Texture splats for 3D vector and scalar field visualization
Crawfis, R.A.; Max, N.
1993-04-06
Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.
Günther, David; Jacobson, Alec; Reininghaus, Jan; Seidel, Hans-Peter; Sorkine-Hornung, Olga; Weinkauf, Tino
2014-12-01
Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. PMID:26356972
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
De Leo, S. ); Rotelli, P. )
1992-01-15
We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
Spontaneous Scalarization of Massive Fields
NASA Astrophysics Data System (ADS)
Ramazanoglu, Fethi M.; Pretorius, Frans
2014-03-01
Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.
Conformal scalar field wormholes
NASA Technical Reports Server (NTRS)
Halliwell, Jonathan J.; Laflamme, Raymond
1989-01-01
The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.
Roberts, M.D.
1996-09-01
Static spherically symmetric uncoupled scalar space{endash}times have no event horizon and a divergent Kretschmann singularity at the origin of the coordinates. The singularity is always present so that nonstatic solutions have been sought to see if the singularities can develop from an initially singular free space{endash}time. In flat space{endash}time the Klein{endash}Gordon equation {D`Alembertian}{var_phi}=0 has the nonstatic spherically symmetric solution {var_phi}={sigma}({ital v})/{ital r}, where {sigma}({ital v}) is a once differentiable function of the null coordinate {ital v}. In particular, the function {sigma}({ital v}) can be taken to be initially zero and then grow, thus producing a singularity in the scalar field. A similar situation occurs when the scalar field is coupled to gravity via Einstein{close_quote}s equations; the solution also develops a divergent Kretschmann invariant singularity, but it has no overall energy. To overcome this, Bekenstein{close_quote}s theorems are applied to give two corresponding conformally coupled solutions. One of these has positive ADM mass and has the following properties: (i) it develops a Kretschmann invariant singularity, (ii) it has no event horizon, (iii) it has a well-defined source, (iv) it has well-defined junction condition to Minkowski space{endash}time, and (v) it is asymptotically flat with positive overall energy. This paper presents this solution and several other nonstatic scalar solutions. The properties of these solutions which are studied are limited to the following three: (i) whether the solution can be joined to Minkowski space{endash}time, (ii) whether the solution is asymptotically flat, (iii) and, if so, what the solutions{close_quote} Bondi and ADM masses are. {copyright} {ital 1996 American Institute of Physics.}
Palacios field: A 3-D case history
McWhorter, R.; Torguson, B.
1994-12-31
In late 1992, Mitchell Energy Corporation acquired a 7.75 sq mi (20.0 km{sup 2}) 3-D seismic survey over Palacios field. Matagorda County, Texas. The company shot the survey to help evaluate the field for further development by delineating the fault pattern of the producing Middle Oligocene Frio interval. They compare the mapping of the field before and after the 3-D survey. This comparison shows that the 3-D volume yields superior fault imaging and interpretability compared to the dense 2-D data set. The problems with the 2-D data set are improper imaging of small and oblique faults and insufficient coverage over a complex fault pattern. Whereas the 2-D data set validated a simple fault model, the 3-D volume revealed a more complex history of faulting that includes three different fault systems. This discovery enabled them to reconstruct the depositional and structural history of Palacios field.
A 3D Vector/Scalar Visualization and Particle Tracking Package
Energy Science and Technology Software Center (ESTSC)
1999-08-19
BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively placemore » injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.« less
A 3D Vector/Scalar Visualization and Particle Tracking Package
Freitag, Lori; Disz, Terry; Papka, Mike; Heath, Daniel; Diachin, Darin; Herzog, Jim; Ryan, and Bob
1999-08-19
BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively place injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.
Ultrarelativistic boost with scalar field
NASA Astrophysics Data System (ADS)
Svítek, O.; Tahamtan, T.
2016-02-01
We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.
Structured light field 3D imaging.
Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z
2016-09-01
In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639
Spontaneous scalarization with massive fields
NASA Astrophysics Data System (ADS)
Ramazanoǧlu, Fethi M.; Pretorius, Frans
2016-03-01
We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.
Symmetry inheritance of scalar fields
NASA Astrophysics Data System (ADS)
Smolić, Ivica
2015-07-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.
Are stealth scalar fields stable?
Faraoni, Valerio; Moreno, Andres F. Zambrano
2010-06-15
Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.
Area and volume coherence for efficient visualization of 3D scalar functions
Max, N. California Univ., Davis, CA ); Hanrahan, P. ); Crawfis, R. )
1990-01-01
We present an algorithm for compositing a combination of density clouds and contour surfaces used to represent a scalar function on a 3-D volume. The volume is divided into convex polyhedra, at whose vertices the function is known, and the polyhedra are sorted in depth before compositing. For data given at scattered 3-D points, we show that this sorting can be done in O(n) time if we chose the tetrahedra in the Delaunay triangulation as the polyhedra. The integrals for cloud opacity and visible cloud intensity along a ray through a convex polyhedron are computed analytically, and this computation is coherent across the polyhedron's area. 33 refs.
Scalar fields and particle accelerators
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Bose, Benjamin
2015-06-01
The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked
NASA Astrophysics Data System (ADS)
Van Vliet, E.; Van Bergen, S. M.; Derksen, J. J.; Portela, L. M.; Van den Akker, H. E. A.
A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially ``skewed'' during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.
Edery, Ariel; Graham, Noah; MacDonald, Ilana
2009-06-15
Under dimensional reduction, a system in D spacetime dimensions will not necessarily yield its D-1-dimensional analog version. Among other things, this result will depend on the boundary conditions and the dimension D of the system. We investigate this question for scalar and Abelian gauge fields under boundary conditions that obey the symmetries of the action. We apply our findings to the Casimir piston, an ideal system for detecting boundary effects. Our investigation is not limited to extra dimensions and we show that the original piston scenario proposed in 2004, a toy model involving a scalar field in 3D (2+1) dimensions, can be obtained via dimensional reduction from a more realistic 4D electromagnetic (EM) system. We show that for perfect conductor conditions, a D-dimensional EM field reduces to a D-1 scalar field and not its lower-dimensional version. For Dirichlet boundary conditions, no theory is recovered under dimensional reduction and the Casimir pressure goes to zero in any dimension. This ''zero Dirichlet'' result is useful for understanding the EM case. We then identify two special systems where the lower-dimensional version is recovered in any dimension: systems with perfect magnetic conductor (PMC) and Neumann boundary conditions. We show that these two boundary conditions can be obtained from a variational procedure in which the action vanishes outside the bounded region. The fields are free to vary on the surface and have zero modes, which survive after dimensional reduction.
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Entropic quantization of scalar fields
NASA Astrophysics Data System (ADS)
Ipek, Selman; Caticha, Ariel
2015-01-01
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Light field display and 3D image reconstruction
NASA Astrophysics Data System (ADS)
Iwane, Toru
2016-06-01
Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.
A note on perfect scalar fields
NASA Astrophysics Data System (ADS)
Unnikrishnan, Sanil; Sriramkumar, L.
2010-05-01
We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.
A note on perfect scalar fields
Unnikrishnan, Sanil; Sriramkumar, L.
2010-05-15
We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.
Research and implementation of visualization techniques for 3D explosion fields
NASA Astrophysics Data System (ADS)
Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen
2015-12-01
The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.
3D touchable holographic light-field display.
Yamaguchi, Masahiro; Higashida, Ryo
2016-01-20
We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated. PMID:26835952
Simulation of 3D infrared scenes using random fields model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Zhang, Jianqi
2001-09-01
Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.
Static scalar field solutions in symmetric gravity
NASA Astrophysics Data System (ADS)
Hossenfelder, S.
2016-09-01
We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.
Cross Sections From Scalar Field Theory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
On causality in polymer scalar field theory
NASA Astrophysics Data System (ADS)
García-Chung, Angel A.; Morales-Técotl, Hugo A.
2011-10-01
The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
The use of harmonics in 3-D magnetic fields
Caspi, S.; Helm, M.; Laslett, L.J.
1993-09-01
Motivated by the need for new means for specification and determination of 3-D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, the authors have generalized the representation of a 2-D magnetic field to 3-D. They have shown that the 3-D magnetic field components of a multipole magnet in the curl-free divergence-free region near the axis r = 0 can be derived from one dimensional functions A{sub n}(z) and their derivatives. In this report they apply both methods to the ``end`` region of a 40 mm bore SSC quadrupole, calculating first the field harmonics and then reconstructing the field comparing both results with direct Biot-Savart calculation.
Intermediate inflation driven by DBI scalar field
NASA Astrophysics Data System (ADS)
Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.
2016-06-01
Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.
Can dark matter be a scalar field?
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Pereira, S. H.; Malatrasi, J. L. G.; Andrade-Oliveira, F.
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m>=0.12H0‑1 eV (c=hbar=1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H0=73±1.8 km s‑1Mpc‑1, this leads to m>=1.56×10‑33 eV at 99.7% c.l. Such value is much smaller than m~ 10‑22 eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.
Imaging 3D strain field monitoring during hydraulic fracturing processes
NASA Astrophysics Data System (ADS)
Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.
2016-05-01
In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Exploring scalar field dynamics with Gaussian processes
Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com
2014-01-01
The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.
Halos of unified dark matter scalar field
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it
2008-05-15
We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.
Astrophysical constraints on scalar field models
Bertolami, O.; Paramos, J.
2005-01-15
We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model.
3D Magnetotelluric characterization of the COSO GeothermalField
Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.
2005-01-01
Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.
Generalized gravitational entropy of interacting scalar field and Maxwell field
NASA Astrophysics Data System (ADS)
Huang, Wung-Hong
2014-12-01
The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Anisotropic inflation from charged scalar fields
Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem E-mail: firouz@ipm.ir E-mail: m.zarei@cc.iut.ac.ir
2011-02-01
We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.
Electric field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.
3D Hole Inspection Using Lens with High Field Curvature
NASA Astrophysics Data System (ADS)
Zavyalov, Petr
2015-02-01
One of the actual 3D measurement problems is the optical inspection of various holes. In this respect, the task of plane image formation of holes as extended 3D objects using optical methods turns out to be of primary importance. We have developed specialized lenses that perform such transformations due to specially increased aberrations (field curvature, astigmatism) for the formation of extended objects plane images. The calculations of the lens parameters are presented. The detail analysis of the imaging properties was carried out. The presented hole inspection lens has been designed, constructed and used for inspection of the fuel assembly spacer grids.
