Science.gov

Sample records for 3d surface reconstruction

  1. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  2. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. PMID:27200484

  3. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  4. Colored 3D surface reconstruction using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Guo, Lian-peng; Chen, Xiang-ning; Chen, Ying; Liu, Bin

    2015-03-01

    A colored 3D surface reconstruction method which effectively fuses the information of both depth and color image using Microsoft Kinect is proposed and demonstrated by experiment. Kinect depth images are processed with the improved joint-bilateral filter based on region segmentation which efficiently combines the depth and color data to improve its quality. The registered depth data are integrated to achieve a surface reconstruction through the colored truncated signed distance fields presented in this paper. Finally, the improved ray casting for rendering full colored surface is implemented to estimate color texture of the reconstruction object. Capturing the depth and color images of a toy car, the improved joint-bilateral filter based on region segmentation is used to improve the quality of depth images and the peak signal-to-noise ratio (PSNR) is approximately 4.57 dB, which is better than 1.16 dB of the joint-bilateral filter. The colored construction results of toy car demonstrate the suitability and ability of the proposed method.

  5. APPROXIMATION OF SURFACES IN QUANTITATIVE 3-D RECONSTRUCTIONS

    EPA Science Inventory

    In serial section reconstructions a series of planar profiles are taken representing curves on the surface of the structure to be reconstructed. or a number of quantitative serial section methods, approximation of a surface is done by the formation of tiles between points of adja...

  6. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  7. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  8. Quality Analysis of 3d Surface Reconstruction Using Multi-Platform Photogrammetric Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2016-06-01

    In recent years, the necessity of accurate 3D surface reconstruction has been more pronounced for a wide range of mapping, modelling, and monitoring applications. The 3D data for satisfying the needs of these applications can be collected using different digital imaging systems. Among them, photogrammetric systems have recently received considerable attention due to significant improvements in digital imaging sensors, emergence of new mapping platforms, and development of innovative data processing techniques. To date, a variety of techniques haven been proposed for 3D surface reconstruction using imagery collected by multi-platform photogrammetric systems. However, these approaches suffer from the lack of a well-established quality control procedure which evaluates the quality of reconstructed 3D surfaces independent of the utilized reconstruction technique. Hence, this paper aims to introduce a new quality assessment platform for the evaluation of the 3D surface reconstruction using photogrammetric data. This quality control procedure is performed while considering the quality of input data, processing procedures, and photo-realistic 3D surface modelling. The feasibility of the proposed quality control procedure is finally verified by quality assessment of the 3D surface reconstruction using images from different photogrammetric systems.

  9. Visualization of 3D elbow kinematics using reconstructed bony surfaces

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.

    2010-02-01

    An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.

  10. 3D surface reconstruction based on image stitching from gastric endoscopic video sequence

    NASA Astrophysics Data System (ADS)

    Duan, Mengyao; Xu, Rong; Ohya, Jun

    2013-09-01

    This paper proposes a method for reconstructing 3D detailed structures of internal organs such as gastric wall from endoscopic video sequences. The proposed method consists of the four major steps: Feature-point-based 3D reconstruction, 3D point cloud stitching, dense point cloud creation and Poisson surface reconstruction. Before the first step, we partition one video sequence into groups, where each group consists of two successive frames (image pairs), and each pair in each group contains one overlapping part, which is used as a stitching region. Fist, the 3D point cloud of each group is reconstructed by utilizing structure from motion (SFM). Secondly, a scheme based on SIFT features registers and stitches the obtained 3D point clouds, by estimating the transformation matrix of the overlapping part between different groups with high accuracy and efficiency. Thirdly, we select the most robust SIFT feature points as the seed points, and then obtain the dense point cloud from sparse point cloud via a depth testing method presented by Furukawa. Finally, by utilizing Poisson surface reconstruction, polygonal patches for the internal organs are obtained. Experimental results demonstrate that the proposed method achieves a high accuracy and efficiency for 3D reconstruction of gastric surface from an endoscopic video sequence.

  11. High quality surface reconstruction in radiotherapy: Cross-sectional contours to 3D mesh using wavelets.

    PubMed

    Moriconi, S; Scalco, E; Broggi, S; Avuzzi, B; Valdagni, R; Rizzo, G

    2015-08-01

    A novel approach for three-dimensional (3D) surface reconstruction of anatomical structures in radiotherapy (RT) is presented. This is obtained from manual cross-sectional contours by combining both image voxel segmentation processing and implicit surface streaming methods using wavelets. 3D meshes reconstructed with the proposed approach are compared to those obtained from traditional triangulation algorithm. Qualitative and quantitative evaluations are performed in terms of mesh quality metrics. Differences in smoothness, detail and accuracy are observed in the comparison, considering three different anatomical districts and several organs at risk in radiotherapy. Overall best performances were recorded for the proposed approach, regardless the complexity of the anatomical structure. This demonstrates the efficacy of the proposed approach for the 3D surface reconstruction in radiotherapy and allows for further specific image analyses using real biomedical data. PMID:26737226

  12. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    SciTech Connect

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-11-15

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  13. Validation of 3D surface reconstruction of vertebrae and spinal column using 3D ultrasound data--a pilot study.

    PubMed

    Nguyen, Duc V; Vo, Quang N; Le, Lawrence H; Lou, Edmond H M

    2015-02-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of spine associated with vertebra rotation. The Cobb angle and axial vertebral rotation are important parameters to assess the severity of scoliosis. However, the vertebral rotation is seldom measured from radiographs due to time consuming. Different techniques have been developed to extract 3D spinal information. Among many techniques, ultrasound imaging is a promising method. This pilot study reported an image processing method to reconstruct the posterior surface of vertebrae from 3D ultrasound data. Three cadaver vertebrae, a Sawbones spine phantom, and a spine from a child with AIS were used to validate the development. The in-vitro result showed the surface of the reconstructed image was visually similar to the original objects. The dimension measurement error was <5 mm and the Pearson correlation was >0.99. The results also showed a high accuracy in vertebral rotation with errors of 0.8 ± 0.3°, 2.8 ± 0.3° and 3.6 ± 0.5° for the rotation values of 0°, 15° and 30°, respectively. Meanwhile, the difference in the Cobb angle between the phantom and the image was 4° and the vertebral rotation at the apex was 2°. The Cobb angle measured from the in-vivo ultrasound image was 4° different from the radiograph. PMID:25550193

  14. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  15. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    SciTech Connect

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  16. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  17. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    PubMed Central

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  18. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig R.; Hughes, Philip; Ribolini, Adriano; Lukas, Sven; Renssen, Hans

    2016-09-01

    Glacier reconstructions are widely used in palaeoclimatic studies and this paper presents a new semi-automated method for generating glacier reconstructions: GlaRe, is a toolbox coded in Python and operating in ArcGIS. This toolbox provides tools to generate the ice thickness from the bed topography along a palaeoglacier flowline applying the standard flow law for ice, and generates the 3D surface of the palaeoglacier using multiple interpolation methods. The toolbox performance has been evaluated using two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known, using the basic reconstruction routine in GlaRe. Results in terms of ice surface, ice extent and equilibrium line altitude show excellent agreement that confirms the robustness of this procedure in the reconstruction of palaeoglaciers from glacial landforms such as frontal moraines.

  19. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast. PMID:24770915

  20. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  1. Detection and Reconstruction of an Implicit Boundary Surface by Adaptively Expanding A Small Surface Patch in a 3D Image.

    PubMed

    Wang, Lisheng; Wang, Pai; Cheng, Liuhang; Ma, Yu; Wu, Shenzhi; Wang, Yu-Ping; Xu, Zongben

    2014-11-01

    In this paper we propose a novel and easy to use 3D reconstruction method. With the method, users only need to specify a small boundary surface patch in a 2D section image, and then an entire continuous implicit boundary surface (CIBS) can be automatically reconstructed from a 3D image. In the method, a hierarchical tracing strategy is used to grow the known boundary surface patch gradually in the 3D image. An adaptive detection technique is applied to detect boundary surface patches from different local regions. The technique is based on both context dependence and adaptive contrast detection as in the human vision system. A recognition technique is used to distinguish true boundary surface patches from the false ones in different cubes. By integrating these different approaches, a high-resolution CIBS model can be automatically reconstructed by adaptively expanding the small boundary surface patch in the 3D image. The effectiveness of our method is demonstrated by its applications to a variety of real 3D images, where the CIBS with complex shapes/branches and with varying gray values/gradient magnitudes can be well reconstructed. Our method is easy to use, which provides a valuable tool for 3D image visualization and analysis as needed in many applications. PMID:26355329

  2. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  3. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    NASA Astrophysics Data System (ADS)

    Zeng, P.; Inkson, B. J.; Rainforth, W. M.; Stewart, T.

    2008-08-01

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  4. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  5. 3D Surface Reconstruction of Rills in a Spanish Olive Grove

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Seeger, Manuel; Wirtz, Stefan; Taguas, Encarnación; Ries, Johannes B.

    2016-04-01

    The low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique is used for 3D surface reconstruction and difference calculation of an 18 meter long rill in South Spain (Andalusia, Puente Genil). The images were taken with a Canon HD video camera before and after a rill experiment in an olive grove. Recording with a video camera has compared to a photo camera a huge time advantage and the method also guarantees more than adequately overlapping sharp images. For each model, approximately 20 minutes of video were taken. As SfM needs single images, the sharpest image was automatically selected from 8 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs and recovers the camera and feature positions. Finally, by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post model a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The results show that rills in olive groves have a high dynamic due to the lack of vegetation cover under the trees, so that the rill can incise until the bedrock. Another reason for the high activity is the intensive employment of machinery.

  6. Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface

    NASA Astrophysics Data System (ADS)

    Brocks, S.; Bareth, G.

    2016-06-01

    Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.

  7. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    NASA Astrophysics Data System (ADS)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.

  8. 3D reconstruction of internal organ surfaces for minimal invasive surgery.

    PubMed

    Hu, Mingxing; Penney, Graeme; Edwards, Philip; Figl, Michael; Hawkes, David

    2007-01-01

    While Minimally Invasive Surgery (MIS) offers great benefits to patients compared with open surgery surgeons suffer from a restricted field-of-view and obstruction from instruments. We present a novel method for 3D reconstruction of soft tissue, which can provide a wider field-of-view with 3D information for surgeons, including restoration of missing data. The paper focuses on the use of Structure from Motion (SFM) techniques to solve the missing data problem and application of competitive evolutionary agents to improve the robustness to missing data and outliers. The method has been evaluated with synthetic data, images from a phantom heart model, and in vivo MIS image sequences using the da Vinci telerobotic surgical system. PMID:18051045

  9. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    SciTech Connect

    Zheng Guoyan; Schumann, Steffen

    2009-04-15

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  10. Geometric Neural Computing for 2D Contour and 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Rivera-Rovelo, Jorge; Bayro-Corrochano, Eduardo; Dillmann, Ruediger

    In this work we present an algorithm to approximate the surface of 2D or 3D objects combining concepts from geometric algebra and artificial neural networks. Our approach is based on the self-organized neural network called Growing Neural Gas (GNG), incorporating versors of the geometric algebra in its neural units; such versors are the transformations that will be determined during the training stage and then applied to a point to approximate the surface of the object. We also incorporate the information given by the generalized gradient vector flow to select automatically the input patterns, and also in the learning stage in order to improve the performance of the net. Several examples using medical images are presented, as well as images of automatic visual inspection. We compared the results obtained using snakes against the GSOM incorporating the gradient information and using versors. Such results confirm that our approach is very promising. As a second application, a kind of morphing or registration procedure is shown; namely the algorithm can be used when transforming one model at time t 1 into another at time t 2. We include also examples applying the same procedure, now extended to models based on spheres.

  11. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  12. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  13. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  15. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  16. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  17. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application

    NASA Astrophysics Data System (ADS)

    James, M. R.; Robson, S.

