Science.gov

Sample records for 3d spectroscopic instrumentation

  1. Spectroscopic Instruments

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    The selection of a spectrographic system including the detector is governed by several aspects: - Wavelength region of interest - Low or high-resolution studies, survey spectra, line intensities only or detailed line profiles - Weak or strong emitter, which usually is equivalent to having a plasma of low or high density - Low or high time resolution, which basically determines the detector and only to a lesser degree the throughput of the system - Stigmatic or astigmatic image of the plasma in the exit plane Spectrometers with the exception of instruments for the X-ray region typically consist of: - An entrance slit (width w en, area A E) - A dispersive element - An optical system, which forms a spectrally dispersed image of the entrance slit in the exit plane - A detector in the exit plane Figure 3.1 illustrates a schematic layout. Dispersing elements are prisms, gratings, interferometers, and crystals. The imaging system consists usually of a lens L1 (or mirror M1) collimating the radiation from the entrance slit, and a lens L2 (or mirror M2) focusing the radiation in the exit (image) plane. Mirrors have the advantage of no chromatic aberration and can also be used at shorter wavelengths where glasses, quartz, and crystals absorb the radiation. Unfortunately, their reflectivity decreases at short wavelengths; this can be remedied to some degree by reducing the number of reflecting surfaces and employing spherical or even toroidal gratings which combine focusing and dispersing properties. The optical system (L1, L2) or (M1, M2) becomes unnecessary.

  2. 3D printing surgical instruments: Are we there yet?

    PubMed Central

    Rankin, Timothy M.; Giovinco, Nicholas A.; Cucher, Daniel J.; Watts, George; Hurwitz, Bonnie; Armstrong, David G.

    2015-01-01

    Background The applications for rapid prototyping have expanded dramatically over the last 20 years. In recent years, additive manufacturing has been intensely investigated for surgical implants, tissue scaffolds, and organs. There is, however, scant literature to date that has investigated the viability of 3D printing of surgical instruments. Materials and Methods Using a fused deposition manufacturing (FDM) printer, an army/ navy surgical retractor was replicated from polylactic acid (PLA) filament. The retractor was sterilized using standard FDA approved glutaraldehyde protocols, tested for bacteria by PCR, and stressed until fracture in order to determine if the printed instrument could tolerate force beyond the demands of an operating room. Results Printing required roughly 90 minutes. The instrument tolerated 13.6 kg of tangential force before failure, both before and after exposure to the sterilant. Freshly extruded PLA from the printer was sterile and produced no PCR product. Each instrument weighed 16g and required only $0.46 of PLA. Conclusions Our estimates place the cost per unit of a 3D printed retractor to be roughly 1/10th the cost of a stainless steel instrument. The PLA Army/ Navy is strong enough for the demands of the operating room. Freshly extruded PLA in a clean environment, such as an OR, would produce a sterile, ready to use instrument. Due to the unprecedented accessibility of 3D printing technology world wide, and the cost efficiency of these instruments, there are far reaching implications for surgery in some underserved and less developed parts of the world. PMID:24721602

  3. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  4. ERASMUS-F: pathfinder for an E-ELT 3D instrumentation

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Roth, Martin M.; Bacon, Roland; Bland-Hawthorn, Joss; Nicklas, Harald E.; Bryant, Julia J.; Colless, Matthew; Croom, Scott; Ellis, Simon; Fleischmann, Andreas; Gillingham, Peter; Haynes, Roger; Hopkins, Andrew; Kosmalski, Johan; O'Byrne, John W.; Olaya, Jean-Christophe; Rambold, William N.; Robertson, Gordon

    2010-07-01

    ERASMUS-F is a pathfinder study for a possible E-ELT 3D-instrumentation, funded by the German Ministry for Education and Research (BMBF). The study investigates the feasibility to combine a broadband optical spectrograph with a new generation of multi-object deployable fibre bundles. The baseline approach is to modify the spectrograph of the Multi-Unit Spectroscopic Explorer (MUSE), which is a VLT integral-field instrument using slicers, with a fibre-fed input. Taking advantage of recent developments in astrophotonics, it is planed to equip such an instrument with fused fibre bundles (hexabundles) that offer larger filling factors than dense-packed classical fibres. The overall project involves an optical and mechanical design study, the specifications of a software package for 3Dspectrophotometry, based upon the experiences with the P3d Data Reduction Software and an investigation of the science case for such an instrument. As a proof-of-concept, the study also involves a pathfinder instrument for the VLT, called the FIREBALL project.

  5. Mobile Spectroscopic Instrumentation in Archaeometry Research.

    PubMed

    Vandenabeele, Peter; Donais, Mary Kate

    2016-01-01

    Mobile instrumentation is of growing importance to archaeometry research. Equipment is utilized in the field or at museums, thus avoiding transportation or risk of damage to valuable artifacts. Many spectroscopic techniques are nondestructive and micro-destructive in nature, which preserves the cultural heritage objects themselves. This review includes over 160 references pertaining to the use of mobile spectroscopy for archaeometry. Following a discussion of terminology related to mobile instrumental methods, results of a literature survey on their applications for cultural heritage objects is presented. Sections devoted to specific techniques are then provided: Raman spectroscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, laser-induced breakdown spectroscopy, and less frequently used techniques. The review closes with a discussion of combined instrumental approaches. PMID:26767631

  6. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of {approx}7000 galaxies at 1 < z < 3.5, the epoch when {approx}60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin{sup 2}) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of {approx}5 per resolution element at H{sub 140} {approx} 23.1 and a 5{sigma} emission-line sensitivity of {approx}5 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} for typical objects, improving by a factor of {approx}2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 {mu}m at a spatial resolution of {approx}0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of {sigma}(z) = 0.0034(1 + z), or {sigma}(v) Almost-Equal-To 1000 km s{sup -1}. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z {approx} 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will

  7. Open-Source 3-D Platform for Low-Cost Scientific Instrument Ecosystem.

    PubMed

    Zhang, C; Wijnen, B; Pearce, J M

    2016-08-01

    The combination of open-source software and hardware provides technically feasible methods to create low-cost, highly customized scientific research equipment. Open-source 3-D printers have proven useful for fabricating scientific tools. Here the capabilities of an open-source 3-D printer are expanded to become a highly flexible scientific platform. An automated low-cost 3-D motion control platform is presented that has the capacity to perform scientific applications, including (1) 3-D printing of scientific hardware; (2) laboratory auto-stirring, measuring, and probing; (3) automated fluid handling; and (4) shaking and mixing. The open-source 3-D platform not only facilities routine research while radically reducing the cost, but also inspires the creation of a diverse array of custom instruments that can be shared and replicated digitally throughout the world to drive down the cost of research and education further. PMID:26763293

  8. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  9. Submillimeter-Wave Spectroscopic Instruments: Multi-functional Atmospheric Characterization

    NASA Astrophysics Data System (ADS)

    Mehdi, I.; Gulkis, S.; Allen, M. A.; Schlecht, E.; Chattopadhyay, G.

    2012-10-01

    Submillimeter-wave spectroscopic instruments provide unique capability in terms of providing quantitative measurements of trace gas compositions in planetary atmospheres. Such instruments also provide temporal and wind velocity mapping capability.

  10. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  11. Complete factorial design experiment for 3D load cell instrumented crank validation.

    PubMed

    Omar, Valle-Casas; Rafael, Dalazen; Vinicius, Cene; Alexandre, Balbinot

    2015-08-01

    Developing of instrumentation systems for sport medicine is a promising area, that's why this research evaluates the design of a new instrumented crank arm prototype for a race bicycle projecting an experiment for indoor - outdoor comparison. This study investigated the viability of an instrumentation 3D load cell for force measurement crank, implementing a design of experiment. A Complete factorial design experiment was developed for data validation, with an Analysis of Variance (ANOVA) throwing significant results for controlled factors with response variables rms, mean and variance. A software routine allowed to obtained system variables metrics for Symmetry and Cadence analysis, which came out from Effective force bilateral comparing and speed computation. Characterization allowed achieving calibration curves that were used for data conversion in force projection channels with a linearity error of 0.29% (perpendicular), 0.55% (parallel) and 0.10% (lateral). Interactions of factors resulted significant mainly for indoor tests in symmetry and cadence was significant in interactions generally for outdoor tests. Implemented system was able to generate Effective Force graph for 3D plot symmetry analysis, torque and power symmetry for specialist's analysis. PMID:26737085

  12. Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium

    NASA Astrophysics Data System (ADS)

    Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali

    2016-05-01

    We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.

  13. 3D quantitative imaging of the microvasculature with the Texas Instruments Digital Micromirror Device

    NASA Astrophysics Data System (ADS)

    Fainman, Yeshaiahu; Botvinick, Elliott L.; Price, Jeffrey H.; Gough, David A.

    2001-11-01

    There is a growing need for developing 3D quantitative imaging tools that can operate at high speed enabling real-time visualization for the field of biology, material science, and the semiconductor industry. We will present our 3D quantitative imaging system based on a confocal microscope built with a Texas Instruments Digital Micromirror Device (DMD). By using the DMD as a spatial light modulator, confocal transverse surface (x, y) scanning can be performed in parallel at speeds faster than video rate without physical movement of the sample. The DMD allows us to programmably configure the source and the detection pinhole array in the lateral direction to achieve the best signal and to reduce the crosstalk noise. Investigations of the microcirculation were performed on 40 g to 45 g golden Syrian hamsters fit with dorsal skin fold window chambers. FITC-Dextran or Red blood cells from donor hamsters, stained with Celltracker CM-DiI, were injected into the circulation and imaged with the confocal microscope. We will present the measured results for the axial resolution, in vivo, as well as experimental results from imaging the window chamber.