A 3-D measurement of biomagnetic field and its application
NASA Astrophysics Data System (ADS)
Uchikawa, Yoshinori; Kim, Bong-Soo; Kobayashi, Koichiro
2006-09-01
This review paper focuses in the usefulness of three-dimensional (3-D) biomagnetic field measurement for discriminating multiple sources closely located and overlapped in time. We have developed a 3-D second-order gradiometer connected to 39-channel SQUIDs for vector measurement of magnetoencephalogram (MEG), which can simultaneously detect magnetic field components perpendicular and tangential to the scalp. To assess discrimination and separation of multiple sources overlapping in time, we showed both simulation study and 3-D vector measurement of MEG as following; (a) mixed auditory evoked field (AEF) and somatosensory evoked field (SEF), (b) separating second somatosensory (SII) activity from primary somatosensory (SI) activity in SEF. The magnetic field distribution perpendicular to the scalp was not helpful for estimating the location and number of sources, owing to the lack of a dipole pattern, but the magnetic field distribution tangential to the scalp can provide information about new constraint conditions by visual inspection and singular value decomposition (SVD) method. We estimated multiple sources of mixed AEF and SEF from the MEG data of the magnetic field tangential to the scalp, and also estimated multiple sources of SI and SII activity. These results were confirmed by comparison with superimposed source locations in MRI of subject's head.
3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets
NASA Astrophysics Data System (ADS)
Greenwald, Zipi; Greenwald, Shlomo
1997-05-01
A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar
2016-04-01
In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.
Continuity of scalar fields with logarithmic correlations
NASA Astrophysics Data System (ADS)
Rajeev, S. G.; Ranken, Evan
2015-08-01
We apply select ideas from the modern theory of stochastic processes in order to study the continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as a massless field in 1 +1 spacetime dimensions) has the mildest of singularities, making it a logical starting point. Instead of the usual inner product of the field with a smooth function, we introduce a moving average on an interval which allows us to obtain explicit results and has a simple physical interpretation. Using the mathematical work of Dudley, we prove that the averaged random process is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.
Noncommutative scalar fields from symplectic deformation
Daoud, M.; Hamama, A.
2008-02-15
This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.
Dissipation element analysis of turbulent scalar fields
NASA Astrophysics Data System (ADS)
Wang, Lipo; Peters, Norbert
2008-12-01
Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field \\phi'(\\vec{x},t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δphi ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δphi ' as well. A compensation-defect model is put forward in this work to show the dependence of Δphi ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.
3D temperature field reconstruction using ultrasound sensing system
NASA Astrophysics Data System (ADS)
Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei
2016-04-01
3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.
Advancing the field of 3D biomaterial printing.
Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N
2016-02-01
3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications. PMID:26752507
Scalar field cosmologies with inverted potentials
NASA Astrophysics Data System (ADS)
Boisseau, B.; Giacomini, H.; Polarski, D.
2015-10-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.
Creation of the universe with a stealth scalar field
NASA Astrophysics Data System (ADS)
Maeda, Hideki; Maeda, Kei-ichi
2012-12-01
The stealth scalar field is a nontrivial configuration without any backreaction to geometry, which is characteristic for nonminimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by Hartle and Hawking’s semiclassical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant, and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.
R3D: Reduction Package for Integral Field Spectroscopy
NASA Astrophysics Data System (ADS)
Sánchez, Sebastián. F.
2011-06-01
R3D was developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk. R3D unifies the reduction techniques for the different IFS instruments to a single one, in order to allow the general public to reduce different instruments data in an homogeneus, consistent and simple way. Although still in its prototyping phase, it has been proved to be useful to reduce PMAS (both in the Larr and the PPAK modes), VIMOS and INTEGRAL data. The current version has been coded in Perl, using PDL, in order to speed-up the algorithm testing phase. Most of the time critical algorithms have been translated to C[float=][/float], and it is our intention to translate all of them. However, even in this phase R3D is fast enough to produce valuable science frames in reasonable time.
Casimir effect for massive scalar field
NASA Astrophysics Data System (ADS)
Mobassem, S.
2014-10-01
The energy-momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism, we also relate the vacuum force expression to the imaginary part of the Green function via the fluctuation-dissipation theorem and Kubo's formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D+1 spacetime dimensions.
Widespread 3D seismic survey covers mature field in Gabon
Riley, D.; Fleming, M. ); Delvaux, J. )
1993-12-06
The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.
Visualizing 3D velocity fields near contour surfaces
Max, N.; Crawfis, R.; Grant, C.
1994-03-01
Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.
3D deformation field throughout the interior of materials.
Jin, Huiqing; Lu, Wei-Yang
2013-09-01
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
Age Crises, Scalar Fields, and the Apocalypse
NASA Astrophysics Data System (ADS)
Jackson, J. C.
Recent observations suggest that Hubble's constant is large, to the extent that the oldest stars appear to have ages which are greater than the Hubble time, and that the Hubble expansion is slowing down, so that according to conventional cosmology the age of the Universe is less than the Hubble time. The concepts of weak and strong age crises (respectively t0<1/H0 but longer than the age inferred from some lower limit on q0, and t0>1/H0 and q0>0) are introduced. These observations are reconciled in models which are dynamically dominated by a homogeneous scalar field, corresponding to an ultra-light boson whose Compton wavelength is of the same order as the Hubble radius. Two such models are considered, an open one with vacuum energy comprising a conventional cosmological term and a scalar field component, and a flat one with a scalar component only, aimed respectively at weak and strong age crises. Both models suggest that anti-gravity plays a significant role in the evolution of the Universe.
Targeted infill drilling at Stratton field using 3-D seismic
Suydam, J.R.; Reitz, D.T.
1994-12-31
Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg Counties, South Texas. It has produced more than 2.8 Tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow-marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, an 8-mi{sup 2} seismic survey was completed in the southern end of the field, and the resulting structural interpretation presented many more fault traps than were apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.
Targeted infill drilling at Stratton Field using 3-D seismic
Suydam, J.; Reitz, D.
1994-09-01
Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg counties, south Texas. It has produced over 2.8 tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, the Bureau of Economic Geology shot an 8-mi{sup 2} survey in the southern end of the field, and the resulting structural interpretation presented many more fault traps that were not apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.
The 3D Flow Field Around an Embedded Planet
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin
2015-10-01
3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.
3-D flame temperature field reconstruction with multiobjective neural network
NASA Astrophysics Data System (ADS)
Wan, Xiong; Gao, Yiqing; Wang, Yuanmei
2003-02-01
A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.
A full field, 3-D velocimeter for microgravity crystallization experiments
NASA Technical Reports Server (NTRS)
Brodkey, Robert S.; Russ, Keith M.
1991-01-01
The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.
Gravitational collapse of a scalar field
Maithreyan, T.
1985-01-01
A self-similar collapse of massless scalar waves is considered, and the Einstein field equations in classical general relativity are solved to obtain the metric for the collapse. These scalar waves satisfy the massless wave equation and the energy momentum tensor associated with them is derived from their Lagrangian density. The collapse begins at t = 0 before which spacetime is flat, empty spacetime described by the Minkowski metric. Self similarity assumes that a homothetic Killing vector exists for the collapse, which satisfies the corresponding homothetic Killing equation. The solution obtained contains a constant c/sup 2/ whose value determines the nature of the collapse and the kind of singularity formed by the collapsing scalar waves. The three different cases are outlined and the corresponding Penrose diagrams are given. The apparent horizons, defined by Hawking as the limit of the trapped surfaces surrounding the singularity, are calculated for each case. A quantum correction is given for the above classical picture using the method developed originally by Hawking, to study particle creation by a black hole.
3-D magnetic field calculations for wiggglers using MAGNUS-3D
Pissanetzky, S.; Tompkins, P.
1988-01-01
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.
General Relativity, Scalar Fields and Cosmic Strings.
NASA Astrophysics Data System (ADS)
Burd, Adrian Benedict
1987-09-01
Available from UMI in association with The British Library. This thesis is divided into three, essentially self-contained, parts. In the first part we examine the structure of classical three-dimensional space-times. Here, we review and extend what is known about the gravitational theories in these models. We investigate the non-existence of a Newtonian limit to the relativistic theories showing that in the presence of certain matter terms, Newtonian gravity can be obtained as a suitable weak-field limit. We present a number of new, exact static and non-static solutions to the equations of three-dimensional general relativity with scalar field and perfect fluid sources. We comment on the relationship between the stiff perfect fluid and the scalar field. Motivated by the Kaluza-Klein procedure of dimensional reduction we find some exact scalar field solutions which have analogues in four-dimensions. We also present classification schemes based on the group of motions of homogeneous space-times and on the Cotton -York tensor. The description of the general cosmological solution in the vicinity of the singularity is given in terms of the number of arbitrary spatial functions independently specified on a space-like hypersurface. We also study a series approximation to the space-time in the vicinity of the cosmological singularity. Some conjectures are made concerning the space-time singularities. We present two exact cosmological solutions containing self-interacting scalar fields. The models exhibit an inflationary behaviour. We also present an anisotropic cosmological model. The second part of the thesis contains a study of certain cosmological models which have self-interacting scalar fields obeying an exponential potential. We use the techniques of phase portrait analysis to study the N-dimensional cosmological models as well as certain anisotropic models. The latter involves the analysis of a three-dimensional system of equations and we review the relevant theory
Scalar-field theory of dark matter
NASA Astrophysics Data System (ADS)
Huang, Kerson; Xiong, Chi; Zhao, Xiaofei
2014-05-01
We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions and the creation of vortices due to galactic rotation.
Global integrability of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek
2008-11-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.
Induced gravity I: real scalar field
NASA Astrophysics Data System (ADS)
Einhorn, Martin B.; Jones, D. R. Timothy
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
Scalar field collapse with negative cosmological constant
NASA Astrophysics Data System (ADS)
Baier, R.; Nishimura, H.; Stricker, S. A.
2015-07-01
The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.
View-dependent streamlines for 3D vector fields.