    2012-09-01

    Topographic measurements for detailed studies of processes such as erosion or mass movement are usually acquired by expensive laser scanners or rigorous photogrammetry. Here, we test and use an alternative technique based on freely available computer vision software which allows general geoscientists to easily create accurate 3D models from field photographs taken with a consumer-grade camera. The approach integrates structure-from-motion (SfM) and multiview-stereo (MVS) algorithms and, in contrast to traditional photogrammetry techniques, it requires little expertise and few control measurements, and processing is automated. To assess the precision of the results, we compare SfM-MVS models spanning spatial scales of centimeters (a hand sample) to kilometers (the summit craters of Piton de la Fournaise volcano) with data acquired from laser scanning and formal close-range photogrammetry. The relative precision ratio achieved by SfM-MVS (measurement precision: observation distance) is limited by the straightforward camera calibration model used in the software, but generally exceeds 1:1000 (i.e., centimeter-level precision over measurement distances of 10 s of meters). We apply SfM-MVS at an intermediate scale, to determine erosion rates along a ˜50-m-long coastal cliff. Seven surveys carried out over a year indicate an average retreat rate of 0.70 ± 0.05 m a-1. Sequential erosion maps (at ˜0.05 m grid resolution) highlight the spatiotemporal variability in the retreat, with semivariogram analysis indicating a correlation between volume loss and length scale. Compared with a laser scanner survey of the same site, SfM-MVS produced comparable data and reduced data collection time by ˜80%.

  18. Use of a twisted 3D Cauchy condition surface to reconstruct the last closed magnetic surface in a non-axisymmetric fusion plasma

    NASA Astrophysics Data System (ADS)

    Itagaki, Masafumi; Okubo, Gaku; Akazawa, Masayuki; Matsumoto, Yutaka; Watanabe, Kiyomasa; Seki, Ryosuke; Suzuki, Yasuhiro

    2012-12-01

    The three-dimensional (3D) Cauchy condition surface (CCS) method code, ‘CCS3D’, is now under development to reconstruct the 3D magnetic field profile outside a non-axisymmetric fusion plasma using only magnetic sensor signals. A new ‘twisted CCS’ is introduced, whose elliptic cross-section rotates with the variation in plasma geometry in the toroidal direction of a helical-type device. Independent of the toroidal angle, this CCS can be placed at a certain distance from the last closed magnetic surface (LCMS). With this new CCS, it is found through test calculations for the Large Helical Device that the numerical accuracy in the reconstructed field is improved. Furthermore, the magnetic field line tracing indicates the LCMS more precisely than with the use of the axisymmetric CCS. A new idea to determine the LCMS numerically is also proposed.

  19. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  20. 3D Equilibrium Reconstructions in DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.

    2013-10-01

    Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.

  1. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud

    NASA Astrophysics Data System (ADS)

    Malihi, S.; Valadan Zoej, M. J.; Hahn, M.; Mokhtarzade, M.; Arefi, H.

    2016-06-01

    Three dimensional models of urban areas play an important role in city planning, disaster management, city navigation and other applications. Reconstruction of 3D building models is still a challenging issue in 3D city modelling. Point clouds generated from multi view images of UAV is a novel source of spatial data, which is used in this research for building reconstruction. The process starts with the segmentation of point clouds of roofs and walls into planar groups. By generating related surfaces and using geometrical constraints plus considering symmetry, a 3d model of building is reconstructed. In a refinement step, dormers are extracted, and their models are reconstructed. The details of the 3d reconstructed model are in LoD3 level, with respect to modelling eaves, fractions of roof and dormers.

  2. Accuracy of 3d Reconstruction in AN Illumination Dome

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay; Toschi, Isabella; Nocerino, Erica; Hess, Mona; Remondino, Fabio; Robson, Stuart

    2016-06-01

    The accuracy of 3D surface reconstruction was compared from image sets of a Metric Test Object taken in an illumination dome by two methods: photometric stereo and improved structure-from-motion (SfM), using point cloud data from a 3D colour laser scanner as the reference. Metrics included pointwise height differences over the digital elevation model (DEM), and 3D Euclidean differences between corresponding points. The enhancement of spatial detail was investigated by blending high frequency detail from photometric normals, after a Poisson surface reconstruction, with low frequency detail from a DEM derived from SfM.

  3. 3D puzzle reconstruction for archeological fragments

    NASA Astrophysics Data System (ADS)

    Jampy, F.; Hostein, A.; Fauvet, E.; Laligant, O.; Truchetet, F.

    2015-03-01

    The reconstruction of broken artifacts is a common task in archeology domain; it can be supported now by 3D data acquisition device and computer processing. Many works have been dedicated in the past to reconstructing 2D puzzles but very few propose a true 3D approach. We present here a complete solution including a dedicated transportable 3D acquisition set-up and a virtual tool with a graphic interface allowing the archeologists to manipulate the fragments and to, interactively, reconstruct the puzzle. The whole lateral part is acquired by rotating the fragment around an axis chosen within a light sheet thanks to a step-motor synchronized with the camera frame clock. Another camera provides a top view of the fragment under scanning. A scanning accuracy of 100μm is attained. The iterative automatic processing algorithm is based on segmentation into facets of the lateral part of the fragments followed by a 3D matching providing the user with a ranked short list of possible assemblies. The device has been applied to the reconstruction of a set of 1200 fragments from broken tablets supporting a Latin inscription dating from the first century AD.

  4. 3D EIT image reconstruction with GREIT.

    PubMed

    Grychtol, Bartłomiej; Müller, Beat; Adler, Andy

    2016-06-01

    Most applications of thoracic EIT use a single plane of electrodes on the chest from which a transverse image 'slice' is calculated. However, interpretation of EIT images is made difficult by the large region above and below the electrode plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode planes should help compensate, but are little used currently. The Graz consensus reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One shortcoming of the original formulation of GREIT is its restriction to reconstruction onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and develop open-source tools to evaluate its performance as a function of the choice of stimulation and measurement pattern. Results show 3D GREIT using two electrode layers has significantly more uniform sensitivity profiles through the chest region. Overall, the advantages of 3D EIT are compelling. PMID:27203184

  5. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  6. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  7. IFSAR processing for 3D target reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2005-05-01

    In this paper we investigate the use of interferometric synthetic aperture radar (IFSAR) processing for the 3D reconstruction of radar targets. A major source of reconstruction error is induced by multiple scattering responses in a resolution cell, giving rise to height errors. We present a model for multiple scattering centers and analyze the errors that result using traditional IFSAR height estimation. We present a simple geometric model that characterizes the height error and suggests tests for detecting or reducing this error. We consider the use of image magnitude difference as a test statistic to detect multiple scattering responses in a resolution cell, and we analyze the resulting height error reduction and hypothesis test performance using this statistic. Finally, we consider phase linearity test statistics when three or more IFSAR images are available. Examples using synthetic Xpatch backhoe imagery are presented.

  8. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  9. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  10. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  11. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  12. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    NASA Astrophysics Data System (ADS)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  13. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model

    PubMed Central

    Song, Jin-Myoung; Cho, Jin-Hyoung

    2016-01-01

    Purpose The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Materials and Methods Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Results Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Conclusions Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement. PMID:27065238

  14. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image. PMID:21979427

  15. Scattering robust 3D reconstruction via polarized transient imaging.

    PubMed

    Wu, Rihui; Suo, Jinli; Dai, Feng; Zhang, Yongdong; Dai, Qionghai

    2016-09-01

    Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium. PMID:27607944

  16. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  17. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  18. Reconstructing the 3D coronal magnetic field using a Potential Field Source Surface model comparing different magnetograph input data

    NASA Astrophysics Data System (ADS)

    Kruse, M. A., II; Peleikis, T.; Berger, L.; Wimmer-Schweingruber, R. F.

    2014-12-01

    We utilize a Potential Field Source Sourface (PFSS) model developed by Altschuler & Newkirk (1969) to model and analyze the coronal magnetic field up to the source surface at 2.5 solar radii. As the photospheric boundary to that model we employ data from several instruments, namely the Wilcox Solar Observatory, NSO's Kitt Peak Vacuum Telescope, the Michelson Doppler Imager onboard the SOHO spacecraft and its successor, the Helioseismic and Magnetic Imager onboard SDO. Instead of the harmonic function approach commonly used, we employ a three dimensional computational grid and methods of computational fluid dynamics to solve the governing equations in order to easily incorporate more complex phenomena if the need for doing so arises during the course of our work. Another advantage of the grid approach is the possibility to outsource the computational work to a parallel computing architecture like NVIDIA's CUDA, which we employ to speed up processing time and increase data throughput significantly. The obtained magnetic field data is utilized in several ways. First it is compared with in-situ data from several spacecraft like Ulysses to validate the employed PFSS model. We further use the expansion geometry of the magnetic field as an input to a 1D-solar-wind model developed by Cranmer et al. (2007) to determine characteristics of the solar wind in several magnetic flux tubes. We can then infer the theoretical charge-state composition inside these flux tubes, which in turn can be employed to test our hypotheses on the origin of the slow solar wind.

  19. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  20. Reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Niu, Bei; Sang, Xinzhu; Chen, Duo; Cai, Yuanfa

    2013-08-01

    Reconstruction of three-dimensional (3D) scenes is an active research topic in the field of computer vision and 3D display. It's a challenge to model 3D objects rapidly and effectively. A 3D model can be extracted from multiple images. The system only requires a sequence of images taken with cameras without knowing the parameters of camera, which provide flexibility to a high degree. We focus on quickly merging point cloud of the object from depth map sequences. The whole system combines algorithms of different areas in computer vision, such as camera calibration, stereo correspondence, point cloud splicing and surface reconstruction. The procedure of 3D reconstruction is decomposed into a number of successive steps. Firstly, image sequences are received by the camera freely moving around the object. Secondly, the scene depth is obtained by a non-local stereo matching algorithm. The pairwise is realized with the Scale Invariant Feature Transform (SIFT) algorithm. An initial matching is then made for the first two images of the sequence. For the subsequent image that is processed with previous image, the point of interest corresponding to ones in previous images are refined or corrected. The vertical parallax between the images is eliminated. The next step is to calibrate camera, and intrinsic parameters and external parameters of the camera are calculated. Therefore, The relative position and orientation of camera are gotten. A sequence of depth maps are acquired by using a non-local cost aggregation method for stereo matching. Then point cloud sequence is achieved by the scene depths, which consists of point cloud model using the external parameters of camera and the point cloud sequence. The point cloud model is then approximated by a triangular wire-frame mesh to reduce geometric complexity and to tailor the model to the requirements of computer graphics visualization systems. Finally, the texture is mapped onto the wire-frame model, which can also be used for 3

  1. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. PMID:26073969

  2. Computerized 3-D reconstruction of two "double teeth".

    PubMed

    Lyroudia, K; Mikrogeorgis, G; Nikopoulos, N; Samakovitis, G; Molyvdas, I; Pitas, I

    1997-10-01

    "Double teeth" is a root malformation in the dentition and the purpose of this study was to reconstruct three-dimensionally the external and internal morphology of two "double teeth". The first set of "double teeth" was formed by the conjunction of a mandibular molar and a premolar, and the second by a conjunction of a maxillary molar and a supernumerary tooth. The process of 3-D reconstruction included serial cross-sectioning, photographs of the sections, digitization of the photographs, extraction of the boundaries of interest for each section, surface representation using triangulation and, finally, surface rendering using photorealistic effects. The resulting three-dimensional representations of the two teeth helped us visualize their external and internal anatomy. The results showed: a) in the first case, fusion of the radical and coronal dentin, as well as fusion of the pulp chambers; and b) in the second case, fusion only of the radical dentin and the pulp chambers. PMID:9550051

  3. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  4. Clinical Experience With A Portable 3-D Reconstruction Program

    NASA Astrophysics Data System (ADS)

    Holshouser, Barbara A.; Christiansen, Edwin L.; Thompson, Joseph R.; Reynolds, R. Anthony; Goldwasser, Samuel M.