  14. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    NASA Astrophysics Data System (ADS)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  15. Designing Spatial Visualisation Tasks for Middle School Students with a 3D Modelling Software: An Instrumental Approach

    ERIC Educational Resources Information Center

    Turgut, Melih; Uygan, Candas

    2015-01-01

    In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…

  16. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.

    PubMed

    Brennan, A; Zhang, J; Deluzio, K; Li, Q

    2011-07-01

    This study quantified the accuracy of inertial sensors in 3D anatomical joint angle measurement with respect to an instrumented gimbal. The gimbal rotated about three axes and directly measured the angles in the ISB recommended knee joint coordinate system. Through the use of sensor attachment devices physically fixed to the gimbal, the joint angle estimation error due to sensor attachment (the inaccuracy of the sensor attachment matrix) was essentially eliminated, leaving only error due to the inertial sensors. The angle estimation error (RMSE) corresponding to the sensor was found to be 3.20° in flexion/extension, 3.42° in abduction/adduction and 2.88° in internal/external rotation. Bland-Altman means of maximum absolute value were -1.63° inflexion/extension, 3.22° in abduction/adduction and -2.61° in internal/external rotation. The magnitude of the errors reported in this study imply that even under ideal conditions irreproducible in human gait studies, inertial angle measurement will be subject to errors of a few degrees. Conversely, the reported errors are smaller than those reported previously in human gait studies, which suggest that the sensor attachment is also significant source of error in inertial gait measurement. The proposed apparatus and methodology could be used to quantify the performance of different sensor systems and orientation estimation algorithms, and to verify experimental protocols before human experimentation. PMID:21715167

  17. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    NASA Astrophysics Data System (ADS)

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  18. 3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2011-12-01

    Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation

  19. Calibration between color camera and 3D LIDAR instruments with a polygonal planar board.

    PubMed

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005

  20. Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board

    PubMed Central

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005

  1. Calculations with spectroscopic accuracy for the ground configuration (3 d9 ) forbidden transition in Co-like ions

    NASA Astrophysics Data System (ADS)

    Guo, X. L.; Si, R.; Li, S.; Huang, M.; Hutton, R.; Wang, Y. S.; Chen, C. Y.; Zou, Y. M.; Wang, K.; Yan, J.; Li, C. Y.; Brage, T.

    2016-01-01

    We present systematic and large-scale calculations for the fine-structure energy splitting and transition rate between the 3 d93/2,5/2,2D levels of Co-like ions with 28 ≤Z ≤100 . Two different fully relativistic approaches are used, based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) theory and the relativistic many-body-perturbation theory (RMBPT). Especially the former gives results of similar accuracy as experiments for a large range of ions. Our calculations are therefore accurate enough to probe Breit and quantum-electro-dynamic effects. To obtain spectroscopic accuracy, we show that it is important to include deep core-valence correlation, down to and including the n =2 shell. We estimate that the uncertainties of our wavelengths are within the uncertainty of experiments, i.e., 0.02%. We also show that the frequently used flexible atomic code has an inaccurate treatment of the self-energy (SE) contribution and of the M 1 -transition properties for lower-Z ions. After correcting for the SE calculation, the resulting RMBPT transition energies are in good agreement with the MCDHF ones, especially for the high-Z end of the Co-like sequence.

  2. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  3. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  4. Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Bemporad, A.; Mackay, D. H.

    2015-10-01

    Context. Understanding the 3D structure of coronal mass ejections (CMEs) is crucial for understanding the nature and origin of solar eruptions. However, owing to the optical thinness of the solar corona we can only observe the line of sight integrated emission. As a consequence the resulting projection effects hide the true 3D structure of CMEs. To derive information on the 3D structure of CMEs from white-light (total and polarized brightness) images, the polarization ratio technique is widely used. The soon-to-be-launched METIS coronagraph on board Solar Orbiter will use this technique to produce new polarimetric images. Aims: This work considers the application of the polarization ratio technique to synthetic CME observations from METIS. In particular we determine the accuracy at which the position of the centre of mass, direction and speed of propagation, and the column density of the CME can be determined along the line of sight. Methods: We perform a 3D MHD simulation of a flux rope ejection where a CME is produced. From the simulation we (i) synthesize the corresponding METIS white-light (total and polarized brightness) images and (ii) apply the polarization ratio technique to these synthesized images and compare the results with the known density distribution from the MHD simulation. In addition, we use recent results that consider how the position of a single blob of plasma is measured depending on its projected position in the plane of the sky. From this we can interpret the results of the polarization ratio technique and give an estimation of the error associated with derived parameters. Results: We find that the polarization ratio technique reproduces with high accuracy the position of the centre of mass along the line of sight. However, some errors are inherently associated with this determination. The polarization ratio technique also allows information to be derived on the real 3D direction of propagation of the CME. The determination of this is of

  5. High sensitivity and high resolution element 3D analysis by a combined SIMS-SPM instrument.

    PubMed

    Fleming, Yves; Wirtz, Tom

    2015-01-01

    Using the recently developed SIMS-SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  6. Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    2014-07-01

    There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.

  7. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  8. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  9. The Dark Energy Spectroscopic Instrument (DESI): The Spectrographs

    NASA Astrophysics Data System (ADS)

    Edelstein, Jerry; DESI Collaboration

    2015-01-01

    The Dark Energy Spectroscopic Instrument (DESI) will conduct a large-area galaxy and quasi-stellar object redshift survey from the Mayall Telescope. It includes of ten spectrographs each recording 500 simultaneous object spectra collected by 5,000 positioned optical fibers in the focal plane of an 8-square degree telescope corrector. The spectrographs use dichroic filters to divide light into three optical channels that together cover the 360 - 980 nm pass band with a spectral resolution of 2,000 to 5,100. Each channel includes a volume phase holographic grating (VPHG) and a 5-element camera that images spectra onto a cryostatic detector. We describe the spectrograph design and predicted performance and the production of the first spectrograph's optical elements.

  10. NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument

    NASA Astrophysics Data System (ADS)

    Jurgenson, C.; Santoro, F.; Creech-Eakman, M.; Houairi, K.; Bloemhard, H.; Vasisht, G.; Swain, M.; Deroo, P.; Moore, C.; Schmidt, L.; Boston, P.; Rodeheffer, D.; Chen, P.

    2010-07-01

    Less than 20 years after the discovery of the first extrasolar planet, exoplanetology is rapidly growing with more than one discovery every week on average since 2007. An important step in exoplanetology is the chemical characterization of exoplanet atmospheres. It has recently been shown that molecular signatures of transiting exoplanets can be studied from the ground. To advance this idea and prepare more ambitious missions such as THESIS, a dedicated spectrometer named the New Mexico Tech Extrasolar Spectroscopic Survey Instrument (NESSI) is being built at New Mexico Tech in collaboration with the NASA Jet Propulsion Laboratory. NESSI is a purpose-built multi-object spectrograph that operates in the J, H, and K-bands with a resolution of R = 1000 in each, as well as a lower resolution of R = 250 across the entire J/H/K region.

  11. 3D MR-Spectroscopic Imaging Assessment of Metabolic Activity in the Prostate During the PSA 'Bounce' Following {sup 125}Iodine Brachytherapy

    SciTech Connect

    Kirilova, Anna; Damyanovich, Andrei; Crook, Juanita; Jezioranski, John; Wallace, Kris; Pintilie, Melania

    2011-02-01

    Purpose: A temporary increase in prostate-specific antigen (PSA) values is observed in 30%-40% of men following {sup 125} I brachytherapy (BT) for prostate cancer. We present the results of a study to characterize prostate metabolic activity during the PSA 'bounce' and to correlate metabolic changes with PSA levels using three-dimensional magnetic resonance spectroscopic imaging (3D-MRSI). Methods and Materials: 3D-MRSI was performed in 24 patients during the PSA bounce. Eight of these had also had a baseline 3D-MRSI scan before BT for the purpose of tumor mapping. The 3D-MRSI was repeated at 6- and 12-month intervals, and PSA levels were monitored every 3 months. Twenty-one of the patients had favorable-risk prostate cancer, and 3 had intermediate risk. Results: The choline+creatine signal intensity, although markedly reduced, was observable following BT. Diffuse activity not corresponding to original biopsy-positive sites was observed in 22 cases, and 2 cases were documented to have local recurrence. No statistically significant correlation between metabolic activity and PSA levels at each interval was found. Conclusion: Post-BT prostate 3D-MRSI shows evidence of diffuse metabolic activity unrelated to residual malignancy. This supports the benign nature of the PSA bounce and suggests an inflammatory etiology. In the situation of a rising PSA, observation of focal activity on MRI/3D-MRSI could be a useful adjunct to suggest local recurrence at an earlier interval after brachytherapy when prostate biopsies would still be unhelpful. Longer follow-up is necessary to confirm the complex relationship between metabolic activity and PSA levels.

  12. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  13. Spectroscopic Investigation of the Odd-Parity 3 d 2 D → nf 2 F Transitions of Neutral Sodium

    NASA Astrophysics Data System (ADS)

    Nadeem, A.; Shah, M.; Shahzada, S.; Ahmed, M.; Haq, S. U.