Marchesin, Stéphane; Chen, Cheng-Kai; Ho, Chris; Ma, Kwan-Liu
2010-01-01
This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention. PMID:20975200
A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography
Schuster, T.; Theis, D.; Louis, A. K.
2008-01-01
3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391
Tuning the 3D plasmon field of nanohole arrays
NASA Astrophysics Data System (ADS)
Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois
2013-11-01
Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been
Scalar field dark matter and the Higgs field
NASA Astrophysics Data System (ADS)
Bertolami, O.; Cosme, Catarina; Rosa, João G.
2016-08-01
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Searching for Chameleon-Like Scalar Fields
NASA Astrophysics Data System (ADS)
Levshakov, S. A.; Molaro, P.; Kozlov, M. G.; Lapinov, A. V.; Henkel, Ch.; Reimersi, D.; Sakai, T.; Agafonova, I. I.
Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset ΔV ≈ 27 ± 3 m s - 1 (1σ) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H + (1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m s - 1 and thus can be neglected in the total error budget. The reproducibility of ΔV at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in μ ≡ m e / m p, the revealed non-zero ΔV may imply that μ changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field models - candidates to the dark energy carrier. Thus we are testing whether scalar field models have chameleon-type interactions with ordinary matter. The measured velocity offset corresponds to the ratio Δμ / μ ≡ (μspace - μlab) / μlab of (26 ± 3) ×10 - 9 (1σ).
Scalar field theory on noncommutative Snyder spacetime
Battisti, Marco Valerio; Meljanac, Stjepan
2010-07-15
We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.
Exploration 3-D Seismic Field Test/Native Tribes Initiative
Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon
1999-04-27
To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Study of Several Potentials as Scalar Field Dark Matter Candidates
Matos, Tonatiuh; Vazquez-Gonzalez, Alberto; Magan a, Juan
2008-12-04
In this work we study several scalar field potentials as a plausible candidate to be the dark matter in the universe. The main idea is the following; if the scalar field is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations which oscillate in space-time (oscillatons). The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the free parameters of the scalar field potentials. We are able to reproduce very well the cosmological predictions of the standard {lambda}CDM model with some scalar field potentials. Therefore, scalar field dark matter seems to be a good alternative to be the nature of the dark matter of the universe.
Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.
2016-04-01
We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.
Electromagnetic fields with vanishing scalar invariants
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Pravda, Vojtěch
2016-06-01
We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.
Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs
NASA Astrophysics Data System (ADS)
Čuma, Martin; Zhdanov, Michael S.
2014-01-01
We have recently introduced a massively parallel regularized 3D inversion of potential fields data. This program takes as an input gravity or magnetic vector, tensor and Total Magnetic Intensity (TMI) measurements and produces 3D volume of density, susceptibility, or three dimensional magnetization vector, the latest also including magnetic remanence information. The code uses combined MPI and OpenMP approach that maps well onto current multiprocessor multicore clusters and exhibits nearly linear strong and weak parallel scaling. It has been used to invert regional to continental size data sets with up to billion cells of the 3D Earth's volume on large clusters for interpretation of large airborne gravity and magnetics surveys. In this paper we explain the features that made this massive parallelization feasible and extend the code to add GPU support in the form of the OpenACC directives. This implementation resulted in up to a 22x speedup as compared to the scalar multithreaded implementation on a 12 core Intel CPU based computer node. Furthermore, we also introduce a mixed single-double precision approach, which allows us to perform most of the calculation at a single floating point number precision while keeping the result as precise as if the double precision had been used. This approach provides an additional 40% speedup on the GPUs, as compared to the pure double precision implementation. It also has about half of the memory footprint of the fully double precision version.
Llinares, Claudio; Mota, David F
2013-04-19
Several extensions of general relativity and high energy physics include scalar fields as extra degrees of freedom. In the search for predictions in the nonlinear regime of cosmological evolution, the community makes use of numerical simulations in which the quasistatic limit is assumed when solving the equation of motion of the scalar field. In this Letter, we propose a method to solve the full equations of motion for scalar degrees of freedom coupled to matter. We run cosmological simulations which track the full time and space evolution of the scalar field, and find striking differences with respect to the commonly used quasistatic approximation. This novel procedure reveals new physical properties of the scalar field and uncovers concealed astrophysical phenomena which were hidden in the old approach. PMID:23679591
Massive basketball diagram for a thermal scalar field theory
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
3D Magnetotelluic characterization of the Coso GeothermalField
Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika
2007-04-23
-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.
3D crack tip fields for FCC single crystals
Cuitino, A.M.; Ortiz, M.
1995-12-31
Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
Duality linking standard and tachyon scalar field cosmologies
Avelino, P. P.; Bazeia, D.; Losano, L.; Oliveira, J. C. R. E.; Pavan, A. B.
2010-09-15
In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalar field models can be calculated explicitly.
Scalar Field Theories with Polynomial Shift Symmetries
NASA Astrophysics Data System (ADS)
Griffin, Tom; Grosvenor, Kevin T.; Hořava, Petr; Yan, Ziqi
2015-12-01
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.
Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields
NASA Astrophysics Data System (ADS)
Krongos, D. S.; Torre, C. G.
2015-07-01
Rainich-type conditions giving a spacetime "geometrization" of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from the metric are unified and extended to arbitrary dimensions, to include a cosmological constant, and to include any self-interaction potential. Necessary and sufficient conditions on a four-dimensional spacetime metric for it to be an electrovacuum and formulas for constructing the electromagnetic field from the metric are generalized to include a cosmological constant. Both null and non-null electromagnetic fields are treated. A number of examples and applications of these results are presented.
Determining 3D Flow Fields via Multi-camera Light Field Imaging
Truscott, Tadd T.; Belden, Jesse; Nielson, Joseph R.; Daily, David J.; Thomson, Scott L.
2013-01-01
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet. PMID:23486112
Inflationary solutions in the nonminimally coupled scalar field theory
NASA Astrophysics Data System (ADS)
Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong
2005-08-01
We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.
Scalar field dark matter: behavior around black holes
Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D. E-mail: guzman@ifm.umich.mx
2011-06-01
We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.
Entanglement entropy in scalar field theory
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.
2013-01-01
Understanding the dependence of entanglement entropy on the renormalized mass in quantum field theories can provide insight into phenomena such as quantum phase transitions, since the mass varies in a singular way near the transition. Here we perturbatively calculate the entanglement entropy in interacting scalar field theory, focusing on the dependence on the field’s mass. We study λϕ4 and gϕ3 theories in their ground state. By tracing over a half space, using the replica trick and position space Green’s functions on the cone, we show that spacetime volume divergences cancel and renormalization can be consistently performed in this conical geometry. We establish finite contributions to the entanglement entropy up to two-loop order, involving a finite area law. The resulting entropy is simple and intuitive: the free theory result in d = 3 (that we included in an earlier publication) ΔS ˜ A m2ln (m2) is altered, to leading order, by replacing the bare mass m by the renormalized mass mr evaluated at the renormalization scale of zero momentum.
Bose-Einstein condensates from scalar field dark matter
Urena-Lopez, L. Arturo
2010-12-07
We review the properties of astrophysical and cosmological relevance that may arise from the bosonic nature of scalar field dark matter models. The key property is the formation of Bose-Einstein condensates, but we also consider the presence of non-empty excited states that may be relevant for the description of scalar field galaxy halos and the properties of rotation curves.
Fundamental scalar fields and the dark side of the universe
NASA Astrophysics Data System (ADS)
Mychelkin, Eduard G.; Makukov, Maxim A.
2015-11-01
Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy (DE), has exceedingly small but finite (subquantum) Hubble mass scale ( ≈ 10-33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter (DM) as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.
On the entanglement between interacting scalar field theories
NASA Astrophysics Data System (ADS)
Mozaffar, M. Reza Mohammadi; Mollabashi, Ali
2016-03-01
We study "field space entanglement" in certain quantum field theories consisting of N number of free scalar fields interacting with each other via kinetic mixing terms. We present exact analytic expressions for entanglement and Renyi entropies between arbitrary numbers of scalar fields by which we could explore certain entanglement inequalities. Other entanglement measures such as mutual information and entanglement negativity have also been studied. We also give some comments about possible holographic realizations of such models.
Dynamic scattering theory for dark-field electron holography of 3D strain fields.
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934
Massive basketball diagram for a thermal scalar field theory
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-15
The ''basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a {phi}{sup 4} interaction to three-loop order. (c) 2000 The American Physical Society.
General analytic solutions of scalar field cosmology with arbitrary potential
NASA Astrophysics Data System (ADS)
Dimakis, N.; Karagiorgos, A.; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T.; Terzis, Petros A.
2016-06-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Scalar field radiation from dilatonic black holes
NASA Astrophysics Data System (ADS)
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
Integration of real-time 3D capture, reconstruction, and light-field display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
Nonrelativistic approach for cosmological scalar field dark matter
NASA Astrophysics Data System (ADS)
Ureña-López, L. Arturo
2014-07-01
We derive nonrelativistic equations of motion for the formation of cosmological structure in a scalar field dark matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the involved fields into relativistic and nonrelativistic parts and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will be that the SFDM field is in the regime of fast oscillations, under which its behavior in the homogeneous regime is exactly that of cold dark matter. The resultant equations are quite similar to the Schrödinger-Poisson system of Newtonian boson stars plus relativistic leftovers, and they can be used to study the formation of cosmological structure in SFDM models, and others alike, to ultimately prove their viability as complete dark matter models.
Bianchi type-I models with conformally invariant scalar field
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-05-15
The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Kouadik, S.; Sefai, D.
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Wormhole-induced operators for a massless scalar field
Goto, T.; Okada, Y. )
1991-05-15
Bilocal operators induced by an axionic wormhole solution are obtained in the case of a massless scalar field. For this purpose, we first show that the calculation of a Green's function for the scalar field on the wormhole background is reduced to a one-dimensional potential-barrier problem. We then evaluate numerically the asymptotic behavior of the Green's function and identify the effective interaction induced by the wormhole.
Unimodular metagravity vs. general relativity with a scalar field
Pirogov, Yu. F.