    1988-06-01

    Clinical experience with a computer program for reconstructing and visualizing three-dimensional (3-D) structures is reported. Applications to the study of soft-tissue and skeletal structures, such as the temporomandibular joint and craniofacial anatomy, using computed tomography (CT) data are described. Several features specific to the computer algorithm are demonstrated and evaluated. These include: (1) manipulation of density windows to selectively visualize bone or soft tissue structures; (2) the efficacy of gradient shading algorithms in revealing fine surface detail; and (3) the rapid generation of cut-away views revealing details of internal structures. Also demonstrated is the importance of high resolution data as input to the 3-D program. The implementation of the program (VoxelView-32) described here, is on a MASSCOMP computer running UNIX. Data were collected with General Electric or Siemens CT scanners and transferred to the MASSCOMP for off-line 3-D recon-struction, via magnetic tape or Ethernet. An interactive graphics facility on the MASSCOMP allows viewing of 2-D slices, subregioning, and selection of lower and upper density thresholds for segmentation. The software then enters a pre-processing phase during which a volume representation of the segmented object (soft tissue or bone) is automatically created. This is followed by a rendering phase during which multiple views of the segmented object are automatically generated. The pre-processing phase typically takes 4 to 8 minutes (although very large datasets may require as much as 30 minutes) and the rendering phase typically takes 1 to 2 minutes for each 3-D view. Volume representation and rendering techniques are used at all stages of the processing, and gradient shading is used for enhanced surface detail.

  5. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  6. The sinogram polygonizer for reconstructing 3D shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-11-01

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:24029910

  7. The Sinogram Polygonizer for Reconstructing 3D Shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-05-24

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:23712999

  8. Interior Reconstruction Using the 3d Hough Transform

    NASA Astrophysics Data System (ADS)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  9. Tomographic system for 3D temperature reconstruction

    NASA Astrophysics Data System (ADS)

    Antos, Martin; Malina, Radomir

    2003-11-01

    The novel laboratory system for the optical tomography is used to obtain three-dimensional temperature field around a heated element. The Mach-Zehnder holographic interferometers with diffusive illumination of the phase object provide the possibility to scan of multidirectional holographic interferograms in the range of viewing angles from 0 deg to 108 deg. These interferograms form the input data for the computer tomography of the 3D distribution of the refractive index variation, which characterizes the physical state of the studied medium. The configuration of the system allows automatic projection scanning of the studied phase object. The computer calculates the wavefront deformation for each projection, making use of different methods of Fourier-transform and phase-sampling evaluations. The experimental set-up together with experimental results is presented.

  10. 3D scene reconstruction from multi-aperture images

    NASA Astrophysics Data System (ADS)

    Mao, Miao; Qin, Kaihuai

    2014-04-01

    With the development of virtual reality, there is a growing demand for 3D modeling of real scenes. This paper proposes a novel 3D scene reconstruction framework based on multi-aperture images. Our framework consists of four parts. Firstly, images with different apertures are captured via programmable aperture. Secondly, we use SIFT method for feature point matching. Then we exploit binocular stereo vision to calculate camera parameters and 3D positions of matching points, forming a sparse 3D scene model. Finally, we apply patch-based multi-view stereo to obtain a dense 3D scene model. Experimental results show that our method is practical and effective to reconstruct dense 3D scene.

  11. 3-D reconstructions of active stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-03-01

    Stars are usually faint point sources and investigating their surfaces and interiors observationally is very demanding. Here I give a review on the state-of-the-art observing techniques and recent results on studying interiors and surface features of active stars.

  12. 3D Reconstruction of virtual colon structures from colonoscopy images.

    PubMed

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  13. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  14. Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints

    PubMed Central

    Diament, Alon; Tuller, Tamir

    2015-01-01

    The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633

  15. Tomographic compressive holographic reconstruction of 3D objects

    NASA Astrophysics Data System (ADS)

    Nehmetallah, G.; Williams, L.; Banerjee, P. P.

    2012-10-01

    Compressive holography with multiple projection tomography is applied to solve the inverse ill-posed problem of reconstruction of 3D objects with high axial accuracy. To visualize the 3D shape, we propose Digital Tomographic Compressive Holography (DiTCH), where projections from more than one direction as in tomographic imaging systems can be employed, so that a 3D shape with better axial resolution can be reconstructed. We compare DiTCH with single-beam holographic tomography (SHOT) which is based on Fresnel back-propagation. A brief theory of DiTCH is presented, and experimental results of 3D shape reconstruction of objects using DITCH and SHOT are compared.

  16. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  17. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  18. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  19. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  20. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  1. Methods for comparing 3D surface attributes

    NASA Astrophysics Data System (ADS)

    Pang, Alex; Freeman, Adam

    1996-03-01

    A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.

  2. 3D Reconstruction For The Detection Of Cranial Anomalies

    NASA Astrophysics Data System (ADS)

    Kettner, B.; Shalev, S.; Lavelle, C.

    1986-01-01

    There is a growing interest in the use of three-dimensional (3D) cranial reconstruction from CT scans for surgical planning. A low-cost imaging system has been developed, which provides pseudo-3D images which may be manipulated to reveal the craniofacial skeleton as a whole or any particular component region. The contrast between congenital (hydrocephalic), normocephalic and acquired (carcinoma of the maxillary sinus) anomalous cranial forms demonstrates the potential of this system.

  3. Bound constrained bundle adjustment for reliable 3D reconstruction.

    PubMed

    Gong, Yuanzheng; Meng, De; Seibel, Eric J

    2015-04-20

    Bundle adjustment (BA) is a common estimation algorithm that is widely used in machine vision as the last step in a feature-based three-dimensional (3D) reconstruction algorithm. BA is essentially a non-convex non-linear least-square problem that can simultaneously solve the 3D coordinates of all the feature points describing the scene geometry, as well as the parameters of the camera. The conventional BA takes a parameter either as a fixed value or as an unconstrained variable based on whether the parameter is known or not. In cases where the known parameters are inaccurate but constrained in a range, conventional BA results in an incorrect 3D reconstruction by using these parameters as fixed values. On the other hand, these inaccurate parameters can be treated as unknown variables, but this does not exploit the knowledge of the constraints, and the resulting reconstruction can be erroneous since the BA optimization halts at a dramatically incorrect local minimum due to its non-convexity. In many practical 3D reconstruction applications, unknown variables with range constraints are usually available, such as a measurement with a range of uncertainty or a bounded estimate. Thus to better utilize these pre-known, constrained, but inaccurate parameters, a bound constrained bundle adjustment (BCBA) algorithm is proposed, developed and tested in this study. A scanning fiber endoscope (the camera) is used to capture a sequence of images above a surgery phantom (the object) of known geometry. 3D virtual models are reconstructed based on these images and then compared with the ground truth. The experimental results demonstrate BCBA can achieve a more reliable, rapid, and accurate 3D reconstruction than conventional bundle adjustment. PMID:25969115

  4. Bound constrained bundle adjustment for reliable 3D reconstruction

    PubMed Central

    Gong, Yuanzheng; Meng, De; Seibel, Eric J.

    2015-01-01

    Bundle adjustment (BA) is a common estimation algorithm that is widely used in machine vision as the last step in a feature-based three-dimensional (3D) reconstruction algorithm. BA is essentially a non-convex non-linear least-square problem that can simultaneously solve the 3D coordinates of all the feature points describing the scene geometry, as well as the parameters of the camera. The conventional BA takes a parameter either as a fixed value or as an unconstrained variable based on whether the parameter is known or not. In cases where the known parameters are inaccurate but constrained in a range, conventional BA results in an incorrect 3D reconstruction by using these parameters as fixed values. On the other hand, these inaccurate parameters can be treated as unknown variables, but this does not exploit the knowledge of the constraints, and the resulting reconstruction can be erroneous since the BA optimization halts at a dramatically incorrect local minimum due to its non-convexity. In many practical 3D reconstruction applications, unknown variables with range constraints are usually available, such as a measurement with a range of uncertainty or a bounded estimate. Thus to better utilize these pre-known, constrained, but inaccurate parameters, a bound constrained bundle adjustment (BCBA) algorithm is proposed, developed and tested in this study. A scanning fiber endoscope (the camera) is used to capture a sequence of images above a surgery phantom (the object) of known geometry. 3D virtual models are reconstructed based on these images and then compared with the ground truth. The experimental results demonstrate BCBA can achieve a more reliable, rapid, and accurate 3D reconstruction than conventional bundle adjustment. PMID:25969115

  5. 3D scanning modeling method application in ancient city reconstruction

    NASA Astrophysics Data System (ADS)

    Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo

    2015-07-01

    With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.

  6. 3D-patterned polymer brush surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Xuechang; Liu, Xuqing; Xie, Zhuang; Zheng, Zijian

    2011-12-01

    Polymer brush-based three-dimensional (3D) structures are emerging as a powerful platform to engineer a surface by providing abundant spatially distributed chemical and physical properties. In this feature article, we aim to give a summary of the recent progress on the fabrication of 3D structures with polymer brushes, with a particular focus on the micro- and nanoscale. We start with a brief introduction on polymer brushes and the challenges to prepare their 3D structures. Then, we highlight the recent advances of the fabrication approaches on the basis of traditional polymerization time and grafting density strategies, and a recently developed feature density strategy. Finally, we provide some perspective outlooks on the future directions of engineering the 3D structures with polymer brushes.

  7. Recognition methods for 3D textured surfaces

    NASA Astrophysics Data System (ADS)

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  8. Robust registration for removing vibrations in 3D reconstruction of web material

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Garcia, Daniel F.

    2015-05-01

    Vibrations are a major challenge in laser-based 3D reconstruction of web material. In uncontrolled environments, the movement of web material forward along a track is inevitably affected by vibrations. These oscillations significantly degrade the performance of the 3D reconstruction system, as they are incorrectly interpreted as irregularities on the surface of the material, leading to an erroneous reconstruction of the 3D surface. This work proposes a method to estimate and remove these vibrations based on a robust registration procedure. Registration is used to estimate vibrations and a rigid transformation is used to compensate the movements, removing the effects of vibrations on 3D reconstruction. The proposed method is applied to an extensive dataset, both synthetic and real, with very good results.

  9. Gene Electrotransfer in 3D Reconstructed Human Dermal Tissue.

    PubMed

    Madi, Moinecha; Rols, Marie-Pierre; Gibot, Laure

    2016-01-01

    Gene electrotransfer into the skin is of particular interest for the development of medical applications including DNA vaccination, cancer treatment, wound healing or treatment of local skin disorders. However, such clinical applications are currently limited due to poor understanding of the mechanisms governing DNA electrotransfer within human tissue. Nowadays, most studies are carried out in rodent models but rodent skin varies from human skin in terms of cell composition and architecture. We used a tissue-engineering approach to study gene electrotransfer mechanisms in a human tissue context. Primary human dermal fibroblasts were cultured according to the self-assembly method to produce 3D reconstructed human dermal tissue. In this study, we showed that cells of the reconstructed cutaneous tissue were efficiently electropermeabilized by applying millisecond electric pulses, without affecting their viability. A reporter gene was successfully electrotransferred into this human tissue and gene expression was detected for up to 48h. Interestingly, the transfected cells were solely located on the upper surface of the tissue, where they were in close contact with plasmid DNA solution. Furthermore, we report evidences that electrotransfection success depends on plasmid mobility within tissue- rich in collagens, but not on cell proliferation status. In conclusion, in addition to proposing a reliable alternative to animal experiments, tissue engineering produces valid biological tool for the in vitro study of gene electrotransfer mechanisms in human tissue. PMID:27029947

  10. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  11. New Reconstruction Accuracy Metric for 3D PIV

    NASA Astrophysics Data System (ADS)

    Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    Reconstruction for 3D PIV typically relies on recombining images captured from different viewpoints via multiple cameras/apertures. Ideally, the quality of reconstruction dictates the accuracy of the derived velocity field. A reconstruction quality parameter Q is commonly used as a measure of the accuracy of reconstruction algorithms. By definition, a high Q value requires intensity peak levels and shapes in the reconstructed and reference volumes to be matched. We show that accurate velocity fields rely only on the peak locations in the volumes and not on intensity peak levels and shapes. In synthetic aperture (SA) PIV reconstructions, the intensity peak shapes and heights vary with the number of cameras and due to spatial/temporal particle intensity variation respectively. This lowers Q but not the accuracy of the derived velocity field. We introduce a new velocity vector correlation factor Qv as a metric to assess the accuracy of 3D PIV techniques, which provides a better indication of algorithm accuracy. For SAPIV, the number of cameras required for a high Qv are lower than that for a high Q. We discuss Qv in the context of 3D PIV and also present a preliminary comparison of the performance of TomoPIV and SAPIV based on Qv.

  12. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  13. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  14. 3D medical volume reconstruction using web services.

    PubMed

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-04-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called data to knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the image to knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope. PMID:18336808

  15. Automated 3D reconstruction of interiors with multiple scan views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  16. 3D video sequence reconstruction algorithms implemented on a DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, V. I.; Ramos-Diaz, E.