    2015-11-01

    We report new experimental data on term energies and effective quantum numbers of the odd parity Rydberg states of sodium in the 40687-41408 cm-1 energy range. The experiment was performed using a two-color scheme of three-photon laser excitation in conjunction with a thermionic diode ion detector. The new observation includes much extended nf 2 F (12 ≤ n ≤ 51) series excited from the 3 d 2 D intermediate state. In addition, oscillator strengths of the 3 d 2 D → nf 2 F (16 ≤ n ≤ 45) Rydberg transitions have been determined and a complete picture is presented from n = 4-45 incorporating the present work and earlier computed results.

  14. Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery.

    PubMed

    Cartiaux, Olivier; Paul, Laurent; Francq, Bernard G; Banse, Xavier; Docquier, Pierre-Louis

    2014-01-01

    In orthopaedic surgery, resection of pelvic bone tumors can be inaccurate due to complex geometry, limited visibility and restricted working space of the pelvis. The present study investigated accuracy of patient-specific instrumentation (PSI) for bone-cutting during simulated tumor surgery within the pelvis. A synthetic pelvic bone model was imaged using a CT-scanner. The set of images was reconstructed in 3D and resection of a simulated periacetabular tumor was defined with four target planes (ischium, pubis, anterior ilium, and posterior ilium) with a 10-mm desired safe margin. Patient-specific instruments for bone-cutting were designed and manufactured using rapid-prototyping technology. Twenty-four surgeons (10 senior and 14 junior) were asked to perform tumor resection. After cutting, ISO1101 location and flatness parameters, achieved surgical margins and the time were measured. With PSI, the location accuracy of the cut planes with respect to the target planes averaged 1 and 1.2 mm in the anterior and posterior ilium, 2 mm in the pubis and 3.7 mm in the ischium (p < 0.0001). Results in terms of the location of the cut planes and the achieved surgical margins did not reveal any significant difference between senior and junior surgeons (p = 0.2214 and 0.8449, respectively). The maximum differences between the achieved margins and the 10-mm desired safe margin were found in the pubis (3.1 and 5.1 mm for senior and junior surgeons respectively). Of the 24 simulated resection, there was no intralesional tumor cutting. This study demonstrates that using PSI technology during simulated bone cuts of the pelvis can provide good cutting accuracy. Compared to a previous report on computer assistance for pelvic bone cutting, PSI technology clearly demonstrates an equivalent value-added for bone cutting accuracy than navigation technology. When in vivo validated, PSI technology may improve pelvic bone tumor surgery by providing clinically acceptable margins. PMID

  15. Raman Spectroscopic Investigation of the Superionic Phase Transition in Cs3D(SO4)2

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiyuki; Kakuma, Takayuki; Muta, Shinnosuke

    2016-06-01

    The superionic phase transition of Cs3D(SO4)2 (TCDS) is investigated using Raman scattering and differential scanning calorimetry (DSC) measurements. It is confirmed that TCDS undergoes a superionic phase transition at 415.1 K. The result of the Raman scattering measurement at room temperature shows that TCDS does not form the dimer structure SO4⋯D⋯SO4. It suggests that this phase transition is not caused by the destruction of hydrogen bonds forming a dimer structure.

  16. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    SciTech Connect

    Mahe, Charly; Chabal, Caroline

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used

  17. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. PMID:24983922

  18. Accommodating subject and instrument variations in spectroscopic determinations

    DOEpatents

    Haas, Michael J.; Rowe, Robert K.; Thomas, Edward V.

    2006-08-29

    A method and apparatus for measuring a biological attribute, such as the concentration of an analyte, particularly a blood analyte in tissue such as glucose. The method utilizes spectrographic techniques in conjunction with an improved instrument-tailored or subject-tailored calibration model. In a calibration phase, calibration model data is modified to reduce or eliminate instrument-specific attributes, resulting in a calibration data set modeling intra-instrument or intra-subject variation. In a prediction phase, the prediction process is tailored for each target instrument separately using a minimal number of spectral measurements from each instrument or subject.

  19. Real-time 3D shape measurement with digital stripe projection by Texas Instruments Micro Mirror Devices DMD

    NASA Astrophysics Data System (ADS)

    Frankowski, Gottfried; Chen, Mai; Huth, Torsten

    2000-03-01

    The fast, contact-free and highly precise shape measurement of technical objects is of key importance in the scientific- technological area as well as the area of practical measurement technology. The application areas of contact- free surface measurement extend across widely different areas, e.g., the automation of production processes, the measurement and inspection of components in microsystem technology or the fast 3D in-vivo measurement of human skin surfaces in cosmetics and medical technology. This paper describes methodological and technological possibilities as well as measurement technology applications for fast optical 3D shape measurements using micromirror-based high-velocity stripe projection. Depending on the available projector and camera facilities, it will be possible to shoot and evaluate compete 3D surface profiles within only a few milliseconds.

  20. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  1. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  2. QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z {approx} 2

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Skelton, Rosalind; Nelson, Erica J.; Brammer, Gabriel; Franx, Marijn; Labbe, Ivo; Fumagalli, Mattia; Patel, Shannon G.; Kriek, Mariska; Lundgren, Britt F.; Rix, Hans-Walter

    2013-06-20

    Quiescent galaxies at z {approx} 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H{beta} ({lambda}4861 A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band ({lambda}4304 A), Mg I ({lambda}5175 A), and Na I ({lambda}5894 A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was {approx}3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3{sup +0.1}{sub -0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6{sup +0.5}{sub -0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9{sup +0.2}{sub -0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and H{beta} emission. Interestingly, this emission is more centrally concentrated than the continuum with L{sub OIII}=1.7{+-}0.3 Multiplication-Sign 10{sup 40} erg s{sup -1}, indicating residual central star formation or nuclear activity.

  3. Robotic reconnaissance platform. I. Spectroscopic instruments with rangefinders

    SciTech Connect

    Matharoo, Inderdeep; Peshko, Igor; Goldenberg, Andrew

    2011-11-15

    In this paper, basic principles of the design and implementation of a portable, multi-functional scientific instrument, operating from a robotic reconnaissance mobile platform are discussed. The current version of the instrument includes a multi-gas laser sensor, multi-functional spectrometer, isotopes identifier, cameras, and rangefinder. An additional set of sensors monitors temperature, pressure, humidity, and background radiation. All components are installed on a mini-robotic platform, which provides data acquisition, processing, and transmittance. The design focuses on the development of calibration-free, reliable, low power-consumption devices. To create a highly survivable, accurate, and reliable instrument, a concept of an inhomogeneous sensory network has been developed. Such a network combines non-identical sensors and provides cross-use of information received from different sensors to describe environmental conditions, to choose appropriate algorithms of data processing, and to achieve high accuracy gas-concentration measurements. The system uses the same lasers to operate different optical devices such as sensors, rangefinders, spectrometers, and isotopes identifiers. Among the innovative elements described in this paper, are a calibration-free, laser multi-gas sensor with range-finding option; a high signal/noise ratio transmittance spectrometer; a single-frequency laser with nano-selector; and low repetition-rate femtosecond fiber lasers operating in near- and middle- infrared spectral ranges. New detailed analyses of absorption spectroscopy theoretical approximations made it possible to achieve high-accuracy gas-concentration measurements with miniature optical sensors.

  4. Robotic reconnaissance platform. I. Spectroscopic instruments with rangefinders.

    PubMed

    Matharoo, Inderdeep; Peshko, Igor; Goldenberg, Andrew

    2011-11-01

    In this paper, basic principles of the design and implementation of a portable, multi-functional scientific instrument, operating from a robotic reconnaissance mobile platform are discussed. The current version of the instrument includes a multi-gas laser sensor, multi-functional spectrometer, isotopes identifier, cameras, and rangefinder. An additional set of sensors monitors temperature, pressure, humidity, and background radiation. All components are installed on a mini-robotic platform, which provides data acquisition, processing, and transmittance. The design focuses on the development of calibration-free, reliable, low power-consumption devices. To create a highly survivable, accurate, and reliable instrument, a concept of an inhomogeneous sensory network has been developed. Such a network combines non-identical sensors and provides cross-use of information received from different sensors to describe environmental conditions, to choose appropriate algorithms of data processing, and to achieve high accuracy gas-concentration measurements. The system uses the same lasers to operate different optical devices such as sensors, rangefinders, spectrometers, and isotopes identifiers. Among the innovative elements described in this paper, are a calibration-free, laser multi-gas sensor with range-finding option; a high signal/noise ratio transmittance spectrometer; a single-frequency laser with nano-selector; and low repetition-rate femtosecond fiber lasers operating in near- and middle- infrared spectral ranges. New detailed analyses of absorption spectroscopy theoretical approximations made it possible to achieve high-accuracy gas-concentration measurements with miniature optical sensors. PMID:22128966

  5. Raman spectroscopic instrumentation and plasmonic methods for material characterization

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki

    The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.

  6. Miniature spectroscopic instrumentation: Applications to biology and chemistry

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Mattley, Yvette; DeFrece, Ronald

    2004-01-01

    Spectroscopy is a fundamental analytical tool utilized throughout all of the sciences. For chemistry and biology alone, there are thousands of applications. In the past two decades there have been monumental advances in the miniaturization of components used in spectrophotometric systems. The key components include detector arrays, laser diodes, and fiber optics. Currently, there are numerous commercially available miniature spectrometer systems as well as discrete components that are used by researchers in designing their own systems. A comprehensive summary of current instrumentation available for the design and development of miniaturized spectroscopy applications is described, including detectors, wavelength discriminating components, light sources, and sampling assemblies. Recommendations are made for designing spectrometer systems for specific applications. Current literature is reviewed for chemical and biological applications specifically using miniaturized spectrometer systems with the focus being on ultraviolet-visible-near-infrared spectrometers. The applications include laboratory applications, environmental sensing, on-site industrial analyses, botany and ecology applications, and finally clinical and biochemical studies. Additionally, microspectrometers, two-dimensional arrays, and photonics crystals are discussed in regards to their future role in chemistry and biology applications.