2010-01-15
The unimodular metagravity, with the graviscalar as a dark matter, is compared with General Relativity (GR) in the presence of a scalar field. The effect of the graviscalar on the static spherically symmetric metric is studied. An exact limit solution representing a new cosmic object, the (harmonic) graviscalar black hole, is given. The relation with the black hole in the environment of a scalar field in GR is discussed.
Nonlocal Stochastic Model for the Free Scalar Field Theory
NASA Astrophysics Data System (ADS)
Namsrai, Kh.
1981-05-01
The free scalar field is investigated within the framework of the Davidson stochastic model and of the hypothesis on space-time stochasticity. It is shown that the resulting Markov field obtained by averaging in this space-time is equivalent to a nonlocal Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter ν. Our result generalizes Guerra and Ruggiero's procedure of stochastic quantization of scalar fields. On the basis of the assumption about unobservability of ν in quantum field theory, the Efimov nonlocal theory is obtained from Euclidean Markov field with form factors of the class of entire analytical functions.
Generalized cosmic Chaplygin gas inspired intermediate standard scalar field inflation
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra
2016-08-01
We study the warm intermediate inflationary regime in the presence of generalized cosmic Chaplygin gas and an inflaton decay rate proportional to the temperature. For this purpose, we consider standard scalar field model during weak and strong dissipative regimes. We explore inflationary parameters like spectral index, scalar and tensor power spectra, tensor to scalar ratio and decay rate in order to compare the present model with recent observational data. The physical behavior of inflationary parameters is presented and found that all the results are agreed with recent observational data such as WMAP7, WMAP9 and Planck 2015.
NASA Astrophysics Data System (ADS)
Berberian, John Edwin
1999-01-01
A new framework is presented for analysing the spherically symmetric Einstein field equations for a zero-mass scalar field. The framework consists of a coordinate system (p, q), where the coordinate p is the scalar field, and q is a coordinate chosen to be orthogonal to p. This idea allows for a reduction of the field equations into a system of two first order partial differential equations for the areal metric function gqq and a mass function m . The metric coefficients in this coordinate system then take on values which are simply related to the scalars of the problem: 1->f˙1 ->f,gq q and-via the field equations-the scalar curvature R as well. The scalar field coordinate system is shown to have many advantages. Many of the known exact solutions (e.g. static, Roberts) are represented simply, and new self- similar solutions are derived. The framework is then applied to the problem of matching spherically symmetric scalar-tensor vacuum solutions to a homogeneous and isotropic dust solution (e.g. scalar- tensor Einstein-Straus swiss cheese solutions, scalar- tensor Oppenheimer-Snyder dust ball collapse). Scalar field coordinates are shown to be ideal for such an application. We derive the necessary matching conditions in scalar field coordinates, and show how they imply a natural extension of the Schücking condition for spherically symmetric vacuum in general relativity. The problem of finding a vacuum solution which matches a given homogeneous and isotropic solution is examined. It is found that the matching conditions are sufficient to guarantee local existence and uniqueness of the vacuum solution if it is assumed that the scalar field has neither maxima nor minima on the matching interface. In order to find explicit matched solutions, criteria are developed to screen known exact vacuum solutions for matchability, and procedures are given for determining the details of the homogeneous and isotropic solution (curvature constant, comoving radial coordinate of the
3D fingerprint imaging system based on full-field fringe projection profilometry
NASA Astrophysics Data System (ADS)
Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili
2014-01-01
As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.
Unified description of the dynamics of quintessential scalar fields
Ureña-López, L. Arturo
2012-03-01
Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.
Thermodynamics of perfect fluids from scalar field theory
NASA Astrophysics Data System (ADS)
Ballesteros, Guillermo; Comelli, Denis; Pilo, Luigi
2016-07-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stückelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stückelberg fields. We show that thermodynamic stability plus the null-energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Bayesian 3D velocity field reconstruction with VIRBIUS
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem
2016-03-01
I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.
Inflation with an extra light scalar field after Planck
NASA Astrophysics Data System (ADS)
Vennin, Vincent; Koyama, Kazuya; Wands, David
2016-03-01
Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where simeq 200 inflaton setups × 10 reheating scenarios = 2000 models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an extra light scalar field, in some specific reheating scenarios. Using Bayesian complexity, we also find that more parameters are constrained for the models we study than for their single-field versions. This is because the added parameters not only contribute to the reheating kinematics but also to the cosmological perturbations themselves, to which the added field contributes. The interplay between these two effects lead to a suppression of degeneracies that is responsible for having more constrained parameters.
N-body simulations for coupled scalar-field cosmology
Li Baojiu; Barrow, John D.
2011-01-15
We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the {Lambda}CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.
Constraining scalar fields with stellar kinematics and collisional dark matter
Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano E-mail: jbarranc@aei.mpg.de E-mail: rezzolla@aei.mpg.de
2010-11-01
The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m{sub φ} and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei.
Quasistationary solutions of scalar fields around accreting black holes
NASA Astrophysics Data System (ADS)
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.
2016-08-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.
Increasing the depth of field in Multiview 3D images
NASA Astrophysics Data System (ADS)
Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon
2016-06-01
A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.
Hines, J.V.; Landry, S.M.; Varani, G.; Tinoco, I. Jr. Lawrence Berkeley Lab., CA )
1994-06-29
Long range carbon-proton scalar couplings were measured for an RNA hairpin of 12 nucleotides using 3D and [sup 13]C-edited 2D NMR. The large one-bond carbon-proton scalar couplings ([sup 1]J[sub CH]) and small n-bond couplings ([sup 1]J[sub CH]) produce ECOSY type cross-peaks, thus facilitating the determination of the sign and magnitude of the smaller [sup 2]J[sub CH] or [sup 3]J[sub CH]. The UUCGRNA hairpin (5[prime]-rGGACUUCGGUCC-3[prime]), whose structure has been determined by our laboratory, was uniformly [sup 13]C-labeled at 30% isotopic enrichment. The observed [sup 1]J[sub CH] couplings were then correlated to the known structure. The signs of [sup 2]J[sub C4[prime]H5[prime
Heat pulse propagation is 3-D chaotic magnetic fields
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, D.; Blazevski, D.
2013-10-01
Perturbative transport studies provide valuable time dependent information to construct and test transport models in magnetically confined plasmas. In these studies, the transient response of the plasma to externally applied small perturbations is followed in time. Here we present a numerical study of the radial propagation of edge heat pulse perturbations in the presence of 3-dimensional chaotic magnetic fields in cylindrical geometry. Based on the strong transport anisotropy encountered in magnetized plasmas (χ∥ /χ⊥ ~1010 in fusion plasmas, where χ∥ and χ⊥ are the parallel and perpendicular conductivities) we limit attention to the extreme anisotropic, purely parallel, χ⊥ = 0 , case. Using the Lagrangian-Green's function method we study the dependence of the pulse speed and radial penetration on the level of stochasticity of the magnetic field in regular, and reversed magnetic shear configurations. Of particular interest is the slowing down of the heat pulse due to weak chaos, islands, and shearless cantori. Work supported by the USA Department of Energy.
Resolving stellar populations with crowded field 3D spectroscopy
NASA Astrophysics Data System (ADS)
Kamann, S.; Wisotzki, L.; Roth, M. M.
2013-01-01
We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the
3-D explosions: a meditation on rotation (and magnetic fields)
NASA Astrophysics Data System (ADS)
Wheeler, J. C.
This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!
Scalar field conformally coupled to a charged BTZ black hole
NASA Astrophysics Data System (ADS)
Valtancoli, P.
2016-06-01
We study the Klein-Gordon equation of a scalar field conformally coupled to a charged BTZ black hole. The background metric is obtained by coupling a non-linear and conformal invariant Maxwell field to (2 + 1) gravity. We show that the radial part is generally solved by a Heun function and, in the pure gravity limit, by a hypergeometric function.
3D defect detection using optical wide-field microscopy
NASA Astrophysics Data System (ADS)
Tympel, Volker; Schaaf, Marko; Srocka, Bernd
2007-06-01
We report a method to detect signed differences in two similar data sets representing 3-dimensional intensity profiles recorded by optical wide-field microscopes. The signed differences describe missing or unexpected intensity values, defined as defects. In technical applications like wafer and mask inspection, data sets often represent surfaces. The reported method is able to describe the size and position especially in relation to the neighboring surface and is called Three-Dimension-Aberration (TDA)-Technology. To increase the tool performance and to handle different sizes of defects a scaled bottom-up method is implemented and started with high reduced data sets for the search of large defects. Each analysis contains three steps. The first step is a correlation to calculate the displacement vector between the similar data sets. In the second step a new data set is created. The new data set consists of intensity differences. Extreme values in the data set represent the position of defects. By the use of linear and non-linear filters the stability of detection can be improved. If all differences are below a threshold the bottom-up method starts with the next larger scaled data set. In the other case it is assumed that the defect is detected and step three starts with the detection of the convex hull of the defect and the search of the neighboring surface. As a result the defect is described by a parameter set including the relative position. Because of the layered structure of the data set and the bottom-up technique the method is suitable for multi-core processor architectures.
Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields
Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.
2009-02-15
We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.
A scalar field dark energy model: Noether symmetry approach
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy
2016-04-01
Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.
Bose-Einstein condensates and scalar fields; exploring the similitudes
NASA Astrophysics Data System (ADS)
Castellanos, E.; Macías, A.; Núñez, D.
2014-01-01
We analyze the the remarkable analogy between the classical Klein-Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross-Pitaevskii equation for a Bose-Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein-Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross-Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas-Fermi approximation is applied to the 3-dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space-time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose-Einstein condensation.
Bose–Einstein condensates and scalar fields; exploring the similitudes
Castellanos, E.; Macías, A.; Núñez, D.
2014-01-14
We analyze the the remarkable analogy between the classical Klein–Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross–Pitaevskii equation for a Bose–Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein–Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross–Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas–Fermi approximation is applied to the 3–dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space–time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose–Einstein condensation.
DBI scalar field theory for QGP hydrodynamics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2016-07-01
A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.
Coloring 3D line fields using Boy's real projective plane immersion.