    2011-03-01

    A novel approach for 3D image and video reconstruction is proposed and implemented. This is based on the wavelet atomic functions (WAF) that have demonstrated better approximation properties in different processing problems in comparison with classical wavelets. Disparity maps using WAF are formed, and then they are employed in order to present 3D visualization using color anaglyphs. Additionally, the compression via Pth law is performed to improve the disparity map quality. Other approaches such as optical flow and stereo matching algorithm are also implemented as the comparative approaches. Numerous simulation results have justified the efficiency of the novel framework. The implementation of the proposed algorithm on the Texas Instruments DSP TMS320DM642 permits to demonstrate possible real time processing mode during 3D video reconstruction for images and video sequences.

  17. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  18. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction.

    PubMed

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-03-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ 1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  19. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction

    PubMed Central

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-01-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  20. 3D surface digitizing and modeling development at ITRI

    NASA Astrophysics Data System (ADS)

    Hsueh, Wen-Jean

    2000-06-01

    This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.

  1. 3D reconstruction of a human heart fascicle using SurfDriver

    NASA Astrophysics Data System (ADS)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  2. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  3. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  4. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  5. On detailed 3D reconstruction of large indoor environments

    NASA Astrophysics Data System (ADS)

    Bondarev, Egor

    2015-03-01

    In this paper we present techniques for highly detailed 3D reconstruction of extra large indoor environments. We discuss the benefits and drawbacks of low-range, far-range and hybrid sensing and reconstruction approaches. The proposed techniques for low-range and hybrid reconstruction, enabling the reconstruction density of 125 points/cm3 on large 100.000 m3 models, are presented in detail. The techniques tackle the core challenges for the above requirements, such as a multi-modal data fusion (fusion of a LIDAR data with a Kinect data), accurate sensor pose estimation, high-density scanning and depth data noise filtering. Other important aspects for extra large 3D indoor reconstruction are the point cloud decimation and real-time rendering. In this paper, we present a method for planar-based point cloud decimation, allowing for reduction of a point cloud size by 80-95%. Besides this, we introduce a method for online rendering of extra large point clouds enabling real-time visualization of huge cloud spaces in conventional web browsers.

  6. A new algorithm for 3D reconstruction from support functions.

    PubMed

    Gardner, Richard J; Kiderlen, Markus

    2009-03-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab, and it works for both 2D and 3D reconstructions (in fact, in principle, in any dimension). Reconstructions may be obtained without any pre- or post-processing steps and with no restriction on the sets of measurement directions except their number, a limitation dictated only by computing time. An algorithm due to Prince and Willsky was implemented earlier for 2D reconstructions, and we compare the performance of their algorithm and ours. But our algorithm is the first that works for 3D reconstructions with the freedom stated in the previous paragraph. Moreover, under mild conditions, theory guarantees that outputs of the new algorithm will converge to the input shape as the number of measurements increases. In addition we offer a linear program version of the new algorithm that is much faster and better, or at least comparable, in performance at low levels of noise and reasonably small numbers of measurements. Another modification of the algorithm, suitable for use in a "focus of attention" scheme, is also described. PMID:19147881

  7. 3D reconstruction methods of coronal structures by radio observations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  8. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  9. 3D Building Modeling and Reconstruction using Photometric Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Izadi, Mohammad

    In this thesis, the problem of three dimensional (3D) reconstruction of building models using photometric satellite and aerial images is investigated. Here, two systems are pre-sented: 1) 3D building reconstruction using a nadir single-view image, and 2) 3D building reconstruction using slant multiple-view aerial images. The first system detects building rooftops in orthogonal aerial/satellite images using a hierarchical segmentation algorithm and a shadow verification approach. The heights of detected buildings are then estimated using a fuzzy rule-based method, which measures the height of a building by comparing its predicted shadow region with the actual shadow evidence in the image. This system finally generated a KML (Keyhole Markup Language) file as the output, that contains 3D models of detected buildings. The second system uses the geolocation information of a scene containing a building of interest and uploads all slant-view images that contain this scene from an input image dataset. These images are then searched automatically to choose image pairs with different views of the scene (north, east, south and west) based on the geolocation and auxiliary data accompanying the input data (metadata that describes the acquisition parameters at the capture time). The camera parameters corresponding to these images are refined using a novel point matching algorithm. Next, the system independently reconstructs 3D flat surfaces that are visible in each view using an iterative algorithm. 3D surfaces generated for all views are combined, and redundant surfaces are removed to create a complete set of 3D surfaces. Finally, the combined 3D surfaces are connected together to generate a more complete 3D model. For the experimental results, both presented systems are evaluated quantitatively and qualitatively and different aspects of the two systems including accuracy, stability, and execution time are discussed.

  10. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  11. Optical Sensors and Methods for Underwater 3D Reconstruction.

    PubMed

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  12. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  13. New method for 3D reconstruction in digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2002-05-01

    Digital tomosynthesis mammography is an advanced x-ray application that can provide detailed 3D information about the imaged breast. We introduce a novel reconstruction method based on simple backprojection, which yields high contrast reconstructions with reduced artifacts at a relatively low computational complexity. The first step in the proposed reconstruction method is a simple backprojection with an order statistics-based operator (e.g., minimum) used for combining the backprojected images into a reconstructed slice. Accordingly, a given pixel value does generally not contribute to all slices. The percentage of slices where a given pixel value does not contribute, as well as the associated reconstructed values, are collected. Using a form of re-projection consistency constraint, one now updates the projection images, and repeats the order statistics backprojection reconstruction step, but now using the enhanced projection images calculated in the first step. In our digital mammography application, this new approach enhances the contrast of structures in the reconstruction, and allows in particular to recover the loss in signal level due to reduced tissue thickness near the skinline, while keeping artifacts to a minimum. We present results obtained with the algorithm for phantom images.

  14. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  15. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  16. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  17. Dose fractionation theorem in 3-D reconstruction (tomography)

    SciTech Connect

    Glaeser, R.M.

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  18. Surface Plasmons in 3D Topological Insulators

    NASA Astrophysics Data System (ADS)

    Kogar, Anshul; Vig, Sean; Cho, Gil; Thaler, Alexander; Xiao, Yiran; Hughes, Taylor; Wong, Man-Hong; Chiang, Tai-Chang; MacDougall, Greg; Abbamonte, Peter

    2015-03-01

    Most studies of three-dimensional (3D) topological insulators have concentrated on their one-electron properties as exhibited by angle-resolved photoemission spectroscopy (ARPES) or by scanning tunneling microscopy (STM). Many-body interactions are often neglected in the treatment of models of topological insulators, such as in the Kane-Mele and Bernevig-Hughes-Zhang models. Using angle-resolved inelastic electron scattering from the surface, I will present data on the collective mode that owes its existence to the presence of many-body interactions, the surface plasmon (SP), in two known 3D topological insulators, Bi2Se3 and Bi0.5Sb1.5Se1 . 5 + xTe1 . 5 - x. Surprisingly, the SP was prominent even after depressing the Fermi energy into the bulk band gap. Having studied the SP as a function of doping, momentum transfer and its aging properties, I will present evidence to suggest that bulk-surface coupling is crucial in explaining many of its properties. A simple model with dynamic bulk screening will be presented showing qualitative agreement with the observations. Lastly, the relation of the observed surface plasmon to the predicted spin-plasmon mode and to the kinks seen in the electronic dispersion as measured by ARPES will be discussed. The work was supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  19. PLOT3D- DRAWING THREE DIMENSIONAL SURFACES

    NASA Technical Reports Server (NTRS)

    Canright, R. B.

    1994-01-01

    PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.

  20. Height inspection of wafer bumps without explicit 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Dong, Mei; Chung, Ronald; Zhao, Yang; Lam, Edmund Y.

    2006-02-01

    The shrunk dimension of electronic devices leads to more stringent requirement on process control and quality assurance of their fabrication. For instance, direct die-to-die bonding requires placement of solder bumps not on PCB but on the wafer itself. Such wafer solder bumps, which are much miniaturized from the counterparts on PCB, still need to have their heights meet the specification, or else the electrical connection could be compromised, or the dies be crushed, or even the manufacturing equipments be damaged. Yet the tiny size, typically tens of microns in diameter, and the textureless and mirror nature of the bumps pose great challenge to the 3D inspection process. This paper addresses how a large number of such wafer bumps could have their heights massively checked against the specification. We assume ball bumps in this work. We propose a novel inspection measure about the collection of bump heights that possesses these advantages: (1) it is sensitive to global and local disturbances to the bump heights, thus serving the bump height inspection purpose; (2) it is invariant to how individual bumps are locally displaced against one another on the substrate surface, thus enduring 2D displacement error in soldering the bumps onto the wafer substrate; and (3) it is largely invariant to how the wafer itself is globally positioned relative to the imaging system, thus having tolerance to repeatability error in wafer placement. This measure makes use of the mirror nature of the bumps, which used to cause difficulty in traditional inspection methods, to capture images of two planes. One contains the bump peaks and the other corresponds to the substrate. With the homography matrices of these two planes and fundamental matrix of the camera, we synthesize a matrix called Biplanar Disparity Matrix. This matrix can summarize the bumps' heights in a fast and direct way without going through explicit 3D reconstruction. We also present a design of the imaging and

  1. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  2. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  3. One-step reconstruction of assembled 3D holographic scenes

    NASA Astrophysics Data System (ADS)

    Velez Zea, Alejandro; Barrera-Ramírez, John Fredy; Torroba, Roberto

    2015-12-01

    We present a new experimental approach for reconstructing in one step 3D scenes otherwise not feasible in a single snapshot from standard off-axis digital hologram architecture, due to a lack of illuminating resources or a limited setup size. Consequently, whenever a scene could not be wholly illuminated or the size of the scene surpasses the available setup disposition, this protocol can be implemented to solve these issues. We need neither to alter the original setup in every step nor to cover the whole scene by the illuminating source, thus saving resources. With this technique we multiplex the processed holograms of actual diffuse objects composing a scene using a two-beam off-axis holographic setup in a Fresnel approach. By registering individually the holograms of several objects and applying a spatial filtering technique, the filtered Fresnel holograms can then be added to produce a compound hologram. The simultaneous reconstruction of all objects is performed in one step using the same recovering procedure employed for single holograms. Using this technique, we were able to reconstruct, for the first time to our knowledge, a scene by multiplexing off-axis holograms of the 3D objects without cross talk. This technique is important for quantitative visualization of optically packaged multiple images and is useful for a wide range of applications. We present experimental results to support the method.

  4. Real-Time Camera Guidance for 3d Scene Reconstruction

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Förstner, W.

    2012-07-01

    We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal is to achieve full coverage of the object and sufficient overlap. Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution. We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera movements. A visual feedback system communicates the decisions to the user in an intuitive way. We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online flight planning of unmanned aerial vehicles.

  5. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  6. 3D surface defect analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, B.; Jia, M.; Song, G. J.; Tao, L.; Harding, K. G.

    2008-08-01

    A method is proposed for surface defect analysis and evaluation. Good 3D point clouds can now be obtained through a variety of surface profiling methods such as stylus tracers, structured light, or interferometry. In order to inspect a surface for defects, first a reference surface that represents the surface without any defects needs to be identified. This reference surface can then be fit to the point cloud. The algorithm we present finds the least square solution for the overdetermined equation set to obtain the parameters of the reference surface mathematical description. The distance between each point within the point cloud and the reference surface is then calculated using to the derived reference surface equation. For analysis of the data, the user can preset a threshold distance value. If the calculated distance is bigger than the threshold value, the corresponding point is marked as a defect point. The software then generates a color-coded map of the measured surface. Defect points that are connected together are formed into a defect-clustering domain. Each defect-clustering domain is treated as one defect area. We then use a clustering domain searching algorithm to auto-search all the defect areas in the point cloud. The different critical parameters used for evaluating the defect status of a point cloud that can be calculated are described as: P-Depth,a peak depth of all defects; Defect Number, the number of surface defects; Defects/Area, the defect number in unit area; and Defect Coverage Ratio which is a ratio of the defect area to the region of interest.