  7. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  8. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  9. Impact of Distortions on Fiber Position Location in the dark Energy Spectroscopic Instrument

    SciTech Connect

    Kent, Stephen; Lampton, Michael; Doel, A. Peter; Brooks, David; Miller, Tim; Besuner, Robert; Silber, Joe; Liang, Ming; Sprayberry, David; Baltay, Charles; Rabinowitz, David

    2016-01-01

    The Dark Energy Spectroscopic Instrument, to be located at the prime focus of the Mayall telescope, includes a wide field corrector, a 5000 fiber positioner system, and a fiber view camera. The mapping of the sky to the focal plane, needed to position the fibers accurately, is described in detail. A major challenge is dealing with the large amount of distortion introduced by the optics (of order 10% scale change), including time-dependent non-axisymmetric distortions introduced by the atmospheric dispersion compensator. Solutions are presented to measure or mitigate these effects.

  10. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  11. The CU 2-D-MAX-DOAS instrument - Part 1: Retrieval of 3-D distributions of NO2 and azimuth-dependent OVOC ratios

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R.

    2015-06-01

    We present an innovative instrument telescope and describe a retrieval method to probe three-dimensional (3-D) distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two-dimensional (2-D) multi-axis differential optical absorption spectroscopy (CU 2-D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4), and water vapor (H2O); nitrous acid (HONO), bromine monoxide (BrO), and iodine monoxide (IO) are among other gases that can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has three modes of operation: mode 1 measures solar scattered photons from any pair of elevation angle (-20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (-180° < AA < +180°; zero being north); mode 2 measures any set of azimuth angles (AAs) at constant elevation angle (EA) (almucantar scans); and mode 3 tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured and used to estimate mixing layer height (MLH). Horizontal distributions are then derived using MLH and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths and has a diurnal mean effective radius of 7.0 to 25 km around the instrument location; i.e., up to 1960 km2 can be sampled with high time resolution. The instrument was deployed as part of the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles and MLH of NO2; (b

  12. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  13. Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu₂As₂ and α – BaCu₂Sb₂

    SciTech Connect

    Wu, S. F.; Richard, P.; van Roekeghem, A.; Nie, S. M.; Miao, H.; Xu, N.; Qian, T.; Saparov, B.; Fang, Z.; Biermann, S.; Sefat, Athena S.; Ding, H.

    2015-06-08

    We use angle-resolved photoemission spectroscopy to extract the band dispersion and the Fermi surface of BaCu₂As₂ and α - BaCu₂Sb₂. While the Cu 3d bands in both materials are located around 3.5 eV below the Fermi level, the low-energy photoemission intensity mainly comes from As 4p states, suggesting a completely filled Cu 3d shell. The splitting of the As 3d core levels and the lack of pronounced three-dimensionality in the measured band structure of BaCu₂As₂ indicate a surface state likely induced by the cleavage of this material in the collapsed tetragonal phase, which is consistent with our observation of a Cu⁺¹ oxidation state. However, the observation of Cu states at similar energy in α - BaCu₂Sb₂ without the pnictide-pnictide interlayer bonding characteristic of the collapsed tetragonal phase suggests that the short interlayer distance in BaCu₂As₂ follows from the stability of the Cu⁺¹ rather than the other way around. Our results confirm the prediction that BaCu₂As₂ is an sp metal with weak electronic correlations.

  14. Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu₂As₂ and α – BaCu₂Sb₂

    DOE PAGESBeta

    Wu, S. F.; Richard, P.; van Roekeghem, A.; Nie, S. M.; Miao, H.; Xu, N.; Qian, T.; Saparov, B.; Fang, Z.; Biermann, S.; et al

    2015-06-08

    We use angle-resolved photoemission spectroscopy to extract the band dispersion and the Fermi surface of BaCu₂As₂ and α - BaCu₂Sb₂. While the Cu 3d bands in both materials are located around 3.5 eV below the Fermi level, the low-energy photoemission intensity mainly comes from As 4p states, suggesting a completely filled Cu 3d shell. The splitting of the As 3d core levels and the lack of pronounced three-dimensionality in the measured band structure of BaCu₂As₂ indicate a surface state likely induced by the cleavage of this material in the collapsed tetragonal phase, which is consistent with our observation of amore » Cu⁺¹ oxidation state. However, the observation of Cu states at similar energy in α - BaCu₂Sb₂ without the pnictide-pnictide interlayer bonding characteristic of the collapsed tetragonal phase suggests that the short interlayer distance in BaCu₂As₂ follows from the stability of the Cu⁺¹ rather than the other way around. Our results confirm the prediction that BaCu₂As₂ is an sp metal with weak electronic correlations.« less

  15. Direct spectroscopic evidence for completely filled Cu 3 d shell in BaCu2As2 and α -BaCu2Sb2

    NASA Astrophysics Data System (ADS)

    Wu, S. F.; Richard, P.; van Roekeghem, A.; Nie, S. M.; Miao, H.; Xu, N.; Qian, T.; Saparov, B.; Fang, Z.; Biermann, S.; Sefat, Athena S.; Ding, H.

    2015-06-01

    We use angle-resolved photoemission spectroscopy to extract the band dispersion and the Fermi surface of BaCu2As2 and α -BaCu2Sb2 . While the Cu 3 d bands in both materials are located around 3.5 eV below the Fermi level, the low-energy photoemission intensity mainly comes from As 4 p states, suggesting a completely filled Cu 3 d shell. The splitting of the As 3 d core levels and the lack of pronounced three-dimensionality in the measured band structure of BaCu2As2 indicate a surface state likely induced by the cleavage of this material in the collapsed tetragonal phase, which is consistent with our observation of a Cu+1 oxidation state. However, the observation of Cu states at similar energy in α -BaCu2Sb2 without the pnictide-pnictide interlayer bonding characteristic of the collapsed tetragonal phase suggests that the short interlayer distance in BaCu2As2 follows from the stability of the Cu+1 rather than the other way around. Our results confirm the prediction that BaCu2As2 is an s p metal with weak electronic correlations.

  16. The Dark Energy Spectroscopic Instrument (DESI): The NOAO DECam Legacy Imaging Survey and DESI Target Selection

    NASA Astrophysics Data System (ADS)

    Schlegel, David J.; Blum, Robert D.; Castander, Francisco Javier; Dey, Arjun; Finkbeiner, Douglas P.; Foucaud, Sebastien; Honscheid, Klaus; James, David; Lang, Dustin; Levi, Michael; Moustakas, John; Myers, Adam D.; Newman, Jeffrey; Nord, Brian; Nugent, Peter E.; Patej, Anna; Reil, Kevin; Rudnick, Gregory; Rykoff, Eli S.; Ford Schlafly, Eddie; Stark, Casey; Valdes, Francisco; Walker, Alistair R.; Weaver, Benjamin; DECam Legacy Survey Collaboration

    2015-01-01

    The DECam Legacy Survey will conduct a 3-band imaging survey of the Sloan Digital Sky Survey (SDSS) extragalactic footprint. The Dark Energy Camera (DECam) will be used to image the 6700 square degree footprint overlapping SDSS in the region -20 < Dec < +30 deg, to depths of g=24.7, r=23.9, z=23.0. The survey will be conducted from Fall 2014 through Spring 2017, with periodic data releases beginning in March 2015. These releases will include catalogs constructed with the Tractor-based multi-wavelength forced photometry applied to the DECam and WISE satellite data.The Dark Energy Spectroscopic Instrument (DESI) will observe 24 million galaxies and quasars in a 14,000 square degree extragalactic footprint. The targeting in that footprint will be provided by a combination of these DECam data, the MOSAIC camera on the Mayall 4-meter, and the 90Prime camera on the Bok Telescope.

  17. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  18. Mechanical Design of NESSI: New Mexico Tech Extrasolar Spectroscopic Survey Instrument

    NASA Technical Reports Server (NTRS)

    Santoro, Fernando G.; Olivares, Andres M.; Salcido, Christopher D.; Jimenez, Stephen R.; Jurgenson, Colby A.; Hrynevych, Michael A.; Creech-Eakman, Michelle J.; Boston, Penny J.; Schmidt, Luke M.; Bloemhard, Heather; Rodeheffer, Dan; Vaive, Genevieve; Vasisht, Gautam; Swain, Mark R.; Deroo, Pieter

    2011-01-01

    NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the Magdalena Ridge Observatory (MRO) 2.4-meter Telescope sited in the Magdalena Mountains, about 48 km west of Socorro-NM. NESSI operates stationary to the telescope fork so as not to produce differential flexure between internal opto-mechanical components during or between observations. An appropriate mechanical design allows the instrument alignment to be highly repeatable and stable for both short and long observation timescales, within a wide-range of temperature variation. NESSI is optically composed of a field lens, a field de-rotator, re-imaging optics, an auto-guider and a Dewar spectrograph that operates at LN2 temperature. In this paper we report on NESSI's detailed mechanical and opto-mechanical design, and the planning for mechanical construction, assembly, integration and verification.

  19. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  20. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    PubMed

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26785703

  1. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.