Demiralp, Cağatay; Hughes, John F; Laidlaw, David H
2009-01-01
We introduce a new method for coloring 3D line fields and show results from its application in visualizing orientation in DTI brain data sets. The method uses Boy's surface, an immersion of RP2 in 3D. This coloring method is smooth and one-to-one except on a set of measure zero, the double curve of Boy's surface. PMID:19834221
Dark energy parametrization motivated by scalar field dynamics
NASA Astrophysics Data System (ADS)
de la Macorra, Axel
2016-05-01
We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.
Langevin description of gauged scalar fields in a thermal bath
NASA Astrophysics Data System (ADS)
Miyamoto, Yuhei; Motohashi, Hayato; Suyama, Teruaki; Yokoyama, Jun'ichi
2014-04-01
We study the dynamics of the oscillating gauged scalar field in a thermal bath. A Langevin-type equation of motion of the scalar field, which contains both dissipation and fluctuation terms, is derived by using the real-time finite-temperature effective action approach. The existence of the quantum fluctuation-dissipation relation between the nonlocal dissipation term and the Gaussian stochastic noise terms is verified. We find that the noise variables are anticorrelated at equal time. The dissipation rate for each mode is also studied, which turns out to depend on the wave number.
Braneworld inflation with a complex scalar field from Planck 2015
NASA Astrophysics Data System (ADS)
Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.
2016-06-01
We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.
Gauge Fields and Scalars in Rolling Tachyon Backgrounds
Thomas Mehen; Brian Wecht
2003-04-01
We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curvature of the effective metric as well as the time variation of the gauge coupling. The equations of state for these fields resemble those of nonrelativistic matter rather than those of massless particles.
ALIGNMENT OF THE SCALAR GRADIENT IN EVOLVING MAGNETIC FIELDS
Sur, Sharanya; Scannapieco, Evan; Pan, Liubin E-mail: evan.scannapieco@asu.edu
2014-07-20
We conduct simulations of turbulent mixing in the presence of a magnetic field, grown by the small-scale dynamo. We show that the scalar gradient field, ∇C, which must be large for diffusion to operate, is strongly biased perpendicular to the magnetic field, B. This is true both early on, when the magnetic field is negligible, and at late times, when the field is strong enough to back react on the flow. This occurs because ∇C increases within the plane of a compressive motion, but B increases perpendicular to it. At late times, the magnetic field resists compression, making it harder for scalar gradients to grow and likely slowing mixing.
A cross-platform solution for light field based 3D telemedicine.
Wang, Gengkun; Xiang, Wei; Pickering, Mark
2016-03-01
Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324
3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations
NASA Astrophysics Data System (ADS)
Kramar, M.; Lin, H.; Tomczyk, S.
2014-12-01
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.
Weak Gravitational Wave and Casimir Energy of a Scalar Field
NASA Astrophysics Data System (ADS)
Tavakoli, F.; Pirmoradian, R.; Parsabod, I.
2016-09-01
In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.
Collapse of charged scalar field in dilaton gravity
Borkowska, Anna; Rogatko, Marek; Moderski, Rafal
2011-04-15
We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.
Dwarf galaxies in multistate scalar field dark matter halos
NASA Astrophysics Data System (ADS)
Martinez-Medina, L. A.; Robles, V. H.; Matos, T.
2015-01-01
We analyze the velocity dispersion for eight of the Milky Way dwarf spheroidal satellites in the context of finite temperature scalar field dark matter. In this model the finite temperature allows the scalar field to be in configurations that possess excited states, a feature that has proved to be necessary in order to explain the asymptotic rotational velocities found in low surface brightness (LSB) galaxies. In this work we show that excited states are not only important in large galaxies but also have visible effects in dwarf spheroidals. Additionally, we stress that contrary to previous works where the scalar field dark matter halos are consider to be purely Bose-Einstein condensates, the inclusion of excited states in these halo configurations provides a consistent framework capable of describing LSB and dwarf galaxies of different sizes without arriving to contradictions within the scalar field dark matter model. Using this new framework we find that the addition of excited states accounts very well for the raise in the velocity dispersion in Milky Way dwarf spheroidal galaxies improving the fit compared to the one obtained assuming all the dark matter to be in the form of a Bose-Einstein condensate.
Local Scalar Fields Equivalent to Nambu-Goto Strings
NASA Astrophysics Data System (ADS)
Hosotani, Yutaka
1981-08-01
We prove the mathematical equivalence of Nambu-Goto strings to local scalar fields S(x) and T (x) described by the Lagrangian L=-d4x{[∂(S,T)∂(xμ,xν)]22}12 Implications to the quantization problem of strings are also discussed.
Higgs particles interacting via a scalar Dark Matter field
NASA Astrophysics Data System (ADS)
Bhattacharya, Yajnavalkya; Darewych, Jurij
2016-07-01
We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Effects of a scalar scaling field on quantum mechanics
NASA Astrophysics Data System (ADS)
Benioff, Paul
2016-07-01
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
Effects of a scalar scaling field on quantum mechanics
NASA Astrophysics Data System (ADS)
Benioff, Paul
2016-04-01
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.
Thick branes from self-gravitating scalar fields
Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.
2014-07-23
The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.
3D strain measurement in electronic devices using through-focal annular dark-field imaging.
Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum
2014-11-01
Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-01
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method. PMID:23669981
Exploring the thermodynamics of noncommutative scalar fields
NASA Astrophysics Data System (ADS)
Brito, Francisco A.; Lima, Elisama E. M.
2016-04-01
We study the thermodynamic properties of the Bose-Einstein condensate (BEC) in the context of the quantum field theory with noncommutative target space. Our main goal is to investigate in which temperature and/or energy regimes the noncommutativity can characterize some influence on the BEC properties described by a relativistic massive noncommutative boson gas. The noncommutativity parameters play a key role in the modified dispersion relations of the noncommutative fields, leading to a new phenomenology. We have obtained the condensate fraction, internal energy, pressure and specific heat of the system and taken ultrarelativistic (UR) and nonrelativistic (NR) limits. The noncommutative effects on the thermodynamic properties of the system are discussed. We found that there appear interesting signatures around the critical temperature.
Scalar-field-dominated cosmology with a transient acceleration phase.
Carvalho, F C; Alcaniz, J S; Lima, J A S; Silva, R
2006-08-25
A new cosmological scenario driven by a slow rolling homogeneous scalar field whose exponential potential V(Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is discussed. The derived equation of state for the field predicts a transient accelerating phase, in which the Universe was decelerated in the past, began to accelerate at redshift z approximately 1, is currently accelerated, but, finally, will return to a decelerating phase in the future. This overall dynamic behavior is profoundly different from the standard evolution of the cold dark matter model with a cosmological constant, and may alleviate some conflicts in reconciling the idea of a dark-energy-dominated universe with observables in String or M theory. Some theoretical predictions for the present scalar field plus dark matter dominated stage are confronted with cosmological observations in order to test the viability of the scenario. PMID:17026287
Mie scattering of highly focused, scalar fields: an analytic approach.
Moore, Nicole J; Alonso, Miguel A
2016-07-01
We present a method for modeling the scattering of a focused scalar field incident on a spherical particle. This approach involves the expansion of the incident field in an orthonormal basis of closed-form solutions of the Helmholtz equation which are nonparaxial counterparts of Laguerre-Gaussian beams. This method also allows for the analytic calculation of the forces and torques exerted on a particle at any position with respect to the beam's focus. PMID:27409679
Phantom scalar fields result in inflation rather than Big Rip
NASA Astrophysics Data System (ADS)
Yurov, A. V.
2011-12-01
There exists a variety of exact solutions of the scalar field Einstein equations, allowing for "phantom regions" with negative kinetic field term. These regions can be cut out, their boundaries being sewn together in such a way that neither the scale factor (along with its first two derivatives) nor density or pressure will experience a jump. Such a domain surgery eliminates the "Big Rip" scenario, substituting for it the standard inflation.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.
Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702
Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.
Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero
2016-07-01
We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams. PMID:27367071
On the stability of the asymptotically free scalar field theories
Shalaby, A M.
2015-03-30
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.
Quantum entanglement in three accelerating qubits coupled to scalar fields
NASA Astrophysics Data System (ADS)
Dai, Yue; Shen, Zhejun; Shi, Yu
2016-07-01
We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
Gravitational collapse of scalar fields via spectral methods
Oliveira, H. P. de; Rodrigues, E. L.; Skea, J. E. F.
2010-11-15
In this paper we present a new numerical code based on the Galerkin method to integrate the field equations for the spherical collapse of massive and massless scalar fields. By using a spectral decomposition in terms of the radial coordinate, the field equations were reduced to a finite set of ordinary differential equations in the space of modes associated with the Galerkin expansion of the scalar field, together with algebraic sets of equations connecting modes associated with the metric functions. The set of ordinary differential equations with respect to the null coordinate is then integrated using an eighth-order Runge-Kutta method. The numerical tests have confirmed the high accuracy and fast convergence of the code. As an application we have evaluated the whole spectrum of black hole masses which ranges from infinitesimal to large values obtained after varying the amplitude of the initial scalar field distribution. We have found strong numerical evidence that this spectrum is described by a nonextensive distribution law.
Non-Gaussianity from self-ordering scalar fields
Figueroa, Daniel G.; Kamionkowski, Marc
2010-06-15
The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.
Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields
NASA Astrophysics Data System (ADS)
Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.
2015-12-01
We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Energy Science and Technology Software Center (ESTSC)
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less
Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields
Dahl, David
2000-02-21
SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.
Scalar field as a Bose-Einstein condensate?
Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo; Núñez, Darío E-mail: cescamilla@mctp.mx E-mail: nunez@nucleares.unam.mx
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
On the late-time cosmology of a condensed scalar field
NASA Astrophysics Data System (ADS)
Ghalee, Amir
2016-04-01
We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.
Scalar fields in BTZ black hole spacetime and entanglement entropy
NASA Astrophysics Data System (ADS)
Veer Singh, Dharm; Siwach, Sanjay
2013-12-01
We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.
Star-plus-wormhole systems with two interacting scalar fields
NASA Astrophysics Data System (ADS)
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Urazalina, Ajnur
2015-08-01
We study static, spherically symmetric mixed configurations with a nontrivial (wormhole) spacetime topology provided by the presence of two interacting ghost scalar fields. Wormhole is assumed to be filled by a perfect relativistic neutron fluid modeled by a polytropic equation of state. For such mixed configurations, we find regular, asymptotically flat general relativistic solutions. It is shown that the maximum of the fluid density is always shifted from the center and the resulting configurations represent, in general, double-throat systems.