  7. 3D-reconstruction of blood vessels by ultramicroscopy

    PubMed Central

    Jährling, Nina; Becker, Klaus

    2009-01-01

    As recently shown, ultramicroscopy (UM) allows 3D-visualization of even large microscopic structures with µm resolution. Thus, it can be applied to anatomical studies of numerous biological and medical specimens. We reconstructed the three-dimensional architecture of tomato-lectin (Lycopersicon esculentum) stained vascular networks by UM in whole mouse organs. The topology of filigree branches of the microvasculature was visualized. Since tumors require an extensive growth of blood vessels to survive, this novel approach may open up new vistas in neurobiology and histology, particularly in cancer research. PMID:20539742

  8. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  9. 3D reconstruction of complex geological bodies: Examples from the Alps

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  10. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  11. Discussion of Source Reconstruction Models Using 3D MCG Data

    NASA Astrophysics Data System (ADS)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  12. Fringe projection profilometry for panoramic 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Almaraz-Cabral, César-Cruz; Gonzalez-Barbosa, José-Joel; Villa, Jesús; Hurtado-Ramos, Juan-Bautista; Ornelas-Rodriguez, Francisco-Javier; Córdova-Esparza, Diana-Margarita

    2016-03-01

    In this paper, we introduce a panoramic profilometric system to reconstruct inner cylindrical environments. The system projects circular fringes and uses a temporal phase unwrapping technique. The recovered phase map is used to reconstruct objects placed on the inner cylindrical surface. We derived a phase to depth conversion formula for this system. The use of fringe projection allows dense reconstructions. The panoramic system is composed by a digital projector, two parabolic mirrors and a CCD camera. All these components share a common axis with a reference cylinder. This paper presents results for distinct objects.

  13. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2012-01-01

    Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface. PMID:23223079

  14. 3D reconstruction and restoration monitoring of sculptural artworks by a multi-sensor framework.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2012-01-01

    Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface. PMID:23223079

  15. Digital 3D facial reconstruction of George Washington

    NASA Astrophysics Data System (ADS)

    Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne

    2006-02-01

    PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.

  16. Fast vision-based catheter 3D reconstruction.

    PubMed

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D

    2016-07-21

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms. PMID:27352011

  17. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  18. Key techniques for vision measurement of 3D object surface

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Zhang, Shubi; Guo, Guangli; Liu, Chao; Yu, Ruipeng

    2006-11-01

    Digital close-range photogrammetry system and machine vision are widely used in production control, quality inspection. The main aim is to provide accurate 3D objects or reconstruction of an object surface and give an expression to an object shape. First, the key techniques of camera calibration and target image positioning for 3D object surface vision measurement were briefly reviewed and analyzed in this paper. Then, an innovative and effect method for precise space coordinates measurements was proposed. Test research proved that the thought and methods we proposed about image segmentation, detection and positioning of circular marks were effective and valid. A propriety weight value for adding parameters, control points and orientation elements in bundle adjustment with self-calibration are advantageous to gaining high accuracy of space coordinates. The RMS error of check points is less than +/-1 mm, which can meet the requirement in industrial measurement with high accuracy.

  19. Fast fully 3-D image reconstruction in PET using planograms.

    PubMed

    Brasse, D; Kinahan, P E; Clackdoyle, R; Defrise, M; Comtat, C; Townsend, D W

    2004-04-01

    We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15. PMID:15084067

  20. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    NASA Astrophysics Data System (ADS)

    Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.

    2006-12-01

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  1. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  2. Automated reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L.

    Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camera settings. In addition, the parameters of this camera are allowed to change during acquisition (e.g., by zooming or focusing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on state-of-the-art algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of successive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach.

  3. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars. PMID:26357128

  4. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. PMID:22727689

  5. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    SciTech Connect

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  6. 3D reconstruction of rotational video microscope based on patches

    NASA Astrophysics Data System (ADS)

    Ma, Shijie; Qu, Yufu

    2015-11-01

    Due to the small field of view and shallow depth of field, the microscope could only capture 2D images of the object. In order to observe the three-dimensional structure of the micro object, a microscopy images reconstruction algorithm based on an improved patch-based multi-view stereo (PMVS) algorithm is proposed. The new algorithm improves PMVS from two aspects: first, increasing the propagation directions, second, on the basis of the expansion, different expansion radius and times are set by the angle between the normal vector of the seed patch and the direction vector of the line passing through the seed patch center and the camera center. Compared with PMVS, the number of 3D points made by the new algorithm is three times as much as PMVS. And the holes in the vertical side are also eliminated.

  7. The new CORIMP CME catalog & 3D reconstructions

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, Huw; Gallagher, Peter; Habbal, Shadia; Davies, Jackie

    2015-04-01

    A new coronal mass ejection catalog has been built from a unique set of coronal image processing techniques, called CORIMP, that overcomes many of the limitations of current catalogs in operation. An online database has been produced for the SOHO/LASCO data and event detections therein; providing information on CME onset time, position angle, angular width, speed, acceleration, and mass, along with kinematic plots and observation movies. The high-fidelity and robustness of these methods and derived CME structure and kinematics will lead to an improved understanding of the dynamics of CMEs, and a realtime version of the algorithm has been implemented to provide CME detection alerts to the interested space weather community. Furthermore, STEREO data has been providing the ability to perform 3D reconstructions of CMEs that are observed in multipoint observations. This allows a determination of the 3D kinematics and morphologies of CMEs characterised in STEREO data via the 'elliptical tie-pointing' technique. The associated observations of SOHO, SDO and PROBA2 (and intended use of K-Cor) provide additional measurements and constraints on the CME analyses in order to improve their accuracy.

  8. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  9. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. PMID:26037323

  10. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA. PMID:21181572

  11. Diachronic 3d Reconstruction for Lost Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Russo, M.

    2011-09-01

    Cultural Heritage artifacts can often be underestimated for their hidden presence in the landscape. Such problem is particularly large in countries like Italy, where the massive amount of "famous" artifacts tends to neglect other presences unless properly exposed, or when the remains are dramatically damaged leaving very few interpretation clues to the visitor. In such cases a virtual presentation of the Cultural Heritage site can be of great help, specially for explaining the evolution of its status, giving sometimes sense to few spare stones. The definition of these digital representations deal with two crucial aspects: on the one hand the possibility of 3D surveying the relics in order to have an accurate geometrical image of the current status of the artifact; on the other hand the presence of historical sources both in form of written text or images, that once properly matched with the current geometrical data, may help to recreate digitally a set of 3D models representing visually the various historical phases (diachronic model), up to the current one. The core of this article is the definition of an integrated methodology that starts from an high-resolution digital survey of the remains of an ancient building and develops a coherent virtual reconstruction from different historical sources, suggesting a scalable method suitable to be re-used for generating a 4D (geometry + time) model of the artifact. This approach has been experimented on the "Basilica di San Giovanni in Conca" in Milan, a very significant example for its complex historic evolution that combines evident historic values with an invisible presence inside the city.

  12. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  13. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  14. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  15. Temperature maps measurements on 3D surfaces with infrared thermography

    NASA Astrophysics Data System (ADS)

    Cardone, Gennaro; Ianiro, Andrea; Dello Ioio, Gennaro; Passaro, Andrea

    2012-02-01

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel.

  16. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  17. Automated Reconstruction of Walls from Airborne LIDAR Data for Complete 3d Building Modelling

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhang, C.; Awrangjeb, M.; Fraser, C. S.

    2012-07-01

    Automated 3D building model generation continues to attract research interests in photogrammetry and computer vision. Airborne Light Detection and Ranging (LIDAR) data with increasing point density and accuracy has been recognized as a valuable source for automated 3D building reconstruction. While considerable achievements have been made in roof extraction, limited research has been carried out in modelling and reconstruction of walls, which constitute important components of a full building model. Low point density and irregular point distribution of LIDAR observations on vertical walls render this task complex. This paper develops a novel approach for wall reconstruction from airborne LIDAR data. The developed method commences with point cloud segmentation using a region growing approach. Seed points for planar segments are selected through principle component analysis, and points in the neighbourhood are collected and examined to form planar segments. Afterwards, segment-based classification is performed to identify roofs, walls and planar ground surfaces. For walls with sparse LIDAR observations, a search is conducted in the neighbourhood of each individual roof segment to collect wall points, and the walls are then reconstructed using geometrical and topological constraints. Finally, walls which were not illuminated by the LIDAR sensor are determined via both reconstructed roof data and neighbouring walls. This leads to the generation of topologically consistent and geometrically accurate and complete 3D building models. Experiments have been conducted in two test sites in the Netherlands and Australia to evaluate the performance of the proposed method. Results show that planar segments can be reliably extracted in the two reported test sites, which have different point density, and the building walls can be correctly reconstructed if the walls are illuminated by the LIDAR sensor.

  18. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  19. DIII-D Equilibrium Reconstructions with New 3D Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Lao, Lang; Strait, E. J.; Ferraro, N. M.; Ferron, J. R.; King, J. D.; Lee, X.; Meneghini, O.; Turnbull, A. D.; Huang, Y.; Qian, J. G.; Wingen, A.

    2015-11-01

    DIII-D equilibrium reconstructions with the recently installed new 3D magnetic diagnostic are presented. In addition to providing information to allow more accurate 2D reconstructions, the new 3D probes also provide useful information to guide computation of 3D perturbed equilibria. A new more comprehensive magnetic compensation has been implemented. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria making use of the new 3D probes and plasma responses from 3D MHD codes such as GATO and M3D-C1. To improve the computation efficiency, all inactive probes in one of the toroidal planes in EFIT have been replaced with new probes from other planes. Other 3D efforts include testing of 3D reconstructions using V3FIT and a new 3D variational moment equilibrium code VMOM3D. Other EFIT developments include a GPU EFIT version and new safety factor and MSE-LS constraints. The accuracy and limitation of the new probes for 3D reconstructions will be discussed. Supported by US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309.

  20. S3D: An interactive surface grid generation tool

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1992-01-01

    S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.

  1. Automatic 3D power line reconstruction of multi-angular imaging power line inspection system

    NASA Astrophysics Data System (ADS)

    Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei

    2007-06-01

    We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.

  2. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  3. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  4. Points based reconstruction and rendering of 3D shapes from large volume dataset

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchang; Tian, Jie; He, Huiguang; Li, Guangming

    2003-05-01

    In the field of medical imaging, researchers often need visualize lots of 3D datasets to get the informaiton contained in these datasets. But the huge data genreated by modern medical imaging device challenge the real time processing and rendering algorithms at all the time. Spurring by the great achievement of Points Based Rendering (PBR) in the fields of computer graphics to render very large meshes, we propose a new algorithm to use the points as basic primitive of surface reconstruction and rendering to interactively reconstruct and render very large volume dataset. By utilizing the special characteristics of medical image datasets, we obtain a fast and efficient points-based reconstruction and rendering algorithm in common PC. The experimental results show taht this algorithm is feasible and efficient.

  5. 3D reconstruction based on CT image and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxun; Zhang, Mingmin

    2004-03-01

    Reconstitute the 3-D model of the liver and its internal piping system and simulation of the liver surgical operation can increase the accurate and security of the liver surgical operation, attain a purpose for the biggest limit decrease surgical operation wound, shortening surgical operation time, increasing surgical operation succeeding rate, reducing medical treatment expenses and promoting patient recovering from illness. This text expatiated technology and method that the author constitutes 3-D the model of the liver and its internal piping system and simulation of the liver surgical operation according to the images of CT. The direct volume rendering method establishes 3D the model of the liver. Under the environment of OPENGL adopt method of space point rendering to display liver's internal piping system and simulation of the liver surgical operation. Finally, we adopt the wavelet transform method compressed the medical image data.

  6. Reconstruction of the 3D flow field in a differentially heated rotating annulus laboratory experiment

    NASA Astrophysics Data System (ADS)

    Harlander, U.; Wright, G. B.; Egbers, C.