    PubMed

    Bonny, Daniel P; Hull, M L; Howell, S M

    2014-01-01

    An accurate axis-finding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion-extension (F-E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F-E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a gold-standard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F-E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F-E axis and the errors in measuring changes to the positions and orientations of the F-E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior-posterior, medial-lateral, and proximal-distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus-valgus, flexion-extension, and internal-external orientations, respectively. All RMSEs were below 0.29% of the respective full-scale range. When measuring changes to the F-E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F-E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial-lateral change in the LR axis (1.2 mm). Despite the large size

  2. Patterns of Recurrence Analysis in newly diagnosed GBM following 3D Conformal Radiation Therapy with respect to Pre-RT MR Spectroscopic Findings

    PubMed Central

    Park, Ilwoo; Tamai, Gregory; Lee, Michael C.; Chuang, Cynthia F.; Chang, Susan M.; Berger, Mitchel S.; Nelson, Sarah J.; Pirzkall, Andrea

    2008-01-01

    Purpose To determine whether the combined MRI and MR spectroscopy imaging (MRSI) prior to radiation therapy (RT) is valuable for RT target definition, and to evaluate the feasibility of replacing the current definition of uniform margins by custom shaped margins based on the information from MRI and MRSI. Methods and Materials Twenty three GBM patients underwent MRI and MRSI within 4 weeks after surgery but before the initiation of RT and at two month follow-up (FU) intervals thereafter. MRSI data were quantified on the basis of a Choline-to-NAA Index (CNI) as a measure of spectroscopic abnormality. A combined anatomic and metabolic ROI (MRI/S) consisting of T2-weighted hyperintensity, contrast enhancement (CE), resection cavity and CNI2 based on the pre-RT imaging was compared to CNI2 extent and RT dose distribution. The spatial relationship of the pre-RT MRI/S and the RT dose volume was compared to the extent of CE at each FU. Results Nine patients showed new or increased CE during FU, and 14 patients were either stable or had decreased CE. New or increased areas of CE occurred within CNI2 that was covered by 60 Gy in six patients and within the CNI2 that was not entirely covered by 60 Gy in three patients. New or increased CE resided within the pre-RT MRI/S lesion in 89 % (8/9) of the patients with new or increased CE. Conclusion These data indicate that the definition of RT target volumes according to the combined morphologic and metabolic abnormality may be sufficient for RT targeting. PMID:17513061

  3. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  4. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.

  5. A Summary of 3-D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO, ACE, and Wind Instrumentation

    NASA Astrophysics Data System (ADS)

    Bisi, Mario M.; Jackson, B. V.; Clover, J. M.; Hick, P. P.; Buffington, A.; Tokumaru, M.

    2010-11-01

    We present a summary of results from simultaneous Solar-Terrestrial Environment Laboratory (STELab) Interplanetary Scintillation (IPS), STEREO, ACE, and Wind observations using three-dimensional reconstructions of the Whole Heliosphere Interval - Carrington rotation 2068. This is part of the world-wide IPS community's International Heliosphysical Year (IHY) collaboration. We show the global structure of the inner heliosphere and how our 3-D reconstructions compare with in-ecliptic spacecraft measurements.

  6. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel Imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

    2014-03-01

    Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).

  8. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

    2014-10-01

    Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).

  9. 3D Analysis of D-RaCe and Self-Adjusting File in Removing Filling Materials from Curved Root Canals Instrumented and Filled with Different Techniques

    PubMed Central

    Simsek, Neslihan; Ahmetoglu, Fuat; Bulut, Elcin Tekin; Er, Kursat

    2014-01-01

    The aim of this study was to compare the efficacy of D-RaCe files and a self-adjusting file (SAF) system in removing filling material from curved root canals instrumented and filled with different techniques by using microcomputed tomography (micro-CT). The mesial roots of 20 extracted mandibular first molars were used. Root canals (mesiobuccal and mesiolingual) were instrumented with SAF or Revo-S. The canals were then filled with gutta-percha and AH Plus sealer using cold lateral compaction or thermoplasticized injectable techniques. The root fillings were first removed with D-RaCe (Step 1), followed by Step 2, in which a SAF system was used to remove the residual fillings in all groups. Micro-CT scans were used to measure the volume of residual filling after root canal filling, reinstrumentation with D-RaCe (Step 1), and reinstrumentation with SAF (Step 2). Data were analyzed using Wilcoxon and Kruskal-Wallis tests. There were no statistically significant differences between filling techniques in the canals instrumented with SAF (P = 0.292) and Revo-S (P = 0.306). The amount of remaining filling material was similar in all groups (P = 0.363); all of the instrumentation techniques left filling residue inside the canals. However, the additional use of SAF was more effective than using D-RaCe alone. PMID:25114976

  10. Instrumentation for the determination of material properties from spectroscopic measurements of total integrated scatter

    SciTech Connect

    Powell, G.L.; Barber, T.E.; Neu, J.T.

    1995-06-19

    A variety of important optical properties can be determined from spectroscopic analysis of diffuse reflectance of surfaces. The design of a small user friendly, light-weight, field hardened, computer controlled device for performing infrared spectroscopic analysis of trace contaminants on surfaces is described. The device employs a miniature Fourier transform infrared (FTIR) spectrometer with very efficient diffuse reflectance optics and a portable computer to provide reflectance spectra of surfaces measured relative to some idealized surface. These spectra yield qualitative and quantitative chemical information from a host of surfaces that has imminently practical applications in the determination of surface identification, contamination, and degradation.

  11. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics

    PubMed Central

    Mallakzadeh, Mohammadreza; Akbari, Hossein

    2014-01-01

    The repetitious nature of propelling a wheelchair has been associated with the high incidence of injury among manual wheelchair users (MWUs), mainly in the shoulder, elbow and wrist. Recent literature has found a link between handrim biomechanics and risk of injury to the upper extremity. The valid measurement of three-dimensional net joint forces and torques, however, can lead to a better understanding of the mechanisms of injury, the development of prevention techniques, and the reduction of serious injuries to the joints. In this project, an instrumented wheel system was developed to measure the applied loads dynamically by the hand of the user and the angular position of the wheelchair user's hand on the handrim during the propulsion phase. The system is composed of an experimental six-axis load cell, and a wireless eight channel data logger mounted on a wheel hub. The angular position of the wheel is measured by an absolute magnetic encoder. The angular position of the wheelchair user's hand on the handrim during the propulsion phase (ɸ) or point of force application (PFA) is calculated by means of a new-experimental method using 36 pairs of infrared emitter/receiver diodes mounted around the handrim. In this regard, the observed data extracted from an inexperienced able-bodied subject pushed a wheelchair with the instrumented handrim are presented to show the output behavior of the instrumented handrim. The recorded forces and torques were in agreement with previously reported magnitudes. However, this paper can provide readers with some technical insights into possible solutions for measuring the manual wheelchair propulsion biomechanical data. PMID:25426429

  13. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.

    PubMed

    Mallakzadeh, Mohammadreza; Akbari, Hossein

    2014-10-01

    The repetitious nature of propelling a wheelchair has been associated with the high incidence of injury among manual wheelchair users (MWUs), mainly in the shoulder, elbow and wrist. Recent literature has found a link between handrim biomechanics and risk of injury to the upper extremity. The valid measurement of three-dimensional net joint forces and torques, however, can lead to a better understanding of the mechanisms of injury, the development of prevention techniques, and the reduction of serious injuries to the joints. In this project, an instrumented wheel system was developed to measure the applied loads dynamically by the hand of the user and the angular position of the wheelchair user's hand on the handrim during the propulsion phase. The system is composed of an experimental six-axis load cell, and a wireless eight channel data logger mounted on a wheel hub. The angular position of the wheel is measured by an absolute magnetic encoder. The angular position of the wheelchair user's hand on the handrim during the propulsion phase (ɸ) or point of force application (PFA) is calculated by means of a new-experimental method using 36 pairs of infrared emitter/receiver diodes mounted around the handrim. In this regard, the observed data extracted from an inexperienced able-bodied subject pushed a wheelchair with the instrumented handrim are presented to show the output behavior of the instrumented handrim. The recorded forces and torques were in agreement with previously reported magnitudes. However, this paper can provide readers with some technical insights into possible solutions for measuring the manual wheelchair propulsion biomechanical data. PMID:25426429

  14. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  15. 3D DSMC Modeling of the Coma of Comet 67P/Churyumov-Gerasimenko Observed by the VIRTIS and ROSINA instruments

    NASA Astrophysics Data System (ADS)

    Fougere, N.; Combi, M. R.; Tenishev, V.; Bieler, A.; Toth, G.; Huang, Z.; Gombosi, T. I.; Hansen, K. C.; Capaccioni, F.; Filacchione, G.; Migliorini, A.; Bockelée-Morvan, D.; Debout, V.; Erard, S.; Leyrat, C.; Fink, U.; Rubin, M.; Altwegg, K.; Tzou, C.-Y.; Le Roy, L.

    2015-10-01

    Since its rendez-vous with comet 67P/Chruryumov- Gerasimenko (CG), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the coma, and provide complementary results with remote sensing and in-situ measurements, respectively. The use of a numerical model is a way to correlate the information provided by both VIRTIS and ROSINA to fully understand the volatile environment of comet CG. To describe the entire coma including the regions where collisions cannot maintain the flow in a fluid regime, the use of a kinetic method is necessary. Here, the Direct Simulation Monte-Carlo (DSMC) approach is applied to the cometary coma to solve the Boltzmann equation [1] using the Adaptive Mesh Particle Simulator (AMPS) code [2], [3], [4], [5], and then compared with VIRTIS and ROSINA data.