NASA Astrophysics Data System (ADS)
Zapiór, Maciej; Martínez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.
Scalar field evolution in Gauss-Bonnet black holes
Abdalla, E.; Konoplya, R.A.; Molina, C.
2005-10-15
It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image
NASA Technical Reports Server (NTRS)
Wang, Cuilan; Newman, Timothy; Gallagher, Dennis
2006-01-01
A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
NASA Astrophysics Data System (ADS)
Haugen, Benjamin D.
Landslide ground surface displacements vary at all spatial scales and are an essential component of kinematic and hazards analyses. Unfortunately, survey-based displacement measurements require personnel to enter unsafe terrain and have limited spatial resolution. And while recent advancements in LiDAR technology provide the ability remotely measure 3D landslide displacements at high spatial resolution, no single method is widely accepted. A series of qualitative metrics for comparing 3D landslide displacement field measurement methods were developed. The metrics were then applied to nine existing LiDAR techniques, and the top-ranking methods --Iterative Closest Point (ICP) matching and 3D Particle Image Velocimetry (3DPIV) -- were quantitatively compared using synthetic displacement and control survey data from a slow-moving translational landslide in north-central Colorado. 3DPIV was shown to be the most accurate and reliable point cloud-based 3D landslide displacement field measurement method, and the viability of LiDAR-based techniques for measuring 3D motion on landslides was demonstrated.
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
3-D field computation: The near-triumph of commerical codes
Turner, L.R.
1995-07-01
In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
NASA Astrophysics Data System (ADS)
Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele
2013-04-01
Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results
Investigation of the 3-D actinic flux field in mountainous terrain
NASA Astrophysics Data System (ADS)
Wagner, J. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.
2011-11-01
During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.
Investigation of the 3-D actinic flux field in mountainous terrain
Wagner, J.E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G.P.; Kift, R.; Kreuter, A.; Rieder, H.E.; Simic, S.; Webb, A.; Weihs, P.
2011-01-01
During three field campaigns spectral actinic flux was measured from 290–500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account. PMID:26412915
Search for strongly coupled Chameleon scalar field with neutron interferometry
NASA Astrophysics Data System (ADS)
Li, K.; Arif, M.; Cory, D.; Haun, R.; Heacock, B.; Huber, M.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C.; Skavysh, V.; Snow, M.; Young, A.
2015-04-01
The dark energy proposed to explain the observed accelerated expansion of the universe is not understood. A chameleon scalar field proposed as a dark energy candidate can explain the accelerated expansion and evade all current gravity experimental bounds. It features an effective range of the chameleon scalar field that depends on the local mass density. Hence a perfect crystal neutron interferometer, that measures relative phase shift between two paths, is a prefect tool to search for the chameleon field. We are preparing a two-chamber helium gas cell for the neutron interferometer. We can lower the pressure in one cell so low that the chameleon field range expands into the cell and causes a measurable neutron phase shift while keeping the pressure difference constant. We expect to set a new upper limit of the Chameleon field by at least one order of magnitude. This work is supported by NSF Grant 1205977, DOE Grant DE-FG02-97ER41042, Canadian Excellence Research Chairs program, Natural Sciences and Engineering Research Council of Canada and Collaborative Research and Training Experience Program
Cosmological density perturbations in a conformal scalar field theory
NASA Astrophysics Data System (ADS)
Libanov, M. V.; Rubakov, V. A.
2012-02-01
We consider a scenario in which primordial scalar perturbations are generated when a complex conformal scalar field rolls down its negative quartic potential. Initially, these are perturbations of the phase of this field, which are then converted into adiabatic perturbations of the density. The existence of perturbations in the radial field direction, which have a red power spectrum, is a potentially dangerous feature of this scenario. But we show that in the linear order in the small parameter, the self-coupling, the infrared effects are completely nullified by an appropriate field redefinition. We evaluate the statistical anisotropy inherent in the model because of the presence of the long-wave perturbations of the radial field component. In the linear order in the self-coupling, the infrared effects do not affect the statistical anisotropy. They are manifested only at the quadratic order in the self-coupling, weakly (logarithmically) enhancing the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a large term, which decreases as the momentum increases, and a momentum-independent nonamplified term.
Varying vacuum energy of a self-interacting scalar field
NASA Astrophysics Data System (ADS)
Trachenko, K.
2015-11-01
Understanding mechanisms capable of altering the vacuum energy is currently of interest in field theories and cosmology. We consider an interacting scalar field and show that the vacuum energy naturally takes any value between its maximum and zero because interaction affects the number of operating field modes, the assertion that involves no assumptions or postulates. The mechanism is similar to the recently discussed temperature evolution of collective modes in liquids. The cosmological implication concerns the evolution of scalar field ϕ during the inflation of the Universe. ϕ starts with all field modes operating and maximal vacuum energy in the early inflation-dominated epoch. As a result of inflation, ϕ undergoes a dynamical crossover and arrives in the state with one long-wavelength longitudinal mode and small positive vacuum energy predicted to be asymptotically decreasing to zero in the late epoch. Accordingly, we predict that the currently observed cosmological constant will decrease in the future, and comment on the possibility of a cyclic Universe.
3-D FEM field analysis in controlled-PM LSM for Maglev vehicle
Yoshida, Kinjiro; Lee, J.; Kim, Y.J.
1997-03-01
The magnetic fields in the controlled-PM LSM for Maglev vehicle, of which the width is not only finite with lateral edges, but also an effective electric-airgap is very large, are accurately analyzed by using 3-D FEM. The lateral airgap-flux due to lateral edges of the machine is made clear and its effects on thrust and lift forces are evaluated quantitatively from the comparison with 2-D FEA. The accuracy of 3-D FEA is verified by comparing the calculated results with the measured values.
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.
Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin
2016-07-01
An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277
Fast 3D Spatial EPR Imaging Using Spiral Magnetic Field Gradient
Deng, Yuanmu; Petryakov, Sergy; He, Guanglong; Kesselring, Eric; Kuppusamy, Periannan; Zweier, Jay L.
2007-01-01
Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4 to 7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism. PMID:17267252
NASA Astrophysics Data System (ADS)
Kuvshinov, A. V.; Poedjono, B.; Matzka, J.; Olsen, N.; Pai, S.; Samrock, F.
2013-12-01
Most marine EM studies are based on sea-bottom measurements which are expensive and logistically demanding. We propose a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface measurements. It is assumed that the exciting source can be described by a plane wave. The concept is based on responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a base site. It can be shown that these scalar responses are a mixture of standard tipper responses and elements of the horizontal magnetic tensor and thus can be used to probe the electrical conductivity of the subsoil. This opens an avenue for sea-surface induction studies which so far was believed very difficult to conduct if conventional approaches based on vector measurements are invoked. We perform 3-D realistic model studies where the target region was Oahu Island and its surroundings, and USGS operated Honolulu geomagnetic observatory was chosen as the base site. We compare the predicted responses with the responses estimated from the scalar data collected at a few locations around Oahu Island by the unmanned, autonomous, wave and solar powered 'Wave Glider' developed and operated by Liquid Robotics Oil and Gas/Schlumberger. The marine robots observation platform is equipped with a tow Overhauser magnetometer (validated by USGS). The studies show an encouraging agreement between predictions and experiment in both components of the scalar response at all locations and we consider this as a proof of the suggested concept.
Fluctuation-dissipation dynamics of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Bartrum, Sam; Berera, Arjun; Rosa, João G.
2015-04-01
We show that dissipative effects have a significant impact on the evolution of cosmological scalar fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation coefficient for different scalar fields within the standard model and some of its most widely considered extensions, in different parametric regimes. We describe the generic consequences of fluctuation-dissipation dynamics in the postinflationary universe, focusing in particular on friction and particle production, and analyze in detail two important effects. First, we show that dissipative friction delays the process of spontaneous symmetry breaking and may even damp the motion of a Higgs field sufficiently to induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically dilute the abundance of dangerous thermal relics. Second, we show that dissipation can generate the observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative leptogenesis. We further show that this generically leads to characteristic baryon isocurvature perturbations that can be tested with cosmic microwave background observations. This work provides a fundamental framework to go beyond the leading thermal equilibrium semiclassical approximation in addressing fundamental problems in modern cosmology.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System
Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P
2002-05-29
Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of
Topology-based Simplification for Feature Extraction from 3D Scalar Fields
Gyulassy, A; Natarajan, V; Pascucci, V; Bremer, P; Hamann, B
2005-10-13
This paper describes a topological approach for simplifying continuous functions defined on volumetric domains. We present a combinatorial algorithm that simplifies the Morse-Smale complex by repeated application of two atomic operations that removes pairs of critical points. The Morse-Smale complex is a topological data structure that provides a compact representation of gradient flows between critical points of a function. Critical points paired by the Morse-Smale complex identify topological features and their importance. The simplification procedure leaves important critical points untouched, and is therefore useful for extracting desirable features. We also present a visualization of the simplified topology.
Slowly rotating scalar field wormholes: The second order approximation
Kashargin, P. E.; Sushkov, S. V.
2008-09-15
We discuss rotating wormholes in general relativity with a scalar field with negative kinetic energy. To solve the problem, we use the assumption about slow rotation. The role of a small dimensionless parameter plays the ratio of the linear velocity of rotation of the wormhole's throat and the velocity of light. We construct the rotating wormhole solution in the second-order approximation with respect to the small parameter. The analysis shows that the asymptotical mass of the rotating wormhole is greater than that of the nonrotating one, and the null energy condition violation in the rotating wormhole spacetime is weaker than that in the nonrotating one.
Boson stars: Gravitational equilibria of self-interacting scalar fields
Colpi, M.; Shapiro, S.L.; Wasserman, I.
1986-11-17
Spherically symmetric gravitational equilibria of self-interacting scalar fields phi with interaction potential V(phi) = (1/4)lambdachemically bondphichemically bond/sup 4/ are determined. Surprisingly, the resulting configurations may differ markedly from the noninteracting case even when lambda<<1. Contrary to generally accepted astrophysical folklore, it is found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for fermions of mass m/sub fermion/--lambda/sup -1/4/m/sub boson/. .AE
Complex solutions for the scalar field model of the Universe
NASA Astrophysics Data System (ADS)
Lyons, Glenn W.
1992-08-01
The Hartle-Hawking proposal is implemented for Hawking's scalar field model of the Universe. For this model the complex saddle-point geometries required by the semiclassical approximation to the path integral cannot simply be deformed into real Euclidean and real Lorentzian sections. Approximate saddle points are constructed which are fully complex and have contours of real Lorentzian evolution. The semiclassical wave function is found to give rise to classical spacetimes at late times and extra terms in the Hamilton-Jacobi equation do not contribute significantly to the potential.
Gauss-Bonnet Brane World Gravity with a Scalar Field
Davis, Stephen C.
2004-11-17
The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.
Absorption of massless scalar field by rotating black holes
NASA Astrophysics Data System (ADS)
Leite, Luiz C. S.; Crispino, Luís C. B.; de Oliveira, Ednilton S.; Macedo, Caio F. B.; Dolan, Sam R.
2016-07-01
We compute the absorption cross-section of the Kerr black holes (BH) for the massless scalar field, and present a selection of numerical results, to complement the results of Ref.[C. F. B. Macedo, L. C. S. Leite, E. S. Oliveria, S. R. Dolan and L. C. B. Crispino, Phys. Rev. D 88 (2013) 064033.] We show that, in the high-frequency regime, the cross-section approaches the geodesic capture cross-section. We split the absorption cross-section into corotating and counterrotating contributions, and we show that the counterrotating contribution exceeds the corotating one.
Self-dual Maxwell field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.
2008-08-15
We study the system of a self-dual Maxwell field coupled to 3D gravity with torsion, with the Maxwell field modified by a topological mass term. General structure of the field equations reveals a new, dynamical role of the classical central charges, and gives a simple correspondence between self-dual solutions with torsion and their Riemannian counterparts. We construct two exact self-dual solutions, corresponding to the sectors with a massless and massive Maxwell field, and calculate their conserved charges.
Decoding 3D search coil signals in a non-homogeneous magnetic field.
Thomassen, Jakob S; Benedetto, Giacomo Di; Hess, Bernhard J M
2010-06-18
We present a method for recording eye-head movements with the magnetic search coil technique in a small external magnetic field. Since magnetic fields are typically non-linear, except in a relative small region in the center small field frames have not been used for head-unrestrained experiments in oculomotor studies. Here we present a method for recording 3D eye movements by accounting for the magnetic non-linearities using the Biot-Savart law. We show that the recording errors can be significantly reduced by monitoring current head position and thereby taking the location of the eye in the external magnetic field into account. PMID:20359490
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.
1995-08-01
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.
Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.
Mock, Raymond Cecil
2007-06-01
The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
Massless scalar field and solar-system experiments
Formiga, J. B.
2011-04-15
The solution of Einstein's field equations with the energy-momentum tensor of a massless scalar field is known as the Fisher solution. It is well known that this solution has a naked singularity due to the ''charge''{Sigma} of the massless scalar field. Here I obtain the radial null geodesic of the Fisher solution and use it to confirm that there is no black hole. In addition, I use the parametrized post-Newtonian formalism to show that the Fisher spacetime predicts the same effects on solar-system experiments as the Schwarzschild one does, as long as we impose a limit on {Sigma}. I show that this limit is not a strong constraint and we can even take values of {Sigma} bigger than M. By using the exact formula of the redshift and some assumptions, I evaluate this limit for the experiment of Pound and Snider [Phys. Rev. 140, B788 (1965)]. It turns out that this limit is {Sigma}<5.8x10{sup 3} m.
Instability of charged wormholes supported by a ghost scalar field
Gonzalez, J. A.; Guzman, F. S.; Sarbach, O.
2009-07-15
In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einstein's field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable with respect to linear and nonlinear spherically symmetric perturbations and showed that the perturbation causes the wormholes to either decay to a Schwarzschild black hole or undergo a rapid expansion. Here, we consider charged generalization of the previous models by adding to the gravitational and ghost scalar field an electromagnetic one. We first derive the most general static, spherically symmetric wormholes in this theory and show that they give rise to a four-parameter family of solutions. This family can be naturally divided into subcritical, critical and supercritical solutions depending on the sign of the sum of the asymptotic masses. Then, we analyze the linear stability of these solutions. We prove that all subcritical and all critical solutions possess one exponentially in time growing mode. It follows that all subcritical and critical wormholes are linearly unstable. In the supercritical case we provide numerical evidence for the existence of a similar unstable mode.
Correspondence between Generalized Dark Energy and Scalar Field Dark Energies
NASA Astrophysics Data System (ADS)
Maity, Sayani; Debnath, Ujjal
2015-07-01
In this work, we have considered non-flat FRW universe filled with dark matter (with non-zero pressure) and generalized dark energy (GDE) as motivated by the work of Sharif et al. (Mod. Phys. Lett. A 28, 1350180, 2013). Also the dark matter and the dark energy are considered to be interacting. The energy density, pressure and the EoS of the GDE have been calculated for the interacting scenario. For stability analysis of this model, we have also analyzed the sign of square speed of sound. Next we investigate the correspondence between GDE and different other candidates of dark energies such as DBI-essence, tachyonic field, hessenc and electromagnetic field. Also we have reconstructed the potential functions and the scalar fields in this scenario.
Casimir effect for a scalar field via Krein quantization
Pejhan, H.; Tanhayi, M.R.; Takook, M.V.
2014-02-15
In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.
Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
NASA Astrophysics Data System (ADS)
Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis
2015-08-01
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.
NASA Astrophysics Data System (ADS)
Harlander, U.; Wright, G. B.; Egbers, C.
2012-04-01
In the earth's atmosphere baroclinic instability is responsible for the heat and momentum transport from low to high latitudes. In the fifties, Raymond Hide used a rather simple laboratory experiment to study such vortices in the lab. The experiment is comprised by a cooled inner and heated outer cylinder mounted on a rotating platform, which mimics the heated tropical and cooled polar regions of the earth's atmosphere. The experiment shows rich dynamics that have been studied by varying the radial temperature difference and the rate of annulus revolution. At the Brandenburg University of Technology (BTU) Cottbus the differentially heated rotating annulus is a reference experiment of the DFG priority program 'MetStröm'. The 3D structure of the annulus flow field has been numerically simulated but, to our knowledge, has not been measured in the laboratory. In the present paper we use novel interpolation techniques to reconstruct the 3D annulus flow field from synchronous Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements. The PIV system is used to measure the horizontal velocity components at 40, 60, 80, 100, and 120 mm above the bottom. The uppermost level is thus 15 mm below the fluid's surface. The surface temperature is simultaneously measured by an infrared (IR) camera. The PIV and infrared cameras have been mounted above the annulus and they co-rotate with the annulus. From the PIV observations alone a coherent 3D picture of the flow cannot be constructed since the PIV measurements have been taken at different instants of time. Therefore a corresponding IR image has been recorded for each PIV measurement. These IR images can be used to reconstruct the correct phase of the measured velocity fields. Each IR and PIV image for which t>0 is rotated back to the position at t=0. Then all surface waves have the same phase. In contrast, the PIV velocity fields generally have different phases since they have been taken at different vertical
Bouncing scalar field cosmology in the polymeric minisuperspace picture
NASA Astrophysics Data System (ADS)
Vakili, B.; Nozari, K.; Hosseinzadeh, V.; Gorji, M. A.
2014-10-01
We study a cosmological setup consisting of a FRW metric as the background geometry with a massless scalar field in the framework of classical polymerization of a given dynamical system. To do this, we first introduce the polymeric representation of the quantum operators. We then extend the corresponding process to reach a transformation which maps any classical variable to its polymeric counterpart. It is shown that such a formalism has also an analogue in terms of the symplectic structure, i.e. instead of applying polymerization to the classical Hamiltonian to arrive its polymeric form, one can use a new set of variables in terms of which Hamiltonian retains its form but now the corresponding symplectic structure gets a new deformed functional form. We show that these two methods are equivalent and by applying them to the scalar field FRW cosmology see that the resulting scale factor exhibits a bouncing behavior from a contraction phase to an expanding era. Since the replacing of the big bang singularity by a bouncing behavior is one of the most important predictions of the quantum cosmological theories, we may claim that our polymerized classical model brings with itself some signals from quantum theory.
Unified Dark Matter scalar field models with fast transition
Bertacca, Daniele; Bruni, Marco; Piattella, Oliver F.; Pietrobon, Davide E-mail: marco.bruni@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov
2011-02-01
We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.
Spikes and matter inhomogeneities in massless scalar field models
NASA Astrophysics Data System (ADS)
Coley, A. A.; Lim, W. C.
2016-01-01
We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.
Kinetic turbulence in 3D collisionless magnetic reconnection with a guide magnetic field
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Kilian, Patrick; Jain, Neeraj; Büchner, Jörg
2016-04-01
The features of kinetic plasma turbulence developed during non-relativistic 3D collisionless magnetic reconnection are still not fully understood. This is specially true under the influence of a strong magnetic guide field, a scenario common in space plasmas such as in the solar corona and also in laboratory experiments such as MRX or VINETA II. Therefore, we study the mechanisms and micro-instabilities leading to the development of turbulence during 3D magnetic reconnection with a fully kinetic PIC code, emphasizing the role of the guide field with an initial setup suitable for the aforementioned environments. We also clarify the relations between these processes and the generation of non-thermal populations and particle acceleration.
3D Kinetic Simulations of Topography-Induced Electric Fields at Itokawa Asteroid
NASA Astrophysics Data System (ADS)
Zimmerman, M. I.
2015-12-01
Results from a new 3D kinetic simulation code will be presented, showing how Itokawa's interaction with the solar wind plasma creates an ever-evolving electric field structure as the asteroid rotates. The simulations combine (1) a realistic surface shape model of Itokawa, (2) a careful and self-consistent accounting of surface charging processes, and (3) the freely-available FMMLib3d code library implementing the fast multipole method for electric field calculations. Fine details of the surface potential and electric grounding conditions, as revealed by this new code, could provide critical inputs into planning for a future asteroid retrieval mission in which extended, direct contact with the asteroid could occur.
Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.
Kim, Boyoung; Naemura, Takeshi
2015-01-01
This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821
ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work
NASA Astrophysics Data System (ADS)
Knopf, George K.; Nelson, Andrew J.
2004-10-01
Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang
2014-08-01
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
Full-field strain measurements on turbomachinery components using 3D SLDV technology
NASA Astrophysics Data System (ADS)
Maguire, Martyn; Sever, Ibrahim
2016-06-01
This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.
Progressive attenuation fields: Fast 2D-3D image registration without precomputation
Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.
2005-09-15
Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-01-01
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-12-15
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm
Analytical Characterization of Scalar-Field Oscillons in Quartic Potentials
NASA Astrophysics Data System (ADS)
Sicilia, David Pasquale
In this thesis I present a series of simple models of scalar field oscillons which allow estimation of the basic properties of oscillons using nonperturbative analytical methods, with minimal dependence on computer simulation. The methods are applied to oscillons in phi^4 Klein-Gordon models in two and three spatialdimensions, yielding results with good accuracy in the characterization of most aspects of oscillon dynamics. In particular, I show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, I obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions. I also present some preliminary work on a method to calculate the form of the spatial profile of the oscillon.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.
Effective field theory of quantum gravity coupled to scalar electrodynamics
NASA Astrophysics Data System (ADS)
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Quantization of massive scalar fields over static black string backgrounds
Fernandez Piedra, Owen Pavel; Montes de Oca, Alejandro Cabo
2007-05-15
The renormalized mean value of the corresponding components of the energy-momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the energy-momentum tensor in the particular background of the black-string space-time. In the case of the black string considered in this work, we prove that a violation of the weak energy condition occurs at the horizon of the space-time for values of the coupling constant, which include as particular cases the most interesting of minimal and conformal coupling.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less
Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal; Brammer, Gabriel B.; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V.; Förster Schreiber, Natascha; Kriek, Mariska; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; and others
2014-10-01
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)
Time-dependent scalar fields in modified gravities in a stationary spacetime
NASA Astrophysics Data System (ADS)
Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao
2016-07-01
Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
Development of a 3D Potential Field Forward Modelling System in Python
NASA Astrophysics Data System (ADS)
Cole, P.
2012-12-01
The collection of potential field data has long been a standard part of geophysical exploration. Specifically, airborne magnetic data is collected routinely in any brown-fields area, because of the low cost and fast acquisition rate compared to other geophysical techniques. However, the interpretation of such data can be a daunting task, especially when 3D models are becoming more necessary. The current trend in modelling software is to follow either the modelling of individual profiles, which are then "joined" up into 3D sections, or to model in a full 3D using polygonal based models (Singh and Guptasarma, 2001). Unfortunately, both techniques have disadvantages. When modelling in 2.5D the impact of other profiles is not truly available on your current profile being modelled, and vice versa. The problem is not present in 3D, but 3D polygonal models, while being easy to construct the initial model, are not as easy to make fast changes to. In some cases, the entire model must be recreated from scratch. The ability to easily change a model is the very basis of forward modelling. With this is mind, the objective of the project was to: 1) Develop software which was truly modelling in 3D 2) Create a system which would allow the rapid changing of the 3D model, without the need to recreate the model. The solution was to adopt a voxel based approach, rather than a polygonal approach. The solution for a cube (Blakely 1996) was used to calculate potential field for each voxel. The voxels are then summed over the entire volume. The language used was python, because of its huge capacity for scientific development. It enables full 3D visualisation as well as complex mathematical routines. Some properties worth noting are: 1) Although 200 rows by 200 columns by 200 layers would imply 8 million calculations, in reality, since the calculation for adjacent voxels produces the same result, only 200 calculations are necessary. 2) Changes to susceptibility and density do not affect
RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.
Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D
2003-01-01
We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220
3-D Numerical Modeling of MHD Flows in Variable Magnetic Field
NASA Astrophysics Data System (ADS)
Abdullina, K. I.; Bogovalov, S. V.
3-D numerical simulation of the liquid metal flow affected by the electromagnetic field in the magnetohydrodynamic (MHD) devices is performed. Software package ANSYS has been used for the numerical calculations. The non-stationary problem has been solved taking into account the influence of the metal flow on the electromagnetic field and nonlinear magnetic permeability of the ferromagnetic cores. Simplified calculations with constant magnetic permeability of the ferromagnetic cores have been performed as well. Comparison of these calculations shows that the simulation of the MHD pump can be performed in the linear approximation. The pump performance curve has been derived in this approximation.
3D structure and conductive thermal field of the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias
2016-04-01
The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D
Bianchi type I Universe and interacting ghost scalar fields models of dark energy
NASA Astrophysics Data System (ADS)
Hossienkhani, H.
2016-04-01
We suggest a correspondence between interacting ghost dark energy model with the quintessence, tachyon and K-essence scalar field in a non-isotropic universe. This correspondence allows to reconstruct the potential and the dynamics for the scalar field of the interacting ghost dark energy model, which describe accelerated expansion of the universe. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behavior the ghost scalar field models.
Global 3-D Hybrid Simulations of Mars and the Effect of Crustal Magnetic Fields
NASA Astrophysics Data System (ADS)
Brecht, S. H.; Ledvina, S. A.; Luhmann, J. G.
2001-12-01
Mars is not protected from the solar wind by a strong intrinsic magnetic field. Further, Mars is a very small planet. These two aspects of Mars mean that the solar wind interaction with the planet is both direct and kinetic in behavior. The large gyroradius of the incoming solar wind and the large gyroradius of the pick up ions make the solar wind interaction with Mars very unique. Over the years the authors using a 3-D kinetic hybrid particle code have studied this planet. Mars Global Surveyor has produced many exciting discoveries. Probably the most significant and unexpected was the presence of the crustal magnetic fields on the surface of the planet. The presence of these strong crustal fields suggests that the solar wind interaction with Mars will be altered. In fact, it suggests that the loss rate of pick up ions and the shape of the Martian magnetosphere will be substantially changed. Results will be presented from our latest 3-D hybrid particle code simulations of Mars where models for the crustal magnetic field have been inserted into the simulations. Particular emphasis will be placed on changes to the magnetic field topology and the change in the rate of pick up ions.
NASA Astrophysics Data System (ADS)
Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.
2002-12-01
The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance
Neutron star structure in the presence of conformally coupled scalar fields
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes
2014-10-01
Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.
Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields
NASA Technical Reports Server (NTRS)
Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes
2014-01-01
Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.
Mirror moving in quantum vacuum of a massive scalar field
NASA Astrophysics Data System (ADS)
Wang, Qingdi; Unruh, William G.
2015-09-01
We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion under infinitely fluctuating quantum vacuum stress. The model is similar to the one in [Q. Wang and W. G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress Phys. Rev. D 89, 085009 (2014).], but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy density. We show that this kind of weakening is not necessary. The vacuum friction and strong anticorrelation property of the quantum vacuum are enough to confine the mirror's position fluctuations. This is another example illustrating that while the actual value of the vacuum energy can be physically significant even for a nongravitational system, and that its infinite value makes sense, but that its physical effect can be small despite this infinity.
Casimir piston for massless scalar fields in three dimensions
Edery, Ariel
2007-05-15
We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three-dimensional cavity with sides of arbitrary lengths a, b, and c where a is the plate separation. We obtain an exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the electromagnetic case with perfect-conductor conditions, we find that the Casimir force is negative (attractive) regardless of the values of a, b, and c. Though cases exist where the interior contributes a positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior contribution is included. We also obtain an alternative expression for the Casimir force that is useful computationally when the plate separation a is large.
The real scalar field in extreme RNdS space
NASA Astrophysics Data System (ADS)
Guo, Guanghai; Gui, Yuanxing; Tian, Jianxiang
2005-07-01
The real scalar field equation between the outer black hole horizon and the cosmological horizon is solved in the extreme Reissner-Nordström de Sitter (RNdS) space. We use an accurate approximation, the polynomial approximation, to approximate the tortoise coordinate x(r) in order to get the inverse function r = r(x) and then to solve the wave equation. The case where the two horizons are very close to each other is discussed in detail. We find that the wave function is harmonic only in the very small regions near the horizons, and the amplitude decreases remarkably near the potential peak because of the effect of the potential. Furthermore, it is found that the height of the potential increases as the cosmological constant Λ decreases, and the wave amplitude will decrease more remarkably with less Λ.
Detailed ultraviolet asymptotics for AdS scalar field perturbations
NASA Astrophysics Data System (ADS)
Evnin, Oleg; Jai-akson, Puttarak
2016-04-01
We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.
Scalar field critical collapse in 2 +1 dimensions
NASA Astrophysics Data System (ADS)
JałmuŻna, Joanna; Gundlach, Carsten; Chmaj, Tadeusz
2015-12-01
We carry out numerical experiments in the critical collapse of a spherically symmetric massless scalar field in 2 +1 spacetime dimensions in the presence of a negative cosmological constant and compare them against a new theoretical model. We approximate the true critical solution as the n =4 Garfinkle solution, matched at the light cone to a Vaidya-like solution, and corrected to leading order for the effect of Λ <0 . This approximation is only C3 at the light cone and has three growing modes. We conjecture that pointwise it is a good approximation to a yet unknown true critical solution that is analytic with only one growing mode (itself approximated by the top mode of our amended Garfinkle solution). With this conjecture, we predict a Ricci-scaling exponent of γ =8 /7 and a mass-scaling exponent of δ =16 /23 , compatible with our numerical experiments.
Bifurcation and pattern changing with two real scalar fields
Avelino, P. P.; Bazeia, D.; Menezes, R.; Oliveira, J. C. R. E.
2009-04-15
This work deals with bifurcation and pattern changing in models described by two real scalar fields. We consider generic models with quartic potentials and show that the number of independent polynomial coefficients affecting the ratios between the various domain wall tensions can be reduced to 4 if the model has a superpotential. We then study specific one-parameter families of models and compute the wall tensions associated with both Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS sectors. We show how bifurcation can be associated to modification of the patterns of domain wall networks and illustrate this with some examples which may be relevant to describe realistic situations of current interest in high energy physics. In particular, we discuss a simple solution to the cosmological domain wall problem.
A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn
2008-10-01
A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.