    2012-04-01

    In the earth's atmosphere baroclinic instability is responsible for the heat and momentum transport from low to high latitudes. In the fifties, Raymond Hide used a rather simple laboratory experiment to study such vortices in the lab. The experiment is comprised by a cooled inner and heated outer cylinder mounted on a rotating platform, which mimics the heated tropical and cooled polar regions of the earth's atmosphere. The experiment shows rich dynamics that have been studied by varying the radial temperature difference and the rate of annulus revolution. At the Brandenburg University of Technology (BTU) Cottbus the differentially heated rotating annulus is a reference experiment of the DFG priority program 'MetStröm'. The 3D structure of the annulus flow field has been numerically simulated but, to our knowledge, has not been measured in the laboratory. In the present paper we use novel interpolation techniques to reconstruct the 3D annulus flow field from synchronous Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements. The PIV system is used to measure the horizontal velocity components at 40, 60, 80, 100, and 120 mm above the bottom. The uppermost level is thus 15 mm below the fluid's surface. The surface temperature is simultaneously measured by an infrared (IR) camera. The PIV and infrared cameras have been mounted above the annulus and they co-rotate with the annulus. From the PIV observations alone a coherent 3D picture of the flow cannot be constructed since the PIV measurements have been taken at different instants of time. Therefore a corresponding IR image has been recorded for each PIV measurement. These IR images can be used to reconstruct the correct phase of the measured velocity fields. Each IR and PIV image for which t>0 is rotated back to the position at t=0. Then all surface waves have the same phase. In contrast, the PIV velocity fields generally have different phases since they have been taken at different vertical

  7. 3-D Virtual and Physical Reconstruction of Bendego Iron

    NASA Astrophysics Data System (ADS)

    Belmonte, S. L. R.; Zucolotto, M. E.; Fontes, R. C.; dos Santos, J. R. L.

    2012-09-01

    The use of 3D laser scanning to meteoritic to preserve the original shape of the meteorites before cutting and the facility of saved the datas in STL format (stereolithography) to print three-dimensional physical models and generate a digital replica.

  8. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  9. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  10. Online reconstruction of 3D magnetic particle imaging data.

    PubMed

    Knopp, T; Hofmann, M

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s(-1). However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time. PMID:27182668

  11. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  12. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  13. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  14. Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Hosseininaveh Ahmadabadian, Ali; Robson, Stuart; Boehm, Jan; Shortis, Mark

    2013-04-01

    Multi-View Stereo (MVS) as a low cost technique for precise 3D reconstruction can be a rival for laser scanners if the scale of the model is resolved. A fusion of stereo imaging equipment with photogrammetric bundle adjustment and MVS methods, known as photogrammetric MVS, can generate correctly scaled 3D models without using any known object distances. Although a huge number of stereo images (e.g. 200 high resolution images from a small object) captured of the object contains redundant data that allows detailed and accurate 3D reconstruction, the capture and processing time is increased when a vast amount of high resolution images are employed. Moreover, some parts of the object are often missing due to the lack of coverage of all areas. These problems demand a logical selection of the most suitable stereo camera views from the large image dataset. This paper presents a method for clustering and choosing optimal stereo or optionally single images from a large image dataset. The approach focusses on the two key steps of image clustering and iterative image selection. The method is developed within a software application called Imaging Network Designer (IND) and tested by the 3D recording of a gearbox and three metric reference objects. A comparison is made between IND and CMVS, which is a free package for selecting vantage images. The final 3D models obtained from the IND and CMVS approaches are compared with datasets generated with an MMDx Nikon Laser scanner. Results demonstrate that IND can provide a better image selection for MVS than CMVS in terms of surface coordinate uncertainty and completeness.

  15. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  16. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  17. Thermal infrared exploitation for 3D face reconstruction

    NASA Astrophysics Data System (ADS)

    Abayowa, Bernard O.

    2009-05-01

    Despite the advances in face recognition research, current face recognition systems are still not accurate or robust enough to be deployed in uncontrolled environments. The existence of a pose and illumination invariant face recognition system is still lacking. This research exploits the relationship between thermal infrared and visible imagery, to estimate 3D face with visible texture from infrared imagery. The relationship between visible and thermal infrared texture is learned using kernel canonical correlation analysis(KCCA), and then a 3D modeler is used to estimate the geometric structure from predicted visual imagery. This research will find it's application in uncontrolled environments where illumination and pose invariant identification or tracking is required at long range such as urban search and rescue (Amber alert, missing dementia patient), and manhunt scenarios.

  18. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  19. Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2006-05-01

    This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruction when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image reconstruction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing a single scattering center are detected and the 3D location of these cells' pixels are estimated; all other pixels are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

  20. Single view-based 3D face reconstruction robust to self-occlusion

    NASA Astrophysics Data System (ADS)

    Lee, Youn Joo; Lee, Sung Joo; Park, Kang Ryoung; Jo, Jaeik; Kim, Jaihie

    2012-12-01

    State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image. However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it incurs a lower computational cost. However, this method is vulnerable to self-occlusion due to head rotation. Therefore, we propose a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction. This research is novel compared with previous works, in the following three respects. First, self-occlusion of the input face is detected automatically by estimating the head pose using a cylindrical head model. Second, a 3D model fitting scheme is designed based on selected visible facial feature points, which facilitates 3D face reconstruction without any effect from self-occlusion. Third, the reconstruction performance is enhanced by using the estimated pose as the initial pose parameter during the 3D model fitting process. The experimental results showed that the self-occlusion detection had high accuracy and our proposed method delivered a noticeable improvement in the 3D face reconstruction performance compared with previous methods.

  1. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  2. Target surface finding using 3D SAR data

    NASA Astrophysics Data System (ADS)

    Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.

    2005-05-01

    Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.

  3. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    PubMed

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull. PMID:24206011

  4. Automatic urban 3D building reconstruction from multi-ray photogrammetry

    NASA Astrophysics Data System (ADS)

    McClune, A. P.; Miller, P. E.; Mills, J. P.; Holland, D.

    2014-08-01

    Over the last 20 years the use of, and demand for, three dimensional (3D) building models has meant there has been a vast amount of research conducted in automating the extraction and reconstruction of these models from airborne sensors. Whilst many different approaches have been suggested, full automation is yet to be achieved and research has suggested that the combination of data from multiple sources is required in order to achieve this. Developments in digital photogrammetry have delivered improvements in spatial resolution whilst higher image overlap to increase the number of pixel correspondents between images, giving the name multi-ray photogrammetry, has improved the resolution and quality of its by-products. In this paper the extraction of roof geometry from multiray photogrammetry will be covered, which underpins 3D building reconstruction. Using orthophotos, roof vertices are extracted using the Canny edge detector. Roof planes are detected from digital surface models (DSM) by extracting information from 2D cross sections and measuring height differences. To eliminate overhanging vegetation, the segmentation of trees is investigated by calculating the characteristics of a point within a local neighbourhood of the photogrammetric point cloud. The results highlight the complementary nature of these information sources, and a methodology for integration and reconstruction of roof geometry is proposed.

  5. Calibration target reconstruction for 3-D vision inspection system of large-scale engineering objects

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; Peng, Xiang; Guan, Yingjian; Liu, Xiaoli; Li, Ameng

    2010-11-01

    It is usually difficult to calibrate the 3-D vision inspection system that may be employed to measure the large-scale engineering objects. One of the challenges is how to in-situ build-up a large and precise calibration target. In this paper, we present a calibration target reconstruction strategy to solve such a problem. First, we choose one of the engineering objects to be inspected as a calibration target, on which we paste coded marks on the object surface. Next, we locate and decode marks to get homologous points. From multiple camera images, the fundamental matrix between adjacent images can be estimated, and then the essential matrix can be derived with priori known camera intrinsic parameters and decomposed to obtain camera extrinsic parameters. Finally, we are able to obtain the initial 3D coordinates with binocular stereo vision reconstruction, and then optimize them with the bundle adjustment by considering the lens distortions, leading to a high-precision calibration target. This reconstruction strategy has been applied to the inspection of an industrial project, from which the proposed method is successfully validated.

  6. Photometric analysis as an aid to 3D reconstruction of indoor scenes

    NASA Astrophysics Data System (ADS)

    Serfaty, Veronique; Ackah-Miezan, Andrew; Lutton, Evelyne; Gagalowicz, Andre

    1993-06-01

    In an Image Understanding framework, our aim is to reconstruct an actual indoor scene from a (sequence of) color pair(s) of stereoscopic images. The desired (synthesis-oriented) description requires the analysis of both 3D geometric and photometric parameters in order to use the feedback provided by image synthesis to control the image analysis. The environment model is a hierarchy of polyhedral 3D objects (planar lambertian facets). Two main physical phenomena determine the image intensities: surface reflectance properties and light sources. From illumination models established in Computer Graphics, we derive the appropriate irradiance equations. Rather than use a point source located at infinity, we choose instead isotropic point sources with decreasing energy. This allows us to discriminate small irradiance gradients inside regions. For indoor scenes, such photometric models are more realistic, due to the presence of ceiling lights, desk lamps, and so on. Both a photometric reconstruction algorithm and a technique for localizing the 'dominant' light source are presented along with lighting simulations. For comparison purposes, corresponding artificial images are shown. Using this work, we wish to highlight the fruitful cooperation between the Vision and Graphics domains in order to perform a more accurate scene reconstruction, both photometrically and geometrically. The emphasis is on the illumination characterization which influences the scene interpretation.

  7. Method for 3D fibre reconstruction on a microrobotic platform.

    PubMed

    Hirvonen, J; Myllys, M; Kallio, P

    2016-07-01

    Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. PMID:26695385

  8. 3D surface analysis and classification in neuroimaging segmentation.

    PubMed

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  9. 3D model tools for architecture and archaeology reconstruction

    NASA Astrophysics Data System (ADS)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  10. Optic flow aided navigation and 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Rollason, Malcolm

    2013-10-01

    An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.

  11. Quantitative Reconstructions of 3D Chemical Nanostructures in Nanowires.

    PubMed

    Rueda-Fonseca, P; Robin, E; Bellet-Amalric, E; Lopez-Haro, M; Den Hertog, M; Genuist, Y; André, R; Artioli, A; Tatarenko, S; Ferrand, D; Cibert, J

    2016-03-01

    Energy dispersive X-ray spectrometry is used to extract a quantitative 3D composition profile of heterostructured nanowires. The analysis of hypermaps recorded along a limited number of projections, with a preliminary calibration of the signal associated with each element, is compared to the intensity profiles calculated for a model structure with successive shells of circular, elliptic, or faceted cross sections. This discrete tomographic technique is applied to II-VI nanowires grown by molecular beam epitaxy, incorporating ZnTe and CdTe and their alloys with Mn and Mg, with typical size down to a few nanometers and Mn or Mg content as low as 10%. PMID:26837636

  12. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  13. 3D reconstruction with two webcams and a laser line projector

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian

    2014-09-01

    Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.

  14. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  15. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  16. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  17. Assist feature printability prediction by 3-D resist profile reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    properties may then be used to optimize the printability vs. efficacy of an SRAF either prior to or during an Optical Proximity Correction (OPC) run. The process models that are used during OPC have never been able to reliably predict which SRAFs will print. This appears to be due to the fact that OPC process models are generally created using data that does not include printed subresolution patterns. An enhancement to compact modeling capability to predict Assist Features (AF) printability is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to bottom. Such a 3-D resist profile is an extrapolation of a well calibrated traditional OPC model without any additional information. Assist features are detected at either top of resist (dark field) or bottom of resist (bright field). Such detection can be done by just extracting top or bottom resist models from our 3-D resist model. There is no measurement of assist features needed when we build AF but it can be included if interested but focusing on resist calibration to account for both exposure dosage and focus change sensitivities. This approach significantly increases resist model's capability for predicting printed SRAF accuracy. And we don't need to calibrate an SRAF model in addition to the OPC model. Without increase in computation time, this compact model can draw assist feature contour with real placement and size at any vertical plane. The result is compared and validated with 3-D rigorous modeling as well as SEM images. Since this method does not change any form of compact modeling, it can be integrated into current MBAF solutions without any additional work.

  18. 3D digital breast tomosynthesis image reconstruction using anisotropic total variation minimization.

    PubMed

    Seyyedi, Saeed; Yildirim, Isa

    2014-01-01

    This paper presents a compressed sensing based reconstruction method for 3D digital breast tomosynthesis (DBT) imaging. Algebraic reconstruction technique (ART) has been in use in DBT imaging by minimizing the isotropic total variation (TV) of the reconstructed image. The resolution in DBT differs in sagittal and axial directions which should be encountered during the TV minimization. In this study we develop a 3D anisotropic TV (ATV) minimization by considering the different resolutions in different directions. A customized 3D Shepp-logan phantom was generated to mimic a real DBT image by considering the overlapping tissue and directional resolution issues. Results of the ART, ART+3D TV and ART+3D ATV are compared using structural similarity (SSIM) diagram. PMID:25571377

  19. 3D parameter reconstruction in hyperspectral diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Saibaba, Arvind K.; Krishnamurthy, Nishanth; Anderson, Pamela G.; Kainerstorfer, Jana M.; Sassaroli, Angelo; Miller, Eric L.; Fantini, Sergio; Kilmer, Misha E.

    2015-03-01

    The imaging of shape perturbation and chromophore concentration using Diffuse Optical Tomography (DOT) data can be mathematically described as an ill-posed and non-linear inverse problem. The reconstruction algorithm for hyperspectral data using a linearized Born model is prohibitively expensive, both in terms of computation and memory. We model the shape of the perturbation using parametric level-set approach (PaLS). We discuss novel computational strategies for reducing the computational cost based on a Krylov subspace approach for parameteric linear systems and a compression strategy for the parameter-to-observation map. We will demonstrate the validity of our approach by comparison with experiments.

  20. Combinatorial clustering and Its Application to 3D Polygonal Traffic Sign Reconstruction From Multiple Images

    NASA Astrophysics Data System (ADS)

    Vallet, B.; Soheilian, B.; Brédif, M.

    2014-08-01

    The 3D reconstruction of similar 3D objects detected in 2D faces a major issue when it comes to grouping the 2D detections into clusters to be used to reconstruct the individual 3D objects. Simple clustering heuristics fail as soon as similar objects are close. This paper formulates a framework to use the geometric quality of the reconstruction as a hint to do a proper clustering. We present a methodology to solve the resulting combinatorial optimization problem with some simplifications and approximations in order to make it tractable. The proposed method is applied to the reconstruction of 3D traffic signs from their 2D detections to demonstrate its capacity to solve ambiguities.

  1. 3D face recognition based on matching of facial surfaces

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, Beatriz A.; Kober, Vitaly

    2015-09-01

    Face recognition is an important task in pattern recognition and computer vision. In this work a method for 3D face recognition in the presence of facial expression and poses variations is proposed. The method uses 3D shape data without color or texture information. A new matching algorithm based on conformal mapping of original facial surfaces onto a Riemannian manifold followed by comparison of conformal and isometric invariants computed in the manifold is suggested. Experimental results are presented using common 3D face databases that contain significant amount of expression and pose variations.

  2. 3D cardiac motion reconstruction from CT data and tagged MRI.

    PubMed

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  3. 3D Cardiac Motion Reconstruction from CT Data and Tagged MRI

    PubMed Central

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2016-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  4. Bayesian 3D velocity field reconstruction with VIRBIUS

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2016-03-01

    I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.

  5. 3D reconstruction and spatial auralization of the "Painted Dolmen" of Antelas

    NASA Astrophysics Data System (ADS)

    Dias, Paulo; Campos, Guilherme; Santos, Vítor; Casaleiro, Ricardo; Seco, Ricardo; Sousa Santos, Beatriz

    2008-02-01

    This paper presents preliminary results on the development of a 3D audiovisual model of the Anta Pintada (painted dolmen) of Antelas, a Neolithic chamber tomb located in Oliveira de Frades and listed as Portuguese national monument. The final aim of the project is to create a highly accurate Virtual Reality (VR) model of this unique archaeological site, capable of providing not only visual but also acoustic immersion based on its actual geometry and physical properties. The project started in May 2006 with in situ data acquisition. The 3D geometry of the chamber was captured using a Laser Range Finder. In order to combine the different scans into a complete 3D visual model, reconstruction software based on the Iterative Closest Point (ICP) algorithm was developed using the Visualization Toolkit (VTK). This software computes the boundaries of the room on a 3D uniform grid and populates its interior with "free-space nodes", through an iterative algorithm operating like a torchlight illuminating a dark room. The envelope of the resulting set of "free-space nodes" is used to generate a 3D iso-surface approximating the interior shape of the chamber. Each polygon of this surface is then assigned the acoustic absorption coefficient of the corresponding boundary material. A 3D audiovisual model operating in real-time was developed for a VR Environment comprising head-mounted display (HMD) I-glasses SVGAPro, an orientation sensor (tracker) InterTrax 2 with 3 Degrees Of Freedom (3DOF) and stereo headphones. The auralisation software is based on a geometric model. This constitutes a first approach, since geometric acoustics have well-known limitations in rooms with irregular surfaces. The immediate advantage lies in their inherent computational efficiency, which allows real-time operation. The program computes the early reflections forming the initial part of the chamber's impulse response (IR), which carry the most significant cues for source localisation. These early

  6. Reconstructing 3-D Ship Motion for Synthetic Aperture Sonar Processing

    NASA Astrophysics Data System (ADS)

    Thomsen, D. R.; Chadwell, C. D.; Sandwell, D.

    2004-12-01

    We are investigating the feasibility of coherent ping-to-ping processing of multibeam sonar data for high-resolution mapping and change detection in the deep ocean. Theoretical calculations suggest that standard multibeam resolution can be improved from 100 m to ~10 m through coherent summation of pings similar to synthetic aperture radar image formation. A requirement for coherent summation of pings is to correct the phase of the return echoes to an accuracy of ~3 cm at a sampling rate of ~10 Hz. In September of 2003, we conducted a seagoing experiment aboard R/V Revelle to test these ideas. Three geodetic-quality GPS receivers were deployed to recover 3-D ship motion to an accuracy of +- 3cm at a 1 Hz sampling rate [Chadwell and Bock, GRL, 2001]. Additionally, inertial navigation data (INS) from fiber-optic gyroscopes and pendulum-type accelerometers were collected at a 10 Hz rate. Independent measurements of ship orientation (yaw, pitch, and roll) from the GPS and INS show agreement to an RMS accuracy of better than 0.1 degree. Because inertial navigation hardware is susceptible to drift, these measurements were combined with the GPS to achieve both high accuracy and high sampling rate. To preserve the short-timescale accuracy of the INS and the long-timescale accuracy of the GPS measurements, time-filtered differences between the GPS and INS were subtracted from the INS integrated linear velocities. An optimal filter length of 25 s was chosen to force the RMS difference between the GPS and the integrated INS to be on the order of the accuracy of the GPS measurements. This analysis provides an upper bound on 3-D ship motion accuracy. Additionally, errors in the attitude can translate to the projections of motion for individual hydrophones. With lever arms on the order of 5m, these errors will likely be ~1mm. Based on these analyses, we expect to achieve the 3-cm accuracy requirement. Using full-resolution hydrophone data collected by a SIMRAD EM/120 echo sounder

  7. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449

  8. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study.

    PubMed

    Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W

    2000-01-01

    We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284

  9. Image-Based 3d Reconstruction and Analysis for Orthodontia

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  10. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  11. Transaction rules for updating surfaces in 3D GIS

    NASA Astrophysics Data System (ADS)

    Gröger, Gerhard; Plümer, Lutz

    2012-04-01

    Three-dimensional surface models representing the terrain and the outer hull of objects such as buildings and bridges support important 3D GIS applications, for example telecommunication planning and noise emission simulation. Updates of surface models often introduce errors which violate basic assumptions of users and their applications. The notion of geometric-topological consistency covers many of these assumptions. It guarantees that objects do not penetrate mutually or that objects completely cover other objects. Assuring that updates do not violate geometric-topological consistency constitutes a major challenge for 3D GIS which has not been satisfactorily met so far. This article presents a solution which is based on efficient transaction rules for updating 3D surface models. We show that these rules are safe (consistency is preserved by any rule application) and complete (any consistent surface model can be generated by successive rule applications). For both properties rigorous mathematic proofs are given.

  12. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface

  13. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  14. Studies of the 3D surface roughness height

    NASA Astrophysics Data System (ADS)

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-01

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings' surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  15. Studies of the 3D surface roughness height

    SciTech Connect

    Avisane, Anita; Rudzitis, Janis; Kumermanis, Maris

    2013-12-16

    Nowadays nano-coatings occupy more and more significant place in technology. Innovative, functional coatings acquire new aspects from the point of view of modern technologies, considering the aggregate of physical properties that can be achieved manipulating in the production process with the properties of coatings’ surfaces on micro- and nano-level. Nano-coatings are applied on machine parts, friction surfaces, contacting parts, corrosion surfaces, transparent conducting films (TCF), etc. The equipment available at present for the production of transparent conducting oxide (TCO) coatings with highest quality is based on expensive indium tin oxide (ITO) material; therefore cheaper alternatives are being searched for. One such offered alternative is zink oxide (ZnO) nano-coatings. Evaluating the TCF physical and mechanical properties and in view of the new ISO standard (EN ISO 25178) on the introduction of surface texture (3D surface roughness) in the engineering calculations, it is necessary to examine the height of 3D surface roughness, which is one of the most significant roughness parameters. The given paper studies the average values of 3D surface roughness height and the most often applied distribution laws are as follows: the normal distribution and Rayleigh distribution. The 3D surface is simulated by a normal random field.

  16. Reconstruction Error of Calibration Volume’s Coordinates for 3D Swimming Kinematics

    PubMed Central

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J.

    2011-01-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  17. Reconstruction Error of Calibration Volume's Coordinates for 3D Swimming Kinematics.

    PubMed

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2011-09-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  18. A Two-Stage Framework for 3D Face Reconstruction from RGBD Images.

    PubMed

    Wang, Kangkan; Wang, Xianwang; Pan, Zhigeng; Liu, Kai

    2014-08-01

    This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression. PMID:26353333

  19. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  20. 3D Reconstruction of a Rotating Erupting Prominence

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.; Kliem, B.; Torok, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 Angstrom line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three dimensional space, and reprojected into a view in which the eruption is directed towards the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equals 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg. from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation is reached within approximately equals 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  1. 3D Reconstruction of a Rotating Erupting Prominence

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.; Kliem, B.; Toeroek, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight a it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 A line in EUVI and in the H-alpha-sensitive bandpass of COR I by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equal to 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg from the original filament orientation inferred from H-alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within approximately equal to 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  2. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  3. A simple approach for 3D reconstruction of the spine from biplanar radiography

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Shi, Xinling; Lv, Liang; Guo, Fei; Zhang, Yufeng

    2014-04-01

    This paper proposed a simple approach for 3D spinal reconstruction from biplanar radiography. The proposed reconstruction consisted in reconstructing the 3D central curve of the spine based on the epipolar geometry and automatically aligning vertebrae under the constraint of this curve. The vertebral orientations were adjusted by matching the projections of the 3D pedicles with the 2D pedicles in biplanar radiographs. The user interaction time was within one minute for a thoracic spine. Sixteen pairs of radiographs of a thoracic spinal model were used to evaluate the precision and accuracy. The precision was within 3.1 mm for the location and 3.5° for the orientation. The accuracy was within 3.5 mm for the location and 3.9° for the orientation. These results demonstrate that this approach can be a promising tool to obtain the 3D spinal geometry with acceptable user interactions in scoliotic clinics.

  4. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  5. Automatic Model Selection for 3d Reconstruction of Buildings from Satellite Imagary

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Arefi, H.; Krauß, T.; Reinartz, P.

    2013-09-01

    Through the improvements of satellite sensor and matching technology, the derivation of 3D models from space borne stereo data obtained a lot of interest for various applications such as mobile navigation, urban planning, telecommunication, and tourism. The automatic reconstruction of 3D building models from space borne point cloud data is still an active research topic. The challenging problem in this field is the relatively low quality of the Digital Surface Model (DSM) generated by stereo matching of satellite data comparing to airborne LiDAR data. In order to establish an efficient method to achieve high quality models and complete automation from the mentioned DSM, in this paper a new method based on a model-driven strategy is proposed. For improving the results, refined orthorectified panchromatic images are introduced into the process as additional data. The idea of this method is based on ridge line extraction and analysing height values in direction of and perpendicular to the ridgeline direction. After applying pre-processing to the orthorectified data, some feature descriptors are extracted from the DSM, to improve the automatic ridge line detection. Applying RANSAC a line is fitted to each group of ridge points. Finally these ridge lines are refined by matching them or closing gaps. In order to select the type of roof model the heights of point in extension of the ridge line and height differences perpendicular to the ridge line are analysed. After roof model selection, building edge information is extracted from canny edge detection and parameters derived from the roof parts. Then the best model is fitted to extracted façade roofs based on detected type of model. Each roof is modelled independently and final 3D buildings are reconstructed by merging the roof models with the corresponding walls.

  6. A fast 3D reconstruction system with a low-cost camera accessory

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-06-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object.

  7. A fast 3D reconstruction system with a low-cost camera accessory

    PubMed Central

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-01-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object. PMID:26057407

  8. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. PMID:24723320

  9. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  10. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  11. 3D reconstruction of a building from LIDAR data with first-and-last echo information

    NASA Astrophysics Data System (ADS)

    Zhang, Guoning; Zhang, Jixian; Yu, Jie; Yang, Haiquan; Tan, Ming

    2007-11-01

    With the aerial LIDAR technology developing, how to automatically recognize and reconstruct the buildings from LIDAR dataset is an important research topic along with the widespread applications of LIDAR data in city modeling, urban planning, etc.. Applying the information of the first-and-last echo data of the same laser point, in this paper, a scheme of 3D-reconstruction of simple building has been presented, which mainly include the following steps: the recognition of non-boundary building points and boundary building points and the generation of each building-point-cluster; the localization of the boundary of each building; the detection of the planes included in each cluster and the reconstruction of building in 3D form. Through experiment, it can be proved that for the LIDAR data with first-and-last echo information the scheme can effectively and efficiently 3D-reconstruct simple buildings, such as flat and gabled buildings.

  12. Overview of 3D surface digitization technologies in Europe

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2006-02-01

    This paper presents an overview of the different 3D surface digitization technologies commercially available in the European market. The solutions for 3D surface measurement offered by major European companies can be divided into different groups depending on various characteristics, such as technology (e.g. laser scanning, white light projection), system construction (e.g. fix, on CMM/robot/arm) or measurement type (e.g. surface scanning, profile scanning). Crossing between the categories is possible, however, the majority of commercial products can be divided into the following groups: (a) laser profilers mounted on CMM, (b) portable coded light projection systems, (c) desktop solutions with laser profiler or coded light projectin system and multi-axes platform, (d) laser point measurement systems where both sensor and object move, (e) hand operated laser profilers, hand held laser profiler or point measurement systems, (f) dedicated systems. This paper presents the different 3D surface digitization technologies and describes them with their advantages and disadvantages. Various examples of their use are shown for different application fields. A special interest is given to applications regarding the 3D surface measurement of the human body.

  13. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Bosson, G.; Grignon, C.; Bouly, J. L.; Richer, J. P.; Guillaudin, O.; Mayet, F.; Billard, J.; Santos, D.

    2011-11-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This auto-triggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  14. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images

    PubMed Central

    Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-01-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons. PMID:23637587

  15. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  16. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  17. Impact of Level of Details in the 3d Reconstruction of Trees for Microclimate Modeling

    NASA Astrophysics Data System (ADS)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2016-06-01

    In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS), the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.

  18. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  19. Detecting Distance between Injected Microspheres and Target Tumor via 3D Reconstruction of Tissue Sections

    SciTech Connect

    Carson, James P.; Kuprat, Andrew P.; Colby, Sean M.; Davis, Cassi A.; Basciano, Christopher; Greene, Kevin; Feo, John T.; Kennedy, Andrew

    2012-08-28

    One treatment increasing in use for solid tumors in the liver is radioembolization via the delivery of 90Y microspheres to the vascular bed within or near the location of the tumor. It is desirable as part of the treatment for the microspheres to embed preferentially in or near the tumor. This work details an approach for analyzing the deposition of microspheres with respect to the location of the tumor. The approach used is based upon thin-slice serial sectioning of the tissue sample, followed by high resolution imaging, microsphere detection, and 3-D reconstruction of the tumor surface. Distance from the microspheres to the tumor was calculated using a fast deterministic point inclusion method.

  20. 3D precision surface measurement by dynamic structured light

    NASA Astrophysics Data System (ADS)

    Franke, Ernest A.; Magee, Michael J.; Mitchell, Joseph N.; Rigney, Michael P.

    2004-02-01

    This paper describes a 3-D imaging technique developed as an internal research project at Southwest Research Institute. The technique is based on an extension of structured light methods in which a projected pattern of parallel lines is rotated over the surface to be measured. A sequence of images is captured and the surface elevation at any location can then be determined from measurements of the temporal pattern, at any point, without considering any other points on the surface. The paper describes techniques for system calibration and surface measurement based on the method of projected quadric shells. Algorithms were developed for image and signal analysis and computer programs were written to calibrate the system and to calculate 3-D coordinates of points on a measured surface. A prototype of the Dynamic Structured Light (DSL) 3-D imaging system was assembled and typical parts were measured. The design procedure was verified and used to implement several different configurations with different measurement volumes and measurement accuracy. A small-parts measurement accuracy of 32 micrometers (.0012") RMS was verified by measuring the surface of a precision-machined plane. Large aircraft control surfaces were measured with a prototype setup that provided .02" depth resolution over a 4" by 8" field of view. Measurement times are typically less than three minutes for 300,000 points. A patent application has been filed.

  1. 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings.

    PubMed

    Semmler, Marion; Kniesburges, Stefan; Birk, Veronika; Ziethe, Anke; Patel, Rita; Dollinger, Michael

    2016-07-01

    Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process. PMID:26829782

  2. 3D models automatic reconstruction of selected close range objects. (Polish Title: Automatyczna rekonstrukcja modeli 3D małych obiektów bliskiego zasiegu)

    NASA Astrophysics Data System (ADS)

    Zaweiska, D.

    2013-12-01

    Reconstruction of three-dimensional, realistic models of objects from digital images has been the topic of research in many areas of science for many years. This development is stimulated by new technologies and tools, which appeared recently, such as digital photography, laser scanners, increase in the equipment efficiency and Internet. The objective of this paper is to present results of automatic modeling of selected close range objects, with the use of digital photographs acquired by the Hasselblad H4D50 camera. The author's software tool was utilized for calculations; it performs successive stages of the 3D model creation. The modeling process was presented as the complete process which starts from acquisition of images and which is completed by creation of a photorealistic 3D model in the same software environment. Experiments were performed for selected close range objects, with appropriately arranged image geometry, creating a ring around the measured object. The Area Base Matching (CC/LSM) method, the RANSAC algorithm, with the use of tensor calculus, were utilized form automatic matching of points detected with the SUSAN algorithm. Reconstruction of the surface of model generation is one of the important stages of 3D modeling. Reconstruction of precise surfaces, performed on the basis of a non-organized cloud of points, acquired from automatic processing of digital images, is a difficult task, which has not been finally solved. Creation of poly-angular models, which may meet high requirements concerning modeling and visualization is required in many applications. The polynomial method is usually the best way to precise representation of measurement results, and, at the same time, to achieving the optimum description of the surface. Three algorithm were tested: the volumetric method (VCG), the Poisson method and the Ball pivoting method. Those methods are mostly applied to modeling of uniform grids of points. Results of experiments proved that incorrect

  3. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  4. Comparison of Parallel MRI Reconstruction Methods for Accelerated 3D Fast Spin-Echo Imaging

    PubMed Central

    Xiao, Zhikui; Hoge, W. Scott; Mulkern, R.V.; Zhao, Lei; Hu, Guangshu; Kyriakos, Walid E.

    2014-01-01

    Parallel MRI (pMRI) achieves imaging acceleration by partially substituting gradient-encoding steps with spatial information contained in the component coils of the acquisition array. Variable-density subsampling in pMRI was previously shown to yield improved two-dimensional (2D) imaging in comparison to uniform subsampling, but has yet to be used routinely in clinical practice. In an effort to reduce acquisition time for 3D fast spin-echo (3D-FSE) sequences, this work explores a specific nonuniform sampling scheme for 3D imaging, subsampling along two phase-encoding (PE) directions on a rectilinear grid. We use two reconstruction methods—2D-GRAPPA-Operator and 2D-SPACE RIP—and present a comparison between them. We show that high-quality images can be reconstructed using both techniques. To evaluate the proposed sampling method and reconstruction schemes, results via simulation, phantom study, and in vivo 3D human data are shown. We find that fewer artifacts can be seen in the 2D-SPACE RIP reconstructions than in 2D-GRAPPA-Operator reconstructions, with comparable reconstruction times. PMID:18727083

  5. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    PubMed

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery. PMID:20426007

  6. Synthesizing 3D Surfaces from Parameterized Strip Charts

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; Gomez, Julian; Morehouse, Michael; Gawdiak, Yuri

    2004-01-01

    We believe 3D information visualization has the power to unlock new levels of productivity in the monitoring and control of complex processes. Our goal is to provide visual methods to allow for rapid human insight into systems consisting of thousands to millions of parameters. We explore this hypothesis in two complex domains: NASA program management and NASA International Space Station (ISS) spacecraft computer operations. We seek to extend a common form of visualization called the strip chart from 2D to 3D. A strip chart can display the time series progression of a parameter and allows for trends and events to be identified. Strip charts can be overlayed when multiple parameters need to visualized in order to correlate their events. When many parameters are involved, the direct overlaying of strip charts can become confusing and may not fully utilize the graphing area to convey the relationships between the parameters. We provide a solution to this problem by generating 3D surfaces from parameterized strip charts. The 3D surface utilizes significantly more screen area to illustrate the differences in the parameters and the overlayed strip charts, and it can rapidly be scanned by humans to gain insight. The selection of the third dimension must be a parallel or parameterized homogenous resource in the target domain, defined using a finite, ordered, enumerated type, and not a heterogeneous type. We demonstrate our concepts with examples from the NASA program management domain (assessing the state of many plans) and the computers of the ISS (assessing the state of many computers). We identify 2D strip charts in each domain and show how to construct the corresponding 3D surfaces. The user can navigate the surface, zooming in on regions of interest, setting a mark and drilling down to source documents from which the data points have been derived. We close by discussing design issues, related work, and implementation challenges.

  7. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    The main objective of this paper is to establish a procedural method for measuring and cataloguing antlers through the use of laser scanner and of a 3D reconstruction of complex modeling. The deer's antlers have been used as a test and subjected to capture and measurement. For this purpose multiple data sources techniques have been studied and compared, (also considering low-cost sensors) estimating the accuracy and its errors in order to demonstrate the validity of the process. A further development is the comparison of results with applications of digital photogrammetry, considering also cloud computing software. The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH. The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison. It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID - which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different

  8. 3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2014-12-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.

  9. Using of Bezier Interpolation in 3D Reconstruction of Human Femur Bone

    NASA Astrophysics Data System (ADS)

    Toth-Tascau, Mirela; Pater, Flavius; Stoia, Dan Ioan; Menyhardt, Karoly; Rosu, Serban; Rusu, Lucian; Vigaru, Cosmina

    2011-09-01

    The paper is focused on image acquisition and processing of CT scans of a human femur bone in order to obtain 3D reconstructions of the human femur. The objective of the presented study was to obtain 3D realistic model of the human femur bone. The reconstructed model provides useful data to the physician but more important are the data and 3D models that can be used for virtual testing of femoral implants and endoprosthesis. Using the B-spline patch a 3D volume model of the human femur bone can be achieved. This model can be easy imported in any CAD system, resulting a virtual femur model witch can be used in FEM analysis.

  10. 3D Reconstruction of the Retinal Arterial Tree Using Subject-Specific Fundus Images

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wood, N. B.; Xu, X. Y.; Witt, N.; Hughes, A. D.; Samcg, Thom

    Systemic diseases, such as hypertension and diabetes, are associated with changes in the retinal microvasculature. Although a number of studies have been performed on the quantitative assessment of the geometrical patterns of the retinal vasculature, previous work has been confined to 2 dimensional (2D) analyses. In this paper, we present an approach to obtain a 3D reconstruction of the retinal arteries from a pair of 2D retinal images acquired in vivo. A simple essential matrix based self-calibration approach was employed for the "fundus camera-eye" system. Vessel segmentation was performed using a semi-automatic approach and correspondence between points from different images was calculated. The results of 3D reconstruction show the centreline of retinal vessels and their 3D curvature clearly. Three-dimensional reconstruction of the retinal vessels is feasible and may be useful in future studies of the retinal vasculature in disease.