  16. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  17. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  18. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  19. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Engel, James R.; Vaillancourt, Robert; Todd, Lori; Mottus, Kathleen

    2008-04-01

    OPTRA and University of North Carolina are developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach will be considered as a candidate referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize progress to date and overall system performance projections based on the instrument, spectroscopy, and tomographic reconstruction accuracy. We then present a preliminary optical design of the I-OP-FTIR.

  20. Design and performance of a wide-bandwidth and sensitive instrument for near-infrared spectroscopic measurements on human tissue

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Bandera, Andrea; Donini, Maurizio; Salvatori, Giorgia; Pollonini, Luca

    2004-12-01

    The article describes an instrument designed to perform in vivo near-infrared spectroscopic measurements on human tissues. The system integrates five continuous-wave laser diode sources emitting in the near-infrared spectral region and a low-noise detection system based on an avalanche photodiode. The optical probe is based on a compact, reliable, and low-cost fiber based system with four quantitative measuring points. The excellent sensitivity of the instrument allows one to perform quantitative assessments of the hemoglobin concentration exploiting precise absorption measurements close to the absorption peak of the water: 975 nm. Moreover, a good signal to noise ratio is obtained also at a high acquisition rate, allowing us to follow rapid changes in oxidative metabolism. The system bandwidth is selectable within the range 2.3-27 Hz, i.e., 20 channels (five chromatic and four spatial channels) can be acquired 27 times for each measuring second, whereas the system amplification can be set to measure optical density ranging from 3.5 to 8.5. A prototype version of the instrument has been realized and characterized.

  1. Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wofsy, S. C.

    2013-07-01

    We present a novel spectral method to measure atmospheric carbon dioxide (CO2) with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument - ABsolute Carbon dioxide (ABC) is developed using this new approach. The instrument has a one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide.

  2. Towards a stable and absolute atmospheric carbon dioxide instrument using spectroscopic null method

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wofsy, S. C.

    2013-02-01

    We present a novel spectral method to measure atmospheric carbon dioxide (CO2) with high precision and stability without resorting to calibration tanks during long-term operation. This spectral null method improves precision by reducing spectral proportional noise associated with laser emission instabilities. We employ sealed quartz cells with known CO2 column densities to serve as the permanent internal references in the null method, which improve the instrument's stability and accuracy. A prototype instrument - ABsolute Carbon dioxide (ABC) is developed using this new approach. The instrument has one-second precision of 0.02 ppm, which averages down to 0.007 ppm within one minute. Long-term stability of within 0.1 ppm is achieved without any calibrations for over a one-month period. These results have the potential for eliminating the need for calibration cylinders for high accuracy field measurements of carbon dioxide.

  3. Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments.

    PubMed

    Culka, Adam; Kindlová, Helena; Drahota, Petr; Jehlička, Jan

    2016-02-01

    Minerals are traditionally identified under field conditions by experienced mineralogists observing the basic physical properties of the samples. Under laboratory conditions, a plethora of techniques are commonly used for identification of the geological phases based on their structural and spectroscopic parameters. In this area, Raman spectrometry has become a useful tool to complement the more widely applied XRD. Today, however, there is an acute need for a technique for unambiguous in situ identification of minerals, within the geological as well as planetary/exobiology realms. With the potential for miniaturization, Raman spectroscopy can be viewed as a practical technique to achieve these goals. Here, for the first time, the successful application of handheld Raman spectrometers is demonstrated to detect and discriminate arsenic phases in the form of earthy aggregates. The Raman spectroscopic analyses of arsenate minerals were performed in situ using two handheld instruments, using 532 and 785 nm excitation. Bukovskýite, kaňkite, parascorodite, and scorodite were identified from Kaňk near Kutná Hora, CZE; kaňkite, scorodite, and zýkaite were identified at the Lehnschafter gallery in an old silver mine at Mikulov near Teplice, Bohemian Massif, CZE. PMID:26523686

  4. Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments

    NASA Astrophysics Data System (ADS)

    Culka, Adam; Kindlová, Helena; Drahota, Petr; Jehlička, Jan

    2016-02-01

    Minerals are traditionally identified under field conditions by experienced mineralogists observing the basic physical properties of the samples. Under laboratory conditions, a plethora of techniques are commonly used for identification of the geological phases based on their structural and spectroscopic parameters. In this area, Raman spectrometry has become a useful tool to complement the more widely applied XRD. Today, however, there is an acute need for a technique for unambiguous in situ identification of minerals, within the geological as well as planetary/exobiology realms. With the potential for miniaturization, Raman spectroscopy can be viewed as a practical technique to achieve these goals. Here, for the first time, the successful application of handheld Raman spectrometers is demonstrated to detect and discriminate arsenic phases in the form of earthy aggregates. The Raman spectroscopic analyses of arsenate minerals were performed in situ using two handheld instruments, using 532 and 785 nm excitation. Bukovskýite, kaňkite, parascorodite, and scorodite were identified from Kaňk near Kutná Hora, CZE; kaňkite, scorodite, and zýkaite were identified at the Lehnschafter gallery in an old silver mine at Mikulov near Teplice, Bohemian Massif, CZE.

  5. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  7. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  8. Development of Micro-Raman Spectroscopic Instrumentation for Measurement of Novel 2D Materials

    NASA Astrophysics Data System (ADS)

    Watson, Michael; Thompson, Zach; Simpson, Jeff; Towson University Team

    2013-03-01

    Recent research activity in mono-atomic layer graphene stimulates interest in other novel 2D materials, including molybdenum disulfide (MoS2) . Raman spectroscopy, based on the inelastic scattering of light, provides a powerful and high-throughput spectroscopic technique to probe low energy excitations, e.g., phonons, in graphene and related novel 2D materials. The accurate measurement of phonon frequency, especially its sensitive dependence on physical parameters such as temperature, carrier doping, and defects, requires an appropriately calibrated spectrometer. We report on the implementation and calibration of a homebuilt Raman system. Specifically we correlated peak wavelength from known atomic spectral lines with the pixel number detected on a thermoelectrically-cooled CCD camera attached to a grating monochromator. Additionally we developed software to control the grating position and maintain calibration while acquiring spectra. Once calibrated, we interfaced the spectrometer to a microscope to acquire spatial maps of small samples. Single-layer MoS2 flakes were prepared using the mechanical exfoliation of bulk MoS2 and transferred to substrates using techniques pioneered in graphene research. Using HeNe and Ar ion lasers for excitation, we measured the Raman spectra of single-layer MoS2 flakes. The temperature-dependence of the observed Raman-active phonons will be discussed.

  9. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. Instrument for near infrared emission spectroscopic probing of human fingertips in vivo

    NASA Astrophysics Data System (ADS)

    Chaiken, J.; Deng, Bin; Bussjager, Rebecca J.; Shaheen, George; Rice, David; Stehlik, Dave; Fayos, John

    2010-03-01

    We present instrumentation for probing of volar side fingertip capillary beds with free space coupled near infrared light while collecting Raman, Rayleigh, and Mie scattered light as well as fluorescence. Fingertip skin capillary beds are highly vascularized relative to other tissues and present a desirable target for noninvasive probing of blood. But human hands and fingers in particular are also highly idiosyncratic body parts requiring specific apparatus to allow careful and methodical spectoscopic probing. The apparatus includes means for precise and reproducible placement of the tissues relative to the optical aperture. Appropriate means are provided for applying and maintaining pressure to keep surface tissues immobile during experiments while obtaining the desired blood content and flow. Soft matter, e.g., skin, extrudes into the aperture in response to any applied pressure, e.g., to keep the tissue in registration with the optical system, so the position, contact area, pressure, and force are continuously measured and recorded to produce feedback for an actuator applying force and to discern the compliance of the test subject. The compliance strongly affects the reliability of the measurement and human factors must be adequately managed in the case of in vivo probing. The apparatus produces reproducible observations and measurements that allow consistent probing of the tissues of a wide range of skin types.

  14. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  15. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  16. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  17. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  18. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  19. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, before the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to take measurements. The area in this image is approximately 3 centimeters (1.2 inches) across.

  20. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  1. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  2. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  3. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  4. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, after the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to measure the soil's iron mineralogy. Note the donut-shaped imprint of the instrument in the lower part of the image. The area in this image is approximately 3 centimeters (1.2 inches) across.

  5. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  7. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  8. Mono- and binuclear Pd(II) complexes with 2-(5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarbothioamide: Synthesis, crystal structure and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Repich, Hlib; Orysyk, Svitlana; Bon, Volodymyr; Savytskyi, Pavlo; Pekhnyo, Vasyl

    2015-12-01

    Two novel Pd2+ mononuclear [Pd(HL)PPh3Cl]·nDMF (1) (n = 1, 2) and binuclear [Pd2(L)2(PPh3)2]·SPPh3·3DMF (2) complexes have been synthesized by reaction of [Pd(PPh3)2Cl2] with 2-(5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarbothioamide and characterized by single-crystal X-ray diffraction. Complex 1 has been additionally characterized by 1H NMR, IR and UV-Vis spectroscopy. For the complex 1, two crystalline polymorphic modifications have been found: monoclinic (1a) and more stable triclinic (1b) one, which crystal structure differs by different crystal packing and number of lattice solvent molecules. In both polymorphs, the ligand molecules are coordinated as monoanion in thiol tautomeric form with transferring of thiosemicarbazide proton to nitrogen atom of thienopyrimidine moiety. In the case of complex 2, additional deprotonation of thienopyrimidine nitrogen atom leads to coordination of the ligand as dianion. The crystal structure of 2 also contains one molecule of triphenylphosphine sulfide formed by side reaction. In both complexes "soft" phosphorus atoms of triphenylphosphine molecules are coordinated in trans-positions to more "hard" nitrogen atoms.

  9. Evaluating scatterometry 3D capabilities for EUV

    NASA Astrophysics Data System (ADS)

    Li, Jie; Kritsun, Oleg; Dasari, Prasad; Volkman, Catherine; Wallow, Tom; Hu, Jiangtao

    2013-04-01

    Optical critical dimension (OCD) metrology using scatterometry has been demonstrated to be a viable solution for fast and non-destructive in-line process control and monitoring. As extreme ultraviolet lithography (EUVL) is more widely adopted to fabricate smaller and smaller patterns for electronic devices, scatterometry faces new challenges due to several reasons. For 14nm node and beyond, the feature size is nearly an order of magnitude smaller than the shortest wavelength used in scatterometry. In addition, thinner resist layer is used in EUVL compared with conventional lithography, which leads to reduced measurement sensitivity. Despite these difficulties, tolerance has reduced for smaller feature size. In this work we evaluate 3D capability of scatterometry for EUV process using spectroscopic ellipsometry (SE). Three types of structures, contact holes, tip-to-tip, and tip-to-edge, are studied to test CD and end-gap metrology capabilities. The wafer is processed with focus and exposure matrix. Good correlations to CD-SEM results are achieved and good dynamic precision is obtained for all the key parameters. In addition, the fit to process provides an independent method to evaluate data quality from different metrology tools such as OCD and CDSEM. We demonstrate 3D capabilities of scatterometry OCD metrology for EUVL using spectroscopic ellipsometry, which provides valuable in-line metrology for CD and end-gap control in electronic circuit fabrications.

  10. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  12. NASA Sees Tropical Storm Malakas in 3-D

    NASA Video Gallery

    This animated 3-D flyby of Tropical Storm Malakas was created by radar data from the GPM core satellite. On Sept. 13 at 0111 UTC GPM's instruments showed that Malakas contained exceptionally heavy ...

  13. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  14. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  15. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  16. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  18. LLNL-Earth3D

    Energy Science and Technology Software Center (ESTSC)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  19. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  20. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  1. Local Diagnosis of Reconnection in 3D

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.; Roytershteyn, V.

    2014-12-01

    We demonstrate (I,II) an approach to find reconnection sites in 3D where there is no flux function for guidance, and where local observational signatures for the ``violation of frozen flux'' are under developed, if not non-existent. We use 2D and 3D PIC simulations of asymmetric guide field reconnection to test our observational hierarchy of single spacecraft kinetic diagnostics - all possible with present state of the art instrumentation. The proliferation of turbulent, electron inertial scale layers in the realistic 3D case demonstrates that electron demagnetization, while necessary, is not sufficient to identify reconnection sites. An excellent local, observable, single spacecraft proxy is demonstrated for the size of the theoretical frozen flux violation. Since even frozen flux violations need not imply reconnection is at hand, a new calibrated dimensionless method is used to determine the importance of such violations. This measure is available in 2D and 3D to help differentiate reconnection layers from weaker frozen flux violating layers. We discuss the possibility that this technique can be implemented on MMS. A technique to highlight flow geometries conducive to reconnection in 3D simulations is also suggested, that may also be implementable with the MMS flotilla. We use local analysis with multiple necessary, but theoretically independent electron kinetic conditions to help reduce the probability of misidentification of any given layer as a reconnection site. Since these local conditions are all necessary for the site, but none is known to be sufficient, the multiple tests help to greatly reduce false positive identifications. The selectivity of the results of this approach using PIC simulations of 3D asymmetric guide field reconnection will be shown using varying numbers of simultaneous conditions. Scudder, J.D., H. Karimabadi, W. Daughton and V. Roytershteyn I, II, submitted Phys. Plasma., 2014

  2. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  3. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  4. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  5. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  6. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  7. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  8. The Galicia 3D experiment: an Introduction.

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  9. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  10. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  11. Faint object 3D spectroscopy with PMAS

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Becker, Thomas; Kelz, Andreas; Bohm, Petra

    2004-09-01

    PMAS is a fiber-coupled lens array type of integral field spectrograph, which was commissioned at the Calar Alto 3.5m Telescope in May 2001. The optical layout of the instrument was chosen such as to provide a large wavelength coverage, and good transmission from 0.35 to 1 μm. One of the major objectives of the PMAS development has been to perform 3D spectrophotometry, taking advantage of the contiguous array of spatial elements over the 2-dimensional field-of-view of the integral field unit. With science results obtained during the first two years of operation, we illustrate that 3D spectroscopy is an ideal tool for faint object spectrophotometry.

  12. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  13. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  14. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.

    PubMed

    Dinda, S; Suresh, V; Thoniyot, P; Balčytis, A; Juodkazis, S; Krishnamoorthy, S

    2015-12-23

    We demonstrate the fabrication of plasmonic sensors that comprise gold nanopillar arrays exhibiting high surface areas, and narrow gaps, through self-assembly of amphiphilic diblock copolymer micelles on silicon substrates. Silicon nanopillars with high integrity over arbitrary large areas are obtained using copolymer micelles as lithographic templates. The gaps between metal features are controlled by varying the thickness of the evaporated gold. The resulting gold metal nanopillar arrays exhibit an engineered surface topography, together with uniform and controlled separations down to sub-10 nm suitable for highly sensitive detection of molecular analytes by Surface Enhanced Raman Spectroscopy (SERS). The significance of the approach is demonstrated through the control exercised at each step, including template preparation and pattern-transfer steps. The approach is a promising means to address trade-offs between resolutions, throughput, and performance in the fabrication of nanoplasmonic assemblies for sensing applications. PMID:26523480

  15. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  16. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  17. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  18. 3D Cell Culture Imaging with Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  19. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-04-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

  20. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  1. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  2. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  3. SNL3dFace

    Energy Science and Technology Software Center (ESTSC)

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  4. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  5. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  6. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  7. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  8. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  9. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  10. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  11. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  12. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  13. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  14. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  16. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  17. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  18. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  19. GPU-Accelerated Denoising in 3D (GD3D)

    Energy Science and Technology Software Center (ESTSC)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  20. 3D fluorescence spectral data interpolation by using IDW.

    PubMed

    He, Qinghang; Zhang, Zhenxi; Yi, Chao

    2008-12-01

    Because measured precision of some spectral instruments such as fluorescence spectrometer HITACHI F-4500 cannot reach the requirement of spectral analytical technique, and measured data is finite, which causes some three-dimensional (3D) fluorescence spectral data missed. The fact of missing data can result in errors in interpretations of 3D fluorescence spectral data. This paper takes ethanol solution (volume percentage phi(beta)=0.400) 3D fluorescence spectral data for example, applies inverse distance weighting (IDW) to 3D fluorescence spectral data interpolation. The results prove that the more details of 3D fluorescence spectra are expressed well by using IDW in contrast to that of original 3D fluorescence spectra. To evaluate the effectiveness of interpolation by using IDW, this paper compares standard deviation, coefficient of variation, and the mean, median, maximum and minimum values of original ethanol solution (phi(beta)=0.400) 3D fluorescence spectral data and that of the interpolated, whose results suggest that the interpolation of the 3D fluorescence spectra data by using IDW is exact. PMID:18550425

  1. An Automated 3d Indoor Topological Navigation Network Modelling

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  2. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  3. E3D, the Euro3D visualization tool II: Mosaics, VIMOS data and large IFUs of the future

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Becker, T.; Kelz, A.

    2004-03-01

    In this paper, we describe the capabilities of E3D, the Euro3D visualization tool, to handle and display data created by large Integral Field Units (IFUs) and by mosaics consisting of multiple pointings. The reliability of the software has been tested with real data, originating from the PMAS instrument in mosaic mode and from the VIMOS instrument, which features the largest IFU currently available. The capabilities and limitations of the current software are examined in view of future large IFUs, which will produce extremely large datasets.

  4. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  5. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  6. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  7. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  8. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  9. MUSE: 3D Spectroscopy with Large Telescopes

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Roth, M. M.; Steinmetz, M.; MUSE Consortium

    The Multi Unit Spectroscopic Explorer (MUSE) is a second generation instrument [1] in development for the Very Large Telescope (VLT) of the European Southern Observatory (ESO). It is a panoramic integral-field spectrograph operating in the visible wavelength range. It combines a wide field of view with the improved spatial resolution provided by adaptive optics and covers a large simultaneous spectral range. MUSE couples the discovery potential of an imaging device to the measuring capabilities of a spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes it a unique and powerful tool for discovering objects that cannot be found in imaging surveys. MUSE is optimized for the study of the progenitors of normal nearby galaxies out to very high redshift. It will also allow detailed studies of nearby normal, starburst and interacting galaxies, and of galactic star formation regions.

  10. Immersive 3D Visualization of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.

    2015-09-01

    The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.

  11. Odyssey over Martian Sunrise, 3-D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Mars Odyssey spacecraft passes above a portion of the planet that is rotating into the sunlight in this artist's concept illustration. This red-blue anaglyph artwork can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue (cyan) 3-D glasses.

    The spacecraft has been orbiting Mars since October 24, 2001.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for the NASA Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  13. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  14. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  15. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  17. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  19. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  1. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  2. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  3. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  4. ShowMe3D

    Energy Science and Technology Software Center (ESTSC)

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  5. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  6. 3D imaging using projected dynamic fringes

    NASA Astrophysics Data System (ADS)

    Shaw, Michael M.; Atkinson, John T.; Harvey, David M.; Hobson, Clifford A.; Lalor, Michael J.

    1994-12-01

    An instrument capable of highly accurate, non-contact range measurement has been developed, which is based upon the principle of projected rotating fringes. More usually known as dynamic fringe projection, it is this technique which is exploited in the dynamic automated range transducer (DART). The intensity waveform seen at the target and sensed by the detector, contains all the information required to accurately determine the fringe order. This, in turn, allows the range to be evaluated by the substitution of the fringe order into a simple algebraic expression. Various techniques for the analysis of the received intensity signals from the surface of the target have been investigated. The accuracy to which the range can be determined ultimately depends upon the accuracy to which the fringe order can be evaluated from the received intensity waveform. It is extremely important to be able to closely determine the fractional fringe order value, to achieve any meaningful results. This paper describes a number of techniques which have been used to analyze the intensity waveform, and critically appraises their suitability in terms of accuracy and required speed of operation. This work also examines the development of this instrument for three-dimensional measurements based on single or two beam systems. Using CCD array detectors, a 3-D range map of the object's surface may be produced.

  7. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  8. The 3D-HST Survey: An Introduction

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team

    2013-01-01

    3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 13D-HST would provide the critical third dimension - redshift - for some ~10,000 galaxies at z>1. In this talk, I will review the observational details, reduction pipeline, data quality and the wide range of public data products, including added-value photometric and spectroscopic catalogs. Data from the 3D-HST survey are non-proprietary and are useful for a wide variety of science investigations. Our first public data release will be in early 2013 and we would like to advertise this unique data set to the community.

  9. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  10. Sampling Martian Soil (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    Scientists were using the Moessbauer spectrometer on NASA's Mars Exploration Rover Spirit when something unexpected happened. The instrument's contact ring had been placed onto the ground as a reference point for placement of another instrument, the alpha particle X-ray spectrometer, for analyzing the soil. After Spirit removed the Moessbauer from the target, the rover's microscopic imager revealed a gap in the imprint left behind in the soil. The gap, about a centimeter wide (less than half an inch), is visible on the left side of this stereo view. Scientists concluded that a small chunk of soil probably adhered to the contact ring on the front surface of the Moessbauer. Before anyone saw that soil may have adhered to the Moessbauer, that instrument was placed to analyze martian dust collected by a magnet on the rover. The team plans to take images to see if any soil is still attached to the Moessbauer. Spirit took these images on the rover's 240th martian day, or sol (Sept. 4, 2004).

    Figure 1 is the left-eye view of a stereo pair and Figure 2 is the right-eye view of a stereo pair.

  11. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  12. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  13. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  14. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  15. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  16. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  17. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. ASI/MET - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Atmospheric Structure Instrument/Meteorology Package (ASI/MET) is the mast and windsocks at the center of this color image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. The instrument appears in two different sections due to image parallax. The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. The windsocks are seen pointing almost completely up, representing little wind movement at the three locations of the windsocks. A rock at left holds a shadow of the ASI/MET, indicating the sun's position is at the rear right. Portions of a lander petal and deflated airbag are visible, in addition to several rocks of varying sizes in the distance.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  20. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  1. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  2. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  3. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  4. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  5. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (ESTSC)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  6. The 3D-HST Survey: First Science Highlights

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; 3D-HST Survey Team

    2013-01-01

    3D-HST is a 248-orbit survey with the WFC3 G141 and ACS G800L grisms on board the Hubble Space Telescope, providing optical and near-IR slitless spectroscopic coverage of 75% of the CANDELS extragalactic survey fields. With data-taking due to be completed in early 2013, I will present some of the early science highlights already obtained from the survey. These include an H-alpha survey of a complete sample of massive galaxies and resolved H-alpha maps of star-forming galaxies at 1, detailed spectroscopic analysis of an extremely low-mass, low-metallicity starburst galaxy at z=1.85, and an unbiased census of Mg II absorbers along a QSO sightline at 1 < z < 2.

  7. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    SciTech Connect

    Antolin, P.; Rouppe van der Voort, L. E-mail: v.d.v.l.rouppe@astro.uio.no

    2012-02-01

    Observed in cool chromospheric lines, such as H{alpha} or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of {approx}310 km and {approx}710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of {approx}70 km s{sup -1}, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling

  8. Valles Marineris - with 3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The top half of this THEMIS visible image shows interior layered deposits that have long been recognized in Valles Marineris. Upon close examination, the layers appear to be eroding differently, indicating different levels of competency. This, in turn, may be interpreted to indicate different materials, and/or depositional processes. At the bottom of the image, materials eroded from the walls of the canyon form dunes and other aeolian bedforms.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -6.5, Longitude 287.3 East (72.7 West). 19 meter/pixel resolution.

  9. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  10. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  11. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  12. 3D Model Atmospheres for Extremely Low-mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gianninas, A.; Kilic, M.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Hermes, J. J.

    2015-08-01

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000–11,500 K and log g = 5–6.5 (g in cm s‑2) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  13. 3D video sequence reconstruction algorithms implemented on a DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, V. I.; Ramos-Diaz, E.

    2011-03-01

    A novel approach for 3D image and video reconstruction is proposed and implemented. This is based on the wavelet atomic functions (WAF) that have demonstrated better approximation properties in different processing problems in comparison with classical wavelets. Disparity maps using WAF are formed, and then they are employed in order to present 3D visualization using color anaglyphs. Additionally, the compression via Pth law is performed to improve the disparity map quality. Other approaches such as optical flow and stereo matching algorithm are also implemented as the comparative approaches. Numerous simulation results have justified the efficiency of the novel framework. The implementation of the proposed algorithm on the Texas Instruments DSP TMS320DM642 permits to demonstrate possible real time processing mode during 3D video reconstruction for images and video sequences.

  14. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  15. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  16. The 3D Heliosphere: What Can We Learn from STEREO?

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Many techniques have been used to study the 3D heliosphere, with the earliest probably being the analysis of comet tails. I will list most of these and mention a few, focusing on existing multi-point studies. The result, from more than 50 years of study, Is that a lot is known. This has led to a good picture of the quasi-steady heliosphere and its relation to the 3D Corona. But, there are also some large gaps and STEREO is designed to address one of these: the timing, size, geometry, mass, speed, direction, and 3D propagation of Corona[ mass ejections (CMEs). In spite of the statistical analysis of a large data archive, Imaginative use of in situ and remote measurements, and extensive modeling, these properties of CMES are poorly known. I will outline an example of how STEREO instruments might work together to develop a far better 30 description of CMEs In the 3D heliosphere and note that other examples are described in the Science Definition Team report and in the Science Objectives given by the four instrument teams. Since the two STEREO spacecraft are not intended to work in isolation, I will also outline how they might be used In combination With ground-based and other spacecraft observations.

  17. 3D View of Death Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER

  18. 3D recovery of human gaze in natural environments

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald; Mayer, Heinz

    2013-01-01

    The estimation of human attention has recently been addressed in the context of human robot interaction. Today, joint work spaces already exist and challenge cooperating systems to jointly focus on common objects, scenes and work niches. With the advent of Google glasses and increasingly affordable wearable eye-tracking, monitoring of human attention will soon become ubiquitous. The presented work describes for the first time a method for the estimation of human fixations in 3D environments that does not require any artificial landmarks in the field of view and enables attention mapping in 3D models. It enables full 3D recovery of the human view frustum and the gaze pointer in a previously acquired 3D model of the environment in real time. The study on the precision of this method reports a mean projection error ≈1.1 cm and a mean angle error ≈0.6° within the chosen 3D model - the precision does not go below the one of the technical instrument (≈1°). This innovative methodology will open new opportunities for joint attention studies as well as for bringing new potential into automated processing for human factors technologies.

  19. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  20. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  1. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  2. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  3. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  4. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  5. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  6. Quantitative 3-D imaging topogrammetry for telemedicine applications

    NASA Technical Reports Server (NTRS)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  7. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  8. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  9. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  10. Supernova Spectrum Synthesis for 3D Composition Models with the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Thomas, Rollin

    2002-07-01

    newcommandBruteextttBrute Relying on spherical symmetry when modelling supernova spectra is clearly at best a good approximation. Recent polarization measurements, interesting features in flux spectra, and the clumpy textures of supernova remnants suggest that supernova envelopes are rife with fine structure. To account for this fine structure and create a complete picture of supernovae, new 3D explosion models will be forthcoming. To reconcile these models with observed spectra, 3D radiative transfer will be necessary. We propose a 3D Monte Carlo radiative transfer code, Brute, and improvements that will move it toward a fully self-consistent 3D transfer code. Spectroscopic HST observations of supernovae past, present and future will definitely benefit. Other 3D transfer problems of interest to HST users like AGNs will benefit from the techniques developed.

  11. 3-D seismology in the Arabian Gulf

    SciTech Connect

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  12. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  13. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  14. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  15. Static & Dynamic Response of 3D Solids

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  16. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  17. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  18. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  19. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  20. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  1. A 3D Geostatistical Mapping Tool

    Energy Science and Technology Software Center (ESTSC)

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  2. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and

  3. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  5. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  6. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  7. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  8. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  9. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  10. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879