon tracing program for radiative transfer in inhomogeneous and irregular terrain coupled with the correlated k-distribution method for gaseous absorption in the atmosphere for the calculation of broadband shortwave fluxes at mountain surfaces. The atmosphere is discretized by using finite cubic cells characterized by the spectral optical properties of molecules and background aerosols (extinction coefficient, single-scattering albedo, and scattering phase function). To avoid leaks of photons, each land surface pixel consists of eight triangles based on terrain configuration (elevation, slope, and orientation) to create a seamless surface. We selected an area of 100×100 km2 in the Tibetan Plateau near Lhasa city with a horizontal resolution of 1 km2 and used the albedo available from MODIS/Terra dataset for this study. The results show that subgrid variability of the net surface solar fluxes are generally on the order of 10 to 30 W/m2.
NASA Technical Reports Server (NTRS)
Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.
2014-01-01
Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.
NASA Technical Reports Server (NTRS)
Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.
2014-01-01
Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.
NASA Astrophysics Data System (ADS)
Jinya, John; Bipasha, Paul S.
2016-05-01
Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
Gu, Y.; Liou, K. N.; Lee, W. -L.; Leung, L. R.
2012-01-01
A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m^{-2} deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m^{-2} are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m^{-2}. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation
Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.
2014-12-15
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less
NASA Astrophysics Data System (ADS)
Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.
2014-12-01
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.
NASA Astrophysics Data System (ADS)
Lee, W. L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. H.
2014-12-01
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra-Nevada using the CCSM4 (CAM4/CLM) global model with a 0.25 degree resolution for a 6-year climate run. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 meters using the Shuttle Radar Topography Mission (SRTM) global dataset to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3D - PP) adjustment to ensure that energy balance at the top of the atmosphere is conserved in climate simulations involving the 3-D radiation parameterization in a global model. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by cloud feedback in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.
Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces
NASA Astrophysics Data System (ADS)
Lyapustin, Alexei; Wang, Yujie
2005-12-01
The code SHARM-3D, developed for fast and accurate simulations of the monochromatic radiance at the top of the atmosphere over spatially variable surfaces with Lambertian or anisotropic reflectance, is described. The atmosphere is assumed to be laterally uniform across the image and to consist of two layers with aerosols contained in the bottom layer. The SHARM-3D code performs simultaneous calculations for all specified incidence-view geometries and multiple wavelengths in one run. The numerical efficiency of the current version of code is close to its potential limit and is achieved by means of two innovations. The first is the development of a comprehensive precomputed lookup table of the three-dimensional atmospheric optical transfer function for various atmospheric conditions. The second is the use of a linear kernel model of the land surface bidirectional reflectance factor (BRF) in our algorithm that has led to a fully parameterized solution in terms of the surface BRF parameters. The code is also able to model inland lakes and rivers. The water pixels are described with the Nakajima-Tanaka BRF model of wind-roughened water surface with a Lambertian offset, which is designed to model approximately the reflectance of suspended matter and of a shallow lake or river bottom.
3D Polarized Radiative Transfer for Solar System Applications Using the public-domain HYPERION Code
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Robitaille, T.; Whitney, B. A.
2012-12-01
We present a public-domain radiative transfer tool that will allow researchers to examine a wide-range of interesting solar system applications. Hyperion is a new three-dimensional continuum Monte-Carlo radiative transfer code that is designed to be as general as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids (Robitaille, 2011, Astronomy & Astrophysics 536 A79). The main part of the code is problem-independent, and only requires the user to define the three-dimensional density structure, and the opacity and the illumination properties (as well as a few parameters that control execution and output of the code). Hyperion is written in Fortran 90 and parallelized using the MPI-2 standard. It is bundled with Python libraries that enable very flexible pre- and post-processing options (arbitrary shapes, multiple aerosol components, etc.). These routines are very amenable to user-extensibility. The package is currently distributed at www.hyperion-rt.org. Our presentation will feature 1) a brief overview of the code, including a description of the solar system-specific modifications that we have made beyond the capabilities in the original release; 2) Several solar system applications (i.e., Deep Impact Plume, Martian atmosphere, etc.); 3) discussion of availability and distribution of code components via www.hyperion-rt.org.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
NASA Astrophysics Data System (ADS)
Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.
2015-05-01
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model - CAM4/CLM4) with a 0.23° x 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D-PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.
NASA Astrophysics Data System (ADS)
Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.
2015-06-01
Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.
2015-05-19
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less
NASA Astrophysics Data System (ADS)
Fayock, Brian; Zank, Gary; Heerikhuisen, Jacob
2014-06-01
Models of the heliosphere have evolved for the past few decades to fit observations made by a large number of spacecraft. Voyager missions have provided unique in-situ measurements that have proven to be essential for model testing. Lyman-alpha backscatter intensity has been reduced from measurements taken by the ultraviolet spectrometers on board both Voyager spacecraft. We have developed a 3D Monte Carlo radiative transfer code to simulate this backscatter intensity by generating millions of photons from the sun to scatter within a neutral hydrogen distribution resulting from a state-of-the-art 3D MHD-kinetic neutral heliospheric model, both of which have been developed within the Center for Space Physics and Aeronomic Research at the University of Alabama in Huntsville. While many have attempted to simulate the Voyager observations, we are the first to achieve agreement with our results. In this presentation, we will discuss the core mechanisms driving the radiative transfer code, the statistical quantities collected, and the interpretation of the results relative to the spacecraft data.
3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule
NASA Astrophysics Data System (ADS)
Berkner, A.; Schweitzer, A.; Hauschildt, P. H.
2015-01-01
The photospheres of cool stars are both rich in molecules and an environment where the assumption of LTE can not be upheld under all circumstances. Unfortunately, detailed 3D non-LTE calculations involving molecules are hardly feasible with current computers. For this reason, we present our implementation of the super level technique, in which molecular levels are combined into super levels, to reduce the number of unknowns in the rate equations and, thus, the computational effort and memory requirements involved, and show the results of our first tests against the 1D implementation of the same method.
3-D Finite Element Heat Transfer
Energy Science and Technology Software Center (ESTSC)
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes
NASA Astrophysics Data System (ADS)
Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.
2014-12-01
The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.
NASA Astrophysics Data System (ADS)
Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.
2014-12-01
The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.
2012-12-01
Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than
Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code
NASA Astrophysics Data System (ADS)
Quénard, D.; Bottinelli, S.; Caux, E.
2016-05-01
The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.
Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.
2013-01-01
We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m^{-2} occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Mayer, Bernhard
2016-04-01
The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.
NASA Astrophysics Data System (ADS)
Jakub, F.; Mayer, B.
2015-10-01
The recently developed three-dimensional TenStream radiative transfer solver was integrated into the UCLA-LES cloud resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges migrating from 1-D schemes to 3-D schemes. In particular the employed Monte-Carlo-Spectral-Integration needed to be re-examined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte-Carlo-Spectral-Integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak- as well as strong-scaling experiments. In this context, we investigate two matrix-preconditioner (GAMG and block-jacobi ILU) and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D δ-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of five to ten.
NASA Astrophysics Data System (ADS)
Schneider, F. D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.; Lauret, N.; Pfeifer, N.; Schaepman, M. E.
2013-12-01
Remote sensing offers unique potential to study forest ecosystems by providing spatially and temporally distributed information that can be linked with key biophysical and biochemical variables. The estimation of biochemical constituents of leaves from remotely sensed data is of high interest revealing insight on photosynthetic processes, plant health, plant functional types, and speciation. However, the scaling of observations at the canopy level to the leaf level or vice versa is not trivial due to the structural complexity of forests. Thus, a common solution for scaling spectral information is the use of physically-based radiative transfer models. The discrete anisotropic radiative transfer model (DART), being one of the most complete coupled canopy-atmosphere 3D radiative transfer models, was parameterized based on airborne and in-situ measurements. At-sensor radiances were simulated and compared with measurements from an airborne imaging spectrometer. The study was performed on the Laegern site, a temperate mixed forest characterized by steep slopes, a heterogeneous spectral background, and deciduous and coniferous trees at different development stages (dominated by beech trees; 47°28'42.0' N, 8°21'51.8' E, 682 m asl, Switzerland). It is one of the few studies conducted on an old-growth forest. Particularly the 3D modeling of the complex canopy architecture is crucial to model the interaction of photons with the vegetation canopy and its background. Thus, we developed two forest reconstruction approaches: 1) based on a voxel grid, and 2) based on individual tree detection. Both methods are transferable to various forest ecosystems and applicable at scales between plot and landscape. Our results show that the newly developed voxel grid approach is favorable over a parameterization based on individual trees. In comparison to the actual imaging spectrometer data, the simulated images exhibit very similar spatial patterns, whereas absolute radiance values are
NASA Astrophysics Data System (ADS)
Gratiy, Sergey L.; Walker, Andrew C.; Levin, Deborah A.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.
2010-05-01
Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io's atmosphere including both sublimation and volcanic sources of SO 2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io's atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io's sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman- α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ˜30° toward lower orbital longitudes. The simulations of Lyman- α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support
NASA Astrophysics Data System (ADS)
Min, M.; Dullemond, C. P.; Kama, M.; Dominik, C.
2011-03-01
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.
NASA Astrophysics Data System (ADS)
Rubio, J.; Sun, G.; Koetz, B.; Ranson, K. J.; Kimes, D.; Gastellu-Etchegorry, J.
2008-12-01
The potential of combined multi-angle/multi-spectral optical imagery and LIDAR waveform data to retrieve structural parameters on forest is explored. Our approach relies on two physically based radiative transfer models (RTM), the Discrete Anisotropic Radiative Transfer (DART) for the generation of the BRF images and Sun and Ranson's LIDAR waveform model for the large footprint LIDAR data. These RTM are based on the same basic physical principles and share common inputs parameters. We use the Zelig forest growth model to provide a synthetic but realistic data set to the two RTM. The forest canopy biophysical variables that are being investigated include the maximal tree height, fractional cover, LAI and vertical crown extension. We assess the inversion of forest structural parameters when considering each model separately, then we investigate the accuracy of a coupled inversion. Keywords: Forest, Radiative Transfer Model, Inversion, Fusion, Multi-Angle, LAI, Fractional cover, Tree height, Canopy structure, Biomass, LIDAR, Forest growth model
NASA Astrophysics Data System (ADS)
Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.
2015-12-01
In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.
NASA Astrophysics Data System (ADS)
Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.
2016-05-01
A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.
FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties
NASA Astrophysics Data System (ADS)
De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.
2015-02-01
Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.
Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model
O'Hirok, W.; Ricchiazzi, P.; Gautier, C.
2005-03-18
A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes.
3D proton transfer augments bio-photocurrent generation.
Rao, Siyuan; Guo, Zhibin; Liang, Dawei; Chen, Deliang; Li, Yuan; Xiang, Yan
2015-04-24
An enhancement of the photocurrent is achieved in a biohybrid nanocomposite consisting of nanovesicle reconstituted proteorhodopsin and potassium phosphotungstate nanoparticles. With the observation of an accelerated protein photocycle and elevated proton conductivity, this improvement of the photo-electric performance is attributed to the construction of a 3D proton-transfer framework. PMID:25786358
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia
2013-01-01
When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Marshak, Alexander
2010-01-01
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
NASA Astrophysics Data System (ADS)
Davis, Anthony B.; Marshak, Alexander
2010-02-01
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
3D volume visualization in remote radiation treatment planning
NASA Astrophysics Data System (ADS)
Yun, David Y.; Garcia, Hong-Mei C.; Mun, Seong K.; Rogers, James E.; Tohme, Walid G.; Carlson, Wayne E.; May, Stephen; Yagel, Roni
1996-03-01
This paper reports a novel applications of 3D visualization in an ARPA-funded remote radiation treatment planning (RTP) experiment, utilizing supercomputer 3D volumetric modeling power and NASA ACTS (Advanced Communication Technology Satellite) communication bandwidths at the Ka-band range. The objective of radiation treatment is to deliver a tumorcidal dose of radiation to a tumor volume while minimizing doses to surrounding normal tissues. High performance graphics computers are required to allow physicians to view a 3D anatomy, specify proposed radiation beams, and evaluate the dose distribution around the tumor. Supercomputing power is needed to compute and even optimize dose distribution according to pre-specified requirements. High speed communications offer possibilities for sharing scarce and expensive computing resources (e.g., hardware, software, personnel, etc.) as well as medical expertise for 3D treatment planning among hospitals. This paper provides initial technical insights into the feasibility of such resource sharing. The overall deployment of the RTP experiment, visualization procedures, and parallel volume rendering in support of remote interactive 3D volume visualization will be described.
Diffusion approximation for modeling of 3-D radiation distributions
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs.
The 3D Radiation Dose Analysis For Satellite
NASA Astrophysics Data System (ADS)
Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia
2002-01-01
hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.
Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)
2001-01-01
Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.
Heat Transfer Boundary Conditions in the RELAP5-3D Code
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2008-05-01
The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.
VISRAD, 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor
2015-11-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.
Towards a 3D Space Radiation Transport Code
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.
2002-01-01
High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.
3D imaging of fetus vertebra by synchrotron radiation microtomography
NASA Astrophysics Data System (ADS)
Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter
1997-10-01
A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.
3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes
NASA Astrophysics Data System (ADS)
Gastellu-Etchegorry, J. P.
2008-12-01
DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.
NASA Astrophysics Data System (ADS)
Olchev, A.; Kurbatova, J.; Radler, K.; Khanh, Pham Huu; Khoi, Vu Xuan; Kuznetsov, A.
2009-04-01
The radiation regime of lowland lagerstroemia tropical monsoon forests in the Cat Tien National Park in Vietnam was described using a 3D process-based model Mixfor-3D (Olchev et al. 2009). The Cat Tien National Park is situated in the south of Vietnam, approximately 150 km north of Ho Chi Minh City. It is unique area that protects one of the largest areas of lowland tropical rainforests left in Vietnam. The main concept of the used Mixfor-3D model is a combined description of the physical and biological processes on the different spatial levels of a plant ecosystem, i.e. from individual leaf and plant (tree) to the entire ecosystem. The model effectively integrates a very high (3D) spatial resolution of ecosystem structure with 3D algorithms sophistically describing the processes of radiation, turbulent exchange of sensible heat and water vapour, water and heat transfer in plant canopy and soil. The Mixfor-3D model consists of several closely coupled 3D sub-models describing: structure of a forest stand; radiative transfer in a forest canopy; turbulent transfer of sensible heat and water vapour between ground surface, trees and the atmospheric surface layer; heat and moisture transfer in soil. Reasonable computing time and a number of input parameters are important factors that were taken into account during development of the model. Mixfor-3D has a horizontal resolution of 2 m x 2 m, a vertical canopy resolution of 1 m, a vertical soil resolution of 0.1 m and a primary time step of 1 hour. These spatial and temporal resolutions allow us to take into account small scale heterogeneity of the canopy and soil structure and to reproduce the 3D flux distribution and canopy microclimate. For modeling experiments three different forest plots have been selected. They are characterized by very heterogeneous and diverse structure. Tree density of the forest plots is up to 660 trees per hectare, and number of tree species is ranged between 19 and 23. Upper canopy layer of the
New Algorithms for Large-scale 3D Radiation Transport
NASA Astrophysics Data System (ADS)
Lentz, Eric J.
2009-05-01
Radiation transport is critical not only for analysis of astrophysical objects but also for the dynamical transport of energy within. Increased fidelity and dimensionality of the other components of such models requires a similar improvement in the radiation transport. Modern astrophysical simulations can be large enough that the values for a single variable for the entire computational domain cannot be stored on a single compute node. The natural solution is to decompose the physical domain into pieces with each node responsible for a single sub-domain. Using localized plus "ghost" zone data works well for problems like explicit hydrodynamics or nuclear reaction networks with modest impact from inter-process communication. Unfortunately, radiation transport is an inherently non-local process that couples the entire model domain together and efficient algorithms are needed to conquer this problem. In this poster, I present the early development of a new parallel, 3-D transport code using ray tracing to formally solve the transport equation across numerically decomposed domains. The algorithm model takes advantage of one-sided communication to develop a scalable, parallel formal solver. Other aspects and future direction of the parallel code development such as scalability and the inclusion of scattering will also be discussed.
International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)
2000-01-01
An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.
2D and 3D Mass Transfer Simulations in β Lyrae System
NASA Astrophysics Data System (ADS)
Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.
2001-12-01
2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes
NASA Astrophysics Data System (ADS)
Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios
2015-08-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.
Gas flow environment and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Schulz, R. J.
1982-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is provided. These data are to be used to evaluate, and verify, three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select a computational code and define the capabilities of this code to predict the experimental results obtained. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated. Internal flow in a large rectangular cross-sectioned 90 deg. bend turning duct was studied. The duct construction was designed to allow detailed measurements to be made for the following three duct wall conditions: (1) an isothermal wall with isothermal flow; (2) an adiabatic wall with convective heat transfer by mixing between an unheated surrounding flow; and (3) an isothermal wall with heat transfer from a uniformly hot inlet flow.
Radiative Transfer Under Inhomogeneous Configurations
NASA Astrophysics Data System (ADS)
Bendicho, P. Fabiani
1998-06-01
We present, for the first time, three dimensional (3D) radiative transfer (RT) results with realistic atomic models (multilevel) and without using the local thermodinamical equilibrium approximation (non-LTE). We have developed a new code based on efficient iterative methods (Trujillo Bueno, and Fabiani Bendicho 1995; Fabiani Bendicho, Trujillo Bueno and Auer 1997) characterized by a very high convergence rate. With this 3D multilevel code and using a schematic atmospheric model we are able to demonstrate that one may need self-consistent multidimensional RT calculations in order to interpret high spatial resolution solar spectroscopic observations.
Gas flow environmental and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Geil, T.; Steinhoff, J.
1983-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
Characterization of a parallel-beam CCD optical-CT apparatus for 3D radiation dosimetry.
Krstajić, Nikola; Doran, Simon J
2007-07-01
3D measurement of optical attenuation is of interest in a variety of fields of biomedical importance, including spectrophotometry, optical projection tomography (OPT) and analysis of 3D radiation dosimeters. Accurate, precise and economical 3D measurements of optical density (OD) are a crucial step in enabling 3D radiation dosimeters to enter wider use in clinics. Polymer gels and Fricke gels, as well as dosimeters not based around gels, have been characterized for 3D dosimetry over the last two decades. A separate problem is the verification of the best readout method. A number of different imaging modalities (magnetic resonance imaging (MRI), optical CT, x-ray CT and ultrasound) have been suggested for the readout of information from 3D dosimeters. To date only MRI and laser-based optical CT have been characterized in detail. This paper describes some initial steps we have taken in establishing charge coupled device (CCD)-based optical CT as a viable alternative to MRI for readout of 3D radiation dosimeters. The main advantage of CCD-based optical CT over traditional laser-based optical CT is a speed increase of at least an order of magnitude, while the simplicity of its architecture would lend itself to cheaper implementation than both MRI and laser-based optical CT if the camera itself were inexpensive enough. Specifically, we study the following aspects of optical metrology, using high quality test targets: (i) calibration and quality of absorbance measurements and the camera requirements for 3D dosimetry; (ii) the modulation transfer function (MTF) of individual projections; (iii) signal-to-noise ratio (SNR) in the projection and reconstruction domains; (iv) distortion in the projection domain, depth-of-field (DOF) and telecentricity. The principal results for our current apparatus are as follows: (i) SNR of optical absorbance in projections is better than 120:1 for uniform phantoms in absorbance range 0.3 to 1.6 (and better than 200:1 for absorbances 1.0 to
Characterization of a parallel-beam CCD optical-CT apparatus for 3D radiation dosimetry
NASA Astrophysics Data System (ADS)
Krstajic, Nikola; Doran, Simon J.
2007-07-01
3D measurement of optical attenuation is of interest in a variety of fields of biomedical importance, including spectrophotometry, optical projection tomography (OPT) and analysis of 3D radiation dosimeters. Accurate, precise and economical 3D measurements of optical density (OD) are a crucial step in enabling 3D radiation dosimeters to enter wider use in clinics. Polymer gels and Fricke gels, as well as dosimeters not based around gels, have been characterized for 3D dosimetry over the last two decades. A separate problem is the verification of the best readout method. A number of different imaging modalities (magnetic resonance imaging (MRI), optical CT, x-ray CT and ultrasound) have been suggested for the readout of information from 3D dosimeters. To date only MRI and laser-based optical CT have been characterized in detail. This paper describes some initial steps we have taken in establishing charge coupled device (CCD)-based optical CT as a viable alternative to MRI for readout of 3D radiation dosimeters. The main advantage of CCD-based optical CT over traditional laser-based optical CT is a speed increase of at least an order of magnitude, while the simplicity of its architecture would lend itself to cheaper implementation than both MRI and laser-based optical CT if the camera itself were inexpensive enough. Specifically, we study the following aspects of optical metrology, using high quality test targets: (i) calibration and quality of absorbance measurements and the camera requirements for 3D dosimetry; (ii) the modulation transfer function (MTF) of individual projections; (iii) signal-to-noise ratio (SNR) in the projection and reconstruction domains; (iv) distortion in the projection domain, depth-of-field (DOF) and telecentricity. The principal results for our current apparatus are as follows: (i) SNR of optical absorbance in projections is better than 120:1 for uniform phantoms in absorbance range 0.3 to 1.6 (and better than 200:1 for absorbances 1.0 to
Stochastic Radiative transfer and real cloudiness
Evans, F.
1995-09-01
Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.
Thermal radiation heat transfer.
NASA Technical Reports Server (NTRS)
Siegel, R.; Howell, J. R.
1972-01-01
A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.
Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry
NASA Astrophysics Data System (ADS)
Krstajić, Nikola; Doran, Simon J.
2006-12-01
This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.
Transferring of speech movements from video to 3D face space.
Pei, Yuru; Zha, Hongbin
2007-01-01
We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models. PMID:17093336
NASA Technical Reports Server (NTRS)
Wiscombe, Warren J.
2012-01-01
The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.
Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice
ERIC Educational Resources Information Center
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-01-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki
2016-01-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
NASA Astrophysics Data System (ADS)
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-06-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.
Zenou, Michael; Sa'ar, Amir; Kotler, Zvi
2015-09-01
3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique. PMID:25966320
Compact camera for 3D position registration of cancer in radiation treatment
NASA Astrophysics Data System (ADS)
Wakayama, Toshitaka; Hiratsuka, Shun; Kamakura, Yoshihisa; Nakamura, Katsumasa; Yoshizawa, Toru
2014-11-01
Radiation treatments have been attracted many interests as one of revolutionary cancer therapies. Today, it is possible to treat cancers without any surgical operations. In the fields of the radiation treatments, it is important to regist the 3D position of the cancer inside the body precisely and instantaneously. To achieve 3D position registrations, we aim at developing a compact camera for 3D measurements. In this trial, we have developed a high-speed pattern projector based on the spatiotemporal conversion technique. In experiments, we show some experimental results for the 3D registrations.
Simulation of solar radiative transfer in cumulus clouds
Zuev, V.E.; Titov, G.A.
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp.
Zhang, Fengxiang; Low, Hong Yee
2008-10-15
Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold. PMID:21832645
Printing of metallic 3D micro-objects by laser induced forward transfer.
Zenou, Michael; Kotler, Zvi
2016-01-25
Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed. PMID:26832524
Atmospheric Radiative Transfer
NASA Astrophysics Data System (ADS)
Perliski, Lori
Because radiative transfer cuts across many scientific disciplines with applications including remote sensing, climate, atmospheric chemistry, and photobiology, there is a need for comprehensive books on this subject that can appeal to a wide readership. While Atmospheric Radiative Transfer takes strides toward filling this niche by addressing a broad range of topics, it is dry reading and suffers from lack of detail. The book was based on a graduate-level course taught at the University of Sciences and Technologies in Lille, France, and indeed, the text reads much like an expanded outline perhaps derived from lecture notes.Part one deals with general radiative transfer, and part two covers Earth's radiation budget, the climate system, and remote sensing techniques. The radiative transfer equation and solutions for absorbing and scattering atmospheres are discussed as are the details of absorption, such as energy levels, line strengths, line intensities, equivalent widths, and weak- and strong-line limits.
NASA Astrophysics Data System (ADS)
Berssenbrügge, Philipp; Dekiff, Markus; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter
2012-03-01
The increasing importance of optical 3D measurement techniques and the growing number of available methods and systems require a fast and simple method to characterize the measurement accuracy. However, the conventional approach of comparing measured coordinates to known reference coordinates of a test target faces two major challenges: the precise fabrication of the target and - in case of pattern projecting systems - finding the position of the reference points in the obtained point cloud. The modulation transfer function (MTF) on the other hand is an established instrument to describe the resolution characteristics of 2D imaging systems. Here, the MTF concept is applied to two different topometric systems based on fringe and speckle pattern projection to obtain a 3D transfer function. We demonstrate that in the present case fringe projection provides typically 3.5 times the 3D resolution achieved with speckle pattern projection. By combining measurements of the 3D transfer function with 2D MTF measurements the dependency of 2D and 3D resolutions are characterized. We show that the method allows for a simple comparison of the 3D resolution of two 3D sensors using a low cost test target, which is easy to manufacture.
CT based 3D Monte Carlo radiation therapy treatment planning.
Wallace, S; Allen, B J
1998-06-01
This paper outlines the "voxel reconstruction" technique used to model the macroscopic human anatomy of the cranial, abdominal and cervical regions directly from CT scans. Tissue composition, density, and radiation transport characteristics were assigned to each individual volume element (voxel) automatically depending on its greyscale number and physical location. Both external beam and brachytherapy treatment techniques were simulated using the Monte Carlo radiation transport code MCNP (Monte Carlo N-Particle) version 3A. To obtain a high resolution dose calculation, yet not overly extend computational times, variable voxel sizes have been introduced. In regions of interest where high attention to anatomical detail and dose calculation was required, the voxel dimensions were reduced to a few millimetres. In less important regions that only influence the region of interest via scattered radiation, the voxel dimensions were increased to the scale of centimetres. With the use of relatively old (1991) supercomputing hardware, dose calculations were performed in under 10 hours to a standard deviation of 5% in each voxel with a resolution of a few millimetres--current hardware should substantially improve these figures. It is envisaged that with coupled photon/electron transport incorporated into MCNP version 4A and 4B, conventional photon and electron treatment planning will be undertaken using this technique, in addition to neutron and associated photon dosimetry presented here. PMID:9745789
NASA Astrophysics Data System (ADS)
Kalkofen, Wolfgang
2009-07-01
Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.
NASA Astrophysics Data System (ADS)
Kalkofen, Wolfgang
1988-01-01
Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
3D unstructured-mesh radiation transport codes
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers. PMID:25166809
3D Radiative MHD Modeling of Quiet-Sun Magnetic Activity
NASA Astrophysics Data System (ADS)
Kitiashvili, Irina
2016-05-01
Quiet-Sun regions that cover most of the solar surface represent a background state that plays an extremely important role in the dynamics and energetics of the solar atmosphere. A clear understanding of these regions is required for accurate interpretation of solar activity events such as emergence of magnetic flux, sunspot formation, and eruptive dynamics. Modern high-resolution observations from ground and space telescopes have revealed a complicated dynamics of turbulent magnetoconvection and its effects in the solar atmosphere and corona, showing intense interactions across different temporal and spatial scales. Interpretation of the observed complex phenomena and understanding of their origins is impossible without advanced numerical models. I will present new results of realistic-type 3D radiative MHD simulations of the upper turbulent convective layer and atmosphere of the Sun. The results reveal the mechanism of formation and properties of the Sun’s “magnetic carpet” controlled by subsurface small-scale dynamo processes, and demonstrate interaction between the subsurface layers and the atmosphere via spontaneous small-scale eruptions and wave phenomena. To link the simulations to solar data the spectro-polarimetric radiative transfer code SPINOR is used to convert the simulated data into the Stokes profiles of various spectral lines, including the SDO and Hinode observables. The results provide a detailed physical understanding of the quiet-Sun dynamics, and show potential for future observations with the DKIST and other large solar telescopes.
Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness,
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
Chiu, Jui-Yuan
2015-09-14
ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-01-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477
NASA Astrophysics Data System (ADS)
Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju
2015-12-01
SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed.
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443
3D modelling of coupled mass and heat transfer of a convection-oven roasting process.
Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens
2013-04-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online. PMID:23305831
A Comparison of Radiation Dose Between Standard and 3D Angiography in Congenital Heart Disease
Manica, João Luiz Langer; Borges, Mônica Scott; de Medeiros, Rogério Fachel; Fischer, Leandro dos Santos; Broetto, Gabriel; Rossi, Raul Ivo
2014-01-01
Background The use of three-dimensional rotational angiography (3D-RA) to assess patients with congenital heart diseases appears to be a promising technique despite the scarce literature available. Objectives The objective of this study was to describe our initial experience with 3D-RA and to compare its radiation dose to that of standard two-dimensional angiography (2D-SA). Methods Between September 2011 and April 2012, 18 patients underwent simultaneous 3D-RA and 2D-SA during diagnostic cardiac catheterization. Radiation dose was assessed using the dose-area-product (DAP). Results The median patient age and weight were 12.5 years and 47.5 Kg, respectively. The median DAP of each 3D-RA acquisition was 1093µGy.m2 and 190µGy.m2 for each 2D-SA acquisition (p<0.01). In patients weighing more than 45Kg (n=7), this difference was attenuated but still significant (1525 µGy.m2 vs.413µGy.m2, p=0.01). No difference was found between one 3D-RA and three 2D-SA (1525µGy.m2 vs.1238 µGy.m2, p = 0.575) in this population. This difference was significantly higher in patients weighing less than 45Kg (n=9) (713µGy.m2 vs.81µGy.m2, P = 0.008), even when comparing one 3D-RA with three 2D-SA (242µGy.m2, respectively, p<0.008). 3D-RA was extremely useful for the assessment of conduits of univentricular hearts, tortuous branches of the pulmonary artery, and aorta relative to 2D-SA acquisitions. Conclusions The radiation dose of 3D-RA used in our institution was higher than those previously reported in the literature and this difference was more evident in children. This type of assessment is of paramount importance when starting to perform 3D-RA. PMID:25211313
3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.
2015-11-01
With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.
Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.
Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K
2014-06-01
This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389
SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy
Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S
2015-06-15
Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.
Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System
Holdsworth, Clay; Hummel-Kramer, Sharon M.; Phillips, Mark
2011-10-01
Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.
COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2012-11-10
We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.
Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping
2010-01-01
The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.
3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells
Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram
2010-01-01
The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966
NASA Technical Reports Server (NTRS)
Barker, Howard W.; Kato, Serji; Wehr, T.
2012-01-01
The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).
Improved time-space method for 3-D heat transfer problems including global warming
Saitoh, T.S.; Wakashima, Shinichiro
1999-07-01
In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.
3D and 4D Simulations of the Dynamics of the Radiation Belts using VERB code
NASA Astrophysics Data System (ADS)
Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Orlova, Ksenia
2015-04-01
Modeling and understanding of ring current and higher energy radiation belts has been a grand challenge since the beginning of the space age. In this study we show long term simulations with a 3D VERB code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. We show that while lower energy radial transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show there exists an intermediate range of energies for electrons for which both processes work simultaneously.
Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code
Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I
1998-12-28
An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
Utrecht Radiative Transfer Courses
NASA Astrophysics Data System (ADS)
Rutten, R. J.
2003-01-01
The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards
3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian
2014-03-01
Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.
PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)
NASA Astrophysics Data System (ADS)
Thwaites, David; Baldock, Clive
2013-06-01
IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of
NASA Astrophysics Data System (ADS)
Elmer, John W.; Li, Yan; Barth, Holly D.; Parkinson, Dilworth Y.; Pacheco, Mario; Goyal, Deepak
2014-12-01
3D x-ray computed tomography (CT), using conventional laboratory-based x-ray sources, has been used in the past to image multiple levels of interconnects in 3D microelectronic packages. These conventional x-ray sources can provide high resolution images with throughput times (TPT) of several hours. However, this can only be performed on localized areas of about 1-2 mm2, which gravely limits the application of 3D x-ray CT in the field of microelectronic packages with sizes usually in the range of 100-3600 mm2. An alternative to laboratory-based x-ray sources is synchrotron radiation, which can produce large area collimated beams for high flux x-ray imaging over a much larger field of view (FOV) than conventional sources. Synchrotrons can potentially image an entire 3D stacked chip package at high resolutions in less than an hour. Here, we present results using the micro-CT line at the advanced light source synchrotron to image an entire 16 × 16 mm system in a package in times as low as 3 min, demonstrating several orders of magnitude increase in the ratio of FOV to TPT as compared to laboratory-based x-ray methods.
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.
1999-05-01
Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.
CRASH3: cosmological radiative transfer through metals
NASA Astrophysics Data System (ADS)
Graziani, L.; Maselli, A.; Ciardi, B.
2013-05-01
Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation, CRASH3 integrates into the reference algorithm the code CLOUDY to evaluate the ionization states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal-enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests, the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range and shape, intensity), the metal composition, the gas number density and metallicity.
4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung
NASA Astrophysics Data System (ADS)
Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.
2013-02-01
Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.
NASA Astrophysics Data System (ADS)
Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.
2015-04-01
3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.
Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments
NASA Astrophysics Data System (ADS)
Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.
2015-11-01
We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.
PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)
NASA Astrophysics Data System (ADS)
Olsson, Lars E.; Bäck, S.; Ceberg, Sofie
2015-01-01
IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide
A simulation technique for 3D MR-guided acoustic radiation force imaging
Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.
2015-01-01
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison
A simulation technique for 3D MR-guided acoustic radiation force imaging
Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.
2015-02-15
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison
Three Dimensional Atmospheric Radiative Transfer-Applications and Methods Comparison
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)
2001-01-01
We review applications of 3D radiative transfer in the atmosphere, emphasizing the wide spectrum of scales important to remote sensing and modeling of cloud fields, and the characteristic scales introduced into observed radiances and fluxes by the distribution of photon pathlengths at conservative and absorbing wavelengths. We define the "plane-parallel bias", which is a measure of the importance of 3D cloud structure in large-scale models, and the "independent pixel errors" that quantify the significance of 3D effects in remote sensing, and emphasize their relative magnitude and scale dependence. A variety of approaches in current use in 3D radiative transfer, and issues of speed, accuracy, and flexibility are summarized. We also describe a recently initiated "International Intercomparison of 3-Dimensional Radiation Codes", or I3RC. I3RC is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide "baseline" cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiative transfer. Selected results from Phases 1 and 2 of I3RC are discussed. These are taken from five cloud fields: a 1D field of bar clouds, a 2D radar-derived field, a 3D Landsat-derived field, a stratiform cloud from the model of C. Moeng, and a convective cloud from the model of B. Stevens. Computations have been carried out for three monochromatic wavelengths (one conservative, one absorptive, and one thermal) and two solar zenith angles (0, 60 degrees).
LRAT: Lightning Radiative Transfer
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1993-01-01
In this report, we extend to cloud physics the work done for single and multiple scattering of electromagnetic waves. We consider the scattering of light, visible or infrared, by a spherical cloud represented by a statistically homogeneous ensemble of configurations of N identical spherical water droplets whose centers are uniformly distributed in its volume V. The ensemble is specified by the average number rho of scatterers in unit volume and by rho f(R) with f(R) as the distribution function for separations R of pairs. The incident light, vector-phi(sub 0) a plane electromagnetic wave with harmonic time dependence, is from outside the cloud. The propagation parameter kappa(sub 0) and the index of refraction eta(sub 0) determine physically the medium outside the distribution of scatterers. We solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of an equivalent single scatterer excited from outside illumination. A dispersion relation which determines the bulk propagation parameter K and the bulk index of refraction eta of the cloud is given in terms of the vector equivalent scattering amplitude vector-G and the dyadic scattering amplitude tilde-g of the single object in isolation. Based on this transfer model we will have the ability to consider clouds composed of inhomogeneous distribution of water and/or ice particles and we will be able to take into account particle size distributions within the cloud. We will also be able to study the effects of cloud composition (i.e., particle shape, size, composition, orientation, location) on the polarization of the single or the multiple scattered waves. Finally, this study will provide a new starting point for studying the problem of lightning radiative transfer.
The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering
Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.
2002-01-01
Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.
Transfer-printing and host-guest properties of 3D supramolecular particle structures.
Ling, Xing Yi; Phang, In Yee; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan
2009-04-01
Mechanically robust and crystalline supramolecular particle structures have been constructed by decoupling nanoparticle assembly and supramolecular glue infiltration into a sequential process. First, beta-cyclodextrin (CD)-functionalized polystyrene particles (d approximately 500 nm) were assembled on a CD-functionalized surface via convective assembly to form highly ordered, but mechanically unstable, particle crystals. Subsequently, the crystals were infiltrated by a solution of adamantyl-functionalized dendrimers, functioning as a supramolecular glue to bind neighboring particles together and to couple the entire particle crystal to the CD surface, both in a noncovalent manner. The supramolecular particle crystals are highly robust, as witnessed by their ability to withstand agitation by ultrasonication. When assembled on a poly(dimethylsiloxane) (PDMS) stamp, the dendrimer-infiltrated particle crystals could be transfer-printed onto a CD-functionalized target surface. By variation of the geometry and size of the PDMS stamps, single particle lines, interconnected particle rings, and V-shaped particle assemblies were obtained. The particle structures served as 3D receptors for the binding of (multiple) complementary guest molecules, indicating that the supramolecular host functionalities of the particle crystals were retained throughout the fabrication process. PMID:20356024
Visualization of 3D osteon morphology by synchrotron radiation micro-CT
Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G
2011-01-01
Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the
Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT
NASA Astrophysics Data System (ADS)
Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.
2014-03-01
Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.
Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion
Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael
2014-01-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.
STEMS3D: An X-ray spectral model for magnetar persistent radiations
NASA Astrophysics Data System (ADS)
Gogus, Ersin; Weng, Shan-Shan
2016-07-01
Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.
Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation
NASA Technical Reports Server (NTRS)
Patel, Z. S.; Kidane, Y. H.; Huff, J. L.
2014-01-01
In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is
Synchronous radiation sensing and 3D urban mapping for improved source identification
NASA Astrophysics Data System (ADS)
Christie, Gordon; Stiltner, L. Justin; Kochersberger, Kevin; McLean, Morgan; Czaja, Wojtek
2014-05-01
The acquisition of synchronous EO imagery and gamma radiation data in aerial overflights of an unmanned aircraft can provide valuable spatial context for radioactive source mapping. Using image-based 3D reconstruction methods, a terrain map can be generated and used to reason about more likely radiation source locations. For instance, vehicles may be likely hiding places for nuclear materials, so a source model with assigned probability is used at the vehicle to reduce the overall uncertainty in position estimation. Environment reconstructions based on EO imagery with a mapped gamma radiation overlay provide intrinsic correlations between the datasets. Using radioactive material dispersion models or point source models, the derived correlations serve to enhance coarse gamma radiation data. The use of autonomous unmanned aircraft provide a valuable tool in acquiring these data as they are capable of accurate and repeatable position control while eliminating exposure danger to the operators. In this experiment, two sources (.084 Ci 137Ce and .00048 Ci 133Ba) were distributed in a field with varying terrain and a scan was conducted using the Virginia Tech Yamaha RMAX autonomous helicopter equipped with a two-camera imaging system and a NaI scintillation-type spectrometer. Terrain reconstruction was conducted using both structure from motion (SfM) and stereo vision techniques, and radiation data synchronized to the imagery was overlaid.
Introducing the depth transfer curve for 3D capture system characterization
NASA Astrophysics Data System (ADS)
Goma, Sergio R.; Atanassov, Kalin; Ramachandra, Vikas
2011-03-01
3D technology has recently made a transition from movie theaters to consumer electronic devices such as 3D cameras and camcorders. In addition to what 2D imaging conveys, 3D content also contains information regarding the scene depth. Scene depth is simulated through the strongest brain depth cue, namely retinal disparity. This can be achieved by capturing an image by horizontally separated cameras. Objects at different depths will be projected with different horizontal displacement on the left and right camera images. These images, when fed separately to either eye, leads to retinal disparity. Since the perception of depth is the single most important 3D imaging capability, an evaluation procedure is needed to quantify the depth capture characteristics. Evaluating depth capture characteristics subjectively is a very difficult task since the intended and/or unintended side effects from 3D image fusion (depth interpretation) by the brain are not immediately perceived by the observer, nor do such effects lend themselves easily to objective quantification. Objective evaluation of 3D camera depth characteristics is an important tool that can be used for "black box" characterization of 3D cameras. In this paper we propose a methodology to evaluate the 3D cameras' depth capture capabilities.
Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance
NASA Astrophysics Data System (ADS)
Qiu, Jimmy; Hope, Andrew J.; Cho, B. C. John; Sharpe, Michael B.; Dickie, Colleen I.; DaCosta, Ralph S.; Jaffray, David A.; Weersink, Robert A.
2012-10-01
We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ˜2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue
Study of Photoionization Processes of 3d Transition Metal Compound CoCl2 Using Synchrotron Radiation
Goerguelueer, Oe.; Tutay, A.; Al-Hada, M.; Richter, T.; Zimmermann, P.; Martins, M.
2007-04-23
In this work, the photoionization processes of 3d transition metal compound CoCl2 have been investigated using monochromatized synchrotron radiation of the storage ring BESSY II and the atomic-molecular beam technique.
3D imaging of radiation damage in silicon sensor and spatial mapping of charge collection efficiency
NASA Astrophysics Data System (ADS)
Jakubek, M.; Jakubek, J.; Zemlicka, J.; Platkevic, M.; Havranek, V.; Semian, V.
2013-03-01
Radiation damage in semiconductor sensors alters the response and degrades the performance of many devices ultimately limiting their stability and lifetime. In semiconductor radiation detectors the homogeneity of charge collection becomes distorted while decreasing the overall detection efficiency. Moreover the damage can significantly increase the detector noise and degrade other electrical properties such as leakage current. In this work we present a novel method for 3D mapping of the semiconductor radiation sensor volume allowing displaying the three dimensional distribution of detector properties such as charge collection efficiency and charge diffusion rate. This technique can visualize the spatially localized changes of local detector performance after radiation damage. Sensors used were 300 μm and 1000 μm thick silicon bump-bonded to a Timepix readout chip which serves as an imaging multichannel microprobe (256 × 256 square pixels with pitch of 55 μm, i.e. all together 65 thousand channels). Per pixel energy sensitivity of the Timepix chip allows to evaluate the local charge collection efficiency and also the charge diffusion rate. In this work we implement an X-ray line scanning technique for systematic evaluation of changes in the performance of a silicon sensor intentionally damaged by energetic protons.
Analysis of the radiative lifetime of Pr{sup 3+} d-f emission
Zych, Aleksander; Lange, Matthijs de; Mello Donega, Celso de; Meijerink, Andries
2012-07-01
The radiative lifetime of excited states is governed by Fermi's Golden Rule. For many applications, the radiative decay rate is an important parameter. For example, for scintillators materials in PET scanners, a short response time is crucial and it has been realized that the d-f emission of Pr{sup 3+} is faster than for the widely applied d-f emission from Ce{sup 3+}. In this paper, the radiative decay rate of d-f emission from Pr{sup 3+} is systematically investigated in a wide variety of host lattices, including scintillators materials. The variation in the decay rate is analyzed based on Fermi's Golden Rule. The trend observed is best described using a full cavity model to correct for local-field effects and a {lambda}{sup 3} factor to account for the energy of the transition. Still, there is a considerable scatter of the experimental data around the best fit to these data. The variation is explained by uncertainties in the refractive indices and a variation in the transition dipole moment of the d-f transition for Pr{sup 3+}. Based on the results, the shortest radiative lifetime that can be achieved for Pr{sup 3+} d-f emission is predicted to be {approx}6 ns.
Radiation-induced second cancers: the impact of 3D-CRT and IMRT
NASA Technical Reports Server (NTRS)
Hall, Eric J.; Wuu, Cheng-Shie
2003-01-01
Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.
NASA Astrophysics Data System (ADS)
Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee
2012-04-01
This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could
A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath
NASA Astrophysics Data System (ADS)
Matveichev, A.; Jardy, A.; Bellot, J. P.
2016-07-01
In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.
NASA Astrophysics Data System (ADS)
Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander
2016-03-01
We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.
Radiative Transfer: Methods and Applications
NASA Astrophysics Data System (ADS)
Mayer, Bernhard; Emde, Claudia; Buras, Robert; Kylling, Arve
Solar and terrestrial radiation is the driver of atmospheric dynamics and chemistry and can be exploited by remote sensing algorithms to determine atmospheric composition. For this purpose, accurate radiative transfer models are needed. Here, a modern radiative transfer tool developed over many years at the Institute of Atmospheric Physics is explained. As an application, the remote sensing of cloud microphysics using the angular distribution of reflected solar radiance in the rainbow and backscatter glory is shown, with special emphasis on the polarization of radiation.
Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation
NASA Astrophysics Data System (ADS)
Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.
2014-03-01
Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.
New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations
NASA Astrophysics Data System (ADS)
Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter
2015-08-01
We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
3D quantification of brain microvessels exposed to heavy particle radiation
NASA Astrophysics Data System (ADS)
Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.
2009-09-01
Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.
Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark
2015-03-21
The purpose of this work was to characterize three formulations of PRESAGE(®) dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE(®) formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE(®) were irradiated to investigate possible differences in sensitivity for large and small volumes ('volume effect'). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R(2) value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE(®) formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE(®) is observed to be a useful method of 3D verification when careful consideration is
An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification
NASA Astrophysics Data System (ADS)
Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark
2015-03-01
The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given
An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification
Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark
2016-01-01
The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the
Michalski, Jeff; Winter, Kathryn; Roach, Mack; Markoe, Arnold; Sandler, Howard M.; Ryu, Janice; Parliament, Matthew; Purdy, James A.; Valicenti, Richard K.; Cox, James D.
2012-07-01
Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.
Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation
NASA Technical Reports Server (NTRS)
Syed, S. A.; James, R. H.
1989-01-01
This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.
3-D Topographic Thermal and Radiative Modeling of Ice Stability and Migration on Callisto
NASA Astrophysics Data System (ADS)
Wood, Stephen E.; Ivarson, K. L.; Danilina, I.; Griffiths, S. D.; Moore, J. M.; Howard, A. D.; Schenk, P. M.
2010-10-01
We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Callisto's landscape shows evidence of widespread erosion hypothesized by Moore et al. (1999) to result from sublimation of near-surface ice followed by mass wasting. Bright material thought to be re-deposited frost is commonly seen on upper flanks and summits of ridges, crater rims, and Callisto's ubiquitous knobs. In order to test hypotheses related to these landform and albedo patterns, we have developed a 3-D thermal model that calculates surface and subsurface temperatures for any given topographic shape, accounting for shadowing, reflected solar radiation, and thermal radiation from surrounding points. The temperatures are then used to calculate sublimation and subsurface diffusion rates for both CO2 and H2O ice. These rates are used to compute area-averaged downward vapor fluxes within ballistic molecular jump distances from vapor sources. Where net deposition is predicted, surface albedo in increased proportional to frost thickness. Where net sublimation occurs, the thickness of a dark dust lag is increased accordingly. We will present results pertaining to the stability of bright frost-covered knobs as well as observed distribution patterns of frost on the interior walls of craters. This work is supported by NASA through the Jupiter Data Analysis Program.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Combination of intensity-based image registration with 3D simulation in radiation therapy
NASA Astrophysics Data System (ADS)
Li, Pan; Malsch, Urban; Bendl, Rolf
2008-09-01
Modern techniques of radiotherapy like intensity modulated radiation therapy (IMRT) make it possible to deliver high dose to tumors of different irregular shapes at the same time sparing surrounding healthy tissue. However, internal tumor motion makes precise calculation of the delivered dose distribution challenging. This makes analysis of tumor motion necessary. One way to describe target motion is using image registration. Many registration methods have already been developed previously. However, most of them belong either to geometric approaches or to intensity approaches. Methods which take account of anatomical information and results of intensity matching can greatly improve the results of image registration. Based on this idea, a combined method of image registration followed by 3D modeling and simulation was introduced in this project. Experiments were carried out for five patients 4DCT lung datasets. In the 3D simulation, models obtained from images of end-exhalation were deformed to the state of end-inhalation. Diaphragm motions were around -25 mm in the cranial-caudal (CC) direction. To verify the quality of our new method, displacements of landmarks were calculated and compared with measurements in the CT images. Improvement of accuracy after simulations has been shown compared to the results obtained only by intensity-based image registration. The average improvement was 0.97 mm. The average Euclidean error of the combined method was around 3.77 mm. Unrealistic motions such as curl-shaped deformations in the results of image registration were corrected. The combined method required less than 30 min. Our method provides information about the deformation of the target volume, which we need for dose optimization and target definition in our planning system.
Design and production of 3D printed bolus for electron radiation therapy.
Su, Shiqin; Moran, Kathryn; Robar, James L
2014-01-01
This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) dose distributions using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity, and homogeneity within the planning target volume (PTV). The algorithm takes advantage of a commercial electron Monte Carlo dose calculation and uses the calculated result as input. Distances along ray lines from the distal side of 90% isodose line to distal surface of the PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using the coefficient of equivalent thickness method. Several regional modulation operators are applied to improve the dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms, and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity are improved compared to that with uniform bolus. For geometric phantoms with air or bone inhomogeneities, the dose homogeneity is markedly improved. The actual printed boluses conform well to the surface of complex anthropomorphic phantoms. The correspondence of the dose distribution between the calculated synthetic bolus and the actual manufactured bolus is shown. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low-cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of the prescription isodose surface and in sparing immediately adjacent normal
Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig
2015-09-01
To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management.In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ± 3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions.No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 s, respectively. Mean ± standard deviation error in predicted position was -0.3 ± 0.2 mm, -0.1 ± 0.1 mm in-plane, and 0.2 ± 0.4 mm out-of-plane with rotational gantry, 0.8 ± 0.1 mm, -0.7 ± 0.3 mm in-plane and 1.1 ± 0.1 mm out-of-plane with translational source/detector.Acquiring 3D fiducial positions from kV-DTS during fixed gantry
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
NASA Astrophysics Data System (ADS)
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy.
Thompson, Larissa; Dias, Humberto Galvão; Campos, Tarcísio Passos Ribeiro
2013-01-01
Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593
Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy
2013-01-01
Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593
Auroral resonance line radiative transfer
Gladstone, G.R. )
1992-02-01
A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.
Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki
2014-01-01
Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797
3D modelling of the colliding winds in η Carinae - evidence for radiative inhibition
NASA Astrophysics Data System (ADS)
Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.; Stevens, I. R.
2009-04-01
The X-ray emission from the supermassive star ηCar is simulated using a 3D model of the wind-wind collision. In the model the intrinsic X-ray emission is spatially extended and energy dependent. Absorption due to the unshocked stellar winds and the cooled post-shock material from the primary LBV star is calculated as the intrinsic emission is ray traced along multiple sightlines through the 3D spiral structure of the circumstellar environment. The observable emission is then compared to available X-ray data, including the light curve observed by the Rossi X-ray Timing Explorer (RXTE) and spectra observed by XMM-Newton. The orientation and eccentricity of the orbit are explored, as are the wind parameters of the stars and the nature and physics of their close approach. Our modelling supports a viewing angle with an inclination of ~=42°, consistent with the polar axis of the Homunculus nebula, and the projection of the observer's line of sight on to the orbital plane has an angle of ~=0°-30° in the prograde direction on the apastron side of the semimajor axis. However, there are significant discrepancies between the observed and model light curves and spectra through the X-ray minimum. In particular, the hard flux in our synthetic spectra is an order of magnitude greater than observed. This suggests that the hard X-ray emission near the apex of the wind-wind collision region (WCR) `switches off' from periastron until two months afterwards. Further calculations reveal that radiative inhibition significantly reduces the pre-shock velocity of the companion wind. As a consequence the hard X-ray emission is quenched, but it is unclear whether the long duration of the minimum is due solely to this mechanism alone. For instance, it is possible that the collapse of the WCR on to the surface of the companion star, which would be aided by significant inhibition of the companion wind, could cause an extended minimum as the companion wind struggles to re-establish itself as
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.
Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.
Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M
2016-02-10
Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process. PMID:26789079
High resolution 3D imaging of bump-bonds by means of synchrotron radiation computed laminography
NASA Astrophysics Data System (ADS)
Cecilia, A.; Hamann, E.; Koenig, T.; Xu, F.; Cheng, Y.; Helfen, L.; Ruat, M.; Scheel, M.; Zuber, M.; Baumbach, T.; Fauler, A.; Fiederle, M.
2013-12-01
During the flip-chip bonding process of a semiconductor sensor onto readout electronics, a formation of defects may take place, like solder joint displacements, voids, cracks, pores and bridges. This may result in blind spots on the detector, which are insensitive to photons and thus reduce the detector performance. In this work, the flip-chip interconnections of selected CdTe and GaAs Medipix detectors were investigated by synchrotron radiation computed laminography at a micrometer scale. The analysis of the volume rendering proved the presence of voids in the CdTe sensor flip-chip interconnections, with sizes between 3 μm and 9 μm. These voids can be harmful for the long term use of the device, because their presence weakens the adhesive strength between a contact and the readout electronics. Consequently, their formation needs to be avoided. The GaAs Medipix detectors investigated include two sensors that were produced with different flip-chip methods. The comparison of the 3D renderings of the bump-bond interconnections in the two GaAs sensors demonstrated the presence of a misalignment in the range of 5-12 μm between pixel passivation and bump-bonds in the detector produced with an older technique. In contrast to this, no misalignment was observed for the most recently produced detector. The only remarkable observation is the presence of ``satellites'' of solder that do not compromise the detector operation.
NASA Astrophysics Data System (ADS)
Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.
2016-02-01
Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.
Wang, Brian; Xu, X George
2008-01-01
Many expressed concerns about the potential increase in second cancer risk from the widespread shift to intensity-modulated radiation therapy (IMRT) techniques from traditional 3-D conformal radiation treatment (3D CRT). This paper describes the study on in-phantom measurements of radiation doses in organ sites away from the primary tumour target. The measurements involved a RANDO((R)) phantom and Metal Oxide Semiconductor Field Effect Transistor dosemeters for selected 3D CRT and IMRT treatment plans. Three different treatment plans, 4-field 3D CRT, 6-field 3D CRT and 7-field IMRT for the prostate, were considered in this study. Steps to reconstruct organ doses from directly measured data were also presented. The dosemeter readings showed that the doses decrease as the distances increase for all treatment plans. At 40 cm from the prostate target, doses were <1% of the therapeutic dose. At this location, however, the IMRT plan resulted in an absorbed dose from photons, that is a factor of 3-5 higher than the 3D CRT treatment plans. This increase on absorbed dose is due to the increased exposure time for delivering the IMRT plan. The total monitor unit (MU) was 2850 for the IMRT case, while the MU was 1308 and 1260 for 6-field and 4-field 3D CRT cases, respectively. Findings from this case study involving the prostate treatments agree with those from previous studies that IMRT indeed delivers higher photon doses to locations that are away from the primary target. PMID:17627959
3-D constraint effects on models for transferability of cleavage fracture toughness
Dodds, R.H. Jr.; Ruggieri, C.; Koppenhoefer, K.
1997-12-31
Since the late 1980s there has been renewed interest and progress in understanding the effects of constraint on transgranular cleavage in ferritic steels. Research efforts to characterize the complex interaction of crack tip separation processes with geometry, loading mode and material flow properties proceed along essentially two major lines of investigation: (1) multi-parameter descriptions of stationary crack-tip fields under large-scale yielding conditions, and (2) rational micromechanics models for the description of cleavage fracture which also reflect the observed scatter in the ductile-to-brittle transition (DBT) region. This article reviews the essential features of a specific example representing each approach: the J-Q extension to correlative fracture mechanics and a local approach based on the Weibull stress. Discussions focus on the growing body of 3-D numerical solutions for common fracture specimens which, in certain cases, prove significantly different from long-established plane-strain results.
Heat transfer in 3-D serpentine channels with right-angle turns
Chintada, S.; Ko, K.H.; Anand, N.K.
1999-12-01
Laminar flow and heat transfer in square serpentine channels with right-angle turns, which have applications in heat exchangers, were numerically studied. A finite volume code in FORTRAN was developed to solve this problem. For solving the flow field, a colocated-grid formulation was used, as opposed to the staggered-grid formulation, and the SIMPLE algorithm was used to link the velocity and pressure. The line-by-line method was used to solve the algebraic equations. The temperature field was solved for the uniform-wall-heat-flux boundary condition. The developed numerical code was validated by solving for fully developed flow and heat transfer in a square straight channel. The grid-independent solution was established for a reference case of serpentine channel with the highest Reynolds number. Periodically fully developed flow and heat transfer fields in serpentine channels were solved for different geometry parameters, for different Reynolds numbers, and for two different Prandtl numbers (for air and water, respectively). The enhancement of the heat transfer mechanism was explained by studying the plotted flow-field velocity vectors in different planes. The heat transfer performance of serpentine channels is better than that for straight channels for Pr = 7.0 and is worse than that for straight channels for Pr = 0.7.
Wiscombe, Warren; Marshak, Alexander; Knyazikhin, Yuri; Chiu, Christine
2007-05-04
We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.
Radiative transfer in spherical atmospheres
NASA Technical Reports Server (NTRS)
Kalkofen, W.; Wehrse, R.
1984-01-01
A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
Radiative energy transfer in disordered photonic crystals.
Erementchouk, M V; Deych, L I; Noh, H; Cao, H; Lisyansky, A A
2009-04-29
The difficulty of description of the radiative transfer in disordered photonic crystals arises from the necessity to consider on an equal footing the wave scattering by periodic modulations of the dielectric function and by its random inhomogeneities. We resolve this difficulty by approaching this problem from the standpoint of the general multiple scattering theory in media with an arbitrary regular profile of the dielectric function. We use the general asymptotic solution of the Bethe-Salpeter equation in order to show that for a sufficiently weak disorder the diffusion limit in disordered photonic crystals is presented by incoherent superpositions of the modes of the ideal structure with weights inversely proportional to the respective group velocities. The radiative transfer and the diffusion equations are derived as a relaxation of long scale deviations from this limiting distribution. In particular, it is shown that in general the diffusion is anisotropic unless the crystal has sufficiently rich symmetry, say, the square lattice in 2D or the cubic lattice in 3D. In this case, the diffusion is isotropic and only in this case can the effect of the disorder be characterized by a single mean free path depending on frequency. PMID:21825416
NASA Astrophysics Data System (ADS)
Hu, X.; Zhang, Y.
2007-05-01
The Weather Research and Forecast/Chemistry Model (WRF/Chem) that simulates chemistry simultaneously with meteorology has recently been developed for real-time forecasting by the U.S. National Center for Atmospheric Research (NCAR) and National Oceanic & Atmospheric Administration (NOAA). As one of the six air quality models, WRF/Chem with a modal aerosol module has been applied for ozone and PM2.5 ensemble forecasts over eastern North America as part of the 2004 New England Air Quality Study (NEAQS) program (NEAQS-2004). Significant differences exist in the partitioning of volatile species (e.g., ammonium and nitrate) simulated by the six models. Model biases are partially attributed to the equilibrium assumption used in the gas/particles mass transfer approach in some models. Development of a more accurate, yet computationally- efficient gas/particle mass transfer approach for three-dimensional (3-D) applications, in particular, real-time forecasting, is therefore warranted. Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been implemented into WRF/Chem (referred to as WRF/Chem-MADRID). WRF/Chem-MADRID offers three gas/particle partitioning treatments: equilibrium, kinetic, and hybrid approaches. The equilibrium approach is computationally-efficient and commonly used in 3-D air quality models but less accurate under certain conditions (e.g., in the presence of coarse, reactive particles such as PM containing sea-salts in the coastal areas). The kinetic approach is accurate but computationally-expensive, limiting its 3-D applications. The hybrid approach attempts to provide a compromise between merits and drawbacks of the two approaches by treating fine PM (typically < ~ 1 μm) with the equilibrium approach and coarse PM with the kinetic approach. A computationally-efficient kinetic gas/particle mass transfer approach in MADRID has recently been developed for 3-D applications based on an Analytical Predictor of Condensation (referred
Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing
2015-10-15
Cholesteryl ester transfer protein (CETP) inhibitors hold promise as new agents against coronary heart disease. Molecular modeling techniques such as 2D-QSAR and 3D-QSAR analysis were applied to establish models to distinguish potent and weak CETP inhibitors. 2D and 3D QSAR models-based a series of diphenylpyridylethanamine (DPPE) derivatives (newly identified as CETP inhibitors) were then performed to elucidate structural and physicochemical requirements for higher CETP inhibitory activity. The linear and spline 2D-QSAR models were developed through multiple linear regression (MLR) and support vector machine (SVM) methods. The best 2D-QSAR model obtained by SVM gave a high predictive ability (R(2)train=0.929, R(2)test=0.826, Q(2)LOO=0.780). Also, the 2D-QSAR models uncovered that SlogP_VSA0, E_sol and Vsurf_DW23 were important features in defining activity. In addition, the best 3D-QSAR model presented higher predictive ability (R(2)train=0.958, R(2)test=0.852, Q(2)LOO=0.734) based on comparative molecular field analysis (CoMFA). Meanwhile, the derived contour maps from 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving CETP inhibitory activity. Consequently, twelve newly designed DPPE derivatives were proposed to be robust and potent CETP inhibitors. Overall, these derived models may help to design novel DPPE derivatives with better CETP inhibitory activity. PMID:26346366
Alper Selver, M
2015-02-01
Intuitive and differentiating domains for transfer function (TF) specification for direct volume rendering is an important research area for producing informative and useful 3D images. One of the emerging branches of this research is the texture based transfer functions. Although several studies in two, three, and four dimensional image processing show the importance of using texture information, these studies generally focus on segmentation. However, TFs can also be built effectively using appropriate texture information. To accomplish this, methods should be developed to collect wide variety of shape, orientation, and texture of biological tissues and organs. In this study, volumetric data (i.e., domain of a TF) is enhanced using brushlet expansion, which represents both low and high frequency textured structures at different quadrants in transform domain. Three methods (i.e., expert based manual, atlas and machine learning based automatic) are proposed for selection of the quadrants. Non-linear manipulation of the complex brushlet coefficients is also used prior to the tiling of selected quadrants and reconstruction of the volume. Applications to abdominal data sets acquired with CT, MR, and PET show that the proposed volume enhancement effectively improves the quality of 3D rendering using well-known TF specification techniques. PMID:26357028
SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans
Clemente, F; Perez, C
2014-06-01
Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.
Filippi, Andrea Riccardo; Ciammella, Patrizia; Piva, Cristina; Ragona, Riccardo; Botto, Barbara; Gavarotti, Paolo; Merli, Francesco; Vitolo, Umberto; Iotti, Cinzia; Ricardi, Umberto
2014-06-01
Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete
Jenkins, C; Xing, L
2015-06-15
Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.
Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough
Energy Science and Technology Software Center (ESTSC)
1994-01-21
Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less
Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo
2015-01-01
The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231
Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo
2015-06-01
To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302
NASA Astrophysics Data System (ADS)
Yang, Yuekui; di Girolamo, Larry
2008-02-01
We present the first examination on how 3-D radiative transfer impacts satellite cloud detection that uses a single visible channel threshold. The 3-D radiative transfer through predefined heterogeneous cloud fields embedded in a range of horizontally homogeneous aerosol fields have been carried out to generate synthetic nadir-viewing satellite images at a wavelength of 0.67 μm. The finest spatial resolution of the cloud field is 30 m. We show that 3-D radiative effects cause significant histogram overlap between the radiance distribution of clear and cloudy pixels, the degree to which depends on many factors (resolution, solar zenith angle, surface reflectance, aerosol optical depth (AOD), cloud top variability, etc.). This overlap precludes the existence of a threshold that can correctly separate all clear pixels from cloudy pixels. The region of clear/cloud radiance overlap includes moderately large (up to 5 in our simulations) cloud optical depths. Purpose-driven cloud masks, defined by different thresholds, are applied to the simulated images to examine their impact on retrieving cloud fraction and AOD. Large (up to 100s of %) systematic errors were observed that depended on the type of cloud mask and the factors that influence the clear/cloud radiance overlap, with a strong dependence on solar zenith angle. Different strategies in computing domain-averaged AOD were performed showing that the domain-averaged BRF from all clear pixels produced the smallest AOD biases with the weakest (but still large) dependence on solar zenith angle. The large dependence of the bias on solar zenith angle has serious implications for climate research that uses satellite cloud and aerosol products.
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
NASA Astrophysics Data System (ADS)
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation
Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José
2013-01-01
In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908
Amundson, Sally A.
2013-06-12
We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.
Grant L. Hawkes; James E. O'Brien; Greg Tao
2011-11-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal
LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.
2013-12-01
Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.
3D Space Radiation Transport in a Shielded ICRU Tissue Sphere
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2014-01-01
A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.
3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim
2007-01-01
To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.
NASA Astrophysics Data System (ADS)
Bleuet, P.; Audoit, G.; Bertheau, J.; Charbonnier, J.; Cloetens, P.; Djomeni Weleguela, M. L.; Ferreira Sanchez, D.; Hodaj, F.; Gergaud, P.; Lorut, F.; Micha, J.-S.; Thuaire, A.; Ulrich, O.
2014-09-01
In microelectronics, more and more attention is paid to the physical characterization of interconnections, to get a better understanding of reliability issues like voiding, cracking and performance degradation. Those interconnections have a 3D architecture with features in the deep sub-micrometer range, requiring a probe with high spatial resolution and high penetration depth. Third generation synchrotron sources are the ideal candidate for that, and we show hereafter the potential of synchrotron-based hard x-ray nanotomography to investigate the morphology of through silicon vias (TSVs) and copper pillars, using projection (holotomography) and scanning (fluorescence) 3D imaging, based on a series of experiments performed at the ESRF. In particular, we highlight the benefits of the method to characterize voids, but also the distribution of intermetallics in copper pillars, which play a critical role for the device reliability. Beyond morphological imaging, an original acquisition scheme based on scanning Laue tomography is introduced. It consists in performing a raster scan (z,θ) of a sample illuminated by a synchrotron polychromatic beam while recording diffraction data. After processing and image reconstruction, it allows for 3D reconstruction of grain orientation, strain and stress in copper TSV and also in the surrounding Si matrix.
Radiative transfer in dusty nebulae
NASA Technical Reports Server (NTRS)
Dana, R. A.
1977-01-01
The effects of dust scattering on observable optical and infrared parameters, and the accuracy of approximate solutions were examined. The equation of radiative transfer in a static and homogeneous, but not necessarily uniform, distribution gas and dust around a central empty core with a point source of energy at its center was solved. The dust properties were characterized by a phenomenological extinction cross section, albedo and parameters describing the anisotropy of dust scattering. For ultraviolet photons, ionization equilibrium equations for the gas were solved, and for infrared photons a self-consistent dust temperature was calculated. Ray tracing was used to solve for the angular dependence of the intensity.
NASA Astrophysics Data System (ADS)
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2016-03-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo
2015-08-14
Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release. PMID:26138931
González, José; Molina, Rafael A
2016-04-15
We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface. PMID:27127980
NASA Astrophysics Data System (ADS)
González, José; Molina, Rafael A.
2016-04-01
We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface.
Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses
2011-02-04
Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this
Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.
Krstajić, Nikola; Doran, Simon J
2006-04-21
Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry. PMID:16585845
3D printer generated thorax phantom with mobile tumor for radiation dosimetry.
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
NASA Astrophysics Data System (ADS)
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-15
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
2013-01-01
This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364
Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation.
Sturm, F P; Wright, T W; Ray, D; Zalyubovskaya, I; Shivaram, N; Slaughter, D S; Ranitovic, P; Belkacem, A; Weber, Th
2016-06-01
We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system. PMID:27370429
Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation
NASA Astrophysics Data System (ADS)
Sturm, F. P.; Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Ranitovic, P.; Belkacem, A.; Weber, Th.
2016-06-01
We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.
Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!
ERIC Educational Resources Information Center
Waxman, Michael A.
2010-01-01
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…
Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.
Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M
2016-07-01
This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031
NASA Astrophysics Data System (ADS)
Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.
2009-06-01
3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.
Radiative Transfer in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.
2008-09-01
Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust
Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)
2001-01-01
When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.
3D sensitive voxel detector of ionizing radiation based on Timepix device
NASA Astrophysics Data System (ADS)
Soukup, P.; Jakubek, J.; Vykydal, Z.
2011-01-01
Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng
2005-01-01
We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into
NASA Astrophysics Data System (ADS)
Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.
2008-12-01
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
NASA Astrophysics Data System (ADS)
Godoy, William F.; DesJardin, Paul E.
2010-05-01
The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.
NASA Astrophysics Data System (ADS)
Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Huang, Nancy
2006-05-01
The Florida Institute for Nuclear Detection and Security (FINDS) is currently working on the design and evaluation of a prototype neutron detector array that may be used for parcel screening systems and homeland security applications. In order to maximize neutron detector response over a wide spectrum of energies, moderator materials of different compositions and amounts are required, and can be optimized through 3-D discrete ordinates and Monte Carlo model simulations verified through measurement. Pu-Be sources can be used as didactic source materials to augment the design, optimization, and construction of detector arrays with proper characterization via transport analysis. To perform the assessments of the Pu-Be Source Capsule, 3-D radiation transport computations are used, including Monte Carlo (MCNP5) and deterministic (PENTRAN) methodologies. In establishing source geometry, we based our model on available source schematic data. Because both the MCNP5 and PENTRAN codes begin with source neutrons, exothermic (α,n) reactions are modeled using the SCALE5 code from ORNL to define the energy spectrum and the decay of the source. We combined our computational results with experimental data to fully validate our computational schemes, tools and models. Results from our computational models will then be used with experiment to generate a mosaic of the radiation spectrum. Finally, we discuss follow-up studies that highlight response optimization efforts in designing, building, and testing an array of detectors with varying moderators/thicknesses tagged to specific responses predicted using 3-D radiation transport models to augment special nuclear materials detection.
Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!
NASA Astrophysics Data System (ADS)
Waxman, Michael A.
2010-01-01
Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as space sailing1,2 or optical "tweezers."2 There are, however, relatively few problems that are available as end-of-the-chapter exercises. Below I present a problem I composed that I assign to my students in class and that facilitates a lively class discussion. This problem is somewhat reminiscent of the setting used by P. N. Lebedev in his historic experiments on proving the existence of radiation pressure.
A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.
Shen, C; Xin, F X; Lu, T J
2014-05-01
A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures. PMID:24815294
Towards real-time 2D/3D registration for organ motion monitoring in image-guided radiation therapy
NASA Astrophysics Data System (ADS)
Gendrin, C.; Spoerk, J.; Bloch, C.; Pawiro, S. A.; Weber, C.; Figl, M.; Markelj, P.; Pernus, F.; Georg, D.; Bergmann, H.; Birkfellner, W.
2010-02-01
Nowadays, radiation therapy systems incorporate kV imaging units which allow for the real-time acquisition of intra-fractional X-ray images of the patient with high details and contrast. An application of this technology is tumor motion monitoring during irradiation. For tumor tracking, implanted markers or position sensors are used which requires an intervention. 2D/3D intensity based registration is an alternative, non-invasive method but the procedure must be accelerate to the update rate of the device, which lies in the range of 5 Hz. In this paper we investigate fast CT to a single kV X-ray 2D/3D image registration using a new porcine reference phantom with seven implanted fiducial markers. Several parameters influencing the speed and accuracy of the registrations are investigated. First, four intensity based merit functions, namely Cross-Correlation, Rank Correlation, Mutual Information and Correlation Ratio, are compared. Secondly, wobbled splatting and ray casting rendering techniques are implemented on the GPU and the influence of each algorithm on the performance of 2D/3D registration is evaluated. Rendering times for a single DRR of 20 ms were achieved. Different thresholds of the CT volume were also examined for rendering to find the setting that achieves the best possible correspondence with the X-ray images. Fast registrations below 4 s became possible with an inplane accuracy down to 0.8 mm.
Radiative 3D MHD simulations of the spontaneous small-scale eruptions in the solar atmosphere
NASA Astrophysics Data System (ADS)
Kitiashvili, Irina N.
2015-08-01
Studying non-linear turbulent dynamics of the solar atmosphere is important for understanding mechanism of the solar and stellar brightness variations. High-resolution observations of the quiet Sun reveal ubiquitous distributions of high-speed jets, which are transport mass and energy into the solar corona and feeding the solar wind. However, the origin of these eruption events is still unknown. Using 3D realistic MHD numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes and shows that the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers. I will discuss about properties of these eruptions, their effects on brightness and spectral variations and comparison with observations.
The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung
2015-11-01
NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.
BART: Bayesian Atmospheric Radiative Transfer fitting code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph; Rojo, Patricio; Lust, Nate; Bowman, Oliver; Stemm, Madison; Foster, Andrew; Loredo, Thomas J.; Fortney, Jonathan; Madhusudhan, Nikku
2016-08-01
BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.
Modelling of Radiation Heat Transfer in Reacting Hot Gas Flows
NASA Astrophysics Data System (ADS)
Thellmann, A.; Mundt, C.
2009-01-01
In this work the interaction between a turbulent flow including chemical reactions and radiation transport is investigated. As a first step, the state-of-the art radiation models P1 based on the moment method and Discrete Transfer Model (DTM) based on the discrete ordinate method are used in conjunction with the CFD code ANSYS CFX. The absorbing and emitting medium (water vapor) is modeled by Weighted Sum of Gray Gases. For the chemical reactions the standard Eddy dissipation model combined with the two equation turbulence model k-epsilon is employed. A demonstration experiment is identified which delivers temperature distribution, species concentration and radiative intensity distribution in the investigated combustion enclosure. The simulation results are compared with the experiment and reveals that the P1 model predicts the location of the maximal radiation intensity unphysically. On the other hand the DTM model does better but over predicts the maximum value of the radiation intensity. This radiation sensitivity study is a first step on the way to identify a suitable radiation transport and spectral model in order to implement both in an existing 3D Navier-Stokes Code. Including radiation heat transfer we intend to investigate the influence on the overall energy balance in a hydrogen/oxygen rocket combustion chamber.
3D measurement of the radiation distribution in a water phantom in a hadron therapy beam
NASA Astrophysics Data System (ADS)
Opalka, L.; Granja, C.; Hartmann, B.; Jakubek, J.; Jaekel, O.; Martisikova, M.; Pospisil, S.; Solc, J.
2012-01-01
Hadron therapy is a highly precise radio-therapeutic method with many advantages especially in cases when the tumour is close to sensitive organs where standard treatments cannot be used. For reliable treatment planning it is necessary to have calculation tools for maximization of the dose delivered to the targeted tissue and minimization of the dose outside of it. While the main physical processes in material irradiated by hadron beams are known, in reality the processes involved are complex so that analytical computations are impossible. Thus, the planning tools to incorporate simplified models and numerical approximations and an experimental method for high precision verification of the models within phantoms is desired. The development of sensitive, high resolution and online methods for measurement of the radiation environment inside of the irradiated object is the aim of this work. Such measurements are made possible by the resolving power of the state-of-the-art pixel detector Timepix. This quantum counting imaging device is able to record the characteristic shapes of the particle traces including their energies deposited in the detector. All these data recorded for each event allow to estimate the particle type, its energy and direction of flight. Event-by-event analysis is done using pattern recognition of the characteristic traces. The objective of the experiment is the detection and characterization of secondary radiation generated by the primary therapeutic beams in tissue equivalent material (water). Measurements were performed inside of a water phantom irradiated by a carbon beam at the Heidelberg Ion-Beam Therapy Center (HIT).
NASA Astrophysics Data System (ADS)
González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.
2016-06-01
We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.
Johnson, Timothy D; Taylor, Jeremy M G; Ten Haken, Randall K; Eisbruch, Avraham
2005-10-01
A goal of cancer radiation therapy is to deliver maximum dose to the target tumor while minimizing complications due to irradiation of critical organs. Technological advances in 3D conformal radiation therapy has allowed great strides in realizing this goal; however, complications may still arise. Critical organs may be adjacent to tumors or in the path of the radiation beam. Several mathematical models have been proposed that describe the relationship between dose and observed functional complication; however, only a few published studies have successfully fit these models to data using modern statistical methods which make efficient use of the data. One complication following radiation therapy of head and neck cancers is the patient's inability to produce saliva. Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries and is, in general, unpleasant and an annoyance. We present a dose-damage-injury model that subsumes any of the various mathematical models relating dose to damage. The model is a nonlinear, longitudinal mixed effects model where the outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a gamma distribution whose mean is a function of time and dose. Bayesian methods are used to estimate the relationship between dose delivered to the parotid glands and the observational outcome-saliva flow rate. A summary measure of the dose-damage relationship is modeled and assessed by a Bayesian chi(2) test for goodness-of-fit. PMID:15917377
3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources
NASA Astrophysics Data System (ADS)
Chael, E. P.; Aldridge, D. F.; Jensen, R. P.
2013-12-01
Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture
Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.
2009-06-01
Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.
Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.
2014-08-15
Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.
Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.
2009-10-15
Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.
Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Søren M.
2011-01-01
Purpose To model the possible interaction between cytotoxic chemotherapy and radiation dose distribution with respect to the risk of radiation pneumonitis (RP). Methods and materials Eighteen non-small cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for this modeling study. Three treatment plans were considered in the study: (1) the delivered tomotherapy plans; (2) a 3D conformal radiotherapy (3D-CRT) plan; and (3) a fixed field intensity modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for this study. Plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose (CERD) added to all voxels of the organ at risk. Risk of radiation pneumonitis was estimated for all plans using the Lyman and the Critical Volume models. Results For radiation therapy alone, the Critical Volume model predicts that the two IMRT plans are associated with a lower risk of RP than the 3D-CRT plan. However, when the CERD exceeds a certain threshold, the RP risk after IMRT is higher than after 3D-CRT. This threshold dose is in the range estimated from clinical chemo-radiation data sets. Conclusions Cytotoxic chemotherapy may affect the relative merit of competing radiation therapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and radiation dose distribution in clinical settings. PMID:21477946
Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko
2015-01-01
Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866
Assoufid, L.; Bray, M.; Qian, J.; Shu, D.
2002-09-12
Stitching interferometry, using small-aperture, high-resolution, phase-measuring interferometry, has been proposed for quite some time now as a metrology technique to obtain 3-dimensional profiles of surfaces of oversized optical components and substrates. The aim of this work is to apply this method to the specific case of long grazing-incidence x-ray mirrors, such as those used in beamlines at synchrotron radiation facilities around the world. Both fabrication and characterization of these mirrors would greatly benefit from this technique because it offers the potential for providing measurements with accuracy and resolution better than those obtained using existing noncontact laser profilers, such as the long trace profiler (LTP). Measurement data can be used as feedback for computer-controlled fabrication processes to correct for possible topography errors. The data can also be used for simulating and predicting mirror performance under realistic conditions. A semiautomated stitching system was built and tested at the X-ray Optics Metrology Laboratory of the Advanced Photon Source at Argonne National Laboratory. The initial objective was to achieve a measurement sensitivity on the order of 1 {micro}rad rms. Preliminary tests on a 1 m-long x-ray mirror showed system repeatability of less than 0.6 {micro}rad rms. This value is comparable to that of a conventional LTP. The measurement accuracy was mostly affected by environmental perturbations and system calibration effects. With a fully automated and improved system (to be built in the near future), we expect to achieve measurement sensitivity on the order of 0.0 {micro}rad rms or better. In this paper, after a brief review of basic principles and general technical difficulties and challenges of the stitching technique, a detailed description of the measurement setup is given and preliminary results obtained with it are analyzed and discussed.
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-01-01
Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831
NASA Astrophysics Data System (ADS)
Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.
2013-02-01
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Evolution of M82-like starburst winds revisited: 3D radiative cooling hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Melioli, C.; de Gouveia Dal Pino, E. M.; Geraissate, F. G.
2013-04-01
In this study we present three-dimensional radiative cooling hydrodynamical simulations of galactic winds generated particularly in M82-like starburst galaxies. We have considered intermittent winds induced by supernova (SN) explosions within super star clusters randomly distributed (in space and time) in the central region of the galaxy (within a radius of R = 150 pc) and were able to reproduce the observed M82 wind conditions with its complex morphological outflow structure. We have found that the environmental conditions in the disc in the nearly recent past are crucial to determine whether the wind will develop a large-scale rich filamentary structure, as in M82 wind, or not. If a sufficiently large number of super stellar clusters are built up in a starburst mainly over a period of a few million years, then the simulations reproduce the multiphase gas observed in M82-like winds, i.e. with filaments of sizes about 20-300 pc, velocities of ˜200-500 km s-1, densities in the range 10-1-10 cm-3, embedded in a hot, low-density gas with a density smaller than 10-2 cm-3 and a velocity of ˜2000 km s-1. Otherwise, a `superbubble-like' wind develops, with very poor or no cold filamentary structures. Also, the numerical evolution of the SN ejecta has allowed us to obtain the abundance distribution over the first ˜3 kpc extension of the wind and we have found that the SN explosions change significantly the metallicity only of the hot, low-density wind component for which we obtained abundances ˜5-10 Z⊙ in fair consistency with the observations. Moreover, we have found that the SN-driven wind transports to outside the disc large amounts of energy, momentum and gas, but the more massive high-density component reaches only intermediate altitudes smaller than 1.5 kpc. Therefore, no significant amounts of gas mass are lost to the intergalactic medium and the mass evolution of the galaxy is not much affected by the starburst events occurring in the nuclear region.
Radiative heat transfer in porous uranium dioxide
Hayes, S.L.
1992-12-01
Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.
Three Dimensional Radiative Transfer In Tropical Deep Convective Clouds.
NASA Astrophysics Data System (ADS)
di Giuseppe, F.
In this study the focus is on the interaction between short-wave radiation with a field of tropical deep convective events generated using a 3D cloud resolving model (CRM) to assess the significance of 3D radiative transport (3DRT). It is not currently un- derstood what magnitude of error is involved when a two stream approximation is used to describe the radiative transfer through such a cloud field. It seems likely that deep convective clouds could be the most complex to represent, and that the error in neglecting horizontal transport could be relevant in these cases. The field here con- sidered has an extention of roughly 90x90 km, approximately equivalent to the grid box dimension of many global models. The 3DRT results are compared both with the calculations obtained by an Independent Pixel Approximation (IPA) approch and by the Plane Parallel radiative scheme (PP) implemented in ECMWF's Forecast model. The differences between the three calculations are used to assess both problems in current GCM's representation of radiative heating and inaccuracies in the dynamical response of CRM simulations due to the Independent Column Approximation (ICA). The understanding of the mechanisms involved in the main 3DRT/1D differences is the starting point for the future attempt to develop a parameterization procedure.
NASA Astrophysics Data System (ADS)
Sultan, D. M. S.; Mendicino, R.; Boscardin, M.; Ronchin, S.; Zorzi, N.; Dalla Betta, G.-F.
2015-12-01
Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades.
Mitchell, Tracy; Truong, Pauline T.; Salter, Lee; Graham, Cathy; Gaffney, Helene; Beckham, Wayne; Olivotto, Ivo A.
2011-04-01
In trials of 3D conformal external beam partial breast radiotherapy (PBRT), the dosimetrist must balance the priorities of achieving high conformity to the target versus minimizing low-dose exposure to the normal structures. This study highlights the caveat that in the absence of a low-dose lung restriction, the use of relatively en-face fields may meet trial-defined requirements but expose the ipsilateral lung to unnecessary low-dose radiation. Adding a low-dose restriction that {<=}20% of the ipsilateral lung should receive 10% of the prescribed dose resulted in successful plans in 88% of cases. This low-dose lung limit should be used in PBRT planning.
3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases
NASA Astrophysics Data System (ADS)
Klahr, H.; Kley, W.
2006-01-01
We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure-supported bubble around the planet with a pressure scale height of H/R ≈ 0.5 rather than a thin Keplerian circumplanetary accretion disk.
Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping
2015-01-01
Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion
Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki
2009-10-01
Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.
Radiative transfer of visible radiation in turbid atmosphere
NASA Technical Reports Server (NTRS)
Yamamoto, G.; Tanaka, M.
1974-01-01
Methods are presented for solving radiative transfer problems; they include the doubling method and the closely related matrix method, iterative method, Chandrasekhar's method of discrete ordinates, and Monte Carlo method. To consider radiation transport through turbid atmosphere, an atmospheric model was developed characterizing aerosols by parameters. Intensity and polarization of radiation in turbid atmospheres is discussed, as well as lower atmospheric heating due to solar radiation absorption by aerosols.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy
Su, Shiqin; Moran, Kathryn; Robar, James L.
2014-08-15
This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.
Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael
2013-01-01
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334
Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael
2013-01-01
Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334
Radiation heat transfer shapefactors for combustion systems
NASA Technical Reports Server (NTRS)
Emery, A. F.; Johansson, O.; Abrous, A.
1987-01-01
The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.
Radiative Transfer In Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Beloborodov, Andrei
We propose to develop state-of-the-art numerical tools for radiative transfer calculations in gamma-ray bursts (GRBs). We will investigate two problems: (1) Production and heating of photons at the early (opaque) stage of the explosion, which controls the brightness and spectral shape of the jet photospheric emission. (2) Transfer of GRB radiation through the external blast wave. Our recent results suggest that this transfer generates the GeV flash observed in GRBs, providing key information on the explosion and its progenitor. We will test our models against observations.
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer
NASA Astrophysics Data System (ADS)
Altay, Gabriel; Croft, Rupert A. C.; Pelupessy, Inti
2011-03-01
SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.
Ehler, E; Sterling, D; Higgins, P
2015-06-15
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.
Discrete Space Theory of Radiative Transfer: Application
NASA Astrophysics Data System (ADS)
Rao, M. Srinivasa
2010-06-01
The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.
Discrete Space Theory of Radiative Transfer: Application
NASA Astrophysics Data System (ADS)
Rao, M. Srinivasa
The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.
Spectrally Invariant Approximation within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Nonaxisymmetric radiative transfer in cylindrical enclosures
Moder, J.P.; Lee, H.S.; Chai, J.C.; Parthasarathy, G.; Patankar, S.V.
1996-12-31
A finite-volume method for radiative transfer in cylindrical enclosures is presented. Angular redistribution terms in the equation of transfer are avoided by defining radiation directions in terms of angular coordinates measured with respect to Cartesian base vectors; this definition of radiation directions can result in control angles which overlap control-volume faces, depending on the type of spatial and angular grids used in the azimuthal direction. A simple treatment for such control-angle overlaps is presented which is also applicable to nonorthogonal curvilinear spatial-coordinates. A comparison of the present procedure with other similar methods is given. Solutions are presented for axisymmetric transfer through a cylinder and nonaxisymmetric transfer through two- and three-dimensional annular sectors. Results show that the procedure produces reasonable solutions for transparent and participating media in axisymmetric and nonaxisymmetric cylindrical enclosures.
Shapiro, A.B.
1983-08-01
The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.
Transient radiative transfer through scattering absorbing media
Mitra, K.; Kumar, S.
1996-12-31
This paper outlines the formulation of the different methods for determining transient radiative transfer through scattering absorbing media. A boundary driven radiative problem is considered in a one-dimensional plane-parallel slab. The different methods of solving the transient radiative transfer equation include the P{sub 1}, P{sub 3}, and P{sub 5} approximations, two-flux method, and eight, twelve and sixteen discrete ordinates methods. In addition, the general transient radiative transfer equation is also solved by direct numerical integration without any simplifying assumptions. Different orders of approximation for the phase function are considered as is a parametric analysis of the different parameters such as the scattering albedo and optical depth is performed. The propagation speed obtained and the magnitude of the transmitted and back-scattered fluxes for different models obtained are a function of the approximation used to represent the intensity distribution.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832
Pannala, S; D'Azevedo, E; Zacharia, T
2002-02-26
The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of
Session on modeling of radiative transfer processes
NASA Technical Reports Server (NTRS)
Flatau, Piotr
1993-01-01
The session on modeling of radiative transfer processes is reviewed. Six critical issues surfaced in the discussion concerning scale-interactive radiative processes relevent to the mesoscale convective systems (MCS's). These issues are the need to expand basic knowledge of how MCS's influence climate through extensive cloud shields and increased humidity in the upper troposphere; to improve radiation parameterizations used in mesoscale and General Circulation Model (GCM) models; to improve our basic understanding of the influence of radiation on MCS dynamics due to diabatic heating, production of condensate, and vertical and horizontal heat fluxes; to quantify our understanding of radiative impacts of MCS's on the surface and free atmosphere energy budgets; to quantify and identify radiative and microphysical processes important in the evolution of MCS's; and to improve the capability to remotely sense MCS radiative properties from space and ground-based systems.
NASA Astrophysics Data System (ADS)
Sen, K. K., Wilson, S. J.
The advancement of observational techniques over the years has led to the discovery of a large number of stars exhibiting complex spectral structures, thus necessitating the search for new techniques and methods to study radiative transfer in such stars with moving envelopes. This led to the introduction of the concept of "photon escape probability" and the wisdom of expressing the transfer equations in "comoving frames" (CMF). Radiative transfer problems in spherically moving media form a branch of mathematical physics which uses mathematics of a very distinctive kind. Radiative Transfer in Moving Media records the basic mathematical methodologies, both analytical and numerical, developed for solving radiation transfer problems in spherically symmetric moving media, in the consideration of macroscopic velocity fields only. Part I contains the basic notions of radiation-matter interaction in participating media and constructs the relevant transfer equations to be solved in the subsequent chapters. Part II considers the basic mathematical methods for solving the transfer problems in extensive moving atmospheres when it is observed in the lab frame. Part III introduces the analytical and numerical methods for solving radiative transfer problems in spherically symmetric moving atmospheres when expressed in the comoving frame. This book is addressed to graduate students and researchers in Astrophysics, in particular to those studying radiative transfer in stellar atmospheres.
Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan
2016-01-01
Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
Line formation in accretion disks. 3D comoving frame calculations
NASA Astrophysics Data System (ADS)
Papkalla, R.
1994-10-01
The 3D radiative transfer equation is written in O(nu/c) in the comoving frame and solved by a short characteristics method for a two-level atom with complete redistribution. An Approximate-LAMBDA operator and various other acceleration techniques are applied to improve the rate of convergence. Line profiles and source functions are calculated for accretion disk models of cataclysmic variables (CV) and active galactic nuclei (AGN) homogeneous in density and temperature. We find that the velocity gradient in the disks makes it necessary for line transfer problems to use the full 3D radiative transfer equation.
Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap
NASA Astrophysics Data System (ADS)
Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant
2016-08-01
We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.
Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose
NASA Astrophysics Data System (ADS)
Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu
2012-12-01
A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the
Radiation-induced hydrogen transfer in metals
NASA Astrophysics Data System (ADS)
Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.
2015-11-01
The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.
Three-dimensional radiative transfer on a massively parallel computer
NASA Astrophysics Data System (ADS)
Vath, H. M.
1994-04-01
We perform 3D radiative transfer calculations in non-local thermodynamic equilibrium (NLTE) in the simple two-level atom approximation on the Mas-Par MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. On such a machine, all processors execute the same command at a given time, but on different data. To make radiative transfer calculations efficient, we must re-consider the numerical methods and storage of data. To solve the transfer equation, we adopt the short characteristic method and examine different acceleration methods to obtain the source function. We use the ALI method and test local and non-local operators. Furthermore, we compare the Ng and the orthomin methods of acceleration. We also investigate the use of multi-grid methods to get fast solutions for the NLTE case. In order to test these numerical methods, we apply them to two problems with and without periodic boundary conditions.
NASA Astrophysics Data System (ADS)
Li, Zheng
2011-12-01
A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ("standard") 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name "Independent Coaxial Detector Array", or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment
2-DUST: Dust radiative transfer code
NASA Astrophysics Data System (ADS)
Ueta, Toshiya; Meixner, Margaret
2016-04-01
2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.
Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni
2013-07-01
Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.
NASA Astrophysics Data System (ADS)
Tao, W. Q.; Cheng, Y. P.; Lee, T. S.
2007-11-01
In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.
THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS
Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.
2013-08-15
We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.
Jeong, J.Y.; Ryou, H.S.
1997-03-01
Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.
Fitzek, M.; Pardo, F.S.; Busierre, M.
1995-12-31
Malignant gliomas present one of the most difficult challenges to definitive radiation therapy, not only with respect to local control, but also with respect to clinical functional status. While tumor target volume definitions for malignant gliomas are often based on CT and conventional MRI, the functional imaging modalities, echo planar rCBV (regional cerebral blood volume mapping) and 18F-fluorodeoxyglucose PET, are more sensitive modalities for the detection of neovascularization, perhaps one of the earliest signs of glial tumor initiation and progression. In order to address the clinical utility of functional imaging in radiation therapy 3-D treatment planning, we compared tumor target volume definitions and overall dosimetry in patients either undergoing co-registration of conventional Gadolinium-enhanced MRI, or co-registration of functional imaging modalities, prior to radiation therapy 3-D treatment planning.
NASA Technical Reports Server (NTRS)
Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.
2011-01-01
Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would
Radiative Transfer, Black Hole Growth, AGN Feedback in Galaxies
NASA Astrophysics Data System (ADS)
Novak, Gregory
2013-01-01
We have performed 3D hydrodynamic simulations of black hole fueling and AGN feedback using a novel method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method provides a solution to the radiative transfer equation and hence computes forces on the gas self-consistently by first solving for the radiation field taking into account radiation sources, absorption, and scattering. The algorithm gives the correct behavior in all of the relevant limits (dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to UV/optical; optically thick to IR) and reasonably interpolates between the limits when necessary. The simulations allow us to study gas flows and feedback processes over length scales from ~1 pc to ~100 kpc. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ULIRGs with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation.
NASA Astrophysics Data System (ADS)
Lin, Chia-Wen; Jang, Jiin-Yuh
2005-05-01
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.
Infrared radiative energy transfer in gaseous systems
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N.
1991-01-01
Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.
Three-Dimensional Radiative Transfer on a Massively Parallel Computer.
NASA Astrophysics Data System (ADS)
Vath, Horst Michael
1994-01-01
We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three -dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ~10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the
RRTM: A rapid radiative transfer model
Mlawer, E.J.; Taubman, S.J.; Clough, S.A.
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
Modeling of Radiative Transfer in Protostellar Disks
NASA Technical Reports Server (NTRS)
VonAllmen, Paul; Turner, Neal
2007-01-01
This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.
Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J
2014-06-01
Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.
Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.
2011-01-01
We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.
Analytical solution of beam spread function for ocean light radiative transfer.
Xu, Zao; Yue, Dick K P
2015-07-13
We develop a new method to analytically obtain the beam spread function (BSF) for light radiative transfer in oceanic environments. The BSF, which is defined as the lateral distribution of the (scalar) irradiance with increasing depth in response to a uni-directional beam emanating from a point source in an infinite ocean, must in general be obtained by solving the three-dimensional (3D) radiative transfer equation (RTE). By taking advantage of the highly forward-peaked scattering property of the ocean particles, we assume, for a narrow beam source, the dependence of radiance on polar angle and azimuthal angle is deliberately separated; only single scattering takes place in the azimuthal direction while multiple scattering still occurs in the polar direction. This assumption enables us to reduce the five-variable 3D RTE to a three-variable two-dimensional (2D) RTE. With this simplification, we apply Fourier spectral method to both spatial and angular variables so that we are able to analytically solve the 2D RTE and obtain the 2D BSF accordingly. Using the relations between 2D and 3D solutions acquired during the process of simplification, we are able to obtain the 3D BSF in explicit form. The 2D and 3D analytical solutions are validated by comparing with Monte Carlo radiative transfer simulations. The 2D analytical BSF agrees excellently with the Monte Carlo result. Despite assumptions of axial symmetry and spike-like azimuthal profile of the radiance in deriving the 3D BSF, the comparisons to numerical simulations are very satisfactory especially for limited optical depths (< O(5)) for single scattering albedo values typical in the ocean. The explicit form of the analytical BSF and the significant gain in computational efficiency (several orders higher) relative to RTE simulations make many forward and inverse problems in ocean optics practical for routine applications. PMID:26191856
Radiative transfer in realistic planetary atmospheres. [bibliographies
NASA Technical Reports Server (NTRS)
Plass, G. N.; Kattawar, G. W.
1982-01-01
Some 40 publications that appeared in scientific journals from 1973 to 1981 as well as 45 scientific reports issued during the grant period are listed by title. Topics cover the development of a matrix operator theory of radiative transfer which made possible the exact model calculations of the radiance as a function of height in planetary atmospheres; calculation of the Mie phase matrix for various types of particles as well as for radiance and polarization in planetary atmospheres; analysis of high dispersion spectroscopic observations of Venus; calculation of curves of growth for Venus; the development of a theory for calculating radiative transfer in spherical shell atmospheres; investigations of zonal winds on Venus; and examination of Rayleigh scattering.
Introductory Tools for Radiative Transfer Models
NASA Astrophysics Data System (ADS)
Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.
2006-12-01
Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.
ASIMUT on line radiative transfer code
NASA Astrophysics Data System (ADS)
Vandaele, A. C.; Neary, L.; Robert, S.; Letocart, V.; Giuranna, M.; Kasaba, Y.
2015-10-01
The CROSS DRIVE project aims to develop an innovative collaborative workspace infrastructure for space missions that will allow distributed scientific and engineering teams to collectively analyse and interpret scientific data as well as execute operations of planetary spacecraft. ASIMUT will be one of the tools that will be made available to the users. Here we describe this radiative transfer code and how it will be integrated into the virtual environment developed within CROSS DRIVE.
Enhancing radiative energy transfer through thermal extraction
NASA Astrophysics Data System (ADS)
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal
NASA Astrophysics Data System (ADS)
Alqathami, M.; Blencowe, A.; Yeo, U. J.; Franich, R.; Doran, S.; Qiao, G.; Geso, M.
2013-06-01
The aim of this study is to present the first experimental validation and quantification of the dose enhancement capability of bismuth oxide nanoparticles (Bi2O3-Nps). A recently introduced multi-compartment 3D radiochromic dosimeter for measuring radiation dose enhancement produced from the interaction of X-rays with metal nanoparticles was employed to investigate the 3D spatial distribution of ionizing radiation dose deposition. Dose-enhancement factor for the dosimeters doped with Bi2O3-NPs was ~1.9 for both spectrophotometry and optical CT analyses. Our results suggest that bismuth-based nanomaterials are efficient dose enhancing agents and have great potential for application in clinical radiotherapy.
NASA Astrophysics Data System (ADS)
Kang, H.-C.; Nishimura, T.; Komori, T.; Mori, T.; Watanabe, N.; Asano, T.; Otsuji, T.
2009-11-01
We report a high-directivity plasmon-resonant terahertz (THz) emitter (PRE) incorporating a 3D-integrated antenna complex. The emitter structure is based on a high electron mobility transistor having unique doubly interdigitated grating gates as a broadband THz antenna that can convert non-radiative plasmons to radiative electromagnetic waves. Due to the sub-wavelength aperture of practical grating-antenna dimension, however, present structure of PRE exhibits undesirable diffraction effect, resulting in poor directivity. We developed a new device structure featuring a 3D-integration of tightly-coupled multiple-antenna complex to improve the directivity. The directivity of a new device was dramatically improved by a factor of 5.7 over the frequencies from 1.8 to 4.0 THz.
Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.
2015-03-15
Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.
NASA Astrophysics Data System (ADS)
Gutknecht, E.; Dadou, I.; Marchesiello, P.; Cambon, G.; Le Vu, B.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.
2013-06-01
Eastern boundary upwelling systems (EBUS) are regions of high primary production often associated with oxygen minimum zones (OMZs). They represent key regions for the oceanic nitrogen (N) cycle. By exporting organic matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O) to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS) is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS), especially the Walvis Bay area (between 22° S and 24° S) where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1) the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2) export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 < 25 mmol O2 m-3); and (3) the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr-1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m-2 yr-1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary
II. The Second Law in Relation to Thermal Radiative Transfer
NASA Astrophysics Data System (ADS)
Jesudason, Christopher G.
2011-12-01
Planck introduced the quantum hypothesis from his Blackbody radiation studies, where he and subsequent workers opined that classical mechanics and electrodynamical theories could not account for the phenomenon. Hence a statistical mechanics with an appropriate Second law entropy was invented and coupled to the First law to account for quantum effects. Here, as an academic exercise we derive the quantum of energy by considering two structures, that of the dipole oscillators on a 2-D surface and the scattering of radiation into the 3-D cavity. Previous derivations are briefly cited and reviewed where none followed this approach. One prediction from this first order Brownian motion development is that a 2-D sheet of oscillators should emit radiation largely with energy density factor T1 of the Kelvin temperature T, rather than that deduced as T4 from detailed balance. Preliminary measurements conducted here seemed to verify the the T1 density. The first order theory also admits a possibility of nonlinear quanta and the consequences are explored briefly. It was noticed in passing during the experimentation that certain bodies suspended in a vacuum exhibited small persistent temperature differentials. A Second law statement is presented for such cases and consequences explored for processes that are not coupled by Newtonian momentum energy transfer mechanisms, such as for the radiation field as deduced by Planck. The different forms of heat transfer due to different laws (e.g. gravity waves and electromagnetic waves) are strictly separable and cannot be confused or forced to an equivalence. We generalize on the Zeroth law, the Kirchoff law and postulate an appropriate entropy form due to these generalizations.
Principles of Invariance in Radiative Transfer
NASA Astrophysics Data System (ADS)
Peraiah, A.
1999-09-01
We have reviewed the principle of invariance, its applications and its usefulness for obtaining the radiation field in semi-infinite and finite atmospheres. Various laws of scattering in dispersive media and the consequent radiation field are studied. The H-functions and X- and Y-functions in semi-infinite and finite media respectively are derived in a few cases. The Discrete Space Theory (DST) which is a general form of the Principle of Invariance is described. The method of addition of layers with general properties, is shown to describe all the properties of multiple scattering. A few examples of the application of DST such as polarization, line formation in expanding stellar atmospheres, etc., and a numerical analysis of DST are presented. Other developments in the theory of radiative transfer are briefly described.
Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation
NASA Astrophysics Data System (ADS)
Yu, Edmund
2015-11-01
Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which
Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs
Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.
2013-10-01
A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes
NASA Astrophysics Data System (ADS)
Barkett, Laura Ashley
In the past, fuel elements with multiple axial coolant channels have been used in nuclear propulsion applications. A novel fuel element concept that reduces weight and increases efficiency uses a stack of grooved rings. Each fuel ring consists of a hole on the interior and grooves across the top face. Many grooved ring configurations have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel ring with a higher surface-area-to-volume ratio is ideal. When grooves are shallower and they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of fluid flow with those of heat transfer, the effects on the cooler gas flowing through the grooves of the hot, fissioning ring can be predicted. Models also show differences in velocities and temperatures after dense boundary nodes are applied. Parametric studies were done to show how a pressure drop across the length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the temperature distributions and pressure drops that result from the manipulation of various parameters, and the effects of model scaling was also investigated. The inverse Graetz numbers are plotted against Nusselt numbers, and the results of these values suggest that the gas quickly becomes fully developed, laminar flow, rather than constant turbulent conditions.
NASA Astrophysics Data System (ADS)
Damasso, Mario; Dachev, Tsvetan; Zanini, Alba; Falzetta, Giuseppe; Lambreva, Maya; Rea, Giuseppina; Giardi, Maria Teresa
Foton-M3 ESA space mission flew in Low Earth Orbit (250÷290 km) from 14 to 26 September 2007, carrying more than 40 experiments related to different scientific disciplines. During the mission, the dose and particle flux variations inside and outside the capsule have been monitored in real time by Liulin-Photo e R3D-B3 spectrum-dosimeters respectively, the latter housed in the Biopan-6 facility containing experiments directly exposed to the space environment. Liulin-Photo and R3D-B3 are both composed of a silicon detector (area=2 cm2 ) and they measure the energies deposited by the incident ionizing particles (R3D-B3 measuring also solar UV radiation). Inside the capsule, Liulin-Photo was mounted on the top of the space biology experiment Photo-II to monitor the radiation field around this experiment. The device Photo- II is a system of optical sensors that measured in real time the chlorophyll fluorescence to study the effects of the mixed ionizing space radiations on the photosynthetic activity of several microrganisms modified at the level of the photosynthetic electron transfer chain of Photosystem II. In this study we present the results obtained comparing the dose and flux data collected from the two instruments, in order to get information about the effects produced by the capsule shielding. In particular, we analyse in deeper detail the data corresponding to the passages of the spacecraft above the South Atlantic magnetic Anomaly (SAA) and inside the outer electron belt. A comparison between experimental data and predictions of ionizing radiation environment models is also performed. Moreover, an analysis of some space weather data is conducted to better characterize the space environment in relation to the effect on the biological material during the mission.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603
Radiative transfer effects in primordial hydrogen recombination
Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel
2010-12-15
The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.
Nacif, Marcelo Souto; Liu, Yixun; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Summers, Ronald M.; Bluemke, David A.
2014-01-01
Background Myocardial fibrosis leads to impaired cardiac function and events. Extracellular volume fraction (ECV) assessed with an iodinated contrast agent and measured by cardiac CT may be a useful noninvasive marker of fibrosis. Objective The purpose of this study was to develop and evaluate a 3-dimensional (3D) ECV calculation toolkit (ECVTK) for ECV determination by cardiac CT. Methods Twenty-four subjects (10 systolic heart failure, age, 60 ± 17 years; 5 diastolic failure, age 56 ± 20 years; 9 matched healthy subjects, age 59 ± 7 years) were evaluated. Cardiac CT examinations were done on a 320-multidetector CT scanner before and after 130 mL of iopamidol (Isovue-370; Bracco Diagnostics, Plainsboro, NJ, USA) was administered. A calcium score type sequence was performed before and 7 minutes after contrast with single gantry rotation during 1 breath hold and single cardiac phase acquisition. ECV was calculated as (ΔHUmyocardium/ΔHUblood) × (1 − Hct) where Hct is the hematocrit, and ΔHU is the change in Hounsfield unit attenuation = HUafter iodine − HUbefore iodine. Cardiac magnetic resonance imaging was performed to assess myocardial structure and function. Results Mean 3D ECV values were significantly higher in the subjects with systolic heart failure than in healthy subjects and subjects with diastolic heart failure (mean, 41% ± 6%, 33% ± 2%, and 35% ± 5%, respectively; P = 0.02). Interobserver and intraobserver agreements were excellent for myocardial, blood pool, and ECV (intraclass correlation coefficient, >0.90 for all). Higher 3D ECV by cardiac CT was associated with reduced systolic circumferential strain, greater end-diastolic and -systolic volumes, and lower ejection fraction (r = 0.70, r = 0.60, r = 0.73, and r = −0.68, respectively; all P < 0.001). Conclusion 3D ECV by cardiac CT can be performed with ECVTK. We demonstrated increased ECV in subjects with systolic heart failure compared with healthy subjects. Cardiac CT results also
Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....
Energy Science and Technology Software Center (ESTSC)
2010-12-02
The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.
Composite biasing in Monte Carlo radiative transfer
NASA Astrophysics Data System (ADS)
Baes, Maarten; Gordon, Karl D.; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-05-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the specific problems that we consider: in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
NASA Astrophysics Data System (ADS)
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi
2012-07-01
Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.
Zhou, Gang; Xu, Xiaoyong; Ding, Tao; Feng, Bing; Bao, Zhijia; Hu, Jingguo
2015-12-01
Multi-component hetero-nanostructures exhibit multifunctional properties or synergistic performance and are thus considered as attractive materials for energy conversion applications. There is a long-standing demand to construct more sophisticated heterostructures for steering charge-carrier flow in semiconductor systems. Herein we fabricate a large-scale quantity of three-dimensional (3D) branched CuxO/ZnO@Au heterostructure consisting of CuO nanowires (NWs) and grafted ZnO nanodisks (NDs) decorated with Au nanoparticles via sequential hierarchical assemblies. This treelike hetero-nanostructure ensures well-steered transfer of photogenerated electrons to the exposed ZnO NDs, while holes to the CuO backbone NWs with concerted efforts from multi-node p-n junctions, polar ZnO facets, and Au plasmon, resulting in the significantly enhanced photocatalytic hydrogen evolution performance. PMID:26563634
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstong, T. W.
1993-01-01
A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.
Supernova Spectrum Synthesis for 3D Composition Models with the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Thomas, Rollin
2002-07-01
newcommandBruteextttBrute Relying on spherical symmetry when modelling supernova spectra is clearly at best a good approximation. Recent polarization measurements, interesting features in flux spectra, and the clumpy textures of supernova remnants suggest that supernova envelopes are rife with fine structure. To account for this fine structure and create a complete picture of supernovae, new 3D explosion models will be forthcoming. To reconcile these models with observed spectra, 3D radiative transfer will be necessary. We propose a 3D Monte Carlo radiative transfer code, Brute, and improvements that will move it toward a fully self-consistent 3D transfer code. Spectroscopic HST observations of supernovae past, present and future will definitely benefit. Other 3D transfer problems of interest to HST users like AGNs will benefit from the techniques developed.
Analysis for radiative heat transfer in a circulating fluidized bed
Steward, F.R.; Couturier, M.F.; Poolpol, S.
1995-12-31
The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.
Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.
Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva
2012-06-21
Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications. PMID:22644104
Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation
NASA Astrophysics Data System (ADS)
Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak
2013-10-01
In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.
Studies of radiative transfer in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1984-01-01
Progress is reported in modeling cometary emission in the 18-cm OH transition with specific application and predictions for Comet Halley. Radiative transfer is also being studied in rough and porous media. The kinematics of the cold, dark interstellar cloud Li34N were examined, and CO monitoring of Venus and Mars continues. Analysis of 3.4 mm maps of the lunar surface shows thermal anomalies associated with such surface features as the Crater Copernicus, Mare Imbrium, Mare Nubium, Mare Serenitatis, and Mare Tranquillatis.
Numerical calculation of the radiation heat transfer between rocket motor nozzle's wall and gas
NASA Astrophysics Data System (ADS)
Zhou, Yipeng; Zhu, Dingqiang
2014-11-01
The heat flux density of radiation heat transfer between rocket motor nozzle's wall and gas is one of the most important factors to decide temperature of nozzle's wall. It also provides an invaluable references advice for choosing the material of wall and type of cooling. The numerical calculation based on finite volume method is introduced in the paper. After analysis of the formula of FVM without the influence of scattering, a formula that is used to let spectral radiant intensity that is the calculation of FVM be converted into heat flux density of radiation heat transfer is deduced. It is compiled that the program based on FVM is used to calculate the heat flux density. At the end, the heat flux density of radiation heat transfer of 3D model of double-arc nozzle's wall is calculated under different condition, then simply analysis cooling system is performed.
Diffusion model for lightning radiative transfer
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewicz, Richard J.; Phanord, Dieudonne D.; Blakeslee, Richard J.
1994-01-01
A one-speed Boltzmann transport theory, with diffusion approximations, is applied to study the radiative transfer properties of lightning in optically thick thunderclouds. Near-infrared (lambda = 0.7774 micrometers) photons associated with a prominent oxygen emission triplet in the lightning spectrum are considered. Transient and spatially complex lightning radiation sources are placed inside a rectangular parallelepiped thundercloud geometry and the effects of multiple scattering are studied. The cloud is assumed to be composed of a homogeneous collection of identical spherical water droplets, each droplet a nearly conservative, anisotropic scatterer. Conceptually, we treat the thundercloud like a nuclear reactor, with photons replaced by neutrons, and utilize standard one-speed neutron diffusion techniques common in nuclear reactor analyses. Valid analytic results for the intensity distribution (expanded in spherical harmonics) are obtained for regions sufficiently far from sources. Model estimates of the arrival-time delay and pulse width broadening of lightning signals radiated from within the cloud are determined and the results are in good agreement with both experimental data and previous Monte Carlo estimates. Additional model studies of this kind will be used to study the general information content of cloud top lightning radiation signatures.
NASA Astrophysics Data System (ADS)
Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.
2015-12-01
Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The
Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K
2015-06-15
Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.
Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J
2016-08-15
Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning. PMID:27310732
Radiative Transfer and Retrievals in EOF Domain
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen; Smith, William L.; Schluessel, Peter
2008-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) is a hyperspectral sensor with 8461 spectral channels and a nominal spectral resolution of 0.25 cm(sup -1). It is computationally intensive to perform radiative transfer calculations and inversions using all these channels. We will present a Principal Component-based Radiative Transfer Model (PCRTM) and a retrieval algorithm which perform all the necessary calculations in EOF domain. Since the EOFs are orthogonal to each other, only about 100 principal components are needed to represent the information content of the 8461 channels. The PCRTM provides the EOF coefficients and associated derivatives with respect to atmospheric and surface parameters needed by the inversion algorithm. The inversion algorithm is based on a non-linear Levenberg-Marquardt method with climatology covariance and a priori information as constraints. The retrieved parameters include atmospheric temperature, moisture and ozone profiles, cloud parameters, surface skin temperature, and surface emissivities. To make the retrieval system even more compact and stable. The atmospheric vertical profiles are compressed into the EOF space as well. The surface emissivities are also compressed into EOF space.
Microwave radiative transfer studies of precipitation
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Vivekanandan, J.; Turk, F. Joseph
1993-01-01
Since the deployment of the DMSP SSM/I microwave imagers in 1987, increased utilization of passive microwave radiometry throughout the 10 - 100 GHz spectrum has occurred for measurement of atmospheric constituents and terrestrial surfaces. Our efforts have focused on observations and analysis of the microwave radiative transfer behavior of precipitating clouds. We have focused particular attention on combining both aircraft and SSM/I radiometer imagery with ground-based multiparameter radar observations. As part of this and the past NASA contract, we have developed a multi-stream, polarized radiative transfer model which incorporates scattering. The model has the capability to be initialized with cloud model output or multiparameter radar products. This model provides the necessary 'link' between the passive microwave radiometer and active microwave radar observations. This unique arrangement has allowed the brightness temperatures (TB) to be compared against quantities such as rainfall, liquid/ice water paths, and the vertical structure of the cloud. Quantification of the amounts of ice and water in precipitating clouds is required for understanding of the global energy balance.
A rapid radiative transfer model for reflection of solar radiation
NASA Technical Reports Server (NTRS)
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
PAKAL: A THREE-DIMENSIONAL MODEL TO SOLVE THE RADIATIVE TRANSFER EQUATION
De la Luz, Victor; Lara, Alejandro; Mendoza-Torres, J. E.; Selhorst, Caius L.
2010-06-15
We present a new numerical model called 'Pakal' intended to solve the radiative transfer equation in a three-dimensional (3D) geometry, using the approximation for a locally plane-parallel atmosphere. Pakal uses pre-calculated radial profiles of density and temperature (based on hydrostatic, hydrodynamic, or MHD models) to compute the emission from 3D source structures with high spatial resolution. Then, Pakal solves the radiative transfer equation in a set of (3D) ray paths, going from the source to the observer. Pakal uses a new algorithm to compute the radiative transfer equation by using an intelligent system consisting of three structures: a cellular automaton; an expert system; and a program coordinator. The code outputs can be either two-dimensional maps or one-dimensional profiles, which reproduce the observations with high accuracy, giving detailed physical information about the environment where the radiation was generated and/or transmitted. We present the model applied to a 3D solar radial geometry, assuming a locally plane-parallel atmosphere, and thermal free-free radio emission from hydrogen-helium gas in thermodynamic equilibrium. We also present the convergence test of the code. We computed the synthetic spectrum of the centimetric-millimetric solar emission and found better agreement with observations (up to 10{sup 4} K at 20 GHz) than previous models reported in the literature. The stability and convergence test show the high accuracy of the code. Finally, Pakal can improve the integration time by up to an order of magnitude compared against linear integration codes.
Radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N.
1992-01-01
Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.
NASA Astrophysics Data System (ADS)
Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.
2015-03-01
Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.
Hayes, J C; Norman, M
1999-10-28
This report details an investigation into the efficacy of two approaches to solving the radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-edge scientific computing platforms have evolved from large single-node vector processors to parallel aggregates containing tens to thousands of individual CPU's, the ability of an algorithm to maintain high compute efficiency when distributed over a large array of nodes is critically important. The viability of an algorithm thus hinges upon the tripartite question of numerical accuracy, total time to solution, and parallel efficiency.
Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M
2014-06-15
Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D
Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène
2005-02-01
Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine. PMID:16114859
Boley, A. C.; Morris, M. A.; Desch, S. J.
2013-10-20
A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.
The Heliospheric 2-3 kHz Radiation, the IBEX Ribbon, and the 3-D Shape of the Heliopause
NASA Astrophysics Data System (ADS)
Cairns, I. H.; Fuselier, S. A.
2012-12-01
Intense episodic bursts of radio emission at 2-4 kHz are observed by the Voyager spacecraft. Most likely the radiation is produced in the outer heliosheath as a shock wave in front of a Global Merged Interaction Region (GMIR) moves through the region where the interstellar magnetic field is draped over the heliopause. Pick-up ion instabilities due to charge-exchange of neutrals from the solar wind or inner heliosheath also play a major role. Recently the IBEX team observed a ribbon of energetic neutrals from the vicinity of the heliopause. The ribbon is believed to follow the locus where the interstellar magnetic field is tangential to the heliopause. Here we address the striking correspondence between the ribbon location and the time-varying source locations of the 2-4 kHz radiation inferred from Voyager observations: in both ecliptic and galactic coordinates the radiation sources form a line parallel to, but offset by about 30 degrees, from the ribbon. The new ideas are (i) that a plasma depletion layer (PDL) is formed in the draping region beyond the heliopause, (ii) the draping region dominates the interstellar medium - solar wind interaction under the sub-Alfvenic conditions that are now believed to exist beyond the heliopause, (iii) the minimum inner heliosheath thickness is found along the ribbon rather than in the direction of motion of the Sun through the interstellar medium (the nose direction), and (iv) the heliopause shape can be inferred from the angular offset of the radio sources and ribbon. These ideas are elaborated, arguing that the density gradients and temperature structure of the PDL are well suited to the radiation's generation and then propagation into the heliosphere, with a strong role for scattering of the radiation by enhanced density turbulence. Initial constraints on the shape of the PDL-dominated heliopause are also given.
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Riemann, Iris; Stracke, Frank; Gorjup, Erwin; LeHarzic, Ronan; König, Karsten
2007-02-01
Adult human and rat pancreas stem cells as well as tumor spheroids were irradiated with femtosecond laser pulses in the near infrared (NIR) spectral range at high transient GW/cm2 and TW/cm2 intensities. The cellular response to the laser exposure was probed by the detection of modifications of NAD(P)H autofluorescence, the formation of reactive oxygen species (ROS) and DNA strand breaks (TUNEL-assay), and viability (live/dead test). The results confirm that long-term scanning of stem cells can be performed at appropriate laser exposure parameters without a measurable impact on the cellular metabolism and vitality. In addition, it was proven that a targeted inactivation of a particular single stem cells or a single tumour cell inside a 3D cell cluster using single point illumination at TW/cm2 laser intensities can be performed without affecting neighbouring cells. Therefore multiphoton microscopes can be considered as biosafe tools for long-term analysis of stem cells as well as highly precise optical knocking out of single cells within cell clusters and tissues.
Sonnik, Deborah; Selvaraj, Raj N. . E-mail: selvarajrn@upmc.edu; Faul, Clare; Gerszten, Kristina; Heron, Dwight E.; King, Gwendolyn C.
2007-04-01
Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified 'Kuske Technique'). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.
Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg
2016-07-01
Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661
Radiative Transfer on Mesoscopic Spatial Scales
NASA Astrophysics Data System (ADS)
Gardner, Adam Ronald
Accurate predictions of light transport produced by illumination of turbid media such as biological tissues, cloudy atmospheres, terrestrial surfaces, and soft matter is essential in many applications including remote sensing, functional optical imaging, realistic image synthesis, and materials characterization. The inability to model light transport on mesoscopic scales limits the spatial resolution and information content that can be extracted from optical measurements. While effective approaches exist to model light transport in singly- and diffusely-scattering regimes, modeling light propagation over the mesoscopic spatial scales remains an important challenge. Radiative transfer on these scales must account for the complete 5-dimensional spatial and angular distributions of the radiant field. Here, we present novel stochastic and analytic methods to analyze and predict light propagation in turbid media generated by collimated illumination on mesoscopic scales. We also consider coupled transport problems, resulting from illumination and detection, to facilitate measurement design and inverse problems. Specifically, we introduce a coupled Forward-Adjoint Monte Carlo (cFAMC) method that leverages generalized optical reciprocity to enable the computation of spatially-resolved distributions of light interrogation for specific source-detector pairs. cFAMC can aid the design of optical diagnostic measurements by tailoring the light field to interrogate specific sub-volumes of interest. We use cFAMC to examine the effects of angular resolution on the resulting interrogation distributions and analyze a diagnostically-relevant compact fiber probe design for the detection of epithelial precancer. While Monte Carlo simulation is considered a gold standard method to solve the equation of radiative transfer (ERT), it is computationally expensive. Thus, methods to obtain ERT solutions at lower computational cost are valuable. We introduce a general analytical framework to
Magnetic field and radiative transfer modelling of a quiescent prominence
NASA Astrophysics Data System (ADS)
Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.
2014-07-01
Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org
A stochastic formation of radiative transfer in clouds
Stephens, G.L.; Gabriel, P.M.
1993-03-01
The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.
NASA Astrophysics Data System (ADS)
Xu, L.; Schull, M. A.; Samanta, A.; Myneni, R. B.; Knyazikhin, Y.
2010-12-01
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectance become wavelength independent and determine two canopy structure specific variables - the recollision and escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to incident solar radiation at the leaf and the canopy scale. They are sensitive to important structural features of the canopy such as forest cover, tree density, leaf area index, crown geometry, forest type and stand age. The canopy spectral invariant behavior is a very strong effect clearly seen in optical remote sensing data. The relative simplicity of retrieving the spectral invariants however is accompanied by considerable difficulties in their interpretations due to the lack of models for these parameters. We use the stochastic radiative transfer equation to relate the spectral invariants to the 3D canopy structure. Stochastic radiative transfer model treats the vegetation canopy as a stochastic medium. It expresses the 3D spatial correlation with the use of the pair correlation function, which plays a key role in measuring the spatial correlation of the 3D canopy structure over a wide range of scales. Data analysis from a simulated single bush to the comprehensive forest canopy is presented for both passive and active (lidar) remote sensing domain.
Planetary Atmosphere Dynamics and Radiative Transfer
NASA Technical Reports Server (NTRS)
Atkinson, David H.
1996-01-01
This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery
Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D
NASA Astrophysics Data System (ADS)
Campbell, R. B.; Petrie, T. W.; Hill, D. N.
1992-03-01
We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.
Plasma effects in high frequency radiative transfer
Alonso, C.T.
1981-02-08
This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.
Radiative Transfer Simulations of Infrared Dark Clouds
NASA Astrophysics Data System (ADS)
Pavlyuchenkov, Yaroslav; Wiebe, Dmitry; Fateeva, Anna; Vasyunina, Tatiana
2011-04-01
The determination of prestellar core structure is often based on observations of (sub)millimeter dust continuum. However, recently the Spitzer Space Telescope provided us with IR images of many objects not only in emission but also in absorption. We developed a technique to reconstruct the density and temperature distributions of protostellar objects based on radiation transfer (RT) simulations both in mm and IR wavelengths. Best-fit model parameters are obtained with the genetic algorithm. We apply the method to two cores of Infrared Dark Clouds and show that their observations are better reproduced by a model with an embedded heating source despite the lack of 70 μm emission in one of these cores. Thus, the starless nature of massive cores can only be established with the careful case-by-case RT modeling.
Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.
1983-01-01
The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-01-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399
NASA Astrophysics Data System (ADS)
Kozicki, Marek
2011-12-01
Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N, N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx. The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG.
Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu
2011-05-24
We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â¢ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â¢ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â¢ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.
A New Look into the Effect of Large Drops on Radiative Transfer Process
NASA Technical Reports Server (NTRS)
Marshak, Alexander
2003-01-01
Recent studies indicate that a cloudy atmosphere absorbs more solar radiation than any current 1D or 3D radiation model can predict. The excess absorption is not large, perhaps 10-15 W/sq m or less, but any such systematic bias is of concern since radiative transfer models are assumed to be sufficiently accurate for remote sensing applications and climate modeling. The most natural explanation would be that models do not capture real 3D cloud structure and, as a consequence, their photon path lengths are too short. However, extensive calculations, using increasingly realistic 3D cloud structures, failed to produce photon paths long enough to explain the excess absorption. Other possible explanations have also been unsuccessful so, at this point, conventional models seem to offer no solution to this puzzle. The weakest link in conventional models is the way a size distribution of cloud particles is mathematically handled. Basically, real particles are replaced with a single average particle. This "ensemble assumption" assumes that all particle sizes are well represented in any given elementary volume. But the concentration of larger particles can be so low that this assumption is significantly violated. We show how a different mathematical route, using the concept of a cumulative distribution, avoids the ensemble assumption. The cumulative distribution has jumps, or steps, corresponding to the rarer sizes. These jumps result in an additional term, a kind of Green's function, in the solution of the radiative transfer equation. Solving the cloud radiative transfer equation with the measured particle distributions, described in a cumulative rather than an ensemble fashion, may lead to increased cloud absorption of the magnitude observed.
NASA Astrophysics Data System (ADS)
Fraser, Danielle; Fava, Palma; Cury, Fabio; Vuong, Te; Falco, Tony; Verhaegen, Frank
2007-03-01
Sonography has good topographic accuracy for superficial lymph node assessment in patients with head and neck cancers. It is therefore an ideal non-invasive tool for precise inter-fraction volumetric analysis of enlarged cervical nodes. In addition, when registered with computed tomography (CT) images, ultrasound information may improve target volume delineation and facilitate image-guided adaptive radiation therapy. A feasibility study was developed to evaluate the use of a prototype ultrasound system capable of three dimensional visualization and multi-modality image fusion for cervical node geometry. A ceiling-mounted optical tracking camera recorded the position and orientation of a transducer in order to synchronize the transducer's position with respect to the room's coordinate system. Tracking systems were installed in both the CT-simulator and radiation therapy treatment rooms. Serial images were collected at the time of treatment planning and at subsequent treatment fractions. Volume reconstruction was performed by generating surfaces around contours. The quality of the spatial reconstruction and semi-automatic segmentation was highly dependent on the system's ability to track the transducer throughout each scan procedure. The ultrasound information provided enhanced soft tissue contrast and facilitated node delineation. Manual segmentation was the preferred method to contour structures due to their sonographic topography.
NASA Astrophysics Data System (ADS)
Aucejo, M.; Totaro, N.; Guyader, J.-L.
2010-08-01
In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.
NASA Astrophysics Data System (ADS)
Class, G.
1987-07-01
A program to simulate gas motion and shine through of thermal radiation in fusion reactor vacuum flow channels was developed. The inner surface of the flow channel is described by plane areas (triangles, parallelograms) and by surfaces of revolution. By introducing control planes in the flow path, a variance reduction and shortening of the computation, respectively, are achieved through particle splitting and Russian roulette. The code is written in PL/I and verified using published data. Computer aided input of model data is performed interactively either under IBM-TSO or at a microprocessor (IBM PC-AT). The data files are exchangeable between the IBM-mainframe and IBM-PC computers. Both computers can produce plots of the elaborated channel model. For testing, the simulating computation can likewise be run interactively, whereas the production computation can be issued batchwise. The results of code verification are explained, and examples of channel models and of the interactive mode are given.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Mindiola, Daniel J.
2014-05-07
Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly
Eriksson, Mats E.; Terfelt, Fredrik
2012-01-01
The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180
In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography
NASA Astrophysics Data System (ADS)
Bayat, S.; Apostol, L.; Boller, E.; Brochard, T.; Peyrin, F.
2005-08-01
Micro-tomographic imaging of bone micro-architecture is increasingly used on wild and transgenic mice to follow effects of diseases or therapeutics. Synchrotron radiation micro-tomography (SR micro-CT) provides quantitative images at very high spatial resolution but has mainly been used in vitro. The aim of this work was to show the feasibility of SR micro-CT for assessing bone mineral density and micro-architecture in vivo in mice. Imaging with a pixel size of 10 μm was performed on beam line ID19 at the ESRF using a special mouse holder. Two strains of mice (C3H/HeJ and C57BL/6J) were used for the experiment. First tests were performed in order to optimize the imaging conditions with respect to dose. Then, six mice of each group were imaged at doses of 7 and 13 Gy (total scan time <5 min). A similar volume of interest was selected in each image to perform quantitative analysis. The first results on bone volume and mineralization revealed significant differences between the strains as expected. Although there was no apparent damage, the imaged femurs will be further investigated by histology to evaluate the effect of irradiation on bone cells. In conclusion, SR micro-CT provides in vivo images with high signal-to-noise ratio (SNR), very short scan time and may be used in longitudinal studies.
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
NASA Astrophysics Data System (ADS)
Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix
2008-08-01
Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.
Polar firn layering in radiative transfer models
NASA Astrophysics Data System (ADS)
Linow, Stefanie; Hoerhold, Maria
2016-04-01
For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of
Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa
2013-01-01
For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Radiative transfer during the reflooding step of a LOCA
NASA Astrophysics Data System (ADS)
Gérardin, J.; Seiler, N.; Ruyer, P.; Boulet, P.
2013-10-01
Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor-droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer.
NASA Astrophysics Data System (ADS)
Barlakas, Vasileios; Macke, Andreas; Wendisch, Manfred
2016-07-01
Non-spherical particles in the atmosphere absorb and scatter solar radiation. They change the polarization state of solar radiation depending on their shape, size, chemical composition and orientation. To quantify polarization effects, a new three-dimensional (3D) vector radiative transfer model, SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is introduced and validated against benchmark results. SPARTA employs the statistical forward Monte Carlo technique for efficient column-response pixel-based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy atmospheres. A sensitivity study has been carried out and exemplarily results are presented for two lidar-based mineral dust fields. The scattering and absorption properties of the dust particles have been computed for spheroids and irregular shaped particles. Polarized radiance fields in two-dimensional (2D) and one-dimensional (1D) inhomogeneous Saharan dust fields have been calculated at 532 nm wavelength. The domain-averaged results of the normalized reflected radiance are almost identical for the 1D and 2D modes. In the areas with large spatial gradient in optical thickness with expected significant horizontal photon transport, the radiance fields of the 2D mode differ by about ±12% for the first Stokes component (radiance, I) and ±8% for the second Stokes component (linear polarization, Q) from the fields of the 1D mode.
Multi sky-view 3D aerosol distribution recovery.
Aides, Amit; Schechner, Yoav Y; Holodovsky, Vadim; Garay, Michael J; Davis, Anthony B
2013-11-01
Aerosols affect climate, health and aviation. Currently, their retrieval assumes a plane-parallel atmosphere and solely vertical radiative transfer. We propose a principle to estimate the aerosol distribution as it really is: a three dimensional (3D) volume. The principle is a type of tomography. The process involves wide angle integral imaging of the sky on a very large scale. The imaging can use an array of cameras in visible light. We formulate an image formation model based on 3D radiative transfer. Model inversion is done using optimization methods, exploiting a closed-form gradient which we derive for the model-fit cost function. The tomography model is distinct, as the radiation source is unidirectional and uncontrolled, while off-axis scattering dominates the images. PMID:24216808
Studies of radiative transfer in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1986-01-01
Schloerb and Claussen continued their analysis of the very high quality data set obtained on the 18 centimeter OH line from the Comet P/Halley with the NRAO 43 meter antenna. The high spectral resolution (0.22 km/sec) and high signal-to-noise of the OH spectra make them ideal for the study of kinematics in the coma. Synthetic profiles were initiated for comparison with the data. A vectorial model was developed using the Monte Carlo techniques originated by Combi and Delsemme. Analysis of the millimeter wavelength observations of HCN emission from P/Halley obtained throughout much of the recent apparition were continued using the University of Massachusetts 14 millimeter-wavelength (FCRAO) antenna. A detailed analysis of the HCN lineshpaes was performed over the last six months. The excitation of HCN in the coma was studied to obtain a detailed match to the observed spectra. The passive millimeter wave radiometer was used to probe the physical and chemical nature of comets from spacecraft. Work was continued on an improved theory of radiative transfer for rough and porous surfaces, such as the regoliths of satellites, asteroids, and comets.
Wavelets in the solution of nongray radiative heat transfer equation
Bayazitoglu, Y.; Wang, B.Y.
1996-12-31
The wavelet basis functions are introduced into the radiative transfer equation in the frequency domain. The intensity of radiation is expanded in terms of Daubechies` wrapped around wavelet functions. It is shown that the wavelet basis approach to modeling nongrayness can be incorporated into any solution method for the equation of transfer. In this paper the resulting system of equations is solved for the one-dimensional radiative equilibrium problem using the P-N approximation.
SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Evans, K. Franklin
2015-08-01
The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.
Application of ray tracing in radiation heat transfer
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1993-01-01
This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312
Study on radiation transfer in human skin for cosmetics
NASA Astrophysics Data System (ADS)
Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki
2005-06-01
In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.
NASA Astrophysics Data System (ADS)
Braghiere, Renato; Quaife, Tristan; Black, Emily
2016-04-01
Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical
Subgrid-scale model for radiative transfer in turbulent participating media
Soucasse, L.; Rivière, Ph.; École Centrale Paris, Grande Voie des Vignes, F-92290 Châtenay-Malabry ; Soufiani, A.
2014-01-15
The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.
Numerical prediction of radiation heat transfer in optoelectronics hermetic packaging process
NASA Astrophysics Data System (ADS)
Saha, Chinmoy P.; Zhang, Daming; Liu, Sheng
2005-03-01
Hermetic packaging of the high-speed optoelectronics devices is important not only for robustness but also to protect the device from adverse operational environments and ensure reliable communications. We have developed a complete hermetic packaging assembly process for a photonic Mini-DIL module of 10.0Gbps type. We have developed and simulated the step by step fluxless reflow soldering process (pick and place) of the whole mini-module package and finally, the hermetic sealing by Finite Element Analysis (FEA) simulation. A commercially available, general purpose, finite element program - ABAQUS has been used along with Altair HyperWorks as pre and post processor for this numerical simulation. The actual 3-D model has been simplified to the 2-D model for the hermetic sealing, radiation heat transfer prediction to reduce computational complicacy. During the sealing process at a high temperature, there is a possibility of considerable heat transfer from the module top sealing cap to the high temperature susceptible LD (Laser Diode). In the event of a critical temperature the LD may suffer malfunction and eventual destruction. Radiation along with the conduction heat transfer mechanism has been modeled for this sealing to predict the temperature variation as a result of heat transfer from wledspots to the LD. Various issues with cavity radiations such as, effect of radiation view factor, surface blocking and surface emissivity have been considered and results discussed. The convection mechanism has been neglected considering the hermeticity of the sealing.
Advances in studies of cloud overlap and its radiative transfer in climate models
NASA Astrophysics Data System (ADS)
Zhang, Hua; Jing, Xianwen
2016-04-01
The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
Radiative transfer in atmosphere-sea ice-ocean system
Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.
1996-04-01
Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.
Radiation heat transfer in two-phase media
Adzerikho, K.S.
1988-05-01
The state of the art of approximate and numerical methods of the theory of radiation heat transfer is analyzed. The principles for producing engineering methods of computing the radiation heat-transfer characteristics in power plants are examined. These principles include: the integration of the transport equation, computing the radiation heat transfer in nonisothermal two-phase media bounded by emitting and reflecting surfaces, the thermal efficiency of screens as a function of the optical properties of the boundary surfaces and the furnace medium, the scattering processes, temperature distribution, and a program NOTAK in the FORTRAN-IV language.
Gary W. Phillips
2000-12-20
We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.
NASA Astrophysics Data System (ADS)
Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P. E.; Martin, E.; Mõttus, M.; North, P. R. J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Verstraete, M. M.; Xie, D.
2007-05-01
The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary basis. The first phase of RAMI focused on documenting the spread among radiative transfer (RT) simulations over a small set of primarily 1-D canopies. The second phase expanded the scope to include structurally complex 3-D plant architectures with and without background topography. Here sometimes significant discrepancies were noted which effectively prevented the definition of a reliable "surrogate truth," over heterogeneous vegetation canopies, against which other RT models could then be compared. The present paper documents the outcome of the third phase of RAMI, highlighting both the significant progress that has been made in terms of model agreement since RAMI-2 and the capability of/need for RT models to accurately reproduce local estimates of radiative quantities under conditions that are reminiscent of in situ measurements. Our assessment of the self-consistency and the relative and absolute performance of 3-D Monte Carlo models in RAMI-3 supports their usage in the generation of a "surrogate truth" for all RAMI test cases. This development then leads (1) to the presentation of the "RAMI Online Model Checker" (ROMC), an open-access web-based interface to evaluate RT models automatically, and (2) to a reassessment of the role, scope, and opportunities of the RAMI project in the future.
NASA Astrophysics Data System (ADS)
Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.
2016-02-01
We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.
NASA Astrophysics Data System (ADS)
Roberts, Emily D.
The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids
NASA Astrophysics Data System (ADS)
Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.
2013-12-01
The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130
Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki
2015-03-01
A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290
NASA Astrophysics Data System (ADS)
Zhang, Yong; Ma, Yu; Yi, Hong-Liang; Tan, He-Ping
2013-11-01
A meshless method called as the natural element method (NEM) is developed for solving radiative heat transfer problem in 3D complex enclosures filled with an absorbing, emitting and scattering medium. The boundary surfaces are supposed to be opaque, diffuse as well as gray. The shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The NEM solutions dealing with the radiative heat transfer with or without conduction are validated by comparison with some cases reported by the literature. Furthermore, the radiative heat transfer in cubic enclosures with or without an inner hollow sphere, cylinder and elliptical cylinder is also examined to demonstrate the applicability of the present method towards various three-dimensional geometries. For pure radiative transfer, both the cases of radiative non-equilibrium and radiative equilibrium are investigated. For combined conduction and radiation heat transfer, effects of various parameters such as the conduction-radiation parameter, the scattering albedo, the extinction coefficient, and the boundary emissivity are analyzed on the temperature distributions.
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck
Bolcaen, Julie; Descamps, Benedicte; Deblaere, Karel; Boterberg, Tom; Hallaert, Giorgio; Van den Broecke, Caroline; Decrock, Elke; Vral, Anne; Leybaert, Luc; Vanhove, Christian; Goethals, Ingeborg
2014-11-01
Current glioblastoma (GB) small animal models for cranial radiation therapy (RT) use simple single beam technologies, which differ from the advanced conformal image-guided radiation techniques used in clinical practice. This technological disparity presents a major disadvantage for the development of new therapeutic approaches. Hence, we established a F98 GB rat model using magnetic resonance imaging (MRI)-guided three-dimensional (3D)-conformal arc RT with the Small Animal Radiation Research Platform (SARRP). Ten Fischer rats were inoculated with F98 tumor cells. When the tumor reached a volume of approximately 27 mm(3) on T2-weighted MR images, the animals were randomized into a treatment group (n = 5) receiving RT and concomitant temozolomide, and a sham group (n = 5) receiving control injections. For the treated animals, contrast-enhanced T1-weighted MR images were acquired followed by a cone-beam computed tomography (CBCT) on the SARRP system. Both scans were co-registered; MRI was used to define the target whereas CBCT was used for calculating a dose plan (20 Gy, three non-coplanar arc beams, 3 × 3 mm collimator). Tumor volumes were evaluated on follow-up contrast-enhanced T1-weighted MR images. Verification of treatment accuracy with γH2AX immunohistochemical staining was performed. Tumors in the control animals showed rapid proliferation during follow-up, encompassing almost the entire right cerebral hemisphere at day 12-15. Treated animals showed no significant tumor growth from 2 to 9 days post RT. γH2AX results confirmed the accuracy of dose delivery. This model, which is quite similar to the approach in the clinic, is valid for combined RT and chemotherapy of GB in rats. PMID:25069566
Hathout, Leith; Patel, Vishal
2016-08-01
Mathematical modeling and serial magnetic resonance imaging (MRI) used to calculate patient-specific rates of tumor diffusion, D, and proliferation, ρ, can be combined to simulate glioblastoma multiforme (GBM) growth. We showed that the proportion and distribution of tumor cells below the MRI threshold are determined by the D/ρ ratio of the tumor. As most radiation fields incorporate a 1‑3 cm margin to account for subthreshold tumor, accurate characterization of subthreshold tumor aids the design of optimal radiation fields. This study compared two models: a standard one‑dimensional (1D) isotropic model and a three‑dimensional (3D) anisotropic model using the advanced imaging method of diffusion tensor imaging (DTI) ‑ with regards to the D/ρ ratio's effect on the proportion and spatial extent of the subthreshold tumor. A validated reaction‑diffusion equation accounting for tumor diffusion and proliferation modeled tumor concentration in time and space. For the isotropic and anisotropic models, nine tumors with different D/ρ ratios were grown to a T1 radius of 1.5 cm. For each tumor, the percent and extent of tumor cells beyond the T2 radius were calculated. For both models, higher D/ρ ratios were correlated with a greater proportion and extent of subthreshold tumor. Anisotropic modeling demonstrated a higher proportion and extent of subthreshold tumor than predicted by the isotropic modeling. Because the quantity and distribution of subthreshold tumor depended on the D/ρ ratio, this ratio should influence radiation field demarcation. Furthermore, the use of DTI data to account for anisotropic tumor growth allows for more refined characterization of the subthreshold tumor based on the patient-specific D/ρ ratio. PMID:27374420
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Computations of Emissions Using a 3-D Combustor Program
NASA Technical Reports Server (NTRS)
Srivatsa, S. K.
1983-01-01
A general 3-D combustor performance program developed by Garrett was extended to predict soot and NOx emissions. The soot formation and oxidation rates were computed by quasi-global models, taking into account the influence of turbulence. Radiation heat transfer was computed by the six-flux radiation mode. The radiation properties include the influence of CO2 and H2O in addition to soot. NOx emissions were computed from a global four-step hydrocarbon oxidation scheme and a set of rate-controlled reactions involving radicals and nitrogen oxides.
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans requires Geokerr (ascl:1011.015), cfitsio (ascl:1010.001), and pyfits (ascl:1207.009).
Effect of radiation heat transfer on thermal diffusivity measurements
NASA Astrophysics Data System (ADS)
Araki, N.
1990-03-01
Experimental data on thermal conductivity and thermal diffusivity of a semitransparent material generally include an error due to the radiation heat transfer. This error varies in accordance with the experimental conditions such as the temperature level of the sample and the measuring method. In this paper, research on the influence of radiation heat transfer on thermal diffusivity are reviewed, and as an example, the method to correct the radiation component in the apparent thermal diffusivity measured by the stepwise heating technique is presented. The transient heat transfer by simultaneous thermal conduction and radiation in a semitransparent material is analyzed when the front surface is subjected to stepwise heating. The apparent thermal diffusivity, which includes the radiation component, is calculated for various parameters.
NASA Astrophysics Data System (ADS)
Kasen, D.; Thomas, R. C.; Röpke, F.; Woosley, S. E.
2008-07-01
The explosion of a white dwarf star in a Type Ia supernova (SN Ia) explosion leads to the burning and ejection of stellar material at a few percent of the speed of light. The spectacle we observe in the months that follow is from the leaking of radiation from this glowing mass of radioactive debris. The modeling of SN Ia light curves and spectra represents a complex problem in time-dependent radiative transfer. Here we discuss numerical methods, in particular Monte Carlo methods, for calculating 3D multi-wavelength radiative transport on massively parallel machines. Our approach involves a newly developed domain decomposition technique in which the memory load is distributed over multiple processors and photon packets are communicated from node to node. We present results for 2-dimensional models that explore white dwarf explosions over a range of explosion paradigms and ignition conditions. These models give insight into how variations in the initial conditions of the explosion affect the light curve we finally observe. We conclude with an outlook (and some initial results) for large scale 3D radiation transport calculations of SNe Ia in an era of petascale computing.
Tabulation of Mie scattering calculation results for microwave radiative transfer modeling
NASA Technical Reports Server (NTRS)
Yeh, Hwa-Young M.; Prasad, N.
1988-01-01
In microwave radiative transfer model simulations, the Mie calculations usually consume the majority of the computer time necessary for the calculations (70 to 86 percent for frequencies ranging from 6.6 to 183 GHz). For a large array of atmospheric profiles, the repeated calculations of the Mie codes make the radiative transfer computations not only expensive, but sometimes impossible. It is desirable, therefore, to develop a set of Mie tables to replace the Mie codes for the designated ranges of temperature and frequency in the microwave radiative transfer calculation. Results of using the Mie tables in the transfer calculations show that the total CPU time (IBM 3081) used for the modeling simulation is reduced by a factor of 7 to 16, depending on the frequency. The tables are tested by computing the upwelling radiance of 144 atmospheric profiles generated by a 3-D cloud model (Tao, 1986). Results are compared with those using Mie quantities computed from the Mie codes. The bias and root-mean-square deviation (RMSD) of the model results using the Mie tables, in general, are less than 1 K except for 37 and 90 GHz. Overall, neither the bias nor RMSD is worse than 1.7 K for any frequency and any viewing angle.
General Relativistic Radiative Transfer: Applications to Black-Hole Systems
NASA Technical Reports Server (NTRS)
Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan
2007-01-01
We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
Thermal radiation heat transfer (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Siegel, Robert; Howell, John R.
This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.
Radiative Transfer Reconsidered as a Quantum Kinetic Theory Problem
NASA Astrophysics Data System (ADS)
Rosato, J.
2015-12-01
We revisit the radiative transfer theory from first principles approach, inspired from quantum kinetic theory. The radiation field is described within the second quantization formalism. A master equation for the radiation density operator is derived and transformed into a balance relation in the phase space, which involves nonlocal terms owing to radiation coherence. In a perturbative framework, we focus on the lowest order term in ℏ-expansion and show that the radiation coherence results in an alteration of the photon group velocity. An application to the formation of hydrogen lines in stellar atmospheres is performed as an illustration.
Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen
2016-01-01
Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672
Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen
2016-01-01
Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672
NASA Astrophysics Data System (ADS)
Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen
2016-04-01
Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.
A study of Monte Carlo radiative transfer through fractal clouds
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Radiation Transfer in the Atmosphere: Scattering
NASA Technical Reports Server (NTRS)
Mishchenko, M.; Travis, L.; Lacis, Andrew A.
2014-01-01
Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.
Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R
2016-06-01
Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
Prediction of radiative heat transfer in rectangular enclosures
Jamaluddin, A.S.; Smith, P.J.
1987-01-01
Discrete ordinates solutions of the radiative transport equation have been obtained for two- and three-dimensional rectangular enclosures using the S/sub 2/ and S/sub 4/ approximations. Limited evaluations indicate that both S/sub 2/ and S/sub 4/ are suitable for predicting radiative transfer in two-dimensional enclosures. However, for the three-dimensional enclosures the S/sub 2/ approximation is found inadequate. It is inferred that S/sub 4/ or higher order approximations should be used to accurately predict radiative heat transfer in three-dimensional rectangular enclosures.
Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Radiative heat transfer in low-dimensional systems -- microscopic mode
NASA Astrophysics Data System (ADS)
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
NASA Astrophysics Data System (ADS)
Gutknecht, E.; Dadou, I.; Le Vu, B.; Cambon, G.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.
2011-04-01
As regions of high primary production and being often associated to Oxygen Minimum Zones (OMZs), Eastern Boundary Upwelling Systems (EBUS) represent key regions for the oceanic nitrogen (N) cycle. Indeed, by exporting the Organic Matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. Losses of fixed inorganic N, through denitrification and anammox processes and through nitrous oxide (N2O) emissions to the atmosphere, take place in oxygen depleted environments such as EBUS, and alleviate the role of these regions as a source of N. In the present study, we developed a 3-D coupled physical/biogeochemical (ROMS/BioBUS) model for investigating the full N budget in the Namibian sub-system of the Benguela Upwelling System (BUS). The different state variables of a climatological experiment have been compared to different data sets (satellite and in situ observations) and show that the model is able to represent this biogeochemical oceanic region. The N transfer is investigated in the Namibian upwelling system using this coupled model, especially in the Walvis Bay area between 22° S and 24° S where the OMZ is well developed (O2 < 0.5 ml O2 l-1). The upwelling process advects 24.2 × 1010 mol N yr-1 of nitrate enriched waters over the first 100 m over the slope and over the continental shelf. The meridional advection by the alongshore Benguela current brings also nutrient-rich waters with 21.1 × 1010 mol N yr-1. 10.5 × 1010 mol N yr-1 of OM are exported outside of the continental shelf (between 0 and 100-m depth). 32.4% and 18.1% of this OM are exported by advection in the form of Dissolved and Particulate Organic Matters (DOM and POM), respectively, however vertical sinking of POM represents the main contributor (49.5%) to OM export outside of the first 100-m depth of the water column on the continental shelf. The continental slope also represents a net N export
NASA Astrophysics Data System (ADS)
Malmberg, Filip; Sandberg-Melin, Camilla; Söderberg, Per G.
2016-03-01
The aim of this project was to investigate the possibility of using OCT optic nerve head 3D information captured with a Topcon OCT 2000 device for detection of the shortest distance between the inner limit of the retina and the central limit of the pigment epithelium around the circumference of the optic nerve head. The shortest distance between these boundaries reflects the nerve fiber layer thickness and measurement of this distance is interesting for follow-up of glaucoma.
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
NASA Astrophysics Data System (ADS)
Ahn, Kyungjin
2015-02-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer
NASA Technical Reports Server (NTRS)
Godoy, William F.; Liu, Xu
2011-01-01
General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.
User's Manual: Routines for Radiative Heat Transfer and Thermometry
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
Radiative interactions in transient energy transfer in gaseous systems
NASA Technical Reports Server (NTRS)
Tiwari, S. N.
1985-01-01
Analyses and numerical procedures are presented to investigate the radiative interactions in transient energy transfer processes in gaseous systems. The nongray radiative formulations are based on the wide-band model correlations for molecular absorption. Various relations for the radiative flux are developed; these are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The methods presented in this study can be extended easily to investigate the radiative interactions in realistic flows of hydrogen-air species in the scramjet engine.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
3D Multigroup Sn Neutron Transport Code
Energy Science and Technology Software Center (ESTSC)
2001-02-14
ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less
3D Multigroup Sn Neutron Transport Code
McGee, John; Wareing, Todd; Pautz, Shawn
2001-02-14
ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forward and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.
Radiation Heat Transfer Procedures for Space-Related Applications
NASA Technical Reports Server (NTRS)
Chai, John C.
2000-01-01
Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.
Crandall, K.R.
1987-08-01
TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.
NASA Astrophysics Data System (ADS)
Jin, Shengye; Tamura, Masayuki
2013-10-01
Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is
Partial moment entropy approximation to radiative heat transfer
Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de
2006-10-10
We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.
Radiative transfer theory for polarimetric remote sensing of pine forest
NASA Technical Reports Server (NTRS)
Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.
1992-01-01
The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.
Estimation of radiative heat transfer using a geometric human model.
Kakuta, N; Yokoyama, S; Nakamura, M; Mabuchi, K
2001-03-01
In order to provide a detailed estimate of radiative heat transfer between a human body and its surrounding environment, we have developed a geometric model of a human form and an algorithm. The model closely resembles the actual shape of a human body and is composed of small quadrilateral surfaces. Dealing with an object or a space with an arbitrary shape, the developed algorithm can judge efficiently whether there is an obstruction between a pair of surfaces. As a result, the angle factors between a pair of surfaces that only occur during radiative heat transfer can be defined. The distribution of the radiative heat transfer rates shows the characteristics of body shape and variations in posture. PMID:11327500
Many-body radiative heat transfer theory.
Ben-Abdallah, Philippe; Biehs, Svend-Age; Joulain, Karl
2011-09-01
In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale. PMID:22026672
Radiative heat transfer in coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-01-01
A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.
Radiative heat transfer in coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-09-01
A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.
Combined conduction and radiation heat transfer in concentric cylindrical media
NASA Technical Reports Server (NTRS)
Pandey, D. K.
1987-01-01
The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.
Computation of Radiation Heat Transfer in Aeroengine Combustors
NASA Technical Reports Server (NTRS)
Patankar, S. V.
1996-01-01
In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.
A simplified scheme for computing radiation transfer in the troposphere
NASA Technical Reports Server (NTRS)
Katayama, A.
1973-01-01
A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.
NASA Astrophysics Data System (ADS)
Moorthy, Inian
Spectroscopic observational data for vegetated environments, have been coupled with 3D physically-based radiative transfer models for retrievals of biochemical and biophysical indicators of vegetation health and condition. With the recent introduction of Terrestrial Laser Scanning (TLS) units, there now exists a means of rapidly measuring intricate structural details of vegetation canopies, which can also serve as input into 3D radiative transfer models. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns in laboratory, and field-based experiments. The ILRIS-3D uses the Time-Of-Flight (TOF) principle to measure the distances of objects based on the time interval between laser pulse exitance and return, upon reflection from an object. At the laboratory-level, this exploratory study demonstrated and validated innovative approaches for retrieving crown-level estimates of Leaf Area Index (LAI) (r2 = 0.98, rmse = 0.26m2/m2), a critical biophysical parameter for vegetation monitoring and modeling. These methods were implemented and expanded in field experiments conducted in olive (Olea europaea L.) orchards in Cordoba, Spain, where ILRIS-3D observations for 24 structurally-variable trees were made. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21m), crown width (r 2 = 0.98, rmse = 0.12m), crown height (r2 = 0.81, rmse = 0.11m), crown volume (r2 = 0.99, rmse = 2.6m3), and LAI (r2 = 0.76, rmse = 0.27m2/ m2). These parameters were subsequently used as direct inputs into the Forest LIGHT (FLIGHT) 3D ray tracing model for characterization of the spectral behavior of the olive crowns. Comparisons between FLIGHT-simulated spectra and measured data showed small differences in the visible (< 3%) and near infrared (< 10%) spectral ranges. These differences between model simulations and measurements were significantly correlated
Theory of heat transfer and hydraulic resistance of oil radiators
NASA Technical Reports Server (NTRS)
Mariamov, N B
1942-01-01
In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.
Comparison of physical quality assurance between Scanora 3D and 3D Accuitomo 80 dental CT scanners
Ali, Ahmed S.; Fteita, Dareen; Kulmala, Jarmo
2015-01-01
Background The use of cone beam computed tomography (CBCT) in dentistry has proven to be useful in the diagnosis and treatment planning of several oral and maxillofacial diseases. The quality of the resulting image is dictated by many factors related to the patient, unit, and operator. Materials and methods In this work, two dental CBCT units, namely Scanora 3D and 3D Accuitomo 80, were assessed and compared in terms of quantitative effective dose delivered to specific locations in a dosimetry phantom. Resolution and contrast were evaluated in only 3D Accuitomo 80 using special quality assurance phantoms. Results Scanora 3D, with less radiation time, showed less dosing values compared to 3D Accuitomo 80 (mean 0.33 mSv, SD±0.16 vs. 0.18 mSv, SD±0.1). Using paired t-test, no significant difference was found in Accuitomo two scan sessions (p>0.05), while it was highly significant in Scanora (p>0.05). The modulation transfer function value (at 2 lp/mm), in both measurements, was found to be 4.4%. The contrast assessment of 3D Accuitomo 80 in the two measurements showed few differences, for example, the grayscale values were the same (SD=0) while the noise level was slightly different (SD=0 and 0.67, respectively). Conclusions The radiation dose values in these two CBCT units are significantly less than those encountered in systemic CT scans. However, the dose seems to be affected more by changing the field of view rather than the voltage or amperage. The low doses were at the expense of the image quality produced, which was still acceptable. Although the spatial resolution and contrast were inferior to the medical images produced in systemic CT units, the present results recommend adopting CBCTs in maxillofacial imaging because of low radiation dose and adequate image quality. PMID:26091832
Super-Eddington radiation transfer in soft gamma repeaters
NASA Astrophysics Data System (ADS)
Ulmer, Andrew
1994-12-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 1013 G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van
2014-06-15
Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.
Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.
1996-12-31
In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.
Mesoscopic near-field radiative heat transfer at low temperatures
NASA Astrophysics Data System (ADS)
Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu
2015-03-01
Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.
NASA Astrophysics Data System (ADS)
Zhu, Chaoyuan; Kamisaka, Hideyuki; Nakamura, Hiroki
2002-02-01
The newly implemented trajectory surface hopping (TSH) method for the collinear system with use of the Zhu-Nakamura semiclassical theory of nonadiabatic transition [C. Zhu, K. Nobusada, and H. Nakamura, J. Chem. Phys. 115, 3031 (2001)] is extended to treat 3D nonadiabatic reactions. Since the avoided crossing seam becomes a two-dimensional surface in the 3D system, the nonadiabatic transition region and the possibility of classically forbidden hops are enlarged very much in comparison with those in the collinear case. As a result, the contribution of the classically forbidden hops is quite a bit enhanced in the 3D system. Conservation of total angular momentum J is taken into account by slightly rotating the direction of momentum during the hop in the classically forbidden case. The method is tested by applying to the charge transfer processes in the 3D DH2+ system for J=0. Numerical results clearly demonstrate that the new TSH method works very well at all energies and for all initial vibrational states considered compared to the old TSH method based on the Landau-Zener formula. The significant discrepancy between the two TSH methods survives even at high collision energy and high vibrational states in contrast to the collinear case, indicating the importance of the classically forbidden hops in 3D systems. The new TSH method is considered to be a very promising method to deal with high dimensional nonadiabatic dynamics. It should also be noted that the new TSH method does not require any knowledge of nonadiabatic coupling and is based only on adiabatic potentials.
Douglass, Michael; Bezak, Eva; Penfold, Scott
2013-07-15
Purpose: Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy.Methods: Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10{sup 6} particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 {mu}m. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4.Results: The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER {approx} 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p
NASA Astrophysics Data System (ADS)
Ge, Wenjun; Modest, Michael F.; Marquez, Ricardo
2015-05-01
The spherical harmonics (PN) method is a radiative transfer equation solver, which approximates the radiative intensity as a truncated series of spherical harmonics. For general 3-D configurations, N(N + 1) / 2 intensity coefficients must be solved from a system of coupled second-order elliptic PDEs. In 2-D axisymmetric applications, the number of equations and intensity coefficients reduces to (N + 1) 2 / 4 if the geometric relations of the intensity coefficients are taken into account. This paper presents the mathematical details for the transformation and its implementation on the OpenFOAM finite volume based CFD software platform. The transformation and implementation are applicable to any arbitrary axisymmetric geometry, but the examples to test the new formulation are based on a wedge grid, which is the most common axisymmetric geometry in CFD simulations, because OpenFOAM and most other platforms do not have true axisymmetric solvers. Two example problems for the new axisymmetric PN formulation are presented, and the results are verified with that of the general 3-D PN solver, a Photon Monte Carlo solver and exact solutions.
NASA Astrophysics Data System (ADS)
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Validation of the Poisson Stochastic Radiative Transfer Model
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana; Marshak, Alexander
2004-01-01
A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.
A modular radiative transfer program for gas filter correlation radiometry
NASA Technical Reports Server (NTRS)
Casas, J. C.; Campbell, S. A.
1977-01-01
The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.
Fractional integration and radiative transfer in a multifractal atmosphere
Naud, C.; Schertzer, D.; Lovejoy, S.
1996-04-01
Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.
Debris disk radiative transfer simulation tool (DDS)
NASA Astrophysics Data System (ADS)
Wolf, S.; Hillenbrand, L. A.
2005-10-01
A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains (a ≫1 μm) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds. Catalogue identifier:ADVV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:PC with Intel(R) XEON(TM) 2.80 GHz processor Operating systems or monitors under which the program has been tested:SUSE Linux 9.1 Programming language used:Fortran 90 (for the main program; furthermore Perl, CGI and HTML) Memory required to execute with typical data:108 words No. of bits in a word:8 No. of lines in distributed program, including test data, etc.:44 636 No. of bytes in distributed program, including test data, etc.: 4 806 280 Distribution format:tar.gz Nature of the physical problem:Simulation of scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/heating radiative source can be arbitrarily defined (example application: [S. Wolf, L.A. Hillenbrand, Astrophys. J. 596 (2003) 603]). The program is optimized for studying circumstellar debris disks where large grains (i.e. with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. Method of solution:Calculation of the dust temperature distribution and dust reemission and scattering spectrum in the
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Radiative transfer simulations of magnetar flare beaming
NASA Astrophysics Data System (ADS)
van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.
2016-05-01
Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
Radiative transfer simulations of magnetar flare beaming
NASA Astrophysics Data System (ADS)
van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.
2016-09-01
Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.
A computer simulation model to compute the radiation transfer of mountainous regions
NASA Astrophysics Data System (ADS)
Li, Yuguang; Zhao, Feng; Song, Rui
2011-11-01
In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed. PMID:24150298
RADMC: A 2-D Continuum Radiative Transfer Tool
NASA Astrophysics Data System (ADS)
Dullemond, C. P.
2011-08-01
RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.
Radiation effects in low-thrust orbit transfers
Pollard, James E.
1998-01-15
A low-thrust orbit transfer vehicle (OTV) and its payload must be designed to survive in the near-Earth radiation environment for a much longer duration than a conventional upper stage. This paper examines the effects of natural radiation on OTV's using data that have become available since 1991 from the CRRES and APEX satellites. Dose rates for microelectronics in LEO-to-GEO missions are calculated for spiral orbit raising and for multi-impulse transfers. Semiconductor devices that are shielded by less than 2.5 mm of aluminum (0.69 g/cm{sup 2}) are inappropriate for spiral transfers, because they require hardness levels >100 krad (Si). Shield thicknesses of 6-12 mm reduce this requirement to about 10 krad (Si), which is still an order of magnitude higher than the radiation dose in a 10-year mission at GEO with similar shielding. The dose for a multi-impulse LEO-to-GEO transfer is about 10 times smaller than for a spiral transfer. Estimates of single event upset rates and photovoltaic array degradation are also provided.
Optical and radiative-transfer properties of mixed atmospheric aerosols
NASA Astrophysics Data System (ADS)
Degheidy, A. R.; Sallah, M.; Elgarayhi, A.; Shaaban, S. M.
2015-04-01
The optical and radiative-transfer properties of mixed atmospheric aerosols have been investigated. The aerosol medium is considered as a plane-parallel anisotropic scattering medium with diffusive reflecting boundaries and containing an internal radiation source. The basic components are defined by their complex refractive index, a lognormal size distribution and humidity dependence in hygroscopic particles. The aerosol particles are assumed to be spherical, so the scattering parameters in the form of single scattering albedo, asymmetry factor, scattering, absorption, extinction efficiencies and linear anisotropic coefficient are calculated using the Mie theory. The calculations have been performed for individual aerosol particles, internal and external mixing media. Radiation transfer problem through the considered aerosol medium has been solved in terms of the solution of the corresponding source-free problem with simple boundary conditions. For the solution of the source-free problem, the Variational Pomraning-Eddington technique has been employed. The variation of the radiative-transfer properties (partial radiative fluxes at the medium boundaries) have been calculated and represented graphically for the different aerosols with their different mixing states. A comparison of the obtained results versus available published data has been performed and a very good agreement was observed.
Cirrus microphysics and radiative transfer: A case study
NASA Technical Reports Server (NTRS)
Kinne, Stefan A.; Ackerman, Thomas P.; Heymsfield, Andrew J.
1990-01-01
During the Cirrus Intensive Field Operations of FIRE, data collected by the NCAR King Air in the vicinity of Wausau, WI on October 28 were selected to study the influence of cirrus cloud microphysics on radiative transfer and the role of microphysical approximations in radiative transfer models. The instrumentation of the King Air provided, aside from temperature and wind data, up-and downwelling broadband solar and infrared fluxes as well as detailed microphysical data. The aircraft data, supplied every second, are averaged over the 7 legs to represent the properties for that altitude. The resulting vertical profiles, however, suffer from the fact that each leg represents a different cloud column path. Based on the measured microphysical data particle size distributions of equivalent spheres for each cloud level are developed. Accurate radiative transfer calculations are performed, incorporating atmospheric and radiative data from the ground and the stratosphere. Comparing calculated to the measured up- and downwelling fluxes at the seven cloud levels for both the averaged and the three crossover data will help to assess the validity of particle size and shape approximation as they are frequently used to model cirrus clouds. Once agreement is achieved the model results may be applied to determine, in comparison to a cloudfree case, the influence of this particular cirrus on the radiation budget of the earth atmosphere system.
Relativistic radiative transfer and relativistic plane-parallel flows
NASA Astrophysics Data System (ADS)
Fukue, Jun
2015-04-01
Relativistic radiative transfer and relativistic plane-parallel flows accelerated from their base like accretion disk winds are numerically examined under the special relativistic treatment. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the hydrodynamical equation, and obtain the new velocity field and the mass-loss rate as an eigen value. We repeat these double-iteration processes until both the intensity and velocity profiles converge. Under this double iteration, we solve the relativistic radiative transfer equation and relativistic flows in the vertical direction, simultaneously. The flows are gradually accelerated, as the optical depth decreases towards the surface. The mass-loss rate dot{J} is roughly expressed in terms of the optical depth τb and terminal speed βs of the flow as dot{J} ˜ 10 τ_b β _s^{-3/4}.
Radiative transfer in a polluted urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
A Thermokinetic Approach to Radiative Heat Transfer at the Nanoscale
Pérez-Madrid, Agustín; Lapas, Luciano C.; Rubí, J. Miguel
2013-01-01
Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances. PMID:23527019
Realistic three-dimensional radiative transfer simulations of observed precipitation
NASA Astrophysics Data System (ADS)
Adams, I. S.; Bettenhausen, M. H.
2013-12-01
Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral