Science.gov

Sample records for 3d serial digitizing

  1. 3D gesture recognition from serial range image

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuyuki; Miyasaka, Takeo; Hirose, Makoto; Araki, Kazuo

    2001-10-01

    In this research, the recognition of gesture in 3D space is examined by using serial range images obtained by a real-time 3D measurement system developed in our laboratory. Using this system, it is possible to obtain time sequences of range, intensity and color data for a moving object in real-time without assigning markers to the targets. At first, gestures are tracked in 2D space by calculating 2D flow vectors at each points using an ordinal optical flow estimation method, based on time sequences of the intensity data. Then, location of each point after 2D movement is detected on the x-y plane using thus obtained 2D flow vectors. Depth information of each point after movement is then obtained from the range data and 3D flow vectors are assigned to each point. Time sequences of thus obtained 3D flow vectors allow us to track the 3D movement of the target. So, based on time sequences of 3D flow vectors of the targets, it is possible to classify the movement of the targets using continuous DP matching technique. This tracking of 3D movement using time sequences of 3D flow vectors may be applicable for a robust gesture recognition system.

  2. Tissue-plastinated vs. celloidin-embedded large serial sections in video, analog and digital photographic on-screen reproduction: a preliminary step to exact virtual 3D modelling, exemplified in the normal midface and cleft-lip and palate

    PubMed Central

    Landes, Constantin A; Weichert, Frank; Geis, Philipp; Wernstedt, Katrin; Wilde, Anja; Fritsch, Helga; Wagner, Mathias

    2005-01-01

    This study analyses tissue-plastinated vs. celloidin-embedded large serial sections, their inherent artefacts and aptitude with common video, analog or digital photographic on-screen reproduction. Subsequent virtual 3D microanatomical reconstruction will increase our knowledge of normal and pathological microanatomy for cleft-lip-palate (clp) reconstructive surgery. Of 18 fetal (six clp, 12 control) specimens, six randomized specimens (two clp) were BiodurE12-plastinated, sawn, burnished 90 µm thick transversely (five) or frontally (one), stained with azureII/methylene blue, and counterstained with basic-fuchsin (TP-AMF). Twelve remaining specimens (four clp) were celloidin-embedded, microtome-sectioned 75 µm thick transversely (ten) or frontally (two), and stained with haematoxylin–eosin (CE-HE). Computed-planimetry gauged artefacts, structure differentiation was compared with light microscopy on video, analog and digital photography. Total artefact was 0.9% (TP-AMF) and 2.1% (CE-HE); TP-AMF showed higher colour contrast, gamut and luminance, and CE-HE more red contrast, saturation and hue (P < 0.4). All (100%) structures of interest were light microscopically discerned, 83% on video, 76% on analog photography and 98% in digital photography. Computed image analysis assessed the greatest colour contrast, gamut, luminance and saturation on video; the most detailed, colour-balanced and sharpest images were obatined with digital photography (P < 0.02). TP-AMF retained spatial oversight, covered the entire area of interest and should be combined in different specimens with CE-HE which enables more refined muscle fibre reproduction. Digital photography is preferred for on-screen analysis. PMID:16050904

  3. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  4. Fully automatic and robust 3D registration of serial-section microscopic images

    PubMed Central

    Wang, Ching-Wei; Budiman Gosno, Eric; Li, Yen-Sheng

    2015-01-01

    Robust and fully automatic 3D registration of serial-section microscopic images is critical for detailed anatomical reconstruction of large biological specimens, such as reconstructions of dense neuronal tissues or 3D histology reconstruction to gain new structural insights. However, robust and fully automatic 3D image registration for biological data is difficult due to complex deformations, unbalanced staining and variations on data appearance. This study presents a fully automatic and robust 3D registration technique for microscopic image reconstruction, and we demonstrate our method on two ssTEM datasets of drosophila brain neural tissues, serial confocal laser scanning microscopic images of a drosophila brain, serial histopathological images of renal cortical tissues and a synthetic test case. The results show that the presented fully automatic method is promising to reassemble continuous volumes and minimize artificial deformations for all data and outperforms four state-of-the-art 3D registration techniques to consistently produce solid 3D reconstructed anatomies with less discontinuities and deformations. PMID:26449756

  5. Fully automatic and robust 3D registration of serial-section microscopic images.

    PubMed

    Wang, Ching-Wei; Budiman Gosno, Eric; Li, Yen-Sheng

    2015-01-01

    Robust and fully automatic 3D registration of serial-section microscopic images is critical for detailed anatomical reconstruction of large biological specimens, such as reconstructions of dense neuronal tissues or 3D histology reconstruction to gain new structural insights. However, robust and fully automatic 3D image registration for biological data is difficult due to complex deformations, unbalanced staining and variations on data appearance. This study presents a fully automatic and robust 3D registration technique for microscopic image reconstruction, and we demonstrate our method on two ssTEM datasets of drosophila brain neural tissues, serial confocal laser scanning microscopic images of a drosophila brain, serial histopathological images of renal cortical tissues and a synthetic test case. The results show that the presented fully automatic method is promising to reassemble continuous volumes and minimize artificial deformations for all data and outperforms four state-of-the-art 3D registration techniques to consistently produce solid 3D reconstructed anatomies with less discontinuities and deformations. PMID:26449756

  6. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  7. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  8. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. PMID:26855205

  9. Serial Pixel Analog-to-Digital Converter

    SciTech Connect

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  10. A systematized WYSIWYG pipeline for digital stereoscopic 3D filmmaking

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Ward, Chris; Hušák, Michal

    2008-02-01

    Digital tools are transforming stereoscopic 3D content creation and delivery, creating an opportunity for the broad acceptance and success of stereoscopic 3D films. Beginning in late 2005, a series of mostly CGI features has successfully initiated the public to this new generation of highly-comfortable, artifact-free digital 3D. While the response has been decidedly favorable, a lack of high-quality live-action films could hinder long-term success. Liveaction stereoscopic films have historically been more time-consuming, costly, and creatively-limiting than 2D films - thus a need arises for a live-action 3D filmmaking process which minimizes such limitations. A unique 'systematized' what-you-see-is-what-you-get (WYSIWYG) pipeline is described which allows the efficient, intuitive and accurate capture and integration of 3D and 2D elements from multiple shoots and sources - both live-action and CGI. Throughout this pipeline, digital tools utilize a consistent algorithm to provide meaningful and accurate visual depth references with respect to the viewing audience in the target theater environment. This intuitive, visual approach introduces efficiency and creativity to the 3D filmmaking process by eliminating both the need for a 'mathematician mentality' of spreadsheets and calculators, as well as any trial and error guesswork, while enabling the most comfortable, 'pixel-perfect', artifact-free 3D product possible.

  11. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

    PubMed

    Spiegel, M; Redel, T; Struffert, T; Hornegger, J; Doerfler, A

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling. PMID:21908904

  12. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  13. 3D Cell Culture Imaging with Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  14. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  15. 3D surface digitizing and modeling development at ITRI

    NASA Astrophysics Data System (ADS)

    Hsueh, Wen-Jean

    2000-06-01

    This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.

  16. 3D Topography of the Young Adult Anal Sphincter Complex Reconstructed from Undeformed Serial Anatomical Sections

    PubMed Central

    Wu, Yi; Dabhoiwala, Noshir F.; Hagoort, Jaco; Shan, Jin-Lu; Tan, Li-Wen; Fang, Bin-Ji; Zhang, Shao-Xiang; Lamers, Wouter H.

    2015-01-01

    Background Pelvic-floor anatomy is usually studied by artifact-prone dissection or imaging, which requires prior anatomical knowledge. We used the serial-section approach to settle contentious issues and an interactive 3D-pdf to make the results widely accessible. Method 3D reconstructions of undeformed thin serial anatomical sections of 4 females and 2 males (21–35y) of the Chinese Visible Human database. Findings Based on tendinous septa and muscle-fiber orientation as segmentation guides, the anal-sphincter complex (ASC) comprised the subcutaneous external anal sphincter (EAS) and the U-shaped puborectal muscle, a part of the levator ani muscle (LAM). The anococcygeal ligament fixed the EAS to the coccygeal bone. The puborectal-muscle loops, which define the levator hiatus, passed around the anorectal junction and inserted anteriorly on the perineal body and pubic bone. The LAM had a common anterior attachment to the pubic bone, but separated posteriorly into puborectal and “pubovisceral” muscles. This pubovisceral muscle was bilayered: its internal layer attached to the conjoint longitudinal muscle of the rectum and the rectococcygeal fascia, while its outer, patchy layer reinforced the inner layer. ASC contraction makes the ano-rectal bend more acute and lifts the pelvic floor. Extensions of the rectal longitudinal smooth muscle to the coccygeal bone (rectococcygeal muscle), perineal body (rectoperineal muscle), and endopelvic fascia (conjoint longitudinal and pubovisceral muscles) formed a “diaphragm” at the inferior boundary of the mesorectum that suspended the anorectal junction. Its contraction should straighten the anorectal bend. Conclusion The serial-section approach settled contentious topographic issues of the pelvic floor. We propose that the ASC is involved in continence and the rectal diaphragm in defecation. PMID:26305117

  17. Development of a 3D digitizer for breast surgery procedures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Larena, Jorge; Canal Bienzobas, Fernando

    1999-03-01

    The planning of a breast reconstruction surgical operation has to resolve the problem of measuring directly on the patient meaningful anthropometric points from which distances, areas and volumes have to be calculated. In this paper, we propose using a 3D optical digitizer to perform this task.

  18. 3D Digital Legos for Teaching Security Protocols

    ERIC Educational Resources Information Center

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  19. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  20. Case study: The Avengers 3D: cinematic techniques and digitally created 3D

    NASA Astrophysics Data System (ADS)

    Clark, Graham D.

    2013-03-01

    Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.

  1. Integrated optical 3D digital imaging based on DSP scheme

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  2. Overview of 3D surface digitization technologies in Europe

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2006-02-01

    This paper presents an overview of the different 3D surface digitization technologies commercially available in the European market. The solutions for 3D surface measurement offered by major European companies can be divided into different groups depending on various characteristics, such as technology (e.g. laser scanning, white light projection), system construction (e.g. fix, on CMM/robot/arm) or measurement type (e.g. surface scanning, profile scanning). Crossing between the categories is possible, however, the majority of commercial products can be divided into the following groups: (a) laser profilers mounted on CMM, (b) portable coded light projection systems, (c) desktop solutions with laser profiler or coded light projectin system and multi-axes platform, (d) laser point measurement systems where both sensor and object move, (e) hand operated laser profilers, hand held laser profiler or point measurement systems, (f) dedicated systems. This paper presents the different 3D surface digitization technologies and describes them with their advantages and disadvantages. Various examples of their use are shown for different application fields. A special interest is given to applications regarding the 3D surface measurement of the human body.

  3. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  4. 3D Printing and Digital Rock Physics for the Geosciences

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  5. Fully automatic 3D digitization of unknown objects

    NASA Astrophysics Data System (ADS)

    Rozenwald, Gabriel F.; Seulin, Ralph; Fougerolle, Yohan D.

    2010-01-01

    This paper presents a complete system for 3D digitization of objects assuming no prior knowledge on its shape. The proposed methodology is applied to a digitization cell composed of a fringe projection scanner head, a robotic arm with 6 degrees of freedom (DoF), and a turntable. A two-step approach is used to automatically guide the scanning process. The first step uses the concept of Mass Vector Chains (MVC) to perform an initial scanning. The second step directs the scanner to remaining holes of the model. Post-processing of the data is also addressed. Tests with real objects were performed and results of digitization length in time and number of views are provided along with estimated surface coverage.

  6. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  7. Automated 3D measurement with the DCS200 digital camera

    NASA Astrophysics Data System (ADS)

    Van den Heuvel, Frank A.

    1994-03-01

    A digital photogrammetric system for automated 3D coordinate measurement in a production environment has been developed. For the image acquisition the Kodak DCS200 digital camera is used. This camera is based on a standard 35-mm camera. The results of the radiometric and geometric calibration of the DCS200 camera show the potential of this camera for photogrammetric applications. The software part of the system performs the detection, identification, and measurement of artificial targets present in digital images. These artificial targets are designed for automatic detection in images of a complex scene. For the identification of the targets a circular bar code is read by the image processing software. The least squares template matching method is implemented for the target image measurement. A precision better than 2% of a pixel was obtained for the target location. The 3D coordinate computation is performed by Geodelta's bundle adjustment package BINAER. It includes extensive statistical testing to assess the accuracy of the results. Tests with the DCS200 camera show a repeatability of 18 micrometer standard deviation on a test field 60 X 50 X 30 centimeter. The achieved precision is in the order of 2 (DOT) 10-5.

  8. Digital 3D facial reconstruction of George Washington

    NASA Astrophysics Data System (ADS)

    Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne

    2006-02-01

    PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.

  9. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.

    PubMed

    Flynn, A A; Pedley, R B; Green, A J; Boxer, G M; Boden, R; Begent, R H

    2001-10-01

    The biological effect of radioimmunotherapy (RIT) is most commonly assessed in terms of the absorbed radiation dose. In tumor, conventional dosimetry methods assume a uniform radionuclide and calculate a mean dose throughout the tumor. However, the vasculature of solid tumors tends to be highly irregular and the systemic delivery of antibodies is therefore heterogeneous. Tumor-specific antibodies preferentially localize in the viable, radiosensitive parts of the tumor whereas non-specific antibodies can penetrate into the necrosis where the dose is wasted. As a result, the observed biological effect can be very different to the predicted effect from conventional dose estimates. The purpose of this study is to assess the potential for optimizing the biological effect of RIT by matching the dose-distribution with tumor structure through the selection of appropriate antibodies and radionuclides. Storage phosphor plate technology was used to acquire images of the antibody distribution in serial tumor sections. Images of the distributions of a trivalent (TFM), bivalent (A5B7-IgG), monovalent (MFE-23) and a non-specific antibody (MOPC) were obtained. These images were registered with corresponding images showing tumor morphology. Serial images were reconstructed to form 3D maps of the antibody distribution and tumor structure. Convolution of the image of antibody distribution with beta dose point kernals generated dose-rate distributions for 14C, 131I and 90Y. These were statistically compared with the tumor structure. The highest correlation was obtained for the multivalent antibodies combined with 131I, due to specific retention in viable areas of tumor coupled with the fact that much of the dose was deposted locally. With decreasing avidity the correlation also decreased and with the non-specific antibody this correlation was negative, indicating higher concentrations in the necrotic regions. In conclusion, the dose distribution can be optimized in tumor by selecting

  10. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA. PMID:21181572

  11. An object-oriented 3D integral data model for digital city and digital mine

    NASA Astrophysics Data System (ADS)

    Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong

    2005-10-01

    integrated together with the TIN being its coupling interface. The software system, Geomo 3D, based on OO3D-ISDM and an application case in the central business district (CBD) of municipal Beijing are introduced. The case shows that the potential applications of OO3D-ISDM and Geomo 3D in the domains of digital city, digital geotechnical engineering and digital mine.

  12. New method for 3D reconstruction in digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2002-05-01

    Digital tomosynthesis mammography is an advanced x-ray application that can provide detailed 3D information about the imaged breast. We introduce a novel reconstruction method based on simple backprojection, which yields high contrast reconstructions with reduced artifacts at a relatively low computational complexity. The first step in the proposed reconstruction method is a simple backprojection with an order statistics-based operator (e.g., minimum) used for combining the backprojected images into a reconstructed slice. Accordingly, a given pixel value does generally not contribute to all slices. The percentage of slices where a given pixel value does not contribute, as well as the associated reconstructed values, are collected. Using a form of re-projection consistency constraint, one now updates the projection images, and repeats the order statistics backprojection reconstruction step, but now using the enhanced projection images calculated in the first step. In our digital mammography application, this new approach enhances the contrast of structures in the reconstruction, and allows in particular to recover the loss in signal level due to reduced tissue thickness near the skinline, while keeping artifacts to a minimum. We present results obtained with the algorithm for phantom images.

  13. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  14. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. PMID:25808044

  15. Concept for simplified serial digital decoder

    NASA Technical Reports Server (NTRS)

    Green, R. R.

    1968-01-01

    Modular decoder, which lends itself best to special purpose digital equipment using sequential access memories, decodes the first order Reed-Muller codes. It functions as a maximum-likelihood exhaustive-search decoder and is a modular implementation to accommodate codes of any length.

  16. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Diagnostic clinical benefits of digital spot and digital 3D mammography following analysis of screening findings

    NASA Astrophysics Data System (ADS)

    Lehtimaki, Mari; Pamilo, Martti; Raulisto, Leena; Roiha, Marja; Kalke, Martti; Siltanen, Samuli; Ihamäki, Timo

    2003-05-01

    The purpose of this study is to find out the impact of 3-dimensional digital mammography and digital spot imaging following analysis of the abnormal findings of screening mammograms. Over a period of eight months, digital 3-D mammography imaging TACT Tuned Aperture Computed Tomography+, digital spot imaging (DSI), screen-film mammography imaging (SFM) and diagnostic film imaging (DFM) examinations were performed on 60 symptomatic cases. All patients were recalled because it was not possible to exclude the presence of breast cancer on screening films. Abnormal findings on the screening films were non-specific tumor-like parenchymal densities, parenchymal asymmetries or distortions with or without microcalcifications or just microcalcifications. Mammography work-up (film imaging) included spot compression and microfocus magnification views. The 3-D softcopy reading in all cases was done with Delta 32 TACT mammography workstation, while the film images were read using a mammography-specific light box. During the softcopy reading only windowing tools were allowed. The result of this study indicates that the clinical diagnostic image quality of digital 3-D and digital spot images are better than in film images, even in comparison with diagnostic work-up films. Potential advantages are to define if the mammography finding is caused by a real abnormal lesion or by superimposition of normal parenchymal structures, to detect changes in breast tissue which would otherwise be missed, to verify the correct target for biopsies and to reduce the number of biopsies performed.

  18. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  19. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  20. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  1. 3D Reconstruction of Intricate Archean Microbial Structures Using Neutron Computed Tomography and Serial Sectioning

    NASA Astrophysics Data System (ADS)

    Huerta, N. J.; Murphy, M. A.; Natarajan, V.; Weber, G.; Hamann, B.; Sumner, D. Y.

    2005-12-01

    Three-dimensional visualization of intricate microbial structures in rocks is essential to understand the growth of ancient microbial communities. We have imaged and reconstructed the three-dimensional morphology of 2.5-2.6 billion year old intricate microbialites preserved in carbonate using both serial sectioning and neutron computed tomography (NCT). Reconstruction techniques vary with data type and sample preservation. NCT is a non-destructive technique for imaging organic-containing samples with sufficiently high hydrogen concentrations. The resolution of reconstruction is finer than 500 microns. We reconstructed microbialites preserved as organic inclusions in calcite using NCT. Reconstructions are interpreted using volume rendering, segmentation, and an interactive Matlab/visualization environment. Visualizations demonstrate the intricacy of the structures. Noise currently limits automatic growth surface extraction, but growth of structures can be qualitatively evaluated. One of the largest obstacles to date is efficient manipulation of large data sets. Our current visualization approach always renders the supplied data set at full resolution, which requires down-sampling of datasets larger than 256 pixels3 (acquired volume data consists of up to 2048 pixels3) to isolate regions of interest and extract important features. We are exploring the use of multi-resolution techniques that store a dataset at different levels of detail and chose an appropriate resolution during user-interaction. Such an approach will allow us to visualize raw data at full resolution. Serial sectioning and scanning successive horizons provides reconstructions of samples lacking sufficient hydrogen for NCT. This technique destroys the sample and has a lower resolution than NCT. However, intricate networks of microbial laminae surrounded by cement-filled voids can be characterized using this technique. After microbial surfaces are manually interpreted on slices, the images lack noise

  2. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  3. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis.

    PubMed

    Greenberg, M M; Leitao, C; Trogadis, J; Stevens, J K

    1990-12-01

    Axons have generally been represented as straight cylinders. It is not at all uncommon for anatomists to take single cross-sections of an axonal bundle, and from the axonal diameter compute expected conduction velocities. This assumes that each cross-section represents a slice through a perfect cylinder. We have examined the three-dimensional geometry of 98 central and peripheral unmyelinated axons, using computer-assisted serial electron microscopy. These reconstructions reveal that virtually all unmyelinated axons have highly irregular axial shapes consisting of periodic varicosities. The varicosities were, without exception, filled with membranous organelles frequently including mitochondria, and have obligatory volumes similar to that described in other neurites. The mitochondria make contact with microtubules, while the other membraneous organelles were frequently found free floating in the cytoplasm. We conclude that unmyelinated axons are fundamentally varicose structures created by the presence of organelles, and that an axon's calibre is dynamic in both space and time. These irregular axonal geometries raise serious doubts about standard two dimensional morphometric analysis and suggest that electrical properties may be more heterogeneous than expected from single section data. These results also suggest that the total number of microtubules contained in an axon, rather than its single section diameter, may prove to be a more accurate predictor of properties such as conduction velocity. Finally, these results offer an explanation for a number of pathological changes that have been described in unmyelinated axons. PMID:2292722

  4. A 3D Primary Vessel Reconstruction Framework with Serial Microscopy Images

    PubMed Central

    Liang, Yanhui; Wang, Fusheng; Treanor, Darren; Magee, Derek; Teodoro, George; Zhu, Yangyang; Kong, Jun

    2015-01-01

    Three dimensional microscopy images present significant potential to enhance biomedical studies. This paper presents an automated method for quantitative analysis of 3D primary vessel structures with histology whole slide images. With registered microscopy images of liver tissue, we identify primary vessels with an improved variational level set framework at each 2D slide. We propose a Vessel Directed Fitting Energy (VDFE) to provide prior information on vessel wall probability in an energy minimization paradigm. We find the optimal vessel cross-section associations along the image sequence with a two-stage procedure. Vessel mappings are first found between each pair of adjacent slides with a similarity function for four association cases. These bi-slide vessel components are further linked by Bayesian Maximum A Posteriori (MAP) estimation where the posterior probability is modeled as a Markov chain. The efficacy of the proposed method is demonstrated with 54 whole slide microscopy images of sequential sections from a human liver. PMID:26478919

  5. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  6. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    ERIC Educational Resources Information Center

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  7. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    ERIC Educational Resources Information Center

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  8. 3-D CFD in a day - The laser digitizer project

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal; Barth, Tim

    1991-01-01

    The computation of airflow over complex configurations requires a complete description of the geometry. This can be obtained from CAD data, from blueprints, or from actual models. In any case, the time required is currently estimated at 4 to 6 months. It is proposed to shorten this time by a factor of 10 to 100 through the use of automated software, a fast, highly parallel computer and a three-dimensional laser digitizer. This device can provide (x,y,z) coordinates of surface points at rates exceeding 14,500/sec. Thus, it is possible to digitize an entire model in a few minutes. The accuracy of measurement on a flat white surface is better than 0.005 inches. Higher accuracy is available at higher cost. This work discusses the challenges which remain to be addressed. In particular, the surface point data need to be converted into a surface description, the surface description needs to be made into a surface grid, and the surface grid used to make a volume grid for the flow solver. Algorithms are kept in place or in mind for all of these problems. Integration of the more mature flow solution and visualization algorithms then allows generation of solution graphics directly from a wind tunnel model.

  9. Some initial theory and practice exploration for 3D digital sea-route

    NASA Astrophysics Data System (ADS)

    Sui, Haigang; Zhang, Anmin; Wang, Juan; Hua, Li

    2005-10-01

    The safe navigation of Yangtse River is one of important system engineering. Traditional 2D electronic river map is very effective to ensure safe navigation. However, it is not visual and many kinds of complex analysis are difficult in 2D environment and they only can be processed in 3D situation. So the 3D digital sea-route is very important and urgent to realize digital and intelligent safe navigation. Aiming at this, a whole framework for 3D digital sea-route is first introduced. Under this framework, integrated services from sea-route data colleting, data storing, data management, data processing, data query and analysis, to data distribution and application are illustrated. And some key theory and techniques including automatic sounding creation and processing techniques, the sea-route 3D model production art based on GIS & CAD, the organization and management techniques of multi-source, multi-type, multi-scale data, the 3D dynamic visualization techniques for huge data, the 2D & 3D mutually display and analysis techniques are discussed in detail. Based on these theory and techniques, a system named TEAVIS for 3D digital sea-route is developed. This system is applied in the Marine Safety Administration Bureau of Tianjin City and the Yangtse River Sea-route Bureau and obtained good evaluation.

  10. Generation of geometric representations of 3D objects in CAD/CAM by digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Li, Rongxing

    This paper presents a method for the generation of geometric representations of 3D objects by digital photogrammetry. In CAD/CAM systems geometric modelers are usually used to create three-dimensional (3D) geometric representations for design and manufacturing purposes. However, in cases where geometric information such as dimensions and shapes of objects are not available, measurements of physically existing objects become necessary. In this paper, geometric parameters of primitives of 3D geometric representations such as Boundary Representation (B-rep), Constructive Solid Geometry (CSG), and digital surface models are determined by digital image matching techniques. An algorithm for reconstruction of surfaces with discontinuities is developed. Interfaces between digital photogrammetric data and these geometric representations are realized. This method can be applied to design and manufacturing in mechanical engineering, automobile industry, robot technology, spatial information systems and others.

  11. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  12. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  13. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  14. 3D digital breast tomosynthesis image reconstruction using anisotropic total variation minimization.

    PubMed

    Seyyedi, Saeed; Yildirim, Isa

    2014-01-01

    This paper presents a compressed sensing based reconstruction method for 3D digital breast tomosynthesis (DBT) imaging. Algebraic reconstruction technique (ART) has been in use in DBT imaging by minimizing the isotropic total variation (TV) of the reconstructed image. The resolution in DBT differs in sagittal and axial directions which should be encountered during the TV minimization. In this study we develop a 3D anisotropic TV (ATV) minimization by considering the different resolutions in different directions. A customized 3D Shepp-logan phantom was generated to mimic a real DBT image by considering the overlapping tissue and directional resolution issues. Results of the ART, ART+3D TV and ART+3D ATV are compared using structural similarity (SSIM) diagram. PMID:25571377

  15. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  16. Structuring Narrative in 3D Digital Game-Based Learning Environments to Support Second Language Acquisition

    ERIC Educational Resources Information Center

    Neville, David O.

    2010-01-01

    The essay is a conceptual analysis from an instructional design perspective exploring the feasibility of using three-dimensional digital game-based learning (3D-DGBL) environments to assist in second language acquisition (SLA). It examines the shared characteristics of narrative within theories of situated cognition, context-based approaches to…

  17. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  18. IEEE 1394/firewire a low cost, high speed, digital serial bus

    SciTech Connect

    Gaunt, R.

    1997-05-01

    Does the world need yet another 1/0 bus standard? If you need fast and cheap serial video communication, then the answer is yes. As technology advances, so too must data transport mechanisms advance. You can`t expect RS-232 to support real-time digital video, and if you can`t afford expensive professional serial video interfaces, (such as Sony`s Serial Digital Interface), Firewire may be a good solution. IEEE 1394, or commonly known as Firewire, is a general purpose serial bus that meets many of the 1/0 needs of today`s video and multimedia developers. For those of you who only read the first paragraph, here`s Firewire in a nutshell: It provides a guaranteed transfer rate of 10OMbps or 20OMbps of digital data (such as video direct from camera to computer), over an inexpensive, non-proprietary serial bus. Here is a list of its features.

  19. 3D measurement of the position of gold particles via evanescent digital holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Satake, Shin-ichi; Unno, Noriyuki; Nakata, Shuichiro; Taniguchi, Jun

    2016-08-01

    A new technique based on digital holography and evanescent waves was developed for 3D measurements of the position of gold nanoparticles in water. In this technique, an intensity profile is taken from a holographic image of a gold particle. To detect the position of the gold particle with high accuracy, its holographic image is recorded on a nanosized step made of MEXFLON, which has a refractive index close to that of water, and the position of the particle is reconstructed by means of digital holography. The height of the nanosized step was measured by using a profilometer and the digitally reconstructed height of the glass substrate had good agreement with the measured value. Furthermore, this method can be used to accurately track the 3D position of a gold particle in water.

  20. Development of a 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) System

    NASA Astrophysics Data System (ADS)

    Schmitt, David; Rixon, Greg; Dabiri, Dana

    2006-11-01

    A novel 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) system has been designed and fabricated. By combining 3D Digital Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data in a volume of ˜1x1x0.5 in^3 using temperature sensitive liquid crystal particles as flow sensors. Two high-intensity xenon flashlamps were used as illumination sources. The imaging system consists of six CCD cameras, three allocated for measuring velocity, based on particle motion, and three for measuring temperature, based on particle color. The cameras were optically aligned using a precision grid and high-resolution translation stages. Temperature calibration was then performed using a precision thermometer and a temperature-controlled bath. Results from proof-of-concept experiments will be presented and discussed.

  1. 3D evaluation of palatal rugae for human identification using digital study models

    PubMed Central

    Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.

    2015-01-01

    Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human

  2. Serial Position Effects in the Identification of Letters, Digits, and Symbols

    ERIC Educational Resources Information Center

    Tydgat, Ilse; Grainger, Jonathan

    2009-01-01

    In 6 experiments, the authors investigated the form of serial position functions for identification of letters, digits, and symbols presented in strings. The results replicated findings obtained with the target search paradigm, showing an interaction between the effects of serial position and type of stimulus, with symbols generating a distinct…

  3. Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes

    NASA Astrophysics Data System (ADS)

    Kim, Seong Tae; Kim, Dae Hoe; Ro, Yong Man

    2014-09-01

    In digital breast tomosynthesis, the three dimensional (3D) reconstructed volumes only provide quasi-3D structure information with limited resolution along the depth direction due to insufficient sampling in depth direction and the limited angular range. The limitation could seriously hamper the conventional 3D image analysis techniques for detecting masses because the limited number of projection views causes blurring in the out-of-focus planes. In this paper, we propose a novel mass detection approach using slice conspicuity in the 3D reconstructed digital breast volumes to overcome the above limitation. First, to overcome the limited resolution along the depth direction, we detect regions of interest (ROIs) on each reconstructed slice and separately utilize the depth directional information to combine the ROIs effectively. Furthermore, we measure the blurriness of each slice for resolving the degradation of performance caused by the blur in the out-of-focus plane. Finally, mass features are extracted from the selected in focus slices and analyzed by a support vector machine classifier to reduce the false positives. Comparative experiments have been conducted on a clinical data set. Experimental results demonstrate that the proposed approach outperforms the conventional 3D approach by achieving a high sensitivity with a small number of false positives.

  4. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  5. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  6. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  7. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  8. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  9. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  10. Pre-Processing of Point-Data from Contact and Optical 3D Digitization Sensors

    PubMed Central

    Budak, Igor; Vukelić, Djordje; Bračun, Drago; Hodolič, Janko; Soković, Mirko

    2012-01-01

    Contemporary 3D digitization systems employed by reverse engineering (RE) feature ever-growing scanning speeds with the ability to generate large quantity of points in a unit of time. Although advantageous for the quality and efficiency of RE modelling, the huge number of point datas can turn into a serious practical problem, later on, when the CAD model is generated. In addition, 3D digitization processes are very often plagued by measuring errors, which can be attributed to the very nature of measuring systems, various characteristics of the digitized objects and subjective errors by the operator, which also contribute to problems in the CAD model generation process. This paper presents an integral system for the pre-processing of point data, i.e., filtering, smoothing and reduction, based on a cross-sectional RE approach. In the course of the proposed system development, major emphasis was placed on the module for point data reduction, which was designed according to a novel approach with integrated deviation analysis and fuzzy logic reasoning. The developed system was verified through its application on three case studies, on point data from objects of versatile geometries obtained by contact and laser 3D digitization systems. The obtained results demonstrate the effectiveness of the system. PMID:22368513

  11. Demonstration of digital hologram recording and 3D-scenes reconstruction in real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Kulakov, Mikhail N.; Kurbatova, Ekaterina A.; Molodtsov, Dmitriy Y.; Rodin, Vladislav G.

    2016-04-01

    Digital holography is technique that allows to reconstruct information about 2D-objects and 3D-scenes. This is achieved by registration of interference pattern formed by two beams: object and reference ones. Pattern registered by the digital camera is processed. This allows to obtain amplitude and phase of the object beam. Reconstruction of shape of the 2D objects and 3D-scenes can be obtained numerically (using computer) and optically (using spatial light modulators - SLMs). In this work camera Megaplus II ES11000 was used for digital holograms recording. The camera has 4008 × 2672 pixels with sizes of 9 μm × 9 μm. For hologram recording, 50 mW frequency-doubled Nd:YAG laser with wavelength 532 nm was used. Liquid crystal on silicon SLM HoloEye PLUTO VIS was used for optical reconstruction of digital holograms. SLM has 1920 × 1080 pixels with sizes of 8 μm × 8 μm. At objects reconstruction 10 mW He-Ne laser with wavelength 632.8 nm was used. Setups for digital holograms recording and their optical reconstruction with the SLM were combined as follows. MegaPlus Central Control Software allows to display registered frames by the camera with a little delay on the computer monitor. The SLM can work as additional monitor. In result displayed frames can be shown on the SLM display in near real-time. Thus recording and reconstruction of the 3D-scenes was obtained in real-time. Preliminary, resolution of displayed frames was chosen equaled to the SLM one. Quantity of the pixels was limited by the SLM resolution. Frame rate was limited by the camera one. This holographic video setup was applied without additional program implementations that would increase time delays between hologram recording and object reconstruction. The setup was demonstrated for reconstruction of 3D-scenes.

  12. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the

  13. Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells

    PubMed Central

    SHOMORONY, A.; PFEIFER, C.R.; ARONOVA, M.A.; ZHANG, G.; CAI, T.; XU, H.; NOTKINS, A.L.

    2015-01-01

    Summary A combination of two‐dimensional (2D) and three‐dimensional (3D) analyses of tissue volume ultrastructure acquired by serial block face scanning electron microscopy can greatly shorten the time required to obtain quantitative information from big data sets that contain many billions of voxels. Thus, to analyse the number of organelles of a specific type, or the total volume enclosed by a population of organelles within a cell, it is possible to estimate the number density or volume fraction of that organelle using a stereological approach to analyse randomly selected 2D block face views through the cells, and to combine such estimates with precise measurement of 3D cell volumes by delineating the plasma membrane in successive block face images. The validity of such an approach can be easily tested since the entire 3D tissue volume is available in the serial block face scanning electron microscopy data set. We have applied this hybrid 3D/2D technique to determine the number of secretory granules in the endocrine α and β cells of mouse pancreatic islets of Langerhans, and have been able to estimate the total insulin content of a β cell. PMID:26139222

  14. Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells.

    PubMed

    Shomorony, A; Pfeifer, C R; Aronova, M A; Zhang, G; Cai, T; Xu, H; Notkins, A L; Leapman, R D

    2015-08-01

    A combination of two-dimensional (2D) and three-dimensional (3D) analyses of tissue volume ultrastructure acquired by serial block face scanning electron microscopy can greatly shorten the time required to obtain quantitative information from big data sets that contain many billions of voxels. Thus, to analyse the number of organelles of a specific type, or the total volume enclosed by a population of organelles within a cell, it is possible to estimate the number density or volume fraction of that organelle using a stereological approach to analyse randomly selected 2D block face views through the cells, and to combine such estimates with precise measurement of 3D cell volumes by delineating the plasma membrane in successive block face images. The validity of such an approach can be easily tested since the entire 3D tissue volume is available in the serial block face scanning electron microscopy data set. We have applied this hybrid 3D/2D technique to determine the number of secretory granules in the endocrine α and β cells of mouse pancreatic islets of Langerhans, and have been able to estimate the total insulin content of a β cell. PMID:26139222

  15. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz

    2008-08-01

    In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.

  16. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    PubMed Central

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling. PMID:22399958

  17. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  18. Digital holography for recovering 3D shape of red blood cells

    NASA Astrophysics Data System (ADS)

    Memmolo, P.; Miccio, L.; Merola, F.; Gennari, O.; Netti, P.; Ferraro, Pietro

    2015-07-01

    Full morphometric data analysis and 3D rendering of Red Blood Cells (RBCs) is provided by means of Digital Holography (DH) in combination with Optical Tweezers (OT). The proposed method is compared with a geometrical model of RBC in order to evaluate its accuracy and tested for many kinds of RBCs, from healthy ones with double-concavity to that with abnormal shapes. Applications in diagnostics are foreseen.

  19. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  20. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  1. Mask free intravenous 3D digital subtraction angiography (IV 3D-DSA) from a single C-arm acquisition

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Yang, Pengfei; Aagaard-Kienitz, Beveley; Niemann, David B.; Ahmed, Azam S.; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan. Potential benefits of eliminating mask scan would be: (1) both radiation dose and scan time can be reduced by a factor of 2; (2) intra-sweep motion can be eliminated; (3) inter-sweep motion can be mitigated. Numerical simulations were used to validate the algorithm in terms of contrast recoverability and the ability to mitigate limited view artifacts.

  2. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  3. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  4. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  5. Digital In-Line Holography System for 3D-3C Particle Tracking Velocimetry

    NASA Astrophysics Data System (ADS)

    Malek, Mokrane; Lebrun, Denis; Allano, Daniel

    Digital in-line holography is a suitable method for measuring three dimensional (3D) velocity fields. Such a system records directly on a charge-coupled device (CCD) camera a couple of diffraction patterns produced by small particles illuminated by a modulated laser diode. The numerical reconstruction is based on the wavelet transformation method. A 3D particle field is reconstructed by computing the wavelet components for different scale parameters. The scale parameter is directly related to the axial distance between a given particle and the CCD camera. The particle images are identified and localized by analyzing the maximum of the wavelet transform modulus (WTMM) and the equivalent diameter of the particle image (Deq). Afterwards, a 3D point-matching (PM) algorithm is applied to the pair of sets containing the 3D particle locations. In the PM algorithm, the displacement of the particles is modeled by an affine transformation. This affine transformation is based on the use of the dual number quaternions. Afterwards, the velocity-field extraction is performed. This system is tested with simulated particle field displacements and the feasibility is checked with an experimental displacement.

  6. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  7. TINA manual landmarking tool: software for the precise digitization of 3D landmarks

    PubMed Central

    2012-01-01

    Background Interest in the placing of landmarks and subsequent morphometric analyses of shape for 3D data has increased with the increasing accessibility of computed tomography (CT) scanners. However, current computer programs for this task suffer from various practical drawbacks. We present here a free software tool that overcomes many of these problems. Results The TINA Manual Landmarking Tool was developed for the digitization of 3D data sets. It enables the generation of a modifiable 3D volume rendering display plus matching orthogonal 2D cross-sections from DICOM files. The object can be rotated and axes defined and fixed. Predefined lists of landmarks can be loaded and the landmarks identified within any of the representations. Output files are stored in various established formats, depending on the preferred evaluation software. Conclusions The software tool presented here provides several options facilitating the placing of landmarks on 3D objects, including volume rendering from DICOM files, definition and fixation of meaningful axes, easy import, placement, control, and export of landmarks, and handling of large datasets. The TINA Manual Landmark Tool runs under Linux and can be obtained for free from http://www.tina-vision.net/tarballs/. PMID:22480150

  8. Computation of elastic properties of 3D digital cores from the Longmaxi shale

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hui; Fu, Li-Yun; Zhang, Yan; Jin, Wei-Jun

    2016-06-01

    The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.

  9. 3D Characterization of Transmitral Vortex using Defocusing Digital Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Dueitt, Brandon; Pahlevan, Niema; Kheradvar, Arash

    2011-11-01

    In this study, we have experimentally characterized the 3D vortex passing through a physiologically relevant model of mitral valve using Defocusing Digital PIV (DDPIV). The valve model was made of soft silicone with diameter of 25 mm , similar to the adult mitral valve. The mitral model possesses a large anterior and a small posterior leaflet that results in asymmetric formation of transmitral vortex. A piston-cylinder mechanism drives the flow and travels to produce a range of L / D from 2 to 6. We have characterized the shape of the 3D vortex forming through the D-shaped orifice of a mitral valve using DDPIV technique. The evolution of the vortex has been illustrated for different stroke ratios.

  10. Urban 3D GIS From LiDAR and digital aerial images

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Song, C.; Simmers, J.; Cheng, P.

    2004-05-01

    This paper presents a method, which integrates image knowledge and Light Detection And Ranging (LiDAR) point cloud data for urban digital terrain model (DTM) and digital building model (DBM) generation. The DBM is an Object-Oriented data structure, in which each building is considered as a building object, i.e., an entity of the building class. The attributes of each building include roof types, polygons of the roof surfaces, height, parameters describing the roof surfaces, and the LiDAR point array within the roof surfaces. Each polygon represents a roof surface of building. This type of data structure is flexible for adding other building attributes in future, such as texture information and wall information. Using image knowledge extracted, we developed a new method of interpolating LiDAR raw data into grid digital surface model (DSM) with considering the steep discontinuities of buildings. In this interpolation method, the LiDAR data points, which are located in the polygon of roof surfaces, first are determined, and then interpolation via planar equation is employed for grid DSM generation. The basic steps of our research are: (1) edge detection by digital image processing algorithms; (2) complete extraction of the building roof edges by digital image processing and human-computer interactive operation; (3) establishment of DBM; (4) generation of DTM by removing surface objects. Finally, we implement the above functions by MS VC++ programming. The outcome of urban 3D DSM, DTM and DBM is exported into urban database for urban 3D GIS.

  11. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  12. A 3-D nonlinear recursive digital filter for video image processing

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Qian, W.

    1991-01-01

    This paper introduces a recursive 3-D nonlinear digital filter, which is capable of performing noise suppression without degrading important image information such as edges in space or time. It also has the property of unnoticeable bandwidth reduction immediately after a scene change, which makes the filter an attractive preprocessor to many interframe compression algorithms. The filter consists of a nonlinear 2-D spatial subfilter and a 1-D temporal filter. In order to achieve the required computational speed and increase the flexibility of the filter, all of the linear shift-variant filter modules are of the IIR type.

  13. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  14. Minimum slice spacing required to reconstruct 3D shape for serial sections of breast tissue for comparison with medical imaging

    NASA Astrophysics Data System (ADS)

    Reis, Sara; Eiben, Bjoern; Mertzanidou, Thomy; Hipwell, John; Hermsen, Meyke; van der Laak, Jeroen; Pinder, Sarah; Bult, Peter; Hawkes, David

    2015-03-01

    There is currently an increasing interest in combining the information obtained from radiology and histology with the intent of gaining a better understanding of how different tumour morphologies can lead to distinctive radiological signs which might predict overall treatment outcome. Relating information at different resolution scales is challenging. Reconstructing 3D volumes from histology images could be the key to interpreting and relating the radiological image signal to tissue microstructure. The goal of this study is to determine the minimum sampling (maximum spacing between histological sections through a fixed surgical specimen) required to create a 3D reconstruction of the specimen to a specific tolerance. We present initial results for one lumpectomy specimen case where 33 consecutive histology slides were acquired.

  15. Magnetic ordering in digital alloys of group-IV semiconductors with 3d-transition metals

    SciTech Connect

    Otrokov, M. M.; Tugushev, V. V.; Ernst, A.; Ostanin, S. A.; Kuznetsov, V. M.; Chulkov, E. V.

    2011-04-15

    The ab initio investigation of the magnetic ordering in digital alloys consisting of monolayers of 3d-transition metals Ti, V, Cr, Mn, Fe, Co, and Ni introduced into the Si, Ge, and Si{sub 0.5}Ge{sub 0.5} semiconductor hosts is reported. The calculations of the parameters of the exchange interactions and total-energy calculations indicate that the ferromagnetic order appears only in the manganese monolayers, whereas the antiferromagnetic order is more probable in V, Cr, and Fe monolayers, and Ti, Co, and Ni monolayers are nonmagnetic. The stability of the ferromagnetic phase in digital alloys containing manganese monolayers has been analyzed using the calculations of magnon spectra.

  16. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  17. 3D visualization and biovolume estimation of motile cells by digital holography

    NASA Astrophysics Data System (ADS)

    Merola, F.; Miccio, L.; Memmolo, P.; Di Caprio, G.; Coppola, G.; Netti, P.

    2014-05-01

    For the monitoring of biological samples, physical parameters such as size, shape and refractive index are of crucial importance. However, up to now the morphological in-vitro analysis of in-vitro cells has been limited to 2D analysis by classical optical microscopy such as phase-contrast or DIC. Here we show an approach that exploits the capability of optical tweezers to trap and put in self-rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cell's phase-contrast signature, we demonstrate that it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to 3D shape of the object avoiding tomography microscopy, that is an overwhelmed and very complex approach for measuring 3D shape and biovolume estimation.

  18. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    SciTech Connect

    Lindgren, Erik

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  19. Visualization of 3D images from multiple texel images created from fused LADAR/digital imagery

    NASA Astrophysics Data System (ADS)

    Killpack, Cody C.; Budge, Scott E.

    2015-05-01

    The ability to create 3D models, using registered texel images (fused ladar and digital imagery), is an important topic in remote sensing. These models are automatically generated by matching multiple texel images into a single common reference frame. However, rendering a sequence of independently registered texel images often provides challenges. Although accurately registered, the model textures are often incorrectly overlapped and interwoven when using standard rendering techniques. Consequently, corrections must be done after all the primitives have been rendered, by determining the best texture for any viewable fragment in the model. Determining the best texture is difficult, as each texel image remains independent after registration. The depth data is not merged to form a single 3D mesh, thus eliminating the possibility of generating a fused texture atlas. It is therefore necessary to determine which textures are overlapping and how to best combine them dynamically during the render process. The best texture for a particular pixel can be defined using 3D geometric criteria, in conjunction with a real-time, view-dependent ranking algorithm. As a result, overlapping texture fragments can now be hidden, exposed, or blended according to their computed measure of reliability.

  20. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  1. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  2. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  3. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  4. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  5. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  6. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  7. Using the auxiliary camera for system calibration of 3D measurement by digital speckle

    NASA Astrophysics Data System (ADS)

    Xue, Junpeng; Su, Xianyu; Zhang, Qican

    2014-06-01

    The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.

  8. Assessments for 3d Reconstructions of Cultural Heritage Using Digital Technologies

    NASA Astrophysics Data System (ADS)

    Manferdini, A. M.; Galassi, M.

    2013-02-01

    The aim of this contribution is to show the results of evaluations on 3D digitizations performed using different methodologies and technologies. In particular, for surveys conducted at the architectural and urban scale, the recent reduction of costs related to Time of Flight and phase shift laser scanners is actually enhancing the replacement of traditional topographic instruments (i.e. total stations) with range-based technologies for the acquisition of 3D data related to built heritage. If compared to surveys performed using traditional topographic technologies, range-based ones offer a wide range of advantages, but they also require different skills, procedures and times. The present contribution shows the results of a practical application of both approaches on the same case study. Another application was suggested by the recent developments in the photogrammetric field that enhance the improvement of software able to automatically orient uncalibrated cameras and derive dense and accurate 3D point clouds, with evident benefits in reduction of costs required for survey equipment. Therefore, the presented case study constituted the occasion to compare a rangebased survey with a fast 3D acquisition and modelling using a Structure from Motion solution. These survey procedures were adopted at an architectural scale, on a single building, that was surveyed both on the outside and on the inside. Assessments on the quality of the rebuilt information is reported, as far as metric accuracy and reliability is concerned, as well as on time consuming and on skills required during each step of the adopted pipelines. For all approaches, these analysis highlighted advantages and disadvantages that allow to conduct evaluations on the possible convenience of adopting range-based technologies instead of a traditional topographic approach or a photogrammetric one instead of a range based one in case of surveys conducted at an architectural/urban scale.

  9. The bust of Francesco II Gonzaga: from digital documentation to 3D printing

    NASA Astrophysics Data System (ADS)

    Adami, A.; Balletti, C.; Fassi, F.; Fregonese, L.; Guerra, F.; Taffurelli, L.; Vernier, P.

    2015-08-01

    Geomatics technics and methods are now able to provide a great contribution to the Cultural Heritage (CH) processes, being adaptable to different purposes: management, diagnosis, restoration, protection, study and research, communication, formation and fruition of the Cultural Heritage. This experimentation was done with an eye to encouraging and promoting the development of principles and good practices for recording, documentation and information management of cultural heritage. This research focuses on the documentation path of a cultural asset, in particular a Renaissance statue, aimed to achieve a three dimensional model useful for many digital applications and for solid reproduction. The digital copy can be used in many contexts and represents an efficient tool to preserve and promote CH. It can be included in virtual museum archives and catalogues, shared on network with cultural operators and users, and it permits the contextualization of the asset in its artistic and historical background. Moreover, the possibility to obtain a hard copy, reproduced through 3D printing, allows to reach new opportunities of interaction with CH. In this article, two techniques for the digitization of the terracotta bust of Francesco II Gonzaga, in the City Museum of Mantua, are described: the triangulation scanner and dense image matching photogrammetry. As well as the description of the acquisition and the elaborations, other aspects are taken into account: the characteristics of the object, the place for the acquisition, the ultimate goal and the economic availability. There are also highlighted the optimization pipeline to get the correct three-dimensional models and a 3D printed copy. A separate section discusses the comparison of the realized model to identify the positive and negative aspects of each adopted application.

  10. Multicamera 3D modeling system to digitize human head and body

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Matsumoto, Yukinori; Emi, Tetsuichi

    2001-04-01

    A multi-camera 3D modeling system to digitize a human head and body is presented in this paper. The main features of this system are as follows: 1) Fast capturing: Both of texture images and pattern images can be taken within a few seconds using multiple digital still cameras which are set around the target human. Slide projectors are also set to provide a color line patterned light on the target for pattern image capturing, 2) Realistic Shape and Texture: The whole shape and photo-realistic textures of the human head including hair can be digitized at a time on a personal computer, and 3) Hybrid Algorithm: Our modeling algorithm is based on a hybrid method where the Shape-from-Silhouette technique and the Active-Stereo technique are combined. In the first step, the rough shape of the target is estimated in a voxel space using our Extended Shape-from-Silhouette method. In the next step, the shape is refined based on the depth-map data that is calculated using a multi-camera active stereo method. This combination makes up for the shortcomings of each method. Our system has been applied to the digitizing several Japanese people using sixteen cameras for texture image capturing and twelve cameras and two projectors for pattern image capturing. Its capturing time is approximately three seconds and calculation time is about 15-20 minutes on a personal computer with the Pentium-III processor (600MHz) and 512MB memory to digitize the whole shape as well as the texture of the human head and body.

  11. Comparative Analysis of 3D Expression Patterns of Transcription Factor Genes and Digit Fate Maps in the Developing Chick Wing

    PubMed Central

    Delgado, Irene; Bain, Andrew; Planzer, Thorsten; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-01-01

    Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage. PMID:21526123

  12. General application of rapid 3-D digitizing and tool path generation for complex shapes

    SciTech Connect

    Kwok, K.S.; Loucks, C.S.; Driessen, B.J.

    1997-09-01

    A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation and experimental results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm in simulation studies. In actual experiments, a nose cone and a turbine blade were successfully scanned. A complex shaped turbine blade was successfully scanned and finished machined using these algorithms.

  13. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  14. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  15. A 3D space-time motion evaluation for image registration in digital subtraction angiography.

    PubMed

    Taleb, N; Bentoutou, Y; Deforges, O; Taleb, M

    2001-01-01

    In modern clinical practice, Digital Subtraction Angiography (DSA) is a powerful technique for the visualization of blood vessels in a sequence of X-ray images. A serious problem encountered in this technique is the presence of artifacts due to patient motion. The resulting artifacts frequently lead to misdiagnosis or rejection of a DSA image sequence. In this paper, a new technique for removing both global and local motion artifacts is presented. It is based on a 3D space-time motion evaluation for separating pixels changing values because of motion from those changing values because of contrast flow. This technique is proved to be very efficient to correct for patient motion artifacts and is computationally cheap. Experimental results with several clinical data sets show that this technique is very fast and results in higher quality images. PMID:11179698

  16. Strain determination in bone sections with simultaneous 3D digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Alvarez, Araceli Sánchez; De la Torre Ibarra, Manuel H.; Santoyo, Fernando Mendoza; Anaya, Tonatiuh-Saucedo

    2014-06-01

    A 3D digital holographic interferometer was used to measure the surface strain components in two different bovine's bone sections. The applied force on the sample was induced by a precisely controlled lateral micro compression. The simultaneous acquisition capability of the system helps to record a fast sequence of images, each one containing three independent holograms that result in three orthogonal displacement components u, v and w from which the surface strain components ɛx, ɛy and γxy over the bone's field of view were calculated. This research study was carried out in two different bone sections: the cortical bone and the medullary cavity/yellow marrow section. The resulting strain concentrators are of great importance to better understand the mechanical response of complex biological structures such as this bovine femoral bone.

  17. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  18. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  19. Damage Assessment and Digital 2D-3D Documentation of PetraTreasury

    NASA Astrophysics Data System (ADS)

    Bala'awi, Fadi; Alshawabkeh, Yahya; Alawneh, Firas; Masri, Eyed al

    The treasury is the icon monument of the world heritage site of ancient Petra city. Unfortunately, this important part of the world's cultural heritage is gradually being diminished due to weathering and erosion problems. This give rise to the need to have a comprehensive study and full documentation of the monument in order to evaluate its status. In this research a comprehensive approach utilizing 2D-3D documentation of the structure using laser scanner and photogrammetry is carried parallel with a laboratory analysis and a correlation study of the salt content and the surface weathering forms. In addition, the research extends to evaluate a set of chemical and physical properties of the case study monument. Studies of stone texture and spatial distribution of soluble salts were carried out at the monument in order to explain the mechanism of the weathering problem. Then a series of field work investigations and laboratory work were undertaken to study the effect of relative humidity, temperature, and wind are the main factors in the salt damage process. The 3D modelling provides accurate geometric and radiometric properties of the damage shape. In order to support the visual quality of 3D surface details and cracks, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Based on the findings, salt damage appears to be one of the main problems at this monument. Although, the total soluble salt content are quite low, but the salts contamination is all over the tested samples in all seasons, with higher concentrations at deep intervals. The thermodynamic calculations carried out by this research have also shown that salt damage could be minimised by controlling the surrounding relative humidity conditions. This measure is undoubtedly the most challenging of all, and its application, if deemed feasible, should be carried out in parallel with other conservation measures.

  20. Digital breast tomosynthesis: computerized detection of microcalcifications in reconstructed breast volume using a 3D approach

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan; Helvie, Mark A.

    2010-03-01

    We are developing a computer-aided detection (CAD) system for clustered microcalcifications in digital breast tomosynthesis (DBT). In this preliminary study, we investigated the approach of detecting microcalcifications in the tomosynthesized volume. The DBT volume is first enhanced by 3D multi-scale filtering and analysis of the eigenvalues of Hessian matrices with a calcification response function and signal-to-noise ratio enhancement filtering. Potential signal sites are identified in the enhanced volume and local analysis is performed to further characterize each object. A 3D dynamic clustering procedure is designed to locate potential clusters using hierarchical criteria. We collected a pilot data set of two-view DBT mammograms of 39 breasts containing microcalcification clusters (17 malignant, 22 benign) with IRB approval. A total of 74 clusters were identified by an experienced radiologist in the 78 DBT views. Our prototype CAD system achieved view-based sensitivity of 90% and 80% at an average FP rate of 7.3 and 2.0 clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 3.6 and 1.3 clusters per volume, respectively. For the subset of malignant clusters, the view-based detection sensitivity was 94% and 82% at an average FP rate of 6.0 and 1.5 FP clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 1.2 and 0.9 clusters per volume, respectively. This study demonstrated that computerized microcalcification detection in 3D is a promising approach to the development of a CAD system for DBT. Study is underway to further improve the computer-vision methods and to optimize the processing parameters using a larger data set.

  1. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  2. 3D quantitative imaging of the microvasculature with the Texas Instruments Digital Micromirror Device

    NASA Astrophysics Data System (ADS)

    Fainman, Yeshaiahu; Botvinick, Elliott L.; Price, Jeffrey H.; Gough, David A.

    2001-11-01

    There is a growing need for developing 3D quantitative imaging tools that can operate at high speed enabling real-time visualization for the field of biology, material science, and the semiconductor industry. We will present our 3D quantitative imaging system based on a confocal microscope built with a Texas Instruments Digital Micromirror Device (DMD). By using the DMD as a spatial light modulator, confocal transverse surface (x, y) scanning can be performed in parallel at speeds faster than video rate without physical movement of the sample. The DMD allows us to programmably configure the source and the detection pinhole array in the lateral direction to achieve the best signal and to reduce the crosstalk noise. Investigations of the microcirculation were performed on 40 g to 45 g golden Syrian hamsters fit with dorsal skin fold window chambers. FITC-Dextran or Red blood cells from donor hamsters, stained with Celltracker CM-DiI, were injected into the circulation and imaged with the confocal microscope. We will present the measured results for the axial resolution, in vivo, as well as experimental results from imaging the window chamber.

  3. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking.

    PubMed

    Dettmer, Simon L; Keyser, Ulrich F; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces. PMID:24593372

  4. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  5. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.

    PubMed

    Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2013-10-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  6. A new 3D shape measurement method using digital fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Jiarui; Zhang, Yingjie; Yu, Mingrang; Xiang, Dehu

    2015-10-01

    This paper proposes a novel optical three-dimensional (3D) measurement method using the traditional space-time stereo system. In the proposed method, the projector not only shoots fringe pattern onto the measurement object to achieve precise matching, but also plays a vital role in the 3D information calculation. With the combination of two cameras and a projector, two digital fringe projection (DFP) measurement systems and one traditional space-time stereo measurement system can be obtained. In another word, the measurand will be measured three times simultaneously, which results in three independent point clouds of the same region of the object to be measured. So it is necessary to register these three sets of points for obtaining one final data set. The iterative closest points (ICP) method, which is known as the most popular registration approach, is sensitive to the initial estimation of the transformation between the two sets of points to be matched. Thus, a robust rough registration, which is introduced from Natasha, is useful for ICP to realize accurate registration. After registration, a scattered point set with redundant and errors, which are caused by overlapping, is obtained. Then some local surfaces are constructed for those overlapping regions using the moving least squares (MLS) method, and the points extracted from those surfaces are used to replace the points of the overlapping regions. Finally, a simplified, precise point cloud can be obtained.

  7. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  8. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  10. Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.

    PubMed

    Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S

    2014-11-17

    Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered. PMID:25402115

  11. 3D interpolation for the digital restoration of 35-mm film

    NASA Astrophysics Data System (ADS)

    Mueller-Seelich, Heimo; Plaschzug, Walter; Glatz, Klaus

    1998-01-01

    The celebration of the Centenary of Cinema in 1995 was the occasion to initiate new developments for the preservation of the international cinematic heritage and the restoration of old damaged films. 'Classical' film restoration is based on special printing machines to improve the quality of copies. Only a small class of artifacts can be removed with such a process because the unit of manipulation is always a whole image sequence. With the help of digital image processing techniques the restoration process can be adapted for each frame or even pixel. This creates new potentialities for the restoration of films beyond repair, especially nitrate based films produced before 1954 and early color films. This paper presents a short overview about a system for the digital restoration of image sequences, currently under development in the EUREKA project LIMELIGHT. After an introduction to the technical objectives and key figures, the restoration process is described for the case of 35mm film. Algorithms for the detection of artifacts, such as dust, image vibrations, scratches, distorted frames and brightness variations, based on a morphological detector, which uses spatial properties, and a dynamic detector, based on motion analysis, are presented. Furthermore an algorithm for 3D images interpolation used for the removal of scratches and subtitles is described. The main problem is the reconstruction of the missing image content for more than one frame in the same spatial location. Application examples for each defect class are given.

  12. A serial digital data communications device. [for real time flight simulation

    NASA Technical Reports Server (NTRS)

    Fetter, J. L.

    1977-01-01

    A general purpose computer peripheral device which is used to provide a full-duplex, serial, digital data transmission link between a Xerox Sigma computer and a wide variety of external equipment, including computers, terminals, and special purpose devices is reported. The interface has an extensive set of user defined options to assist the user in establishing the necessary data links. This report describes those options and other features of the serial communications interface and its performance by discussing its application to a particular problem.

  13. An automated serial Grinding, Imaging and Reconstruction Instrument (GIRI) for digital modeling of samples with weak density contrasts

    NASA Astrophysics Data System (ADS)

    Maloof, A. C.; Samuels, B.; Mehra, A.; Spatzier, A.

    2013-12-01

    We present the first results from the new Princeton University Grinder Lab dedicated to the digital reconstruction of hidden objects through serial grinding and imaging. The purpose of a destructive technique like serial grinding is to facilitate the discovery of embedded objects with weak density contrasts outside the sensitivity limits of X-ray CT-scanning devices (Feature segmentation and object reconstruction are based on color and textural contrasts in the stack of images rather than density). The device we have developed is a retrofit imaging station designed for a precision CNC surface. The instrument is capable of processing a sample 20x25x40 cm in size at 1 micron resolution in x, y and z axes. Directly coupled to the vertical axis of the grinder is an 80 megapixel medium format camera and specialty macro lens capable of imaging a 4x5 cm surface at 5 micron resolution in full 16 bit color. The system is automated such that after each surface grind, the sample is cleaned, travels to the opposite end of the bed from the grinder wheel, is photographed, and then moved back to the grinding position. This process establishes a comprehensive archive of the specimen that is used for digital reconstruction and quantitative analysis. For example, in one night, a 7 cm thick sample can be imaged completely at 20 micron horizontal and vertical resolution without human supervision. Some of the initial results we present here include new digital reconstructions of early animal fossils, 3D sedimentary bedforms, the size and shape distribution of chondrules in chondritic meteorites, and the porosity structure of carbonate cemented reservoir rocks.

  14. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  15. Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Smith, Mike J.

    2012-06-01

    Metrics such as height and volume quantifying the 3D morphology of landforms are important observations that reflect and constrain Earth surface processes. Errors in such measurements are, however, poorly understood. A novel approach, using statistically valid ‘synthetic' landscapes to quantify the errors is presented. The utility of the approach is illustrated using a case study of 184 drumlins observed in Scotland as quantified from a Digital Elevation Model (DEM) by the ‘cookie cutter' extraction method. To create the synthetic DEMs, observed drumlins were removed from the measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the ‘noise' (e.g. trees) and regional trends (e.g. hills) that cause the errors. Then, errors in the cookie cutter extraction method were investigated by using it to quantify these ‘synthetic' drumlins, whose location and size is known. Thus, the approach determines which key metrics are recovered accurately. For example, mean height of 6.8 m is recovered poorly at 12.5 ± 0.6 (2σ) m, but mean volume is recovered correctly. Additionally, quantification methods can be compared: A variant on the cookie cutter using an un-tensioned spline induced about twice (× 1.79) as much error. Finally, a previously reportedly statistically significant (p = 0.007) difference in mean volume between sub-populations of different ages, which may reflect formational processes, is demonstrated to be only 30-50% likely to exist in reality. Critically, the synthetic DEMs are demonstrated to realistically model parameter recovery, primarily because they are still almost entirely the original landscape. Results are insensitive to the exact method used to create the synthetic DEMs, and the approach could be readily adapted to assess a variety of landforms (e.g. craters, dunes and volcanoes).

  16. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope

    PubMed Central

    Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.

    2014-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  17. Intrafractional 3D localization using kilovoltage digital tomosynthesis for sliding-window intensity modulated radiation therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig

    2015-09-01

    To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management.In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ± 3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions.No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 s, respectively. Mean ± standard deviation error in predicted position was -0.3 ± 0.2 mm, -0.1 ± 0.1 mm in-plane, and 0.2 ± 0.4 mm out-of-plane with rotational gantry, 0.8 ± 0.1 mm, -0.7 ± 0.3 mm in-plane and 1.1 ± 0.1 mm out-of-plane with translational source/detector.Acquiring 3D fiducial positions from kV-DTS during fixed gantry

  18. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  19. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    PubMed

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  20. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  1. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  2. A digital holography set-up for 3D vortex flow dynamics

    NASA Astrophysics Data System (ADS)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

    2016-06-01

    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  3. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  4. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  5. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  6. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells.

    PubMed

    Merola, F; Miccio, L; Memmolo, P; Di Caprio, G; Galli, A; Puglisi, R; Balduzzi, D; Coppola, G; Netti, P; Ferraro, P

    2013-12-01

    Sperm morphology is regarded as a significant prognostic factor for fertilization, as abnormal sperm structure is one of the most common factors in male infertility. Furthermore, obtaining accurate morphological information is an important issue with strong implications in zoo-technical industries, for example to perform sorting of species X from species Y. A challenging step forward would be the availability of a fast, high-throughput and label-free system for the measurement of physical parameters and visualization of the 3D shape of such biological specimens. Here we show a quantitative imaging approach to estimate simply and quickly the biovolume of sperm cells, combining the optical tweezers technique with digital holography, in a single and integrated set-up for a biotechnology assay process on the lab-on-a-chip scale. This approach can open the way for fast and high-throughput analysis in label-free microfluidic based "cytofluorimeters" and prognostic examination based on sperm morphology, thus allowing advancements in reproductive science. PMID:24129638

  7. Detection of the aortic intimal tears by using 3D digital topology

    NASA Astrophysics Data System (ADS)

    Lohou, Christophe; Miguel, Bruno

    2011-03-01

    Aortic dissection is a real problem of public health, it is a medical emergency and may quickly lead to death. Aortic dissection is caused by aortal tissue perforation because of blood pressure. It consists of tears (or holes of the intimal tissue) inside lumens. These tears are difficult to detect because they do not correspond to a filled organ to segment; they are usually visually retrieved by radiologists by examining gray level variation on successive image slices, but it remains a very difficult and error-prone task. Our purpose is to detect these intimal tears to help cardiac surgeons in making diagnosis. It would be useful either during a preoperative phase (visualization and location of tears, endoprothesis sizing); or during a peroperative phase (a registration of tears on angiographic images would lead to a more accuracy of surgeon's gestures and thus would enhance care of patient). At this aim, we use Aktouf et al.'s holes filling algorithm proposed in the field of digital topology. This algorithm permits the filling of holes of a 3D binary object by using topological notions - the holes are precisely the intimal tears for our aortic dissection images, after a first preprocessing step. As far as we know, this is the first time that such a proposal is made, even if it is a crucial data for cardiac surgeons. Our study is a preliminary and innovative work; our results are nevertheless considered satisfactory. This approach would also gain to be known to specialists of other diseases.

  8. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  9. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.

    PubMed

    Yang, Chun; Tang, Dalin; Atluri, Satya

    2011-01-01

    Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression

  10. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.

  11. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    On the basis of maps of 1: 50,000 and 1: 200,000 3D model Khibiny massif developed. We used software ARC / INFO v10.2 ESRI. This project will be organised to build background for gas pollution monitoring network. We planned to use the model to estimate local heterogeneities in the composition of the atmosphere at the emanation of greenhouse gases in the area, the construction of models of vertical distribution of the content of trace gases in the rock mass. In addition to the project GIS digital elevation model contains layers of geological and tectonic map that allows us to estimate the area of the output of certain petrographic rock groups characterized by different ratios of emitted hydrocarbons (CH4/ H2). The model allows to construct a classification of fault in the array. At first glance, there are two groups of faults - the ancient associated with the formation of the intrusive phases sequence, and the young - due to recent tectonic shifts. Ancient faults form a common semicircular structure of the pluton cause overall asymmetry Khibin heights with the transition to the border area between the Khibiny and Lovoozero. Modern tectonics mainly represented by radial and chord faults which are formed narrow mountain valleys and troughs. It remains an open question as to which system fault (old or young) is more productive to gas emanations? On the one hand the system characterized by a large old depth, on the other hand a young more active faults. Address these issues require further detailed observations. The essential question is to assess the possibility of maintaining a constant concentration gradient of these impurities in the atmosphere due to gas emanations of fracture zones and areas enriched occluded gases. In the simulation of these processes can be used initially set parameters: 1 the flow rate of the gas impurities 2 the value of wind flows in closed and open valley 3 Assessment of thermal diffusion coefficients determined by the temperature gradient

  12. 3D view weighted cone-beam backprojection reconstruction for digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Avinash, Gopal; Claus, Bernhard; Metz, Stephen

    2007-03-01

    Cone-beam filtered backprojection (CB-FBP) is one of the major reconstruction algorithms for digital tomosynthesis. In conventional FBP, the photon fluxes in projections are evenly distributed along the X-ray beam. Due to the limited view angles and finite detector dimensions, this uniform weighting causes non-uniformity in the recon images and leads to cone-beam artifact. In this paper, we propose a 3-D view weighting technique in combination with FBP to combat this artifact. An anthropomorphic chest phantom was placed at supine position to enable the imaging of chest PA view. During a linear sweep of X-ray source, 41 X-ray images at different projection angles were acquired with the following protocol: 120kVp, 160mA, and 0.64mAs/exposure. To create the worst scenario for testing, we chose 60 degrees as the sweep angle in this exam. The data set was reconstructed with conventional CB-FBP and proposed algorithm under the same parameters: FOV = 40x40 cm^2, and slice thickness = 4mm. 3 recon slices were randomly selected for review with slice height = 10.5/14.5/17.5cm. Results were assessed qualitatively by human observers and quantitatively through ROI measurement. In each slice, three pre-defined ROIs (50x50 pixels)--ROI A and B are in artifact more pronounced area, and ROI C is in relatively artifact-free area--are extracted and measured. The non-uniformity error was defined as the ratio of MEAN(AVG(C-A), AVG(C-B)) / AVG(C). The average non-uniformity error over the three test images was 0.428 for without view weighting and only 0.041 for with view weighting.

  13. Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster.

    PubMed

    Grabe, Veit; Strutz, Antonia; Baschwitz, Amelie; Hansson, Bill S; Sachse, Silke

    2015-02-15

    As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well-understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL-the olfactory glomeruli-is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n-synaptobrevin, under the control of the pan-neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4-lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4-lines in olfactory research: Orco- and GH146-GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. PMID:25327641

  14. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  15. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At

  16. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  17. Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.

    PubMed

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-09-01

    3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique. PMID:25966320

  18. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    PubMed

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. PMID:23686741

  19. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels

    PubMed Central

    Soman, Pranav; Chung, Peter H.; Zhang, Alvin; Chen, Shaochen

    2013-01-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. PMID:23686741

  20. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm.

    PubMed

    Molaei, Mehdi; Sheng, Jian

    2014-12-29

    Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  1. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  2. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  3. Time-to-digital converter based on analog time expansion for 3D time-of-flight cameras

    NASA Astrophysics Data System (ADS)

    Tanveer, Muhammad; Nissinen, Ilkka; Nissinen, Jan; Kostamovaara, Juha; Borg, Johan; Johansson, Jonny

    2014-03-01

    This paper presents an architecture and achievable performance for a time-to-digital converter, for 3D time-of-flight cameras. This design is partitioned in two levels. In the first level, an analog time expansion, where the time interval to be measured is stretched by a factor k, is achieved by charging a capacitor with current I, followed by discharging the capacitor with a current I/k. In the second level, the final time to digital conversion is performed by a global gated ring oscillator based time-to-digital converter. The performance can be increased by exploiting its properties of intrinsic scrambling of quantization noise and mismatch error, and first order noise shaping. The stretched time interval is measured by counting full clock cycles and storing the states of nine phases of the gated ring oscillator. The frequency of the gated ring oscillator is approximately 131 MHz, and an appropriate stretch factor k, can give a resolution of ≍ 57 ps. The combined low nonlinearity of the time stretcher and the gated ring oscillator-based time-to-digital converter can achieve a distance resolution of a few centimeters with low power consumption and small area occupation. The carefully optimized circuit configuration achieved by using an edge aligner, the time amplification property and the gated ring oscillator-based time-to-digital converter may lead to a compact, low power single photon configuration for 3D time-of-flight cameras, aimed for a measurement range of 10 meters.

  4. Non-Homogeneous Stereological Properties of the Rat Hippocampus from High-Resolution 3D Serial Reconstruction of Thin Histological Sections

    PubMed Central

    Ropireddy, Deepak; Bachus, Susan E.; Ascoli, Giorgio A.

    2012-01-01

    Integrating hippocampal anatomy from neuronal dendrites to whole-system may help elucidate its relation to function. Towards this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 µm voxels with appropriate sub-regions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm3, respectively), but displayed substantial rostro-caudal volumetric gradients: CA1 made up more than half of the posterior hippocampus while CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ~0.4 to ~1 septo-temporally, due to a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and sub-region over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ~0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendro-dendritic collision significantly correlated with expression of the membrane repulsion signal DSCAM. These heterogeneous stereological properties reflect and complement

  5. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  6. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  7. Micro 3D Printing Using a Digital Projector and its Application in the Study of Soft Materials Mechanics

    PubMed Central

    Lee, Howon; Fang, Nicholas X.

    2012-01-01

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes1, it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability2-5. Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels6-11. Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force6-10. Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution12,13. Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror14. Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops inhomogeneous stress

  8. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    PubMed

    Lee, Howon; Fang, Nicholas X

    2012-01-01

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops

  9. Full 3D morphology of diatoms flowing in a microfluidic channel by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Savoia, Roberto; Memmolo, Pasquale; Merola, Francesco; Miccio, Lisa; D'Ippolito, Giuliana; Fontana, Angelo; Ferraro, Pietro

    2015-07-01

    In this paper, we present a new approach for three-dimensional reconstruction and biovolume estimation of some species of diatoms. An optofluidic platform, composed by an optical tweezer and holographic modulus, is employed to retrieve several holograms at different angular positions, which are processed by the shape from silhouette algorithm to estimate the 3D shape of the cells.

  10. Teaching Digital Natives: 3-D Virtual Science Lab in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Franklin, Teresa J.

    2008-01-01

    This paper presents the development of a 3-D virtual environment in Second Life for the delivery of standards-based science content for middle school students in the rural Appalachian region of Southeast Ohio. A mixed method approach in which quantitative results of improved student learning and qualitative observations of implementation within…

  11. Laser point cloud diluting and refined 3D reconstruction fusing with digital images

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Jianqing

    2007-06-01

    This paper shows a method to combine the imaged-based modeling technique and Laser scanning data to rebuild a realistic 3D model. Firstly use the image pair to build a relative 3D model of the object, and then register the relative model to the Laser coordinate system. Project the Laser points to one of the images and extract the feature lines from that image. After that fit the 2D projected Laser points to lines in the image and constrain their corresponding 3D points to lines in the 3D Laser space to keep the features of the model. Build TIN and cancel the redundant points, which don't impact the curvature of their neighborhood areas. Use the diluting Laser point cloud to reconstruct the geometry model of the object, and then project the texture of corresponding image onto it. The process is shown to be feasible and progressive proved by experimental results. The final model is quite similar with the real object. This method cuts down the quantity of data in the precondition of keeping the features of model. The effect of it is manifest.

  12. Pre-Peak and Post-Peak Rock Strain Characteristics During Uniaxial Compression by 3D Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-07-01

    A non-contact optical method for strain measurement applying three-dimensional digital image correlation (3D DIC) in uniaxial compression is presented. A series of monotonic uniaxial compression tests under quasi-static loading conditions on Hawkesbury sandstone specimens were conducted. A prescribed constant lateral-strain rate to control the applied axial load in a closed-loop system allowed capturing the complete stress-strain behaviour of the rock, i.e. the pre-peak and post-peak stress-strain regimes. 3D DIC uses two digital cameras to acquire images of the undeformed and deformed shape of an object to perform image analysis and provides deformation and motion measurements. Observations showed that 3D DIC provides strains free from bedding error in contrast to strains from LVDT. Erroneous measurements due to the compliance of the compressive machine are also eliminated. Furthermore, by 3D DIC technique relatively large strains developed in the post-peak regime, in particular within localised zones, difficult to capture by bonded strain gauges, can be measured in a straight forward manner. Field of strains and eventual strain localisation in the rock surface were analysed by 3D DIC method, coupled with the respective stress levels in the rock. Field strain development in the rock samples, both in axial and shear strain domains suggested that strain localisation takes place progressively and develops at a lower rate in pre-peak regime. It is accelerated, otherwise, in post-peak regime associated with the increasing rate of strength degradation. The results show that a major failure plane, due to strain localisation, becomes noticeable only long after the peak stress took place. In addition, post-peak stress-strain behaviour was observed to be either in a form of localised strain in a shearing zone or inelastic unloading outside of the shearing zone.

  13. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  14. Definition of the fundamentals for the automatic generation of digitalization processes with a 3D laser sensor

    NASA Astrophysics Data System (ADS)

    Davillerd, Stephane; Sidot, Benoit; Bernard, Alain; Ris, Gabriel

    1998-12-01

    This paper introduces the first results of a research work carried out on the automation of digitizing process of complex part using a precision 3D laser senor. Indeed, most of the operations are generally still manual to perform digitization. In fact, redundancies, lacks or forgettings in point acquisition are possible. Moreover, digitalization time of a part, i.e. immobilization of the machine, is thus not optimized overall. After introducing the context in which evolves the reverse engineering, we quickly present non-contact sensors and machines usable to digitalize a part. Considered environment of digitization is also modeled, but in a general way in order to preserve an upgrading capability to the system. Machine and sensor actually used are then presented and their integration exposed. Current process of digitization is then detailed, after what a critical analysis from the considered point of view is carried out and some solutions are suggested. The paper concludes on the laid down prospects and the next projected developments.

  15. Holographic particle image velocimetry: a comparison of digital shearing and 3D correlation analysis methods

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Alcock, Rob D.; Halliwell, Neil A.; Coupland, Jeremy M.

    2003-11-01

    In the past, the use of optical and digital three-dimensional correlation methods have been demonstrated to extract velocity data from the complex amplitude distribution of particle images in holographic particle image velocimetry (HPIV). Recently we have proposed a digital shearing method to extract three-component particle displacement data throughout a complete image field. In contrast to full three-dimensional correlation, it has been shown that all three components of particle image displacement can be retrieved using just four two-dimensional fast Fourier transform (FFT) operations and appropriate coordinate transformations. In this paper we describe three-dimensional correlation and digital shearing methods and compare their performance in terms of computational efficiency and measurement accuracy. The simulated results show that the digital shearing method has comparable accuracy to three-dimensional correlation but is significantly faster.

  16. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  17. Digital Hammurabi: design and development of a 3D scanner for cuneiform tablets

    NASA Astrophysics Data System (ADS)

    Hahn, Daniel V.; Duncan, Donald D.; Baldwin, Kevin C.; Cohen, Jonathon D.; Purnomo, Budirijanto

    2006-02-01

    Cuneiform is an ancient form of writing in which wooden reeds were used to impress shapes upon moist clay tablets. Upon drying, the tablets preserved the written script with remarkable accuracy and durability. There are currently hundreds of thousands of cuneiform tablets spread throughout the world in both museums and private collections. The global scale of these artifacts presents several problems for scholars who wish to study them. It may be difficult or impossible to obtain access to a given collection. In addition, photographic records of the tablets many times prove to be inadequate for proper examination. Photographs lack the ability to alter the lighting conditions and view direction. As a solution to these problems, we describe a 3D scanner capable of acquiring the shape, color, and reflectance of a tablet as a complete 3D object. This data set could then be stored in an online library and manipulated by suitable rendering software that would allow a user to specify any view direction and lighting condition. The scanner utilizes a camera and telecentric lens to acquire images of the tablet under varying controlled illumination conditions. Image data are processed using photometric stereo and structured light techniques to determine the tablet shape; color information is reconstructed from primary color monochrome image data. The scanned surface is sampled at 26.8 μm lateral spacing and the height information is calculated on a much smaller scale. Scans of adjacent tablet sides are registered together to form a 3D surface model.

  18. Web-based 3D digital pathology framework for large-mapping data scanned by FF-OCT

    NASA Astrophysics Data System (ADS)

    Chang, ChiaKai; Tsai, Chien-Chung; Chien, Meng-Ting; Li, Yu-I.; Shun, Chia-Tung; Huang, Sheng-Lung

    2015-03-01

    Full-Field Optical Coherence Tomography (FF-OCT) is a high resolution instrument in 3 dimensional (3D) space, including lateral and longitudinal direction. With FF-OCT, we can perform 3D scanning for excised biopsy or cell culture sample to obtain cellular information. In this work, we have set up a high resolution FF-OCT scanning instrument that can perform cellular resolution tomography scanning of skin tissue for histopathology study. In a scan range of 1cm(x), 1cm(y), 106μm(z), for example, digital data occupies 253 GB capacity. Copying these materials is time consuming, not to mention efficient browsing and analyzing of these data. To solve the problem of information delivery, we have established a network service to browse and analyze the huge volume data.

  19. Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    NASA Technical Reports Server (NTRS)

    Becker, Friedhelm; Yu, Yung H.

    1987-01-01

    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.

  20. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  1. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.

    PubMed

    Mott, Eric J; Busso, Mallory; Luo, Xinyi; Dolder, Courtney; Wang, Martha O; Fisher, John P; Dean, David

    2016-04-01

    Our recent investigations into the 3D printing of poly(propylene fumarate) (PPF), a linear polyester, using a DMD-based system brought us to a resin that used titanium dioxide (TiO2) as an ultraviolet (UV) filter for controlling cure depth. However, this material hindered the 3D printing process due to undesirable lateral or "dark" curing (i.e., in areas not exposed to light from the DMD chip). Well known from its use in sunscreen, another UV filter, oxybenzone, has previously been used in conjunction with TiO2. In this study we hypothesize that combining these two UV filters will result in a synergistic effect that controls cure depth and avoids dark cure. A resin mixture (i.e., polymer, initiator, UV filters) was identified that worked well. The resin was then further characterized through mechanical testing, cure testing, and cytotoxicity testing to investigate its use as a material for bone tissue engineering scaffolds. Results show that the final resin eliminated dark cure as shown through image analysis. Mechanically the new scaffolds proved to be far weaker than those printed from previous resins, with compressive strengths of 7.8 ± 0.5 MPa vs. 36.5 ± 1.6 MPa, respectively. The new scaffolds showed a 90% reduction in elastic modulus and a 74% increase in max strain. These properties may be useful in tissue engineering applications where resorption is required. Initial cytotoxicity evaluation was negative. As hypothesized, the use of TiO2 and oxybenzone showed synergistic effects in the 3D printing of PPF tissue engineering scaffolds. PMID:26838854

  2. Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation.

    PubMed

    Grare, S; Allano, D; Coëtmellec, S; Perret, G; Corbin, F; Brunel, M; Gréhan, G; Lebrun, D

    2016-01-20

    A multi-exposure digital in-line hologram of a particle field is recorded by two successive pulses of different wavelengths. During the reconstruction step, each recording can be independently analyzed by selecting a given wavelength. This procedure enables avoiding the superimposition of particle images that may be close to each other. PMID:26835957

  3. A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    PubMed Central

    Weiße, Sebastian; Heddergott, Niko; Heydt, Matthias; Pflästerer, Daniel; Maier, Timo; Haraszti, Tamás; Grunze, Michael; Engstler, Markus; Rosenhahn, Axel

    2012-01-01

    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming. PMID:22629379

  4. Faster and improved 3-D head digitization in MEG using Kinect

    PubMed Central

    Vema Krishna Murthy, Santosh; MacLellan, Matthew; Beyea, Steven; Bardouille, Timothy

    2014-01-01

    Accuracy in localizing the brain areas that generate neuromagnetic activity in magnetoencephalography (MEG) is dependent on properly co-registering MEG data to the participant's structural magnetic resonance image (MRI). Effective MEG-MRI co-registration is, in turn, dependent on how accurately we can digitize anatomical landmarks on the surface of the head. In this study, we compared the performance of three devices—Polhemus electromagnetic system, NextEngine laser scanner and Microsoft Kinect for Windows—for source localization accuracy and MEG-MRI co-registration. A calibrated phantom was used for verifying the source localization accuracy. The Kinect improved source localization accuracy over the Polhemus and the laser scanner by 2.23 mm (137%) and 0.81 mm (50%), respectively. MEG-MRI co-registration accuracy was verified on data from five healthy human participants, who received the digitization process using all three devices. The Kinect device captured approximately 2000 times more surface points than the Polhemus in one third of the time (1 min compared to 3 min) and thrice as many points as the NextEngine laser scanner. Following automated surface matching, the calculated mean MEG-MRI co-registration error for the Kinect was improved by 2.85 mm with respect to the Polhemus device, and equivalent to the laser scanner. Importantly, the Kinect device automatically aligns 20–30 images per second in real-time, reducing the limitations on participant head movement during digitization that are implicit in the NextEngine laser scan (~1 min). We conclude that the Kinect scanner is an effective device for head digitization in MEG, providing the necessary accuracy in source localization and MEG-MRI co-registration, while reducing digitization time. PMID:25389382

  5. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  6. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  7. Reverse Engineering and 3d Modelling for Digital Documentation of Maritime Heritage

    NASA Astrophysics Data System (ADS)

    Menna, F.; Nocerino, E.; Scamardella, A.

    2011-09-01

    heritage in general. Despite this has been stressed with emphasis, three dimensional modelling of maritime cultural heritage is still not usual as for archaeology and architecture. Three-dimensional modelling in the maritime heritage needs particular requirements. Objects to be recorded range from small replicas in maritime museums up to full-scale vessels still in operation. High geometric accuracy, photorealism of final model and faithful rendering of salient details are usually needed, together with the classical requisites characterising the 3D modelling-from-reality process, i.e. automation, low cost, reliability and flexibility of the modelling technique. In this paper, a hybrid multi-technique approach is proposed for maritime heritage preservation and, as case study, the 3D modelling of a 3-meter-long scale model of a historic warship, the "Indomito", is presented. The survey is placed in a wider project aiming to realize the virtual maritime museum of Parthenope University of Naples, for making it available to a wider public and also preserving its cultural heritage. Preliminary results are presented and discussed, highlighting relevant aspects that emerged during the experiment.

  8. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  9. Digital Inventory and Documentation of Korea's Important Cultural Properties Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Dongseok, K.; Gyesoo, K.; Siro, K.; Eunhwa, K.

    2015-08-01

    As a country with 11 properties included on the World Heritage List and approximately 12,000 important cultural properties, Korea has been continuously carrying out the inventory and documentation of cultural properties to conserve and manage them since the 1960s. The inventory of cultural properties had been carried out by making and managing a register which recorded basic information mainly on state-designated cultural properties such as their size, quantity, and location. The documentation of cultural properties was also carried out by making measured drawings. However, the inventory and documentation done under the previous analog method had a limit to the information it could provide for the effective conservation and management of cultural properties. Moreover, in recent times important cultural properties have frequently been damaged by man-made and natural disasters such as arson, forest fires, and floods, so an alternative was required. Accordingly, Korea actively introduced digital techniques led by the government for the inventory and documentation of important cultural properties. In this process, the government established the concept of a digital set, built a more efficie nt integrated data management system, and created standardized guidelines to maximize the effectiveness of data acquisition, management, and utilization that greatly increased the level of digital inventory, documentation, and archiving.

  10. 3D-geological structures with digital elevation models using GPU programming

    NASA Astrophysics Data System (ADS)

    Mateo Lázaro, Jesús; Sánchez Navarro, José Ángel; García Gil, Alejandro; Edo Romero, Vanesa

    2014-09-01

    We present an application that visualises three-dimensional geological structures with digital terrain models. The three-dimensional structures are displayed as their intersections with two-dimensional surfaces that may be defined analytically (e.g., sections) or with grid meshes in the case of irregular surfaces such as the digital terrain models. The process begins with classic techniques of terrain visualisation using hypsometric shading with textures. Then, geometric transformations that are easily conceived and programmed are added, thus representing the three-dimensional structures with their location and orientation. Functions of three variables are used to define the geological structures, and data from digital terrain models are used as one of the variables. This provides a simple source code and results in a short calculation time. Additionally, the process of generating new textures can be performed by a Graphics Processing Unit (GPU), thereby making real-time processing very effective and providing the possibility of displaying the simulation of geological structures in motion.

  11. Building continental-scale 3D subsurface layers in the Digital Crust project: constrained interpolation and uncertainty estimation.

    NASA Astrophysics Data System (ADS)

    Yulaeva, E.; Fan, Y.; Moosdorf, N.; Richard, S. M.; Bristol, S.; Peters, S. E.; Zaslavsky, I.; Ingebritsen, S.

    2015-12-01

    The Digital Crust EarthCube building block creates a framework for integrating disparate 3D/4D information from multiple sources into a comprehensive model of the structure and composition of the Earth's upper crust, and to demonstrate the utility of this model in several research scenarios. One of such scenarios is estimation of various crustal properties related to fluid dynamics (e.g. permeability and porosity) at each node of any arbitrary unstructured 3D grid to support continental-scale numerical models of fluid flow and transport. Starting from Macrostrat, an existing 4D database of 33,903 chronostratigraphic units, and employing GeoDeepDive, a software system for extracting structured information from unstructured documents, we construct 3D gridded fields of sediment/rock porosity, permeability and geochemistry for large sedimentary basins of North America, which will be used to improve our understanding of large-scale fluid flow, chemical weathering rates, and geochemical fluxes into the ocean. In this talk, we discuss the methods, data gaps (particularly in geologically complex terrain), and various physical and geological constraints on interpolation and uncertainty estimation.

  12. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  13. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  14. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  15. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  16. Design of a 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) System

    NASA Astrophysics Data System (ADS)

    Grothe, Rob; Rixon, Greg; Dabiri, Dana

    2007-11-01

    A novel 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) system has been designed and fabricated. By combining 3D Defocusing Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data using temperature-sensitive liquid crystal particles (LCP) as flow sensors. A custom water-filled prism corrects for astigmatism caused by off-axis imaging. New optics equations are derived to account for multi-surface refractions. This redesign also maximizes the use of the CCD area to more efficiently image the volume of interest. Six CCD cameras comprise the imaging system, with three allocated for velocity measurements and three for temperature measurements. The cameras are optically aligned to sub-pixel accuracy using a precision grid and high-resolution translation stages. Two high-intensity custom-designed xenon flashlamps provide illumination. Temperature calibration of the LCP is then performed. These results and proof-of-concept experiments will be discussed in detail.

  17. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.

    PubMed

    Saucedo-A, Tonatiuh; De la Torre-Ibarra, M H; Santoyo, F Mendoza; Moreno, Ivan

    2010-09-13

    The use of digital holographic interferometry for 3D measurements using simultaneously three illumination directions was demonstrated by Saucedo et al. (Optics Express 14(4) 2006). The technique records two consecutive images where each one contains three holograms in it, e.g., one before the deformation and one after the deformation. A short coherence length laser must be used to obtain the simultaneous 3D information from the same laser source. In this manuscript we present an extension of this technique now illuminating simultaneously with three different lasers at 458, 532 and 633 nm, and using only one high resolution monochrome CMOS sensor. This new configuration gives the opportunity to use long coherence length lasers allowing the measurement of large object areas. A series of digital holographic interferograms are recorded and the information corresponding to each laser is isolated in the Fourier spectral domain where the corresponding phase difference is calculated. Experimental results render the orthogonal displacement components u, v and w during a simple load deformation. PMID:20940878

  18. 3D fingerprint analysis using transmission-mode multi-wavelength digital holographic topography

    NASA Astrophysics Data System (ADS)

    Abeywickrema, Ujitha; Banerjee, Partha; Kota, Akash; Lakhtakia, Akhlesh; Swiontek, Stephen E.

    2016-03-01

    The analysis of fingerprints is important for biometric identification. Two-wavelength digital holographic interferometry is used to study the topography of various types of fingerprints. This topography depends on several conditions such as the temperature, time of the day, and the proportions of eccrine and sebaceous sweat. With two-wavelength holographic interferometry, surface information can be measured with a better accuracy compared to single-wavelength phase-retrieving techniques. Latent fingerprints on transparent glass, a forensically relevant substrate are first developed by the deposition of 50-1000-nm-thick columnar thin films, and then analyzed using the transmission-mode two-wavelength digital holographic technique. In this technique, a tunable Argon-ion laser (457.9 nm to 514.5 nm) is used and holograms are recorded on a CCD camera sequentially for several sets of two wavelengths. Then the phase is reconstructed for each wavelength, and the phase difference which corresponds to the synthetic wavelength (4 μm to 48 μm) is calculated. Finally, the topography is obtained by applying proper phase-unwrapping techniques to the phase difference. Interferometric setups that utilize light reflected from the surface of interest have several disadvantages such as the effect of multiple reflections as well as the effects of the tilt of the object and its shadow (for the Mach-Zehnder configuration). To overcome these drawbacks, digital holograms of fingerprints in a transmission geometry are used. An approximately in-line geometry employing a slightly tilted reference beam to facilitate separation of various diffraction orders during holographic reconstruction is employed.

  19. Data amalgamation in the digitalization of 3D objects all over its 360 degrees

    NASA Astrophysics Data System (ADS)

    Rayas, Juan A.; Rodriguez-Vera, Ramon; Martinez, Amalia

    2005-02-01

    It is described a technique where different views of an object are connected to recover its three-dimensional form in a field of vision of 360°. The object is placed on a rotary motorized platform and projected a linear fringe pattern. In each angular object displacement, the projected fringe pattern is captured by a camera CCD. Each pattern is digitally demodulated providing information of depth. The format of the digital matrix, this is, the image type, is changed for one of triads (x, y, z). This way, a cloud of independent points of their position in the matrix is constructed. As a reference, one point in each cloud (known it a priori), is taken. All the clouds are rotated and displaced until the reference point taking its corresponding position. Different mixed clouds of points (views) are ordered in a single triad matrix that describes the complete surface of the object surface target. Finally a mesh of quadrilaterals is built up that makes possible to generate a solid surface.

  20. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    PubMed

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results. PMID:26713210

  1. Metric Potential of a 3D Measurement System Based on Digital Compact Cameras

    PubMed Central

    Sanz-Ablanedo, Enoc; Rodríguez-Pérez, José Ramón; Arias-Sánchez, Pedro; Armesto, Julia

    2009-01-01

    This paper presents an optical measuring system based on low cost, high resolution digital cameras. Once the cameras are synchronised, the portable and adjustable system can be used to observe living beings, bodies in motion, or deformations of very different sizes. Each of the cameras has been modelled individually and studied with regard to the photogrammetric potential of the system. We have investigated the photogrammetric precision obtained from the crossing of rays, the repeatability of results, and the accuracy of the coordinates obtained. Systematic and random errors are identified in validity assessment of the definition of the precision of the system from crossing of rays or from marking residuals in images. The results have clearly demonstrated the capability of a low-cost multiple-camera system to measure with sub-millimetre precision. PMID:22408520

  2. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography

    PubMed Central

    Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P.; Karellas, Andrew; Pogue, Brian W.; Paulsen, Keith D.

    2015-01-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient’s breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results. PMID:26713210

  3. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  4. Large deformation measurement scheme for 3D digital image correlation method

    NASA Astrophysics Data System (ADS)

    Tang, Zhengzong; Liang, Jin; Xiao, Zhenzhong; Guo, Cheng

    2012-02-01

    Difficulties often arise for digital image correlation (DIC) technique when serious de-correlation occurs between the reference image and the deformed image due to large deformation. An updating reference image scheme could be employed to deal with large deformation situation, however that will introduce accumulated errors. A large deformation measurement scheme, combining improved coarse search method and updating reference image scheme, is proposed in this paper. For a series of deformation images, the correlation calculation begins with a seed point and spreads out. An improved coarse search method is developed to calculate the initial correlation parameters for the seed point, which guarantees that the correlation calculation can be carried out successfully even in large deformation situation. Only for extremely large deformation, the reference image is updated. Using this method, not only extremely large deformation can be measured successfully but also the accumulated error could be controlled. A polymer material tensile test and a foam compression test are used to verify the proposed scheme. Experimental results show that up to 450% tensile deformation and 83% compression deformation can be measured successfully.

  5. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  6. Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation.

    PubMed

    Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K

    2011-05-01

    Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly. PMID:21599097

  7. Calibrated breast density methods for full field digital mammography: A system for serial quality control and inter-system generalization

    PubMed Central

    Lu, B.; Smallwood, A. M.; Sellers, T. A.; Drukteinis, J. S.; Heine, J. J.

    2015-01-01

    Purpose: The authors are developing a system for calibrated breast density measurements using full field digital mammography (FFDM). Breast tissue equivalent (BTE) phantom images are used to establish baseline (BL) calibration curves at time zero. For a given FFDM unit, the full BL dataset is comprised of approximately 160 phantom images, acquired prior to calibrating prospective patient mammograms. BL curves are monitored serially to ensure they produce accurate calibration and require updating when calibration accuracy degrades beyond an acceptable tolerance, rather than acquiring full BL datasets repeatedly. BL updating is a special case of generalizing calibration datasets across FFDM units, referred to as cross-calibration. Serial monitoring, BL updating, and cross-calibration techniques were developed and evaluated. Methods: BL curves were established for three Hologic Selenia FFDM units at time zero. In addition, one set of serial phantom images, comprised of equal proportions of adipose and fibroglandular BTE materials (50/50 compositions) of a fixed height, was acquired biweekly and monitored with the cumulative sum (Cusum) technique. These 50/50 composition images were used to update the BL curves when the calibration accuracy degraded beyond a preset tolerance of ±4 standardized units. A second set of serial images, comprised of a wide-range of BTE compositions, was acquired biweekly to evaluate serial monitoring, BL updating, and cross-calibration techniques. Results: Calibration accuracy can degrade serially and is a function of acquisition technique and phantom height. The authors demonstrated that all heights could be monitored simultaneously while acquiring images of a 50/50 phantom with a fixed height for each acquisition technique biweekly, translating into approximately 16 image acquisitions biweekly per FFDM unit. The same serial images are sufficient for serial monitoring, BL updating, and cross-calibration. Serial calibration accuracy was

  8. Automated analysis of 3D morphology of human red blood cells via off-axis digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2013-05-01

    In this paper we overview an automated method for the analysis of clinical parameters of human red blood cells (RBCs). The digital holograms of mature RBCs are recorded by CCD camera with off-axis interferometry setup and the quantitative phase images of RBCs are formed by a numerical reconstruction technique. For automated investigation of the 3D morphology and mean corpuscular hemoglobin of RBCs, the unnecessary background in the RBCs phase images are removed by marker-controlled watershed segmentation algorithm. Then, characteristic properties of each RBC such as projected cell surface, average phase, mean corpuscular hemoglobin (MCH) and (MCH) surface density is quantitatively measured. Finally, the equality of covariance matrixes and mean vectors of these features for different kinds of RBCs are experimentally analyzed using statistical test scheme. Results show that these characteristic parameters of RBCs can be used as feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content.

  9. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  10. Rigid 2D/3D registration of intraoperative digital x-ray images and preoperative CT and MR images

    NASA Astrophysics Data System (ADS)

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2002-05-01

    This paper describes a novel approach to register 3D computed tomography (CT) or magnetic resonance (MR) images to a set of 2D X-ray images. Such a registration may be a valuable tool for intraoperative determination of the precise position and orientation of some anatomy of interest, defined in preoperative images. The registration is based solely on the information present in 2D and 3D images. It does not require fiducial markers, X-ray image segmentation, or construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3D MR or CT data, and gradients of intraoperative X-ray images, which are back-projected towards the X-ray source. The registration is then concerned with finding that rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. The method is tested on a lumbar spine phantom. Gold standard registration is obtained by fidicual markers attached to the phantom. Volumes of interest, containing single vertebrae, are registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the gold standard position. Target registration errors and rotation errors are in order of 0.3 mm and 0.35 degrees for the CT to X-ray registration and 1.3 mm and 1.5 degrees for MR to X-ray registration. The registration is shown to be fast and accurate.

  11. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  12. An Approach to 3d Digital Modeling of Surfaces with Poor Texture by Range Imaging Techniques. `SHAPE from Stereo' VS. `SHAPE from Silhouette' in Digitizing Jorge Oteiza's Sculptures

    NASA Astrophysics Data System (ADS)

    García Fernández, J.; Álvaro Tordesillas, A.; Barba, S.

    2015-02-01

    Despite eminent development of digital range imaging techniques, difficulties persist in the virtualization of objects with poor radiometric information, in other words, objects consisting of homogeneous colours (totally white, black, etc.), repetitive patterns, translucence, or materials with specular reflection. This is the case for much of the Jorge Oteiza's works, particularly in the sculpture collection of the Museo Fundación Jorge Oteiza (Navarra, Spain). The present study intend to analyse and asses the performance of two digital 3D-modeling methods based on imaging techniques, facing cultural heritage in singular cases, determined by radiometric characteristics as mentioned: Shape from Silhouette and Shape from Stereo. On the other hand, the text proposes the definition of a documentation workflow and presents the results of its application in the collection of sculptures created by Oteiza.

  13. Recent improvement of a FIB-SEM serial-sectioning method for precise 3D image reconstruction - application of the orthogonally-arranged FIB-SEM.

    PubMed

    Hara, Toru

    2014-11-01

    IntroductionWe installed the first "orthogonally-arranged" FIB-SEM in 2011. The most characteristic point of this instrument is that the FIB and SEM columns are perpendicularly mounted; this is specially designed to obtain a serial-sectioning dataset more accurately and precisely with higher contrast and higher spatial resolution compare to other current FIB-SEMs [1]. Since the installation in 2011, we have developed the hardware and methodology of the serial-sectioning based on this orthogonal FIB-SEM. In order to develop this technique, we have widely opened this instrument to every researcher of all fields. In the presentation, I would like to introduce some of application results that are obtained by users of this instrument. The characteristic points of the orthogonal systemFigure 1 shows a difference between the standard and the orthogonal FIB-SEM systems: In the standard system, shown in Fig.1(a), optical axes of a FIB and a SEM crosses around 60deg., while in the orthogonal system (Fig.1(b)), they are perpendicular to each other. The standard arrangement (a) is certainly suitable for TEM lamellae preparation etc. because the FIB and the SEM can see the same position simultaneously. However, for a serial-sectioning, it is not to say the best arrangement. One of the reasons is that the sliced plane by the FIB is not perpendicular to the electron beam so that the background contrast is not uniform and observed plane is distorted. On the other hand, in case of the orthogonally-arranged system,(b), these problems are resolved. In addition, spatial resolution can keep high enough even in a low accelerating voltage (e.g. 500V) because a working distance is set very small, 2mm. From these special design, we can obtain the serial-sectioning dataset from rather wide area (∼100um) with high spatial resolution (Max. 2×2×2nm). As this system has many kinds of detectors: SE, ET, Backscatter Electron(Energy-selective), EDS, EBSD, STEM(BF&ADF), with Ar+ ion-gun and a

  14. Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source

    NASA Astrophysics Data System (ADS)

    El Mallahi, A.; Detavernier, A.; Yourassowsky, C.; Dubois, F.

    2012-06-01

    Over the past century, monitoring of Giardia lamblia became a matter of concern for all drinking water suppliers worldwide. Indeed, this parasitic flagellated protozoan is responsible for giardiasis, a widespread diarrhoeal disease (200 million symptomatic individuals) that can lead immunocompromised individuals to death. The major difficulty raised by Giardia lamblia's cyst, its vegetative transmission form, is its ability to survive for long periods in harsh environments, including the chlorine concentrations and treatment duration used traditionally in water disinfection. Currently, there is a need for a reliable, inexpensive, and easy-to-use sensor for the identification and quantification of cysts in the incoming water. For this purpose, we investigated the use of a digital holographic microscope working with partially coherent spatial illumination that reduces the coherent noise. Digital holography allows one to numerically investigate a volume by refocusing the different plane of depth of a hologram. In this paper, we perform an automated 3D analysis that computes the complex amplitude of each hologram, detects all the particles present in the whole volume given by one hologram and refocuses them if there are out of focus using a refocusing criterion based on the integrated complex amplitude modulus and we obtain the (x,y,z) coordinates of each particle. Then the segmentation of the particles is processed and a set of morphological and textures features characteristic to Giardia lamblia cysts is computed in order to classify each particles in the right classes.

  15. Full-field optical deformation measurement in biomechanics: digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks.

    PubMed

    Soons, Joris; Lava, Pascal; Debruyne, Dimitri; Dirckx, Joris

    2012-10-01

    In this paper two easy-to-use optical setups for the validation of biomechanical finite element (FE) models are presented. First, we show an easy-to-build Michelson digital speckle pattern interferometer (DSPI) setup, yielding the out-of-plane displacement. We also introduce three-dimensional digital image correlation (3D-DIC), a stereo photogrammetric technique. Both techniques are non-contact and full field, but they differ in nature and have different magnitudes of sensitivity. In this paper we successfully apply both techniques to validate a multi-layered FE model of a small bird beak, a strong but very light biological composite. DSPI can measure very small deformations, with potentially high signal-to-noise ratios. Its high sensitivity, however, results in high stability requirements and makes it hard to use it outside an optical laboratory and on living samples. In addition, large loads have to be divided into small incremental load steps to avoid phase unwrapping errors and speckle de-correlation. 3D-DIC needs much larger displacements, but automatically yields the strains. It is more flexible, does not have stability requirements, and can easily be used as an optical strain gage. PMID:23026697

  16. A New Total Digital Smile Planning Technique (3D-DSP) to Fabricate CAD-CAM Mockups for Esthetic Crowns and Veneers

    PubMed Central

    Mastrangelo, F.; Gherlone, E. F.; Gastaldi, G.

    2016-01-01

    Purpose. Recently, the request of patients is changed in terms of not only esthetic but also previsualization therapy planning. The aim of this study is to evaluate a new 3D-CAD-CAM digital planning technique that uses a total digital smile process. Materials and Methods. Study participants included 28 adult dental patients, aged 19 to 53 years, with no oral, periodontal, or systemic diseases. For each patient, 3 intra- and extraoral pictures and intraoral digital impressions were taken. The digital images improved from the 2D Digital Smile System software and the scanner stereolithographic (STL) file was matched into the 3D-Digital Smile System to obtain a virtual previsualization of teeth and smile design. Then, the mockups were milled using a CAM system. Minimally invasive preparation was carried out on the enamel surface with the mockups as position guides. Results. The patients found both the digital smile design previsualization (64.3%) and the milling mockup test (85.7%) very effective. Conclusions. The new total 3D digital planning technique is a predictably and minimally invasive technique, allows easy diagnosis, and improves the communication with the patient and helps to reduce the working time and the errors usually associated with the classical prosthodontic manual step. PMID:27478442

  17. A New Total Digital Smile Planning Technique (3D-DSP) to Fabricate CAD-CAM Mockups for Esthetic Crowns and Veneers.

    PubMed

    Cattoni, F; Mastrangelo, F; Gherlone, E F; Gastaldi, G

    2016-01-01

    Purpose. Recently, the request of patients is changed in terms of not only esthetic but also previsualization therapy planning. The aim of this study is to evaluate a new 3D-CAD-CAM digital planning technique that uses a total digital smile process. Materials and Methods. Study participants included 28 adult dental patients, aged 19 to 53 years, with no oral, periodontal, or systemic diseases. For each patient, 3 intra- and extraoral pictures and intraoral digital impressions were taken. The digital images improved from the 2D Digital Smile System software and the scanner stereolithographic (STL) file was matched into the 3D-Digital Smile System to obtain a virtual previsualization of teeth and smile design. Then, the mockups were milled using a CAM system. Minimally invasive preparation was carried out on the enamel surface with the mockups as position guides. Results. The patients found both the digital smile design previsualization (64.3%) and the milling mockup test (85.7%) very effective. Conclusions. The new total 3D digital planning technique is a predictably and minimally invasive technique, allows easy diagnosis, and improves the communication with the patient and helps to reduce the working time and the errors usually associated with the classical prosthodontic manual step. PMID:27478442

  18. CUBICORT: simulation of the visual cortical system for 3D image analysis, synthesis, and hypercompression for digital TV, HDTV, and multimedia

    NASA Astrophysics Data System (ADS)

    Leray, Pascal; Guyot, F.; Marchal, Patrick; Burnod, Yves

    1994-05-01

    We describe simulation elements of a new kind of 3D vision simulator, for preprocessing objects and movement analysis in 3D, using the biological concept of the cortical column paradigm in the visual area. The target simulator is primarily dedicated to ultra high image compression for the telecommunication of digital TV images (MPEG4), HDTV, and 3D TV, but can also be used for automatic modeling, digitizing, robotics, and image synthesis. This simulator extracts 3D objects and movements by using the properties of hypercolumns within the visual cortex for spatio-temporal pyramidal filtering, learning, and performs inter and intra-cooperation between these simulated hypercolumns. The simulation process has four levels for analysis - synthesis: pixels, zones, objects and labels. Final synthesis (reconstruction) is processed by reverse filtering, using non-orthogonal basis filters. Substantial upgrades in terms of compression ratio have been estimated using this algorithm as a whole, or partially, with integrated VLSI.

  19. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction. PMID:24992729

  20. The 3D Structure of the Apical Complex and Association with the Flagellar Apparatus Revealed by Serial TEM Tomography in Psammosa pacifica, a Distant Relative of the Apicomplexa

    PubMed Central

    Okamoto, Noriko; Keeling, Patrick J.

    2014-01-01

    The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates. PMID:24392150

  1. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  2. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  3. Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    NASA Astrophysics Data System (ADS)

    Verrier, N.; Grosjean, N.; Dib, E.; Méès, L.; Fournier, C.; Marié, J.-L.

    2016-04-01

    Digital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed set-up (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative precision of 0.13% (for a 60 μm diameter droplet) for droplet size estimation, and a tracking precision of {σx}× {σy}× {σz}=0.15× 0.15× 1~\\text{pixels} .

  4. Characterization of High Strain Rate Mechanical behavior of AZ31 magnesium alloy using 3D Digital Image Correlation

    SciTech Connect

    Wang, Yanli; Xu, Hanbing; ERDMAN III, DONALD L; Starbuck, J Michael; Simunovic, Srdjan

    2011-01-01

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}.

  5. 2D and 3D registration methods for dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Roth, Susan; Maidment, Andrew D. A.

    2014-03-01

    Contrast-enhanced digital breast tomosynthesis (CE-DBT) uses an iodinated contrast agent to image the threedimensional breast vasculature. The University of Pennsylvania is conducting a CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 postcontrast). A hybrid subtraction scheme is proposed. First, dual-energy (DE) images are obtained by a weighted logarithmic subtraction of the high-energy and low-energy image pairs. Then, post-contrast DE images are subtracted from the pre-contrast DE image. This hybrid temporal subtraction of DE images is performed to analyze iodine uptake, but suffers from motion artifacts. Employing image registration further helps to correct for motion, enhancing the evaluation of vascular kinetics. Registration using ANTS (Advanced Normalization Tools) is performed in an iterative manner. Mutual information optimization first corrects large-scale motions. Normalized cross-correlation optimization then iteratively corrects fine-scale misalignment. Two methods have been evaluated: a 2D method using a slice-by-slice approach, and a 3D method using a volumetric approach to account for out-of-plane breast motion. Our results demonstrate that iterative registration qualitatively improves with each iteration (five iterations total). Motion artifacts near the edge of the breast are corrected effectively and structures within the breast (e.g. blood vessels, surgical clip) are better visualized. Statistical and clinical evaluations of registration accuracy in the CE-DBT images are ongoing.

  6. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  7. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    PubMed

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species. PMID:25703625

  8. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

    PubMed

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

    2015-03-20

    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics. PMID:25968543

  9. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  10. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification

    PubMed Central

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2013-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the “gold standard” to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification. PMID:24386527

  11. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    NASA Astrophysics Data System (ADS)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  12. High-resolution superconductive serial analog-to-digital converter for on-focal plane data conversion

    NASA Astrophysics Data System (ADS)

    Gupta, Deepnarayan; Rylov, Sergey V.; Gaidarenko, Dmitri V.

    1998-09-01

    We have developed a high-resolution, superconducting analog- to-digital converter (ADC) based on phase modulation- demodulation architecture. The circuit is implemented in rapid single flux quantum electronics, using niobium technology. Extremely low on-chip power dissipation makes this ADC attractive for digital readout of cooled IR detectors. The output of the ADC is serially extracted from the chip to minimize the thermal load of input-output cables connecting the cold ADC to the room-temperature data acquisition system. The ADC performance can be enhanced by a multiple channel synchronize and a decimation filter. Designs of the various ADC circuits with increasing complexity and performance are discussed. Experimental results of 12-bit and 16-bit serial ADC circuits are also described. Recent developments in improving the performance of cryogenic laser diodes are discussed in relation to the possibility of optical readout of the ADC output. We also report the development of a compact packaging module for the ADC chip and the laser.

  13. Digital Geology from field to 3D modelling and Google Earth virtual environment: methods and goals from the Furlo Gorge (Northern Apennines - Italy)

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Susini, Sara

    2014-05-01

    A new map of the Furlo Gorge was surveyed and elaborated in a digital way. In every step of work we used digital tools as mobile GIS and 3D modelling software. Phase 1st Starting in the lab, planning the field project development, base cartography, forms and data base were designed in the way we thought was the best for collecting and store data in order of producing a digital n­-dimensional map. Bedding attitudes, outcrops sketches and description, stratigraphic logs, structural features and other informations were collected and organised in a structured database using rugged tablet PC, GPS receiver, digital cameras and later also an Android smartphone with some survey apps in-­house developed. A new mobile GIS (BeeGIS) was developed starting from an open source GIS (uDig): a number of tools like GPS connection, pen drawing annotations, geonotes, fieldbook, photo synchronization and geotagging were originally designed. Phase 2nd After some month of digital field work, all the informations were elaborated for drawing a geologic map in GIS environment. For that we use both commercial (ArcGIS) and open source (gvSig, QGIS, uDig) without big technical problems. Phase 3rd When we get to the step of building a 3D model (using 3DMove), passing trough the assisted drawing of cross-­sections (2DMove), we discovered a number of problems in the interpretation of geological structures (thrusts, normal faults) and more in the interpretation of stratigraphic thickness and boundaries and their relationships with topography. Phase 4th Before an "on­-armchair" redrawing of map, we decide to go back to the field and check directly what was wrong. Two main vantages came from this: (1) the mistakes we found could be reinterpreted and corrected directly in the field having all digital tools we need; (2) previous interpretations could be stored in GIS layers keeping memory of the previous work (also mistakes). Phase 5th A 3D model built with 3D Move is already almost self

  14. Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces.

    PubMed

    Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R

    1996-01-01

    It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment. PMID:8850158

  15. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  16. Real-time 3D shape measurement with digital stripe projection by Texas Instruments Micro Mirror Devices DMD

    NASA Astrophysics Data System (ADS)

    Frankowski, Gottfried; Chen, Mai; Huth, Torsten

    2000-03-01

    The fast, contact-free and highly precise shape measurement of technical objects is of key importance in the scientific- technological area as well as the area of practical measurement technology. The application areas of contact- free surface measurement extend across widely different areas, e.g., the automation of production processes, the measurement and inspection of components in microsystem technology or the fast 3D in-vivo measurement of human skin surfaces in cosmetics and medical technology. This paper describes methodological and technological possibilities as well as measurement technology applications for fast optical 3D shape measurements using micromirror-based high-velocity stripe projection. Depending on the available projector and camera facilities, it will be possible to shoot and evaluate compete 3D surface profiles within only a few milliseconds.

  17. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  18. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load. PMID:25596860

  19. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  20. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  1. Diagnostic of structures in heat and power generating industries with utilization of 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Malesa, M.; Kujawińska, M.; Malowany, K.; Siwek, B.

    2013-04-01

    In the paper we present implementation of 3D DIC method for in-situ diagnostic measurements of expansion bellows in heating chambers. The simultaneous measurements of a supply and a return pipeline were carried out in a heating chamber in Warsaw at the peak of the heating season in cooperation with Dalkia Warszawa. Results of the measurements enabled assessment of the risk of failure of expansion bellows. In-situ measurements were preceded by feasibility tests carried out in the Institute of Heat Engineering of Warsaw University of Technology. Potential implementations and a direction of future works are discussed in conclusions.

  2. Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder

    NASA Astrophysics Data System (ADS)

    Brücker, Ch.

    1995-08-01

    Scanning-Particle-Image-Velocimetry Technique (SPIV), introduced by Brücker (1992) and Brücker and Althaus (1992), offers the quantitative investigation of three-dimensional vortical structures in unsteady flows. On principle, this technique combines classical Particle-Image-Velocimetry (PIV) with volume scanning using a scanning light-sheet. In our previous studies, single scans obtained from photographic frame series were evaluated to show the instantaneous vortical structure of the respective flow phenomena. Here, continuous video recordings are processed to capture also the temporal information for the study of the set-up of 3D effects in the cylinder wake. The flow is continuously sampled in depth by the scanning light-sheet and in each of the parallel planes frame-to-frame cross-correlation of the video images (DPIV) is applied to obtain the 2D velocity field. Because the scanning frequency and repetition rate is high in comparison with the characteristic time-scale of the flow, the evaluation provides a complete time-record of the 3D flow during the starting process. With use of the continuity concept as described by Robinson and Rockwell (1993), we obtained in addition the out-of-plane component of the velocity in spanwise direction. This in view, the described technique enabled the reconstruction of the three-dimensional time-dependent velocity and vorticity field. The visualization of the dynamical behaviour of these quantities as, e.g. by video, gave a good impression of the spanwise flow showing the “tornado-like” suction effect of the starting vortices.

  3. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  4. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  5. Photo-Based 3d Scanning VS. Laser Scanning - Competitive Data Acquisition Methods for Digital Terrain Modelling of Steep Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Kolecka, N.

    2011-09-01

    The paper presents how terrestrial laser scanning (TLS) and terrestrial digital photogrammetry were used to create a 3D model of a steep mountain wall. Terrestrial methods of data acquisition are the most suitable for such relief, as the most effective registration is perpendicular to the surface. First, various aspects of photo-based scanning and laser scanning were discussed. The general overview of both technologies was followed by the description of a case study of the western wall of the Kościelec Mountain (2155 m). The case study area is one of the most interesting and popular rock climbing areas in the Polish High Tatra Mts. The wall is about 300 meters high, has varied relief and some parts are overhung. Triangular irregular mesh was chosen to represent the true- 3D surface with its complicated relief. To achieve a more smooth result for visualization NURBS curves and surfaces were utilized. Both 3D models were then compared to the standard DTM of the Tatra Mountains in TIN format, obtained from aerial photographs (0.2 m ground pixel size). The results showed that both TLS and terrestrial photogrammetry had similar accuracy and level of detail and could effectively supplement very high resolution DTMs of the mountain areas.

  6. 34/45-Mbps 3D HDTV digital coding scheme using modified motion compensation with disparity vectors

    NASA Astrophysics Data System (ADS)

    Naito, Sei; Matsumoto, Shuichi

    1998-12-01

    This paper describes a digital compression coding scheme for transmitting three dimensional stereo HDTV signals with full resolution at bit-rates around 30 to 40 Mbps to be adapted for PDH networks of the CCITT 3rd digital hierarchy, 34 Mbps and 45 Mbps, SDH networks of 52 Mbps and ATM networks. In order to achieve a satisfactory quality for stereo HDTV pictures, three advanced key technologies are introduced into the MPEG-2 Multi-View Profile, i.e., a modified motion compensation using disparity vectors estimated between the left and right pictures, an adaptive rate control using a common buffer memory for left and right pictures encoding, and a discriminatory bit allocation which results in the improvement of left pictures quality without any degradation of right pictures. From the results of coding experiment conducted to evaluate the coding picture achieved by this coding scheme, it is confirmed that our coding scheme gives satisfactory picture quality even at 34 Mbps including audio and FEC data.

  7. 3D real holographic image movies are projected into a volumetric display using dynamic digital micromirror device (DMD) holograms.

    NASA Astrophysics Data System (ADS)

    Huebschman, Michael L.; Hunt, Jeremy; Garner, Harold R.

    2006-04-01

    The Texas Instruments Digital Micromirror Device (DMD) is being used as the recording medium for display of pre-calculated digital holograms. The high intensity throughput of the reflected laser light from DMD holograms enables volumetric display of projected real images as well as virtual images. A single DMD and single laser projector system has been designed to reconstruct projected images in a 6''x 6''x 4.5'' volumetric display. The volumetric display is composed of twenty-four, 6''-square, PSCT liquid crystal plates which are each cycled on and off to reduce unnecessary scatter in the volume. The DMD is an XGA format array, 1024x768, with 13.6 micron pitch mirrors. This holographic projection system has been used in the assessment of hologram image resolution, maximum image size, optical focusing of the real image, image look-around, and physiological depth cues. Dynamic movement images are projected by transferring the appropriately sequenced holograms to the DMD at movie frame rates.

  8. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Annese, Jacopo; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Maechler, Paul; Sheh, Colleen; Thomas, Natasha; Kayano, Junya; Ghatan, Alexander; Bresler, Noah; Frosch, Matthew P.; Klaming, Ruth; Corkin, Suzanne

    2014-01-01

    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology.

  9. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    PubMed Central

    Annese, Jacopo; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Maechler, Paul; Sheh, Colleen; Thomas, Natasha; Kayano, Junya; Ghatan, Alexander; Bresler, Noah; Frosch, Matthew P.; Klaming, Ruth; Corkin, Suzanne

    2014-01-01

    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology. PMID:24473151

  10. Tooteko: a Case Study of Augmented Reality for AN Accessible Cultural Heritage. Digitization, 3d Printing and Sensors for AN Audio-Tactile Experience

    NASA Astrophysics Data System (ADS)

    D'Agnano, F.; Balletti, C.; Guerra, F.; Vernier, P.

    2015-02-01

    Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: a high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital