Non-isothermal 3D SDPD Simulations
NASA Astrophysics Data System (ADS)
Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos
2012-11-01
The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-05-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-06-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
Time-dependent 3-D dterministic transport on parallel architectures using Dantsys/MPI
Baker, R.S.; Alcouffe, R.E.
1996-12-31
In addition to the ability to solve the static transport equation, we have also incorporated time dependence into our parallel 3-D S{sub {ital N}} code DANTSYS/MPI. Using a semi-implicit scheme, DANTSYS/MPI is capable of performing time-dependent calculations for both fissioning and pure source driven problems. We have applied this to various types of problems such as nuclear well logging and prompt fission experiments. This paper describes the form of the time- dependent equations implemented, their solution strategies in DANTSYS/MPI including iteration acceleration, and the strategies used for time-step control. Results are presented for a model nuclear well logging calculation.
A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.
Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank
2014-10-21
Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
A 3D moisture-stress FEM analysis for time dependent problems in timber structures
NASA Astrophysics Data System (ADS)
Fortino, Stefania; Mirianon, Florian; Toratti, Tomi
2009-11-01
This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.
GATOR: A 3-D time-dependent simulation code for helix TWTs
Zaidman, E.G.; Freund, H.P.
1996-12-31
A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.
Energy Science and Technology Software Center (ESTSC)
2013-06-24
Version 07 TART2012 is a coupled neutron-photon Monte Carlo transport code designed to use three-dimensional (3-D) combinatorial geometry. Neutron and/or photon sources as well as neutron induced photon production can be tracked. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART2012 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared tomore » other similar codes. Use of the entire system can save you a great deal of time and energy. TART2012 extends the general utility of the code to even more areas of application than available in previous releases by concentrating on improving the physics, particularly with regard to improved treatment of neutron fission, resonance self-shielding, molecular binding, and extending input options used by the code. Several utilities are included for creating input files and displaying TART results and data. TART2012 uses the latest ENDF/B-VI, Release 8, data. New for TART2012 is the use of continuous energy neutron cross sections, in addition to its traditional multigroup cross sections. For neutron interaction, the data are derived using ENDF-ENDL2005 and include both continuous energy cross sections and 700 group neutron data derived using a combination of ENDF/B-VI, Release 8, and ENDL data. The 700 group structure extends from 10-5 eV up to 1 GeV. Presently nuclear data are only available up to 20 MeV, so that only 616 of the groups are currently used. For photon interaction, 701 point photon data were derived using the Livermore EPDL97 file. The new 701 point structure extends from 100 eV up to 1 GeV, and is currently used over this entire energy range. TART2012 completely supersedes all older versions of TART, and it is strongly recommended that one use only the most recent version of TART2012 and its data files. Check authors homepage for related information: http
NASA Astrophysics Data System (ADS)
Chen, Yu; Xie, Xilin
2016-05-01
E and Liu [J. Comput. Phys. 138 (1997) 57-82] put forward a finite difference method for 3D viscous incompressible flows in the vorticity-vector potential formulation on non-staggered grids. In this paper, we will extend this method to the case of flows in the presence of a deformable surface. By use of two kinds of surface differential operators, the implementation of boundary conditions on a plane is generalized to a curved smooth surface with given velocity distribution, whether this be an inflow/outflow interface or a curved wall. To deal with the irregular and varying physical domain, time-dependent curvilinear coordinates are constructed and the corresponding tensor analysis is adopted in deriving the component form of the governing equations. Therefore, the equations can be discretized and solved in a regular and fixed parametric domain. Numerical results are presented for a 3D lid-driven cavity with a deforming surface and a 3D duct flow with a deforming boundary. A new way to validate numerical simulations is proposed based on an expression for the rate-of-strain tensor on a deformable surface.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-07-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
NASA Astrophysics Data System (ADS)
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.
Cullen, D E
1998-11-22
TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.
NASA Astrophysics Data System (ADS)
Zhang, Haocheng; Diltz, Chris Scott; Boettcher, Markus
2016-04-01
The origin of the high-energy spectral component of blazar emission is still controversial. Polarization signatures can provide additional diagnostics on the leptonic and the hadronic models. We have developed a 3D multi-zone, time-dependent hadronic model based on Fokker-Planck equations. Coupled with a polarization-dependent radiation transfer code 3DPol, we derive the snap-shot spectral energy distributions and frequency-dependent polarization signatures, as well as multi-wavelength light curves and polarization variations. These findings can be confronted with future high-energy polarization observations to distinguish between the leptonic and the hadronic models.
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-11-01
A time-dependent simulation of C-Mod pulsed ICRF power is made calculating minority hydrogen ion distribution functions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. ICRF fields are calculated with the AORSA full wave code, and RF diffusion coefficients are obtained from these fields using the DC Lorentz gyro-orbit code. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, in general agreement with experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these effects on the the NPA synthetic diagnostic time-dependence. The new NPA results give increased agreement with experiment, particularly in the ramp-down time after the ICRF pulse. Funded, through subcontract with Massachusetts Institute of Technology, by USDOE sponsored SciDAC Center for Simulation of Wave-Plasma Interactions.
Computer Modeling of Non-Isothermal Crystallization
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Narayan, K. Lakshmi; Levine, L. E.; Cull, T. C.; Ray, C. S.
1996-01-01
A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated.
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results. PMID:26436891
NASA Astrophysics Data System (ADS)
Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.
2014-10-01
A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-12-01
A time-dependent simulation of C-Mod pulsed TCRF power is made obtaining minority hydrogen ion distributions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. Cyclotron-resonant TCRF fields are calculated with the AORSA full wave code. The RF diffusion coefficients used in CQL3D are obtained with the DC Lorentz gyro-orbit code for perturbed particle trajectories in the combined equilibrium and TCRF electromagnetic fields. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, and this substantially increased the rampup rate of the observed vertically-viewed neutral particle analyzer (NPA) flux, in general agreement with experiment. However, ramp down of the NPA flux after the pulse, remained long compared to the experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these new effects on the the NPA time-dependence.
NASA Astrophysics Data System (ADS)
Wright, G.; Flyer, N.; Yuen, D. A.; Monnereau, M.; Zhang, S.; Wang, S. M.
2009-05-01
Many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and spectral methods have been employed to study 3-D mantle convection. All have their own strengths, but also serious weaknesses. Spectrally accurate methods do not practically allow for node refinement and often involve cumbersome algebra while finite difference, volume, or element methods are generally low-order, adding excessive numerical diffusion to the model. For the 3-D mantle convection problem, we have introduced a new mesh-free approach, using radial basis functions (RBF). This method has the advantage of being algorithmic simple, spectrally accurate for arbitrary node layouts in multi-dimensions and naturally allows for node-refinement. One virtue of the RBF scheme allows the user to use a simple Cartesian geometry, while implementing the required boundary conditions for the temperature, velocities and stress components on a spherical surface at both the planetary surface and the core-mantle boundary. We have studied time- dependent mantle convection, using both a RBF-pseudospectral code and a code which uses spherical- harmonics in the angular direction and second-order finite volume in the radial direction. We have employed a third code , which uses spherical harmonics and higher-order finite-difference method a la Fornberg in the radial coordinate.We first focus on the onset of time-dependence at Rayleigh number Ra of 70,000. We follow the development of stronger time-dependence to a Ra of one million, using high enough resolution with 120 to 200 points in the radial direction and 128 to 256 spherical harmonics.
Non-isothermal buckling behavior of viscoplastic shell structures
NASA Technical Reports Server (NTRS)
Riff, Richard; Simitses, G. J.
1988-01-01
Described are the mathematical model and solution methodologies for analyzing the structural response of thin, metallic elasto-viscoplastic shell structures under large thermomechanical loads and their non-isothermal buckling behavior. Among the system responses associated with these loads and conditions are snap-through, buckling, thermal buckling, and creep buckling. This geometric and material nonlinearities (of high order) can be anticipated and are considered in the model and the numerical treatment.
Non isothermal drying process optimisation - Drying of clay tiles
NASA Astrophysics Data System (ADS)
Vasić, M.; Radojević, Z.
2015-11-01
In our previous studies we have developed a model for determination of the variable effective diffusivity and identification of the exact transition points between possible drying mechanisms. The next goal was to develop a drying regime which could in advance characterize the real non isothermal process of drying clay tiles. In order to do this four isothermal experiments were recorded. Temperature and humidity were maintained at 350C / 75%; 450C / 70%; 450C / 60% and 500C / 60%; respectively in each experiment. All experimentally collected data were analyzed and the exact transition points between possible drying mechanisms were detected. Characteristic drying period (time) for each isothermal drying mechanism was also detected. The real, non-isothermal drying process was approximated by 5 segments. In each of these segments approximately isothermal drying condition were maintained. Temperature and humidity of the drying air, in the first four segments, was maintained on the same level as in recorded isothermal experiments while in the fifth segment, it were maintained at 700C / 40%. The duration of the first four segments were calculated from the diagrams Deff - t respectively for each experiment. The clay tile in experiment five was dried without cracking using the proposed non isothermal drying regime.
RuO2 Non-isothermal Thermometry
NASA Astrophysics Data System (ADS)
Ventura, Guglielmo; Giomi, Silvia
2016-08-01
The use of a RuO2 resistor in non-isothermal measuring setup is proposed. A calculation is presented to explain the principle for a resistor obeying variable-range-hopping theory and the results are compared to measurements in the range of 11.2-30 mK for a commercial resistor. The thermometer, which measures the electron temperature, does not show overheating effects at 11.2 mK with a measuring power of 10^{-12} W.
Laser velocimetry measurements in non-isothermal CVD systems
NASA Technical Reports Server (NTRS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1991-01-01
Researchers at the NASA Langley Research Center are applying laser velocimetry (LV) techniques to characterize the fluid dynamics of non-isothermal flows inside fused silica chambers designed for chemical vapor deposition (CVD). Experimental issues involved in the application of LV techniques to this task include thermophoretic effects on the LV seed particles, seeding the hazardous gases, index of refraction gradients in the flow field and surrounding media, optical access, relatively low flow velocities, and analysis and presentation of sparse data. An overview of the practical difficulties these issues represent to the use of laser velocimetry instrumentation for CVD applications is given. A fundamental limitation on the application of LV techniques in non-isothermal systems is addressed which involves a measurement bias due to the presence of thermal gradients. This bias results from thermophoretic effects which cause seed particle trajectories to deviate from gas streamlines. Data from a research CVD reactor are presented which indicate that current models for the interaction of forces such as Stokes drag, inertia, gravity, and thermophoresis are not adequate to predict thermophoretic effects on particle-based velocimetry measurements in arbitrary flow configurations.
The non-isothermal rheology of low viscosity magmas.
NASA Astrophysics Data System (ADS)
Kolzenburg, Stephan; Giordano, Daniele; Dingwell, Donald B.
2016-04-01
Accurate prediction of the run-out distance of lava flows, as well as the understanding of magma migration in shallow dyke systems is hampered by an incomplete understanding of the transient, sub-liquidus rheology of crystallizing melts. This sets significant limits to physical property based modelling of lava flow (especially flow width, length and advancement rate) and magma migration behaviour and the resulting accuracy of volcanic hazard assessment The importance of the dynamic rheology of a lava / magma on its emplacement style becomes especially apparent in towards later stages of flow and dyke emplacement, where the melt builds increasing resistance to flow, entering rheologic regimes that determine the halting of lava flows and sealing of dykes. Thermal gradients between the interior of a melt body and the contact with air or the substratum govern these rheologic transitions that give origin to flow directing or impeding features like levees, tubes and chilled margins. Besides the critical importance of non-isothermal and sub-liquidus processes for the understanding of natural systems, accurate rheologic data at these conditions are scarce and studies capturing the transient rheological evolution of lavas at conditions encountered during emplacement virtually absent. We describe the rheologic evolution of a series of natural, re-melted lava samples during transient and non-equilibrium crystallization conditions characteristic of lava flows and shallow magmatic systems in nature. The sample suite spans from foidites to basalts; the dominant compositions producing low viscosity lava flows. Our data show that all melts undergo one or more change zones in effective viscosity when subjected to sub liquidus temperatures. The apparent viscosity of the liquid-crystal suspension increases drastically from the theoretical temperature-viscosity relationship of a pure liquid once cooled below the liquidus temperature. We find that: 1) Both cooling rate and shear rate
Precision retrieval of non-isothermal exo-atmospheres
NASA Astrophysics Data System (ADS)
Waldmann, Ingo Peter; Rocchetto, Marco
2015-12-01
Spectroscopy of extrasolar planets is as fast moving as it is new. When trying to characterise the atmospheres of these foreign worlds, we are faced with three challenges: 1) The correct treatment of atmospheric opacities at high temperatures, 2) Low signal-to-noise of the observed data, and 3) Large, degenerate parameter spaces. To advance in the interpretation of exoplanetary atmospheres, one must address these challenges in one coherent framework. This is particularly true for emission spectroscopy, where the need for non-isothermal temperature-pressure profiles significantly increases degeneracies in low signal-to-noise data. In the light of these challenges, we developed a novel, bayesian atmospheric retrieval suite, Tau-REx (Waldmann et al. 2015a,b). Tau-REx is a full line-by-line emission/transmission spectroscopy retrieval code based on the most complete hot line-lists from the ExoMol project. For emission spectroscopy, the correct retrieval of the atmosphere’s thermal gradient is extremely challenging with sparse and/or low SNR data. Tau-REx implements a novel two-stage retrieval algorithm which allows the code to iteratively adapt its retrieval complexity to the likelihood surface of the observed data. This way we achieve a very high retrieval accuracy and robustness to low SNR data. Using nested-sampling in conjunction with large scale cluster computing, Tau-REx integrates the full Bayesian Evidence, which allows for precise model selection of the exoplanet’s chemistry and thermal dynamics. Precision and statistical rigour is paramount in the measurement of quantities such as the carbon-oxygen ratio of planets which allow insights into the formation history of these exotic worlds. In this conference I will discuss the intricacies of retrieving the thermal emission of non-isothermal atmospheres and what can be learned from data of current and future facilities.
Non isothermal model free kinetics for pyrolysis of rice straw.
Mishra, Garima; Bhaskar, Thallada
2014-10-01
The kinetics of thermal decomposition of rice straw was studied by thermogravimetry. Non-isothermal thermogravimetric data of rice straw decomposition in nitrogen atmosphere at six different heating rates of 5-40 °C/min was used for evaluating kinetics using several model free kinetic methods. The results showed that the decomposition process exhibited two zones of constant apparent activation energies. The values ranged from 142 to 170 kJ/mol (E(avg) = 155.787 kJ/mol), and 170 to 270 kJ/mol (E(avg) = 236.743 kJ/mol) in the conversion range of 5-60% and 61-90% respectively. These values were used to determine the reaction mechanism of process using master plots and compensation parameters. The results show that the reaction mechanism of whole process can be kinetically characterized by two successive reactions, a diffusion reaction followed by a third order rate equation. The kinetic results were validated using isothermal predictions. The results derived are useful for development and optimization of biomass thermochemical conversion systems. PMID:25105267
Non-isothermal dispersed phase of particles in turbulent flow
NASA Astrophysics Data System (ADS)
Pandya, R. V. R.; Mashayek, F.
2003-01-01
In this paper we consider, for modelling and simulation, a non-isothermal turbulent flow laden with non-evaporating spherical particles which exchange heat with the surrounding fluid and do not collide with each other during the course of their journey under the influence of the stochastic fluid drag force. In the modelling part of this study, a closed kinetic or probability density function (p.d.f.) equation is derived which describes the distribution of position x, velocity v, and temperature [theta] of the particles in the flow domain at time t. The p.d.f. equation represents the transport of the ensemble-average (denoted by [left angle bracket] [right angle bracket]) phase-space density [left angle bracket]W(x, v, [theta], t)[right angle bracket]. The process of ensemble averaging generates unknown terms, namely the phase-space diffusion current j = [beta]v[left angle bracket]u[prime prime or minute]W[right angle bracket] and the phase-space heat current h = [beta][theta][left angle bracket]t[prime prime or minute]W[right angle bracket], which pose closure problems in the kinetic equation. Here, u[prime prime or minute] and t[prime prime or minute] are the fluctuating parts of the velocity and temperature, respectively, of the fluid in the vicinity of the particle, and [beta]v and [beta][theta] are inverse of the time constants for the particle velocity and temperature, respectively. The closure problems are first solved for the case of homogeneous turbulence with uniform mean velocity and temperature for the fluid phase by using Kraichnan’s Lagrangian history direct interaction (LHDI) approximation method and then the method is generalized to the case of inhomogeneous flows. Another method, which is due to Van Kampen, is used to solve the closure problems, resulting in a closed kinetic equation identical to the equation obtained by the LHDI method. Then, the closed equation is shown to be compatible with the transformation constraint
Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg-Landau models
NASA Astrophysics Data System (ADS)
Dhote, R. P.; Fabrizio, M.; Melnik, R. N. V.; Zu, J.
2013-09-01
In this paper, we propose the new one- and three- dimensional models for the description of hysteretic phenomena in shape memory alloys (SMAs). These thermodynamic models are non-isothermal and allow to account for the thermo-mechanical material properties of both austenite and martensite phases based on the local phase value of the order parameter. They are based on the Ginzburg-Landau free energy and the phase field theory. The core of the models is a phase evolution governed by the time dependent Ginzburg-Landau (TDGL) equation and the conservation balance laws with nonlinear coupling between stress, strain and the phase order parameter. The models account for the gradient energy and have been tested in the study of material properties evolution under harmonic stress loading for all important practical cases. The representative numerical simulations have been carried out here without the gradient energy term. The developed models account for the phase dependent properties based on the compliance tensor as a function of the order parameter and stress. We also compared the results obtained with these models and observed differences in homogeneous and inhomogeneous situations due to the change in compliance. In this way, the description of quasiplastic and pseudoelastic behaviors in SMA specimens is improved and becomes in an agreement with existing experiments.
Transient non-isothermal model of a polymer electrolyte fuel cell
NASA Astrophysics Data System (ADS)
Shah, A. A.; Kim, G.-S.; Sui, P. C.; Harvey, D.
In this paper we present a one-dimensional transient model for the membrane electrode assembly of a polymer-electrolyte fuel cell. In earlier work we established a framework to describe the water balance in a steady-state, non-isothermal cathode model that explicitly included an agglomerate catalyst layer component. This paper extends that work in several directions, explicitly incorporating components of the anode, including a micro-porous layer, and accounting for electronic potential variations, gas convection and time dependance. The inclusion of temperature effects, which are vital to the correct description of condensation and evaporation, is new to transient modelling. Several examples of the modelling results are given in the form of potentiostatic sweeps and compared to experimental results. Excellent qualitative agreement is demonstrated, particularly in regard to the phenomenon of hysteresis, a manifestation of the sensitive response of the system to the presence of water. Results pertaining to pore size, contact angle and the presence of a micro-porous layer are presented and future work is discussed.
ERIC Educational Resources Information Center
Collyer, A. A.
1974-01-01
Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)
Modeling isothermal and non-isothermal flows in porous media
NASA Astrophysics Data System (ADS)
Mohseni Languri, Ehsan
2011-12-01
solutions obtained after applying the stress-continuity and stress-jump boundary conditions are found to work well at low porosities, which is in contradiction with the results achieved earlier by other researchers. The traditional approach of using averaged equations in the regions of sharp gradients in porous media to describe flow and transport is theoretically untenable and perhaps inaccurate. A novel ensemble averaging method is being proposed to test the accuracy of the volume averaged or smoothed description of flows in porous media in the regions of sharp gradients. In the new method, the flow in a certain arrangement of particles (called a realization) is averaged using a small unit cell, much smaller than the REV. Then such an averaged flow variable is further averaged over a whole gamut of randomly-generated particle realizations. First the accuracy of the ensemble averaging method was tested by comparing the permeability of an artificially generated porous medium obtained by the proposed method against the permeability predicted by some established theoretical models of permeability. The proposed method was found to be quite accurate. Later the ensemble average method was applied to the open-channel porous-medium interface region characterized by a sharp gradient in the flow velocities. It was discovered that the volume averaged description of such flows, characterized by the use of the Brinkman equation along with the stress-continuity and stress-jump conditions, is quite accurate for a range of Reynolds numbers. The non-isothermal transport during flow in porous media is examined next. The main focus in this area of research is the thermal dispersion term found in the heat transfer equation for single- and dual-scale porous media. Most of the previous efforts on modeling the heat transfer phenomena in porous media were devoted to isotropic porous media. However, for the anisotropic porous media widely in many industrial applications, not much research on the
NASA Astrophysics Data System (ADS)
Das, Diptarka
One of the most important results emerging from string theory is the gauge gravity duality (AdS/CFT correspondence) which tells us that certain problems in particular gravitational backgrounds can be exactly mapped to a particular dual gauge theory a quantum theory very similar to the one explaining the interactions between fundamental subatomic particles. The chief merit of the duality is that a difficult problem in one theory can be mapped to a simpler and solvable problem in the other theory. The duality can be used both ways. Most of the current theoretical framework is suited to study equilibrium systems, or systems where time dependence is at most adiabatic. However in the real world, systems are almost always out of equilibrium. Generically these scenarios are described by quenches, where a parameter of the theory is made time dependent. In this dissertation I describe some of the work done in the context of studying quantum quench using the AdS/CFT correspondence. We recover certain universal scaling type of behavior as the quenching is done through a quantum critical point. Another question that has been explored in the dissertation is time dependence of the gravity theory. Present cosmological observations indicate that our universe is accelerating and is described by a spacetime called de-Sitter(dS). In 2011 there had been a speculation over a possible duality between de-Sitter gravity and a particular field theory (Euclidean SP(N) CFT). However a concrete realization of this proposition was still lacking. Here we explicitly derive the dS/CFT duality using well known methods in field theory. We discovered that the time dimension emerges naturally in the derivation. We also describe further applications and extensions of dS/CFT. KEYWORDS: Holography, AdS/CFT correspondence, Quantum Quench, dS/CFT correspondence, Chaos.
An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell
Nagatsu, Yuichiro; Fujita, Norihito; Kato, Yoshihito; Tada, Yutaka
2009-04-15
Non-isothermal miscible displacements in a radial Hele-Shaw cell were experimentally investigated using a scheme in which room temperature liquids of relatively high viscosity were displaced by high-temperature (80 C), less-viscous liquids. Fundamental characteristics have been presented regarding how the effect of a non-isothermal field on miscible displacement patterns varies in terms of factors such as the viscosity ratio of the more- and less-viscous liquids at 20 C, M{sub 20}, the rate of an increase in the pattern's area, R, and the gap width of the cell, b. The concept of area density was used to quantitatively evaluate the effect of the non-isothermal fields on the patterns. We have found that the effect of the non-isothermal field on the patterns does not monotonically vary with M{sub 20} and b. In contrast, it increases with R in the present experimental condition. The experimental results can be explained by introducing an assumption in which heat is transferred mainly to the plates of the cell, in other words, the temperature of the more-viscous liquid remains constant, whereas that of the less-viscous liquid spatiotemporally decreases and the viscosity of it increases along with the temperature decrease. Visualization of non-isothermal field in the cell has been done by means of a thermo sheet and the results support the assumption mentioned above. (author)
Chen, Wei-Hsin; Wu, Zih-Ying; Chang, Jo-Shu
2014-03-01
Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus (S. obliquus) CNW-N are studied using thermogravimetric analysis. The pyrolysis of S. obliquus CNW-N with increasing temperature is characterized by four-stage decomposition. Depending on the torrefaction temperature, light, mild, and severe torrefaction from the weight loss and the maximum decomposition rate of the microalga can be classified. Under the same average temperature and torrefaction duration, non-isothermal torrefaction gives more severe pretreatment than the isothermal one. Increasing the heating rate of non-isothermal torrefaction also intensifies the pretreatment severity. Therefore, microalgae can be torrefied via non-isothermal torrefaction in a shorter time under the same pretreatment extent. The atomic H/C ratio in the microalga decreases with increasing torrefaction severity, whereas the atomic O/C ratio rises. The analysis suggests that the activation energy of isothermal torrefaction is 57.52×10(3)Jmol(-1), while it is between 40.14×10(3) and 88.41×10(3)Jmol(-1) for non-isothermal torrefaction. PMID:24457308
NASA Astrophysics Data System (ADS)
Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.
2012-04-01
Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold
On the stability of non-isothermal Bonnor-Ebert spheres
NASA Astrophysics Data System (ADS)
Sipilä, O.; Harju, J.; Juvela, M.
2011-11-01
Aims: We aim to derive a stability condition for non-isothermal Bonnor-Ebert spheres and compare the physical properties of critical non-isothermal and isothermal gas spheres. These configurations can serve as models for prestellar cores before gravitational collapse. Methods: A stability condition for non-isothermal spheres is derived by constructing an expression for the derivative of boundary pressure with respect to core volume. The temperature distribution is determined by means of radiative transfer calculations. Based on the stability analysis, we derive the physical parameters of critical cores for the mass range 0.1-5.0 M⊙. In addition, the properties of roughly Jupiter-mass cores are briefly examined. Results: At the low-mass end the critical non-isothermal sphere has lower central density and a slightly larger physical radius than the corresponding isothermal sphere (i.e. one with the same mass and average temperature). The temperature decrease toward the core center becomes steeper toward lower masses as the central density becomes higher. The slope depends on the adopted dust model. We find that the critical dimensionless radius increases above the isothermal value ξ0 = 6.45 for very low-mass cores (<0.2 M⊙). However, in the mass-range studied here the changes are within 5% from the isothermal value. Conclusions: The density structures of non-isothermal and isothermal Bonnor-Ebert spheres for a given mass are fairly similar. However, the present models predict clear differences in the average temperatures for the same physical radius. Especially for low-mass cores, the temperature gradient probably has implications on the chemistry and the observed line emission. We also find that hydrostatic Jupiter-mass cores with radii less than 100 AU would have very high boundary pressures compared with typical pressures in the interstellar space.
Non-Isothermal Calorimetric Studies of the Crystallization of Lithium Disilicate Glass
NASA Technical Reports Server (NTRS)
Ray, C. S.; Day, D. E.; Huang, W.; Narayan, K. Lakshmi; Cull, T. S.; Kelton, K. F.
1996-01-01
The influence of preannealing treatments on the polymorphic crystallization of lithium disilicate glasses is examined. As expected, glasses heated at different rates through the temperature range where there is significant nucleation develop widely different numbers of nuclei. This can dramatically influence the stability and transformation characteristics of the annealed glass. Non-isothermal differential scanning calorimetry (DSC) and differential thermal analysis (DTA) measurements are demonstrated to be useful to probe the nucleation behavior. The first systematic investigations of particle size effects on the non-isothermal transformation behavior are presented and discussed. Based on DTA and microscopy experiments, we show that small particles of lithium disilicate glasses crystallize primarily by surface crystallization. The relative importance of surface versus volume crystallization is examined by varying particle size, by introducing nucleating agents and by exposing glasses to atmospheres of different water content. These data are analyzed quantitatively using a numerical model developed in a second paper following in this volume.
Numerical modeling of non-isothermal gas flow and NAPL vapor transport in soil
NASA Astrophysics Data System (ADS)
Pártl, Ondřej; Beneš, Michal; Frolkovič, Peter; Illangasekare, Tissa; Smits, Kathleen
2016-05-01
We introduce a mathematical model for the description of non-isothermal compressible flow of gas mixtures in heterogeneous porous media and we derive an efficient semi-implicit time-stepping numerical scheme for the solution of the governing equations. We experimentally estimate the order of convergence of the scheme in spatial variables and we present several computational studies that demonstrate the ability of the numerical scheme.
NASA Astrophysics Data System (ADS)
Basahel, S. N.; El-Fass, M. M.; El-Bellihi, A. A.; Al-Sabban, E. A.; Diefallah, El-H. M.
1994-12-01
The kinetics of the non-isothermal decomposition of potassium nickel(II) oxalate in air were studied for non-irradiated and irradiated crystals using thermogravimetric techniques. Analysis of kinetic data were performed using the direct differential method, the integral methods due to Coats-Redfern, Ozawa and a composite integral method. The results of the kinetic analysis of dynamic data and the effects of radiation were discussed and compared with those obtained under isothermal conditions.
Lie-symmetry group and modeling in non-isothermal fluid mechanics
NASA Astrophysics Data System (ADS)
Razafindralandy, D.; Hamdouni, A.; Al Sayed, N.
2012-10-01
The symmetry group of the non-isothermal Navier-Stokes equations is used to develop physics-preserving turbulence models for the subgrid stress tensor and the subgrid heat flux. The Reynolds analogy is not used. The theoretical properties of the models are investigated. In particular, their compatibility with the scaling laws of the flow is proven. A numerical test, in the configuration of an air flow in a ventilated and differentially heated room is presented.
Time-dependent drift Hamiltonian
Boozer, A.H.
1983-03-01
The lowest-order drift equations are given in a canonical magnetic coordinate form for time-dependent magnetic and electric fields. The advantages of the canonical Hamiltonian form are also discussed.
Figen, Aysel Kantuerk; Yilmaz, Muege Sari; Piskin, Sabriye
2010-06-15
Coats-Redfern, Arrhenius, Ozawa, Kissinger, and Doyle non-isothermal kinetic models were used to calculate the dynamic kinetic parameters for dehydration reaction of Mg-borate mineral, inderite (Kirka - Turkey) based on thermogravimetric analysis, derivative thermogravimetric analysis and differential thermal analysis. Dehydration experiments were carried out at different heating rates of 2, 5, 10, 15, and 20 deg. C/min in a pure nitrogen atmosphere. Structural and morphological properties have been characterized by X-Ray diffraction, Fourier transform-infrared spectroscopy, Scanning electron microscopy-energy dispersive spectroscopy, and Inductively coupled plasma-optical emission spectroscopy techniques.
Time dependent view factor methods
Kirkpatrick, R.C.
1998-03-01
View factors have been used for treating radiation transport between opaque surfaces bounding a transparent medium for several decades. However, in recent years they have been applied to problems involving intense bursts of radiation in enclosed volumes such as in the laser fusion hohlraums. In these problems, several aspects require treatment of time dependence.
Analytic Time Depending Galaxy Models
NASA Astrophysics Data System (ADS)
Sala, F.
1990-11-01
RESUMEN. Considerando las hip6tesis de Chandrasekhar para el estudjo de la GalActicaq se han desarrollado varios modelos analiticos integrables con simetria axial y dependientes del . . By considering Chandrasekhar hypotheses +or the study o+ Galactic Dynamics, several integrable analytic axisymmetric time-depending galactic models have been developed. Ke ords; GALAXY-DYNAMICS - GALAXY-STRUCTURE
Experimental research of gas flows through isothermal and non-isothermal membranes
NASA Astrophysics Data System (ADS)
Nikolskiy, Yu. V.; Friedlander, O. G.
2012-11-01
In specialized test bench and in vacuum aerodynamic facilities VAT-2M TsAGI three types of a gas flows with observed kinetic effects were researched. Firstly, the flow through the membrane with uniform temperature was investigated. The dependence of flow rate through membranes on pressure drop across it was measured at various values of permeability. The experimental data at various flow regimes in the pores were compared with numerical data. The comparison gives the opportunity to associate the model perforated membrane with definite diameter of perforation channels and with definite permeability to each porous membrane with intricate pores. Flow rate through real and model membranes are the same ones for two limit regimes: the free-molecular regime and the Stokes ones. For experimental research of a gas flows induced by temperature difference across membrane the method of creation such temperature difference (uniform on membrane surface) was used. In this method thermoelectric effect is utilized. The dependence of thermo-transpiration flow rate and thermo-molecular pressure difference across non-isothermal membrane (for zero flow rate) on gas pressure were measured. The comparison of results of direct and indirect measurements of the velocity of thermo-transpiration was carried out. In the second case the flow rate of thermal transpiration was calculated by the experimental results on thermo-molecular pressure difference across non-isothermal membrane and the results of measurement of pressure driven flow through isothermal membrane.
Studies of non-isothermal flow in saturated and partially saturated porous media
Ho, C.K.; Maki, K.S.; Glass, R.J.
1994-12-31
Coupled thermal and hydrologic flow processes in unsaturated fractured rocks are important in the evaluation of Yucca Mountain as a potential repository for high level nuclear waste. Physical and numerical experiments have been performed to investigate the behavior of non-isothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effect of convection, flattening the temperature profiles across the test cell.
NASA Astrophysics Data System (ADS)
Hu, P.; Dai, M. H.; Ying, L.; Shi, D. Y.; Zhao, K. M.; Lu, J. D.
2013-05-01
The warm forming technology of aluminum alloy has attracted attention from worldwide automotive engineering sector in recent years, with which the complex geometry parts can be realized at elevated temperature. A non-isothermal warm forming process for the heat treatable aluminum can quickly carry out its application on traditional production line by adding a furnace to heat up the aluminum alloy sheet. The 6000 aluminum alloy was investigated by numerical simulation and experiment using the Nakajima test model in this paper. A modified Fields-Backofen model was introduced into numerical simulation process to describe the thermo-mechanical flow behavior of a 6000 series aluminum alloy. The experimental data was obtained by conducting thermal-mechanical uniaxial tensile experiment in temperatures range of 25˜400°C to guarantee the numerical simulation more accurate. The numerical simulation was implemented with LS_DYNA software in terms of coupled dynamic explicit method for investigating the effect of initial forming temperature and the Binder Holder Force (BHF), which are critical process parameters in non-isothermal warm forming. The results showed that the optimal initial forming temperature range was 300°C˜350°C. By means of conducting numerical simulation in deep drawing box model, the forming window of BHF and temperature around the optimal initial forming temperature (275°, 300° and 325°) are investigated, which can provide guidance to actual experiment.
Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites
NASA Astrophysics Data System (ADS)
Kratochvíl, Jaroslav; Kelnar, Ivan
2016-05-01
The non-isothermal crystallization kinetics of the system poly(ɛ-caprolactone)/poly(lactic acid)/clay C15 and related microfibrillar composites has been studied using a simple method based on mathematical treatment of the DSC cumulative crystallization curves in their inflection point. The method provides three kinetic parameters: temperature of start of crystallization, temperature of maximum crystallization rate, and numerical value of the maximum crystallization rate. In the range of cooling rates 5 - 20°C/min, the temperatures of crystallization start and of maximum crystallization rate are determined with standard deviation of 0.3 and 0.4°C, respectively. Average standard deviation of maximum crystallization rate is 1.0 K-1 corresponding to coefficient of variation 5.8 %. Repeatability is slightly better at lower cooling rates. The modified samples show intensive nucleation effect during the non-isothermal crystallization, as demonstrated by their values of temperatures of crystallization start and of maximum crystallization rate that are significantly higher than that of neat PCL. The highest maximum crystallization rate has been found for the blend PCL/PLA 80/20. The proposed method does not refer to any crystallization model and does not require exact determination of the starting point of crystallization. On the other hand, it does not provide any information about dimensionality of crystal growth. The method is particularly useful for characterizing a series of samples derived by modification of the neat polymer.
Time-dependent interstellar chemistry
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1985-01-01
Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.
Time-Dependent Reliability Analysis
Energy Science and Technology Software Center (ESTSC)
1999-10-27
FRANTIC-3 was developed to evaluate system unreliability using time-dependent techniques. The code provides two major options: to evaluate standby system unavailability or, in addition to the unavailability to calculate the total system failure probability by including both the unavailability of the system on demand as well as the probability that it will operate for an arbitrary time period following the demand. The FRANTIC-3 time dependent reliability models provide a large selection of repair and testingmore » policies applicable to standby or continously operating systems consisting of periodically tested, monitored, and non-repairable (non-testable) components. Time-dependent and test frequency dependent failures, as well as demand stress related failure, test-caused degradation and wear-out, test associated human errors, test deficiencies, test override, unscheduled and scheduled maintenance, component renewal and replacement policies, and test strategies can be prescribed. The conditional system unavailabilities associated with the downtimes of the user specified failed component are also evaluated. Optionally, the code can perform a sensitivity study for system unavailability or total failure probability to the failure characteristics of the standby components.« less
The patterning behaviour and accumulation of spherical particles in a vibrated non-isothermal liquid
NASA Astrophysics Data System (ADS)
Lappa, Marcello
2014-09-01
A completely new phenomenon of particle accumulation in vibrated non-isothermal monodisperse suspensions of solid spheres (in a liquid) is analyzed. For the first time evidence is provided for this case that even in situations in which particle-particle hydrodynamic interactions are negligible (dilute systems), intriguing nonlinear effects can lead to the irreversible formation of well-defined particulate structures over "long" temporal scales, i.e., times much larger than the period of the applied vibrations. The long-range translational ordering is produced by the delicate interplay between convective effects (of thermovibrational nature) and the (inertial) response of each isolated particle to the time-periodic acceleration. A new family of particle attractors in the physical space is identified with the topological dimension being essentially a function of the "symmetry properties" of the considered vibrated system and related geometrical constraints.
A study of the non-isothermal crystallization kinetic of Zn10Se90 glass
NASA Astrophysics Data System (ADS)
Abdel-Rahim, M. A.; Hafiz, M. M.; Abdel-Latief, A. Y.; Abd-Elnaiem, Alaa M.; Alwany, A. Elwhab. B.
2015-06-01
The glass transition and the crystallization kinetics of Zn10Se90 glass by differential thermal analysis (DTA) technique under non-isothermal conduction were studied. The effective activation energies of the glass transition and the crystallization have been evaluated on the basses of the Kissinger and Matusita et al. approximations. Kinetic parameters of the crystallization process are significantly influenced by the heating rate. We have compared the experimental DTA with the calculated data curves for Zn10Se90 system using the Johanson-Mehl-Avrami (JMA) and Sestak-Berggren SB( M, N) models. Simulation results indicated that the SB( M, N) model is more suitable for describing the crystallization kinetics for the studied composition. Furthermore, the crystalline phases of annealed Zn10Se90 were characterized by X-ray diffraction. The surface morphology of the annealed samples was examined using scanning electron microscopy.
Non-Isothermal Experimental Study of the Constrained Vapor Bubble Thermosyphon
NASA Technical Reports Server (NTRS)
Karthikeyan, Muthu; Huang, Jianming; Plawsky, Joel; Wayner, Peter, Jr.
1996-01-01
Experimental and theoretical techniques to study non-isothermal transport processes in the constrained vapor bubble thermosyphon (CVBT) were developed using a pentane/quartz system. The transport processes can be evaluated by measuring the liquid film profile, which gives the pressure field, and the temperature field. The axial variation in the capillary pressure was measured using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. Thermoelectric coolers were used to control the temperature level in the condensation region and, therefore, the length of the approximately 'adiabatic' surface region which is a function of the temperature difference between the CVBT surface and the surroundings. High values for the axial thermal conductance in the 'adiabatic' surface region were demonstrated under certain conditions.
Mucha, Igor; Baranowski, Przemysław; Owczarek, Artur; Gajda, Maciej; Pluta, Janusz; Górniak, Agata; Niklewicz, Paweł; Karolewicz, Bożena
2016-09-10
The thermal decomposition and kinetic parameters of synthetized imatinib mesylate α form α form were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. The experiments were performed at a 25-940°C temperature range at five different heating rates: 2.5Kmin(-1), 5Kmin(-1), 10Kmin(-1), 15Kmin(-1) and 20Kmin(-1) per minute in a nitrogen atmosphere. Imatinib mesylate α form presents one-step mass loss during the degradation process. The thermal stability of the examined material, the melting temperature (Tonset=220.6°C) and ΔH fusion=-95.74Jg(-1) at a heating rate of 10°Cmin(-1) was established. The values of activation energies have been estimated using Kissinger, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. PMID:27392171
Non-isothermal melt crystallization behavior of Poly(ethylene terephthalate)/graphene nanocomposites
NASA Astrophysics Data System (ADS)
Aoyama, Shigeru; Park, Yong Tae; Ougizawa, Toshiaki; Macosko, Christopher
2013-03-01
Poly(ethylene terephthalate)(PET)/graphene nanocomposites were prepared by melt mixing with a goal of reduced gas permeability. With 2 wt% of few layered graphene, PET/graphene composite films show more than 70% decrease in N2 gas permeation. Their non-isothermal crystallization were also investigated by differential scanning calorimetory (DSC). Crystallization temperature, Tc, of PET/graphene nanocomposites was more than 8 °C higher than neat PET and the increment increased along with the concentration of graphene. This suggests that the nucleation effect of graphene enhanced with the increase in concentration of graphene. On the other hand, PET/graphene nanocomposites show shorter half crystallization time, t1/2, than neat PET at lower concentrations, but t1/2 increased along with concentration of graphene. From Raman spectroscopy, it was shown that PET chains in nanocomposites are strongly confined in the presence of an excess of graphene. Restricted mobility of PET chains slowed crystallization.
Kinetic study of non-isothermal decomposition of a composite diasporic-boehmitic bauxite
NASA Astrophysics Data System (ADS)
Samouhos, M.; Angelopoulos, P.; Pilatos, G.; Taxiarchou, M.; Papageorgiou, S.
2016-04-01
In the current study, the kinetic of the thermal decomposition of a composite diasporic-boehmitic bauxite is investigated under non-isothermal heating conditions by means of thermogravimetric analysis. The calculation of activation energy (Ea) has been performed by various methods and the attained values range from 185000 to 190000 J.mol-1 for conversion rate of 0.5. The first-order kinetic model can adequately be used to describe thermal decomposition of bauxite composite, while the pre-exponential factor value was found to be 2.088*1011 min-1. The calculated activation energy value together with pre-exponential factor and the solid state kinetic model factors enable the simulation of the thermal decomposition under various heating conditions by the implementation of an ordinary differential equation. The calculated values are in satisfactory agreement with the experimental ones.
Time-Dependent Neutral Particle Transport Benchmarks in Two and Three Dimensions
Barry D. Ganapol
2007-10-12
The main objective of NEER grant was to generate highly accurate 2D and 3D time-dependent neutral particle intensity maps from 3D pulsed wire sources through integration of the analytical representation of a time-dependent point source.
The density structure and star formation rate of non-isothermal polytropic turbulence
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Banerjee, Supratik
2015-04-01
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.
NASA Astrophysics Data System (ADS)
Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob
2016-04-01
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
Time-Dependent Photodissociation Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; Natta, Antonella
1995-01-01
We present theoretical models of the time-dependent thermal and chemical structure of molecular gas suddenly exposed to far-ultraviolet (FUV) (6 eV less than hv less than 13.6 eV) radiation fields and the consequent time- dependent infrared emission of the gas. We focus on the response of molecular hydrogen for cloud densities ranging from n = 10(exp 3) to 10(exp 6)/cu cm and FUV fluxes G(sub 0) = 10(exp 3)-10(exp 6) times the local FUV interstellar flux. For G(sub 0)/n greater than 10(exp -2) cu cm, the emergent H(sub 2) vibrational line intensities are initially larger than the final equilibrium values. The H(sub 2) lines are excited by FUV fluorescence and by collisional excitation in warm gas. Most of the H(sub 2) intensity is generated at a characteristic hydrogen column density of N approximately 10(exp 21)/sq cm, which corresponds to an FUV optical depth of unity caused by dust opacity. The time dependence of the H(sub 2) intensities arises because the initial abundances of H(sub 2) at these depths is much higher than the equilibrium values, so that H(sub 2) initially competes more effectively with dust in absorbing FUV photons. Considerable column densities of warm (T approximately 1000) K H(sub 2) gas can be produced by the FUV pumping of H(sub 2) vibrational levels followed by collisional de-excitation, which transfers the energy to heat. In dense (n greater than or approximately 10(exp 5)/cu cm) gas exposed to high (G(sub 0) greater than or approximately 10(exp 4)) fluxes, this warm gas produces a 2-1 S(1)/1-0 S(l) H(sub 2) line ratio of approximately 0.1, which mimics the ratio found in shocked gas. In lower density regions, the FUV pumping produces a pure-fluorescent ratio of approximately 0.5. We also present calculations of the time dependence of the atomic hydrogen column densities and of the intensities of 0 I 6300 A, S II 6730 A, Fe II 1.64 microns, and rotational OH and H20 emission. Potential applications include star-forming regions, clouds
Selfsimilar time dependent shock structures
NASA Technical Reports Server (NTRS)
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Selfsimilar time dependent shock structures
NASA Astrophysics Data System (ADS)
Beck, R.; Drury, L. O.
1985-08-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Non-isothermal infiltration and tracer transport experiments on large soil columns
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav
2016-04-01
Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling
Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls
Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris; Stefanov, Stefan
2014-05-15
The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
ERIC Educational Resources Information Center
Salvador, F.; And Others
1984-01-01
Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)
Network-timing-dependent plasticity.
Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B
2015-01-01
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298
Network-timing-dependent plasticity
Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B.
2015-01-01
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298
Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation.
Patil, Dewyani; Dung, Nguyen Quoc; Jung, Hyuck; Ahn, Se Yong; Jang, Dong Mi; Kim, Dojin
2012-01-15
Cerium oxide nanorods (CeO(2) NRs) were synthesized without templates through a low cost and simple non-isothermal precipitation method. The structure and morphology of CeO(2) NRs were characterized by X-ray diffraction and transmission electron microscopy. The CeO(2) NRs films, deposited on indium tin oxide (ITO)-coated glass substrates through electrophoretic deposition, were used for the immobilization of glucose oxidase (GOx). Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy were used to characterize the CeO(2) NRs/ITO and GOx/CeO(2) NRs/ITO electrodes. The GOx/CeO(2) NRs/ITO electrode exhibits a linear range for the detection of glucose from 2 to 26 mM (correlation coefficient: 0.99) at 1-2s response time. Biosensor sensitivity is 0.165 μA mM(-1) cm(-2) with 100 μM detection limit. The anti-interference ability of the biosensor was also examined. The mediator-less application of CeO(2) NRs for glucose sensing was demonstrated. PMID:22035972
Studies of non-isothermal flow in saturated and partially saturated porous media
Ho, C.K.; Maki, K.S.; Glass, R.J.
1993-12-31
Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell.
Non-isothermal molding technology research of ultra-precision glass lens
NASA Astrophysics Data System (ADS)
Zang, Hongbin; Yu, Jiaxin; Zhou, Yingyue; Tao, Bo
2014-12-01
This paper aims to research a unique non-isothermal molding technology (NGMP) which is an attractive and creative manufacturing method of fabricating ultra-precision and high-quality glass components. It has numerous advantages such as high efficiency, low cost and being mass production of glass lenses in industry. This technology is an ultra precision manufacturing process and suitable for multi-scale precision glass lens, lens array and glass micro-structure. This technology overcomes the disadvantages of traditional grinding and polishing technology such as long time production cycle, profligacy of raw materials, single-piece production and difficulty to produce an aspherical lens or arrays. The characteristics of NGMP are studied by comparing with the traditional IGMP. Residual stresses inside the glass lenses are also studied by numerical simulation. Based on the experiments and simulations results, a new compression molding process is proposed. Once the glass lens is fabricated by compression molding, an annealing process can be used to reduce the residual stresses in the glass lens.
A Non-linear Temperature-Time Program for Non-isothermal Kinetic Measurements
NASA Astrophysics Data System (ADS)
Sohn, Hong Yong
2016-04-01
A new temperature-time program for non-isothermal measurements of chemical reaction rates has been developed. The major advantages of the proposed temperature-time function are twofold: Firstly, the analysis of kinetic information in the high temperature range of the measurement is improved over the conventional linear temperature program by slowing the rate of temperature increase in the high temperature range and secondly, the new temperature program greatly facilitates the data analysis by providing a closed-form solution of the temperature integral and allows a convenient way to obtain the kinetic parameters by eliminating the need for the approximate evaluation of the temperature integral. The procedures for applying the new temperature-time program to the analysis of experimental data are demonstrated in terms of the determination of the kinetic parameters based on the selection of a suitable conversion function in the rate equation as well as the direct determination of activation energy at different conversion extents without the need for a conversion function. The rate analysis based on the new temperature program is robust and does not appear to be sensitive to errors in experimental measurements.
A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes
NASA Astrophysics Data System (ADS)
Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.
2009-06-01
We present special numerical simulation methods for non-isothermal incompressible viscous fluids which are based on LBB-stable FEM discretization techniques together with monolithic multigrid solvers. For time discretization, we apply the fully implicit Crank-Nicolson scheme of 2nd order accuracy while we utilize the high order Q2P1 finite element pair for discretization in space which can be applied on general meshes together with local grid refinement strategies including hanging nodes. To treat the nonlinearities in each time step as well as for direct steady approaches, the resulting discrete systems are solved via a Newton method based on divided differences to calculate explicitly the Jacobian matrices. In each nonlinear step, the coupled linear subproblems are solved simultaneously for all quantities by means of a monolithic multigrid method with local multilevel pressure Schur complement smoothers of Vanka type. For validation and evaluation of the presented methodology, we perform the MIT benchmark 2001 [M.A. Christon, P.M. Gresho, S.B. Sutton, Computational predictability of natural convection flows in enclosures, in: First MIT Conference on Computational Fluid and Solid Mechanics, vol. 40, Elsevier, 2001, pp. 1465-1468] of natural convection flow in enclosures to compare our results with respect to accuracy and efficiency. Additionally, we simulate problems with temperature and shear dependent viscosity and analyze the effect of an additional dissipation term inside the energy equation. Moreover, we discuss how these FEM-multigrid techniques can be extended to monolithic approaches for viscoelastic flow problems.
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media
Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.
1997-07-01
The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.
Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster
NASA Astrophysics Data System (ADS)
Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue
2015-02-01
Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (˜2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic "poly-tropic law" is more appropriate than the isothermal "barometric law" to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the "poly-tropic law" are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.
Dynamic crystallization during non-isothermal laser treatment of Fe-Si-B metallic glass
NASA Astrophysics Data System (ADS)
Joshi, Sameehan S.; Gkriniari, Anna V.; Katakam, Shravana; Dahotre, Narendra B.
2015-12-01
Fe-Si-B metallic glass foils were subjected to non-isothermal laser treatment to induce crystallization, and the effect of laser fluence on crystallite size was investigated. Temperature, and corresponding heating and cooling rates generated during laser processing of metallic glass were estimated using multiphysics computational models. Estimation of the onset and arrest temperatures of crystallization was based on the results obtained using the thermal model. Crystallite size was measured with the aid of x-ray diffraction and transmission electron microscopy. The fraction of crystallization was estimated with a differential scanning calorimetry. Crystallite size increased with laser fluence in the initial stages and saturated later within the laser fluence range (0.6-0.9 J mm-2) explored in the current efforts. The fraction of crystallization steadily increased with the increase in laser fluence. Unlike conventional processes, in the present situation the dynamic effects during laser processing dominated the crystallization and growth process. Rapid heating rates during laser processing led to a shift in the onset of crystallization temperature to a higher level. Faster cooling rates prematurely arrested the crystallite growth yielding much finer crystallite sizes.
Non-isothermal water flow in the vadose zone of arid and semi-arid environments
NASA Astrophysics Data System (ADS)
Mallants, Dirk; Gerke, Kirill; Cook, Peter
2013-04-01
In desert environments thermally-driven vapour flow can be an important component of the total water flux in soils. As such, vapour flow can have considerable impact on recharge estimation, with small errors in soil water flow rates resulting in relatively larger errors in the recharge estimates since recharge is a very small fraction of rainfall. The additional effects of vegetation and temperature contributions may also impact soil water movement and thus calculated recharge rates in arid and semi-arid vadose zones. Currently most methods for estimating large-scale recharge rates do not consider these various processes, which adds an unknown degree of uncertainty to recharge estimation. The HYDRUS-1D numerical simulator was used to simulate coupled isothermal liquid, isothermal vapour, non-isothermal liquid and vapour flow, and heat flow in deep variably saturated vadose zones. The considered climatic conditions are characteristic of central Australia with approximate mean annual precipitation and potential evapotranspiration rates of 300 and 3000 mm, respectively. A time series of 130 years of daily climate data provides the upper boundary conditions. Groundwater recharge under highly erratic rainfall conditions is hypothesized to be primarily episodic and linked to flood events which may be significant only once every few years. The combined effect of vegetation and temperature on water flow and soil water redistribution is discussed for both vegetated and bare soils.
Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses
NASA Astrophysics Data System (ADS)
Atyia, H. E.; Farid, A. S.
2016-02-01
Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.
Investigation of instability of displacement front in non-isothermal flow problems
NASA Astrophysics Data System (ADS)
Syulyukina, Natalia; Pergament, Anna
2012-11-01
In this paper, we investigate the issues of front instability arising in non-isothermal flow displacement processes. The problem of two-phase flow of immiscible fluids, oil and water, is considered, including sources and dependence of viscosity on temperature. Three-dimensional problem with perturbation close to the injection well was considered to find the characteristic scale of the instability. As a result of numerical calculations, theoretical studies on the development of the instability due to the fact that the viscosity of the displacing fluid is less than the viscosity of the displaced have been confirmed. The influence of temperature on the evolution of the instability was considered. For this purpose, the dependence of oil viscosity on temperature has been added to the problem. Numerical calculations were carried out for different values of temperature and it was shown that with increasing of production rate. Thus, it has been demonstrated that the selection of the optimal temperature for injected fluids a possible way for stimulation of oil production also delaying the field water-flooding. This work was supporting by the RFBR grant 12-01-00793-a.
Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons
NASA Astrophysics Data System (ADS)
Sossi, A.; Duranti, E.; Paravan, C.; DeLuca, L. T.; Vorozhtsov, A. B.; Gromov, A. A.; Pautova, Yu. I.; Lerner, M. I.; Rodkevich, N. G.
2013-04-01
Aluminum nanopowder (nAl) obtained by electrical explosion of wires and passivated/coated with hydrocarbons and fluorohydrocarbons is comprehensively characterized. Coatings of different natures (octadecanoic and hexadecanoic acid, (1,1,11) trihydroperfluoro-undecan-1-ol, Fluorel™ + ester from esterification of (1,1,11) trihydroperfluoro-undecan-1-ol with furan-2,5-dione) were applied on the particle surface. The powders were studied by TEM, SEM, DSC-TGA, and BET specific surface area. The active aluminum content was determined by volumetric analyses. Coated nAl particles were compared to non-coated powder by the corresponding reactivity parameters obtained from DSC-TGA. It was found that while fatty acids have a weak effect on the non-isothermal oxidation behavior, fluoroelastomers shift the oxidation onset of nAl to higher temperatures by ˜20 °C for the first oxidation stage and by ˜100 °C for the second oxidation stage.
A kinetic model for corrosion and precipitation in non-isothermal LBE flow loop
NASA Astrophysics Data System (ADS)
He, By Xiaoyi; Li, Ning; Mineev, Mark
2001-08-01
A kinetic model was developed to estimate the corrosion/precipitation rate in a non-isothermal liquid lead-bismuth eutectic (LBE) flow loop. The model was based on solving the mass transport equation with the assumptions that convective transport dominates in the longitudinal flow direction and diffusion dominates in the transverse direction. The species concentration at wall is assumed to be determined either by the solubility of species in LBE in the absence of oxygen or by the reduction reaction of the protective oxide film when active oxygen control is applied. Analyses show that the corrosion/precipitation rate depends on the flow velocity, the species diffusion rate, the oxygen concentration in LBE, as well as the temperature distribution along a loop. Active oxygen control can significantly reduce the corrosion/precipitation of the structural materials. It is shown that the highest corrosion/precipitation does not necessarily locate at places with the highest/lowest temperature. For a material testing loop being constructed at the Los Alamos National Laboratory (LANL), the highest corrosion occurs at the end of the heater zone, while the highest precipitation occurs in the return flow in the recuperator.
Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster
Zhang, Zun; Tang, Haibin Kong, Mengdi; Zhang, Zhe; Ren, Junxue
2015-02-15
Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.
Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster.
Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue
2015-02-01
Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic "poly-tropic law" is more appropriate than the isothermal "barometric law" to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the "poly-tropic law" are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3. PMID:25725841
Time-dependent seismic tomography
Julian, B.R.; Foulger, G.R.
2010-01-01
Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Weakly nonlinear stability analysis of non-isothermal Poiseuille flow in a vertical channel
NASA Astrophysics Data System (ADS)
Khandelwal, Manish K.; Bera, P.
2015-06-01
A weakly nonlinear stability theory in terms of Landau equation is developed to analyze the nonlinear saturation of stably stratified non-isothermal Poiseuille flow in a vertical channel. The results are presented with respect to fluids: mercury, gases, liquids, and heavy oils. The weakly nonlinear stability results predict only the supercritical instability, in agreement with the published result [Y. C. Chen and J. N. Chung, "A direct numerical simulation of K and H-type flow transition in heated vertical channel," Comput. Fluids 32, 795-822 (2003)] based on direct numerical simulation. Apart from this, the influence of nonlinear interaction among different superimposed waves on the heat transfer rate, real part of wavespeed, and friction coefficient on the wall is also investigated. A substantial enhancement (reduction) in heat transfer rate (friction coefficient) is found for liquids and heavy oils from the basic state beyond the critical Rayleigh number. The amplitude analysis indicates that the equilibrium amplitude decreases on increasing the value of Reynolds number. However, in the case of mercury, influence of nonlinear interaction on the variation of equilibrium amplitude, heat transfer rate, wavespeed, as well as friction coefficient is complex and subtle. The analysis of the nonlinear energy spectra for the disturbance also supports the supercritical instability at and beyond the critical point. Finally, the effect of superimposed waves on the pattern of secondary flow, based on linear stability theory, is also studied. It has been found that the impact of nonlinear interaction of waves on the pattern of secondary flow for mercury is weak compared to gases, which is the consequence of negligible modification in the buoyant production of disturbance kinetic energy of the mercury.
Salt Precipitation and Dissolution in an Unsaturated Porous Media Under Non-Isothermal Conditions
NASA Astrophysics Data System (ADS)
Burns, E. R.; Dragila, M. I.; Weisbrod, N.; Guenther, R. B.; Selker, J. S.
2003-12-01
Salt precipitation and dissolution in unsaturated porous media is an important process to understand, both for agricultural soils (fertilizer movement) and for its effects in controlling water flux and potential contaminant transport in arid regions (migration of fluids and solutes to fractures and the land surface). Since evaporation is a key process to consider in both scenarios, it is necessary to consider heat and energy flow. A brief discussion/history of the salt precipitation/dissolution problem is given, then using the principles of continuum mechanics and mixture theory, a set of governing equations for salt precipitation and dissolution is developed. The equations are general in the sense that the following are considered: 1) non-isothermal conditions; 2) porosity is a function of solid phase salt concentration; 3) all parameters are functions of the appropriate thermodynamic variables. The equations are limited in that only near-ground surface conditions are considered. This is generally not a serious limitation since this location is likely the most seriously affected by rapid temporal changes in temperature and other boundary conditions. Further simplification of the problem is achieved by considering only "simple" salts (defined here as non-pH buffered salts that dissolve/precipitate only as a function of liquid phase ionic concentration) and flow regimes that do not result in finger flow of liquids. Initial and boundary conditions are developed for the following physically relevant conditions: 1) fertilizer salts introduced to an initially wet (but unsaturated) soil; 2) salt formation on free surfaces in arid climates; 3) water imbibition of fresh water into saline porous media. Work to date on solution of the initial boundary value problems is presented.
Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.
2014-01-28
The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.
NASA Astrophysics Data System (ADS)
Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.
2016-06-01
The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.
NASA Astrophysics Data System (ADS)
Dadzis, K.; Niemietz, K.; Pätzold, O.; Wunderwald, U.; Friedrich, J.
2013-06-01
A new experimental setup containing a GaInSn melt with a square horizontal cross section of 10×10 cm2 and a variable melt height up to 10 cm has been developed. The melt is positioned in the center of a coil system generating a traveling magnetic field (TMF). Using a cooling system at the bottom and a heating system at the top of the melt, a vertical temperature difference up to approximately 50 K can be applied to the melt, imitating the thermal conditions during the directional solidification of multicrystalline silicon. Direct measurements of the time-dependent velocity and the temperature profiles were performed using ultrasonic Doppler velocimetry and thermocouples, respectively. Complementary three-dimensional (3D) numerical simulations of the model experiments were used to validate the numerical tools and to gain a deeper insight into the characteristics of TMF flows in square melts. The classical toroidal flow structure known from isothermal cylindrical melts is shown to obtain a large horizontal central vortex at a small height of the square melt, whereas a distinct 3D asymmetry appears at a large height. A vertical temperature gradient tends to suppress the vertical melt motion and leads to new complex horizontal flow structures.
Xie, Wen-Jie; Zhou, Xiao-Ming
2015-01-01
Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. PMID:25491999
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
NASA Astrophysics Data System (ADS)
Ionescu, Tudor Constantin
Frictional or viscous heating phenomena are found in virtually every industrial operation dealing with processing of polymeric materials. This work is aimed at addressing some of the existing shortcomings in modeling non-isothermal polymer flowing processes. Specifically, existing theories suggest that when a polymer melt is subjected to deformation, its internal energy changes very little compared to its conformational entropy. This statement forms the definition of the Theory of Purely Entropic Elasticity (PEE) applied to polymer melts. Under the auspices of this theory, the temperature evolution equation for modeling the polymer melt under an applied deformation is greatly simplified. In this study, using a combination of experimental measurements, continuum-based computer modeling and molecular simulation techniques, the validity of this theory is tested for a wide range of processing conditions. First, we present experimental evidence that this theory is only valid for low deformation regimes. Furthermore, using molecular theory, a direct correlation is found between the relaxation characteristics of the polymer and the flow regime where this theory stops being valid. We present a new and improved form of the temperature equation containing an extra term previously neglected under the PEE assumption, followed by a recipe for evaluating the extra term. The corrected temperature equation is found to give more accurate predictions for the temperature profiles in the high flow rate regimes, in excellent agreement with our experimental measurements. Next, in order to gain a molecular-level understanding of our experimental findings, a series of polydisperse linear alkane systems with average chain lengths between 24 and 78 carbon atoms are modeled with an applied "orienting field" using a highly efficient non-equilibrium Monte Carlo scheme. Our simulation results appear to substantiate our experimental findings. The internal energy change of the oriented
A 3-d time-dependent ideal mhd solar wind model
NASA Astrophysics Data System (ADS)
Feng, X.; Wu, S.; Wei, F.
A new numerical three-dimensional MHD model of solar wind is introduced in spherical coordinates by using a TVD type numerical scheme. In order to show its validation in modeling three-dimensional solar wind background, numerical tests are carried out with initiation magnetic field depending on (r, theta, phi), which is obtained from a force-free formu lation. The numerical density and velocity distributions of the solar wind at the solar surface and 20 solar radii reproduce the typical characteristics of interplanetary solar wind, and are in qualitatively accordance with those obtained from K-corona brightness observation of HAO and magnetic filed observation of WSO.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Spectral methods for time dependent problems
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1990-01-01
Spectral approximations are reviewed for time dependent problems. Some basic ingredients from the spectral Fourier and Chebyshev approximations theory are discussed. A brief survey was made of hyperbolic and parabolic time dependent problems which are dealt with by both the energy method and the related Fourier analysis. The ideas presented above are combined in the study of accuracy stability and convergence of the spectral Fourier approximation to time dependent problems.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan M.; Baigereyev, Dossan R.
2016-08-01
The paper focuses on the numerical implementation of a model optimal control problem governed by equations of three-phase non-isothermal flow in porous media. The objective is to achieve preassigned temperature distribution along the reservoir at a given time of development by controlling mass flow rate of heat transfer agent on the injection well. The problem of optimal control is formulated, the adjoint problem is presented, and an algorithm for the numerical solution is proposed. Results of computational experiments are presented for a test problem.
A cellular automaton model of the steady-state free'' growth of a non-isothermal dendrite
Brown, S.G.R.; Williams, T.; Spittle, J.A. . Dept. of Materials Engineering)
1994-08-01
A 2D cellular automaton model has been developed to study the steady-state free'' growth of a non-isothermal dendrite. The model incorporates rules to account for heat diffusion, the influence of curvature on the equilibrium freezing temperature and latent heat evolution. The model predicts a V [proportional to] [Delta]T[sup b] growth rate-undercooling relationship for the various dendrite tip growth temperatures selected. The prediction of the values of b accords reasonably with analytical models and reported experimental observations.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Time-dependent photoelectron angular distributions
NASA Astrophysics Data System (ADS)
Wang, Xiangyang
1999-09-01
I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.
Deterministic methods for time-dependent stochastic neutron transport
Baker, Randal S
2009-01-01
A numerical method is presented for solving the time-dependent survival probability equation in general (lD/2D/3D) geometries using the multi group SNmethod. Although this equation was first formulated by Bell in the early 1960's, it has only been applied to stationary systems (for other than idealized point models) until recently, and detailed descriptions of numerical solution techniques are lacking in the literature. This paper presents such a description and applies it to a dynamic system representative of a figurative criticality accident scenario.
Birefringence in time-dependent moving media
NASA Astrophysics Data System (ADS)
Lin, Shirong; Zhang, Ruoyang; Zhai, Yanwang; Wei, Jianye; Zhao, Qing
2016-08-01
Electromagnetic wave propagation in one- and two-dimensional time-dependent moving media is investigated in this paper. We identify another origin of linear birefringence caused by the component of the flow perpendicular to the wave vector. Previously, birefringence is induced by applying external electric and magnetic fields to non-crystalline material. Here it is shown that the time-varying velocity field also contributes to such a phenomenon. Our results indicate that the parallel component, time-dependent or not, will not yield birefringence. Furthermore, the time-dependent flow also results in a frequency shift. One-dimensional simulation is conducted to demonstrate these effects.
Seeberger, Andreas; Andresen, Ann-Kathrin; Jess, Andreas
2009-11-01
The thermal stability of an ionic liquid (IL) is an important parameter and limits the maximum operation temperature. However, the definition of stability and of the maximum operation temperature, respectively, is still an open question. Typically, non-isothermal thermogravimetrical analysis (TGA) is used to determine the stability, which is then mostly defined by the onset temperature, i.e. by the temperature where a certain mass loss of e.g. 1% is reached. Unfortunately, the rate of mass loss depends on the apparatus and conditions (e.g. heating rate), and may be governed by evaporation or by thermal decomposition or by a combination of both. In this work, isothermal as well as non-isothermal TG/DTG measurements at different heating rates were used as basis to model the combined kinetics of evaporation and decomposition, thereby taking 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][BTA] as an example. The measured and predicted mass losses are in good agreement, and the simulation of TG/DTG experiments by the methods outlined in this work leads to a reliable estimation of the evaporation (as shown by comparison with literature data) as well as of the decomposition rate. For a closed system, where the mass loss by evaporation is negligible, a novel criterion (1% mass loss by thermal decomposition within one year) is presented to estimate the maximum operation temperature of ILs. PMID:19830320
Crandall, K.R.
1987-08-01
TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.
Topic 5: Time-Dependent Behavior
Pfeiffer, P.A.; Tanabe, Tada-aki
1991-12-31
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section.
Time dependent breakdown in silicon dioxide films
NASA Technical Reports Server (NTRS)
Svensson, C.; Shumka, A.
1975-01-01
An investigation was conducted regarding the possible existence of a time-dependent breakdown mechanism in thermal oxides of the type used as gate oxide in MOS circuits. Questions of device fabrication are discussed along with details concerning breakdown measurements and the determination of C-V characteristics. A relatively large prebreakdown current observed in one of the cases is related to the time-dependent breakdown.
Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R
2011-07-01
The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
NASA Astrophysics Data System (ADS)
Ullah, Saif; Ullah, Arshad; Iqbal, Mohsan
2015-12-01
This investigation deals with analytical solutions of thin film flow for withdrawal and drainage of an incompressible generalized Oldroyd-B fluid on a vertical cylinder under the influence of non-isothermal effects. The derived solutions are presented under series form for velocity profile, temperature distribution, volume flux, average film velocity and shear stress in both cases. These solutions satisfy both the governing equations and all imposed initial and boundary conditions. The corresponding exact solutions for Newtonian fluid are also obtained as a special case of our derived solutions. Moreover, solutions for generalized Maxwell fluid and Power Law model, performing the same motion, can be obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion is also underlined by graphical illustration.
A three-dimensional non-isothermal Ginzburg-Landau phase-field model for shape memory alloys
NASA Astrophysics Data System (ADS)
Dhote, R.; Fabrizio, M.; Melnik, R.; Zu, J.
2014-12-01
In this paper, a macroscopic three-dimensional non-isothermal model is proposed for describing hysteresis phenomena and phase transformations in shape memory alloys (SMAs). The model is of phase-field type and is based on the Ginzburg-Landau theory. The hysteresis and phase transformations are governed by the kinetic phase evolution equation using the scalar order parameter, laws of conservation of the momentum and energy and a nonlinear coupling of the stress, the strain and the order parameter in a differential form. One of the important features of the model is that the phase transformation is governed by the stress tensor, as opposed to the transformation strain tensor typically used in the literature. The model takes into account different properties of austenite and martensite phases based on the compliance tensor as a function of the order parameter and stress. Representative numerical simulations on an SMA specimen reproduce hysteretic behaviors observed experimentally in the literature.
Ho, Ai Ling; Carvalheiro, Florbela; Duarte, Luís C; Roseiro, Luísa B; Charalampopoulos, Dimitris; Rastall, Robert A
2014-01-01
Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.6g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 °C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74-78% purity, of which 83-85% was XOS with degree of polymerisation (DP) between 5 and 40. PMID:24275261
Investigations of Low Temperature Time Dependent Cracking
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Time-Dependent Molecular Reaction Dynamics
Oehrn, Yngve
2007-11-29
This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.
Time-dependent corona models - Scaling laws
NASA Technical Reports Server (NTRS)
Korevaar, P.; Martens, P. C. H.
1989-01-01
Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.
3-D Finite Element Heat Transfer
Energy Science and Technology Software Center (ESTSC)
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Majeed Khan, M.A.; Kumar, Sushil; Alsalhi, M.S.; Ahamed, Maqusood; Alhoshan, Mansour; Alrokayan, Salman A.; Ahamad, Tansir
2012-03-15
Nanocrystals of copper indium disulphide (CuInS{sub 2}) were synthesized by a solvo-thermal method. The structure, morphology and non-isothermal crystallization kinetic behavior of samples were investigated using X-ray diffraction, field emission scanning electron microscopy, field emission transmission electron microscopy, thermogravimetric analysis and differential thermal analysis techniques. Non-isothermal measurements at different heating rates were carried out and the crystallization kinetics of samples were analyzed using the most reliable non-isothermal kinetic methods. The kinetic parameters such as glass transition temperature, thermal stability, activation energy, Avrami exponent etc. were evaluated. - Highlights: Black-Right-Pointing-Pointer CuInS{sub 2} nanocrystals have scientific and technological importance. Black-Right-Pointing-Pointer Samples have been prepared by solvo-thermal method. Black-Right-Pointing-Pointer Synthesized samples exhibit excellent morphology and thermal properties. Black-Right-Pointing-Pointer Investigated properties may be utilized in design and fabrication of solar cell devices.
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential. PMID:24070284
Singular boundary method using time-dependent fundamental solution for scalar wave equations
NASA Astrophysics Data System (ADS)
Chen, Wen; Li, Junpu; Fu, Zhuojia
2016-07-01
This study makes the first attempt to extend the meshless boundary-discretization singular boundary method (SBM) with time-dependent fundamental solution to two-dimensional and three-dimensional scalar wave equation upon Dirichlet boundary condition. The two empirical formulas are also proposed to determine the source intensity factors. In 2D problems, the fundamental solution integrating along with time is applied. In 3D problems, a time-successive evaluation approach without complicated mathematical transform is proposed. Numerical investigations show that the present SBM methodology produces the accurate results for 2D and 3D time-dependent wave problems with varied velocities c and wave numbers k.
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2008-02-01
In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.
Time-Dependent Erosion of Ion Optics
NASA Technical Reports Server (NTRS)
Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.
2008-01-01
The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Time-dependent projected Hartree-Fock
Tsuchimochi, Takashi; Van Voorhis, Troy
2015-03-28
Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H{sub 2}, F{sub 2} and O{sub 3} at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.
Time Dependent Behavior in the Weissenberg Effect
NASA Astrophysics Data System (ADS)
Degen, Michael M.; Andereck, C. David
1997-03-01
The Weissenberg effect is the climb of a non-Newtonian fluid up a rotating rod. We have found novel transitional effects in the behavior of a particular climbing fluid, STP(STP Oil Treatment distributed by First Brands Corporation.). The first state is a time-independent axisymmetric concave climb. As the rotation rate of the rod is increased, the first transition is to an axisymmetric climb with an ``onion dome'' shape. At higher rotation rates, the flow undergoes a symmetry breaking bifurcation to a time-dependent state. This time-dependent state exhibits an oscillation with a single frequency. Upon further increase of the rod rotation rate, the oscillation becomes modulated by a second frequency. The nature of each transition will be characterized, including the measurement of oscillation amplitudes and the frequency (or frequencies) of the time dependent states. These results will be compared with previous work.(G.S. Beavers, D.D. Joseph, J. Fluid Mech. 69), 475 (1975).(D.D. Joseph, R.L. Fosdick, Arch. Rational Mech. 49), 321 (1973).
Time-dependent projected Hartree-Fock
NASA Astrophysics Data System (ADS)
Tsuchimochi, Takashi; Van Voorhis, Troy
2015-03-01
Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H2, F2 and O3 at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.
Experimental Study of Electrothermal 3D Mixing using 3D microPIV
NASA Astrophysics Data System (ADS)
Kauffmann, Paul; Loire, Sophie; Meinhart, Carl; Mezic, Igor
2012-11-01
Mixing is a keystep which can greatly accelerate bio-reactions. For thirty years, dynamical system theory has predicted that chaotic mixing must involve at least 3 dimensions (either time dependent 2D flows or 3D flows). So far, 3D embedded chaotic mixing has been scarcely studied at microscale. In that regard, electrokinetics has emerged as an efficient embedded actuation to drive microflows. Physiological mediums can be driven by electrothermal flows generated by the interaction of an electric field with conductivity and permittivity gradients induced by Joule heating We present original electrothermal time dependant 3D (3D+1) mixing in microwells. The key point of our chaotic mixer is to generate overlapping asymmetric vortices, which switch periodically. When the two vortex configurations blink, flows stretch and fold, thereby generating chaotic advection. Each flow configuration is characterized by an original 3D PIV (3 Components / 3 Dimensions) based on the decomposition of the flows by Proper Orthogonal Decomposition. Velocity field distribution are then compared to COMSOL simulation and discussed. Mixing efficiency of low diffusive particles is studied using the mix-variance coefficient and shows a dramatic increase of mixing efficiency compared to steady flow.
NASA Astrophysics Data System (ADS)
Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.
1998-09-01
Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Astrophysics Data System (ADS)
Wahiduzzaman, Mohammad; Alam, Md. Mahmud; Ferdows, M.; Sivasankaran, S.
2013-10-01
Numerical study is performed to investigate the Non-isothermal flow in a rotating straight duct under various flow conditions. Spectral method is applied as a main tool for the numerical technique, where the Chebyshev polynomial, the Collocation methods, the Arc-length method and the Newton-Raphson method are also used as secondary tools. The characteristics of the flow mentioned above are described here. The incompressible viscous steady Non-isothermal flow through a straight duct of rectangular cross-section rotating at a constant angular velocity about the center of the duct cross-section is investigated numerically to examine the combined effects of Rotation parameter (Coriolis force), Grashof number (parameter which is used in heat, transfer studies involving free, forced or natural convection and is equql to , where L is the characteristic length, ρ the density, g the acceleration due to gravity, β the thermal expansion coefficient, Δ T the temperature difference, μ the viscosity and ν the kinematic viscosity of the fluid. The expansion coefficient β is a measure of the rate at which the volume V of the fluid changes with temperature at a given pressure P), Prandtl number, aspect ratio and Pressure-driven parameter (centrifugal force) on the flow. We examine the structures in case of rotation of the duct axis and the Pressure-driven parameter with large aspect ratio where other parameters are fixed. The calculations are carried out for 0 ≤ T r ≤ 300, 2 ≤ γ ≤ 6, G r = 100, P r = 7.0 and 0 ≤ P r ≤ 800 by applying the Spectral method. When Ω > 0 and the rotation is in the same direction as the Coriolis force enforces the centrifugal force, multiple solutions of Non-symmetric the secondary flow patterns with 10-vortex (maximum) are obtained in case of T r = 100 and 150 with large aspect ratio. The intense of the temperature field is very strong near the heated wall in all cases. Finally, the overall solutions of the problems considered in
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
NASA Astrophysics Data System (ADS)
Nath, Subhasisa; Manna, Indranil; Dutta Majumdar, Jyotsna
2013-08-01
The present study concerns a detailed investigation of the characteristics and oxidation resistance property of a duplex and compositionally graded thermal barrier coating on Inconel 718. The duplex coating consists of a CoNiCrAlY bond coat layer sprayed on to sand-blasted Inconel 718 substrate (by high velocity oxy-fuel spraying) followed by deposition of a yttria-stabilized zirconia (YSZ) top coat by plasma spraying. The compositionally graded coating consists of several layers deposited by plasma spraying of pre-mixed CoNiCrAlY and YSZ powders in the weight ratios of 70:30, 50:50, 30:70, and 0:100 varying from the bond coat to the top surface, respectively. A detailed investigation of the microstructure, composition, and phases in the coating and its non-isothermal oxidation behavior from room temperature to 1250°C was performed. Oxidation proceeds by three stages in the as-received Inconel 718 and the compositionally graded coating, but by two stages in the duplex coating with a maximum activation energy for oxidation in the compositionally graded coating at high temperature (stage III). The kinetics and mechanism of oxidation were established.
Ma, Haixia; Yan, Biao; Li, Zhaona; Guan, Yulei; Song, Jirong; Xu, Kangzhen; Hu, Rongzu
2009-09-30
NTOxDNAZ was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by Kissinger method, Ozawa method, the differential method and the integral method. The main exothermic decomposition reaction mechanism of NTOxDNAZ is classified as chemical reaction, and the kinetic parameters of the reaction are E(a)=149.68 kJ mol(-1) and A=10(15.81)s(-1). The specific heat capacity of the title compound was determined with continuous C(p) mode of microcalorimeter. The standard mole specific heat capacity of NTOxDNAZ was 352.56 J mol(-1)K(-1) in 298.15K. Using the relationship between C(p) and T and the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion) was obtained. PMID:19446396
Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.
2010-03-15
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
NASA Astrophysics Data System (ADS)
De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta
2016-04-01
Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.
Makarov, S. V.; Plotnikov, V. A. Lysikov, M. V.; Kolubaev, E. A.
2015-10-27
The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPa makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-12-07
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.
NASA Astrophysics Data System (ADS)
Xu, Tianfu; Spycher, Nicolas; Sonnenthal, Eric; Zhang, Guoxiang; Zheng, Liange; Pruess, Karsten
2011-06-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO 2 geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO 2 in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
Time-dependent Dyson orbital theory.
Gritsenko, O V; Baerends, E J
2016-08-21
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom. PMID:26987972
Pulsar Electrodynamics: a Time-dependent View
Spitkovsky, Anatoly; /KIPAC, Menlo Park
2006-04-10
Pulsar spindown forms a reliable yet enigmatic prototype for the energy loss processes in many astrophysical objects including accretion disks and back holes. In this paper we review the physics of pulsar magnetospheres, concentrating on recent developments in force-free modeling of the magnetospheric structure. In particular, we discuss a new method for solving the equations of time-dependent force-free relativistic MHD in application to pulsars. This method allows to dynamically study the formation of the magnetosphere and its response to perturbations, opening a qualitatively new window on pulsar phenomena. Applications of the method to other magnetized rotators, such as magnetars and accretion disks, are also discussed.
Topologically nontrivial time-dependent chiral condensates
Suzuki, M.
1996-11-01
Topologically nontrivial time-dependent solutions of the classical nonlinear {sigma} model are studied as candidates of the disoriented chiral condensate (DCC) in 3+1 dimensions. Unlike the analytic solutions so far discussed, these solutions cannot be transformed into isospin-uniform ones by chiral rotations. If they are produced as DCC{close_quote}s, they can be detected by a distinct pattern in the angle-rapidity distribution of the neutral-to-charged pion ratio. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Gil, José J.; San José, Ignacio
2010-11-01
From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.
Time-dependent diffusion in stellar atmospheres
NASA Astrophysics Data System (ADS)
Alecian, G.; Stift, M. J.; Dorfi, E. A.
2011-12-01
The chemical peculiarities of Ap stars are due to abundance stratifications produced by atomic diffusion in their outer layers. Theoretical models can predict such stratifications, but so far only provide equilibrium solutions which correspond to the maximum depth-dependent abundances for each element that can be supported by the radiation field. However, these stratifications are actually built up through a non-linear, time-dependent process which has never been modelled for realistic stellar atmospheres. Here, we present the first numerical simulations of time-dependent diffusion. We solve the continuity equation after having computed, as accurately as possible, atomic diffusion velocities (with and without a magnetic field) for a simplified fictitious - but still realistic - chemical element: cloudium. The direct comparison with existing observations is not the immediate aim of this work but rather a general understanding of how the stratification build-up proceeds in time and space. Our results raise serious questions as to the relevance of equilibrium solutions and reinforce the suspicion that certain accumulations of chemical elements might prove unstable.
The time-dependent Gutzwiller approximation
NASA Astrophysics Data System (ADS)
Fabrizio, Michele
2015-03-01
The time-dependent Gutzwiller Approximation (t-GA) is shown to be capable of tracking the off-equilibrium evolution both of coherent quasiparticles and of incoherent Hubbard bands. The method is used to demonstrate that the sharp dynamical crossover observed by time-dependent DMFT in the quench-dynamics of a half-filled Hubbard model can be identified within the t-GA as a genuine dynamical transition separating two distinct physical phases. This result, strictly variational for lattices of infinite coordination number, is intriguing as it actually questions the occurrence of thermalization. Next, we shall present how t-GA works in a multi-band model for V2O3 that displays a first-order Mott transition. We shall show that a physically accessible excitation pathway is able to collapse the Mott gap down and drive off-equilibrium the insulator into a metastable metal phase. Work supported by the European Union, Seventh Framework Programme, under the project GO FAST, Grant Agreement No. 280555.
High-fidelity numerical solution of the time-dependent Dirac equation
Almquist, Martin; Mattsson, Ken; Edvinsson, Tomas
2014-04-01
A stable high-order accurate finite difference method for the time-dependent Dirac equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis. The method is applied to time-resolved quantum tunneling where a comparison with the solution to the time-dependent Schrödinger equation in 1-D illustrates the differences between the two equations. In contrast to the conventional tunneling probability decay predicted by the Schrödinger equation, the Dirac equation exhibits Klein tunneling. Solving the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin affects the tunneling process. The observed spin-dependent reflection allows for a new type of spin-selective measurements.
Pseudospectral time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Ko, Chaehyuk; Malick, David K.; Braden, Dale A.; Friesner, Richard A.; Martínez, Todd J.
2008-03-01
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-05-24
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during
Yang, Wenchao; Ji, Shouxun; Huang, Lanping; Sheng, Xiaofei; Li, Zhou; Wang, Mingpu
2014-08-15
The characterization of precipitation and hardening mechanism during non-isothermal aging had been investigated using high resolution transmission electron microscopy for an Al–Mg–Si–Cu 6005A alloy. It was proposed that the needle-shaped β″ precipitates with a three-dimension coherency strain-field and an increased number density in the Al matrix provided the maximum strengthening effect for the Al–Mg–Si–Cu 6005A alloy. Simultaneously, it was also found that the formation and evolution of clusters in the early precipitation were associated with the vacancy binding energy, during which Si atoms played an important role in controlling the numbers density of Mg/Si co-clusters, and the excess Si atoms provided the increased number of nucleation sites for the subsequent precipitates to strengthen and improve the precipitation rate. Finally, based on the experimental observation and theoretical analysis, the precipitation sequence during the early precipitation in the Al–Mg–Si–Cu 6005A alloy was proposed as: supersaturated solid solution → Si-vacancy pairs, Mg-vacancy pairs and Mg clusters → Si clusters, and dissolution of Mg clusters → Mg atoms diffusion into the existing Si clusters → Mg/Si co-clusters → GP zone. - Highlights: • β″ precipitates provide the maximum strengthening effect for the 6005A alloy. • Si atoms play an important role in controlling the numbers of Mg/Si co-clusters. • The early aging sequence is deduced based on the solute-vacancy binding energy.
Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten
2001-01-01
FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.
NASA Astrophysics Data System (ADS)
Kulev, Nikolai; Dreyer, Michael E.
Knowledge of dynamic behaviour of cryogenic fluids under microgravity is of key importance for the management of cryogenic propellants in space vehicles. In this work we present experimental and numerical investigations of the capillary driven free surface oscillations of liquid argon (Tsat = 87.3K @ 1013 hPa) under non-isothermal boundary conditions. Such oscillations take place during the reorientation of the equilibrium position of the free surface upon step reduction of gravity. The aim was to investigate the impact on the reorientation when the main capillary flow is superimposed in the vicinity of the contact line by a flow, induced by thermal effects due to heat flux from the vessel's hot wall towards the cold cryogenic liquid. The experiments were performed at the Bremen Drop Tower. Axial wall temperature gradients of averaged 0.15 K/mm -1.93 K/mm towards the free surface were implemented. A general dependence of the system behavior on the value of these gradients was observed. Thus the characteristics of the free surface oscillations vary accordingly. The aperiodic movement of the apparent contact line changes to a periodic one, accompanied by a distinctive change in the vapor pressure increase -hinting to a peak evaporation on the receding contact line. Nucleation boiling in the highest range of the axial wall temperature gradients, indicating the formation of thermal wall boundary layers, was also observed. The individual or combined action of the physical mechanisms of Marangoni convection, vapor recoil and evaporation/condensation are to be expected behind the observation. Numerical simulations of the drop tower experiments utilizing the VOF method were exploited in search for the explanation. Simulation results and comparison to the experiment are also presented.
NASA Technical Reports Server (NTRS)
Hoffman, David K.; Sharafeddin, Omar; Judson, Richard S.; Kouri, Donald J.
1990-01-01
The time-dependent form of the Lippmann-Schwinger integral equation is used as the basis of several new wave packet propagation schemes. These can be formulated in terms of either the time-dependent wave function or a time-dependent amplitude density. The latter is nonzero only in the region of configuratiaon space for which the potential is nonzero, thereby in principle obviating the necessity of large grids or the use of complex absorbing potentials when resonances cause long collision times (leading, consequently, to long propagation times). Transition amplitudes are obtained in terms of Fourier transforms of the amplitude density from the time to the energy domain. The approach is illustrated by an application to a standard potential scattering model problem where, as in previous studies, the action of the kinetic energy operator is evaluated by fast Fourier transform (FFT) techniques.
Time-dependent nanomechanics of cartilage.
Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine
2011-04-01
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599
Dosing time-dependent actions of psychostimulants.
Manev, H; Uz, T
2009-01-01
The concept of the dosing time-dependent (DTD) actions of drugs has been used to describe the effects of diurnal rhythms on pharmacological responsiveness. Notwithstanding the importance of diurnal variability in drug pharmacokinetics and bioavailability, it appears that in the central nervous system (CNS), the DTD actions of psychotropic drugs involve diurnal changes in the CNS-specific expression of genes encoding for psychotropic drug targets and transcription factors known as clock genes. In this review, we focused our discussion on the DTD effects of the psychostimulants cocaine and amphetamines. Both cocaine and amphetamines produce differential lasting behavioral alterations, that is, locomotor sensitization, depending on the time of the day they are administered. This exemplifies a DTD action of these drugs. The DTD effects of these psychostimulants correlate with diurnal changes in the system of transcription factors termed clock genes, for example, Period 1, and with changes in the availability of certain subtypes of dopamine receptors, for example, D2 and D3. Diurnal synthesis and release of the pineal hormone melatonin influence the DTD behavioral actions of cocaine and amphetamines. The molecular mechanism of melatonin's effects on the responsiveness of CNS to psychostimulants appears to involve melatonin receptors and clock genes. It is proposed that the DTD characteristics of psychostimulant action and the contributions of the melatonergic system may have clinical implications that include treatments for the attention deficit hyperactivity disorder and possibly neurotoxicity/neuroprotection. PMID:19897073
Heating liquid dielectrics by time dependent fields
NASA Astrophysics Data System (ADS)
Khalife, A.; Pathak, U.; Richert, R.
2011-10-01
Steady state and time-resolved dielectric relaxation experiments are performed at high fields on viscous glycerol and the effects of energy absorption from the electric field are studied. Time resolution is obtained by a sinusoidal field whose amplitude is switched from a low to a high level and by recording voltage and current traces with an oscilloscope during this transition. Based on their distinct time and frequency dependences, three sources of modifying the dynamics and dielectric loss via an increase in the effective temperature can be distinguished: electrode temperature, real sample temperature, and configurational temperatures of the modes that absorbed the energy. Isothermal conditions that are desired for focusing on the configurational temperature changes (as in dielectric hole burning and related techniques) are maintained only for very thin samples and for moderate power levels. For high frequencies, say ν > 1 MHz, changes of the real temperature will exceed the effects of configurational temperatures in the case of macroscopic samples. Regarding microwave chemistry, heating via cell phone use, and related situations in which materials are subject to fields involving frequencies beyond the MHz regime, we conclude that changes in the configurational (or fictive) temperatures remain negligible compared with the increase of the real temperature. This simplifies the assessment of how time dependent electric fields modify the properties of materials.
Infrared Blobs : Time-dependent Flags
NASA Astrophysics Data System (ADS)
McCullough, P. R.; Mack, J.; Dulude, M.; Hilbert, B.
2014-10-01
We describe the creation of time-dependent flags for pixels associated with "blobs" on the WFC3 IR detector. We detect the blobs on flat fields obtained by repeated observations of the night side of the Earth. We provide the most complete census of IR blobs' positions, radii, and times of first appearance. In aggregate, a set of 46 blobs, 27 "strong" and 19 "medium" in their effective scattering cross section, affect slightly less than 1% of the pixels of the detector. A second set of 81 "weak" (and typically smaller) blobs affect another 1% of the pixels. In the past, the "blob" flag, bit 9 (i.e. value = 512) in the data quality (DQ) array described in Table 2.5 of the WFC3 Data Handbook (Rajan et al. 2010) has been a static 2-D array; henceforth a set of such arrays, each associated with a "use after" date corresponding to the appearance of one or more new blobs, can be used. We prepared such DQ arrays using the 46 "strong" and "medium" blobs and discuss why we did not include the fainter blobs therein. As an added data product, we create and test a blob flat field that corrects the effects of blobs on extended emission; however, it should not be applied if stellar photometry is the goal.
Time dependent friction in a free gas
NASA Astrophysics Data System (ADS)
Fanelli, Cristiano; Sisti, Francesco; Stagno, Gabriele V.
2016-03-01
We consider a body moving in a perfect gas, described by the mean-field approximation and interacting elastically with the body, we study the friction exerted by the gas on the body fixed at constant velocities. The time evolution of the body in this setting was studied in Caprino et al. [Math. Phys. 264, 167-189 (2006)], Caprino et al. [Math. Models Methods Appl. Sci. 17, 1369-1403 (2007)], and Cavallaro [Rend. Mat. Appl. 27, 123-145 (2007)] for object with simple shape; the first study where a simple kind of concavity was considered was in Sisti and Ricciuti [SIAM J. Math. Anal. 46, 3759-3611 (2014)], showing new features in the dynamic but not in the friction term. The case of more general shape of the body was left out for further difficulties, and we believe indeed that there are actually non-trivial issues to be faced for these more general cases. To show this and in the spirit of getting a more realistic perspective in the study of friction problems, in this paper, we focused our attention on the friction term itself, studying its behavior on a body with a more general kind of concavity and fixed at constant velocities. We derive the expression of the friction term for constant velocities, we show how it is time dependent, and we give its exact estimate in time. Finally, we use this result to show the absence of a constant velocity in the actual dynamic of such a body.
Alternative time-dependent optimized effective potential
NASA Astrophysics Data System (ADS)
Nazarov, Vladimir
2013-03-01
The OEP is known as a single-particle potential minimizing the expectation value of a many-body Hamiltonian on the set of eigen-functions of a single-particle Hamiltonian. The time-dependent (TD) OEP can be constructed with the TD quantum stationary-action principle. Very useful conceptually in DFT and TDDFT, both OEPs are not practicable due to the complexity of their implementations. Here we report a TDOEP by minimizing the difference of LHS and RHS of the TD Schrödinger equation. If the orbitals are varied, then the TD Hartree-Fock equations are reproduced. Similarly, we now find the OEP. New OMP does not involve the inversion of the density-response function χs, which greatly facilitates implementations. Accordingly, the exchange-correlation kernel fxc involves of χs- 1 only, not its quadratic counterpart. To show the power of this method, we work out the fxch (q , ω) of the homogeneous electron gas to be used with the nearly-free electrons theory, where fxch is the main input. Partial support from National Science Council, Taiwan, Grant No. 100-2112-M-001-025-MY3 is acknowledged.
Time-Dependent Nanomechanics of Cartilage
Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine
2011-01-01
In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E∗| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E∗| at nanometer-scale deformation. PMID:21463599
Tunable Time-Dependent Colloidal Interactions
NASA Astrophysics Data System (ADS)
Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.
Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.
Time-Dependent, Parallel Neutral Particle Transport Code System.
Energy Science and Technology Software Center (ESTSC)
2009-09-10
Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and themore » Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D
Time dependence of Hawking radiation entropy
Page, Don N.
2013-09-01
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.
Time dependence of Hawking radiation entropy
NASA Astrophysics Data System (ADS)
Page, Don N.
2013-09-01
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.
Time-dependence in mixture toxicity prediction
Dawson, Douglas A.; Allen, Erin M.G.; Allen, Joshua L.; Baumann, Hannah J.; Bensinger, Heather M.; Genco, Nicole; Guinn, Daphne; Hull, Michael W.; Il'Giovine, Zachary J.; Kaminski, Chelsea M.; Peyton, Jennifer R.; Schultz, T. Wayne; Pöch, Gerald
2014-01-01
The value of time-dependent toxicity (TDT) data in predicting mixture toxicity was examined. Single chemical (A and B) and mixture (A + B) toxicity tests using Microtox® were conducted with inhibition of bioluminescence (Vibrio fischeri) being quantified after 15, 30 and 45-min of exposure. Single chemical and mixture tests for 25 sham (A1:A2) and 125 true (A:B) combinations had a minimum of seven duplicated concentrations with a duplicated control treatment for each test. Concentration/response (x/y) data were fitted to sigmoid curves using the five-parameter logistic minus one parameter (5PL-1P) function, from which slope, EC25, EC50, EC75, asymmetry, maximum effect, and r2 values were obtained for each chemical and mixture at each exposure duration. Toxicity data were used to calculate percentage-based TDT values for each individual chemical and mixture of each combination. Predicted TDT values for each mixture were calculated by averaging the TDT values of the individual components and regressed against the observed TDT values obtained in testing, resulting in strong correlations for both sham (r2 = 0.989, n = 25) and true mixtures (r2 = 0.944, n = 125). Additionally, regression analyses confirmed that observed mixture TDT values calculated for the 50% effect level were somewhat better correlated with predicted mixture TDT values than at the 25 and 75% effect levels. Single chemical and mixture TDT values were classified into five levels in order to discern trends. The results suggested that the ability to predict mixture TDT by averaging the TDT of the single agents was modestly reduced when one agent of the combination had a positive TDT value and the other had a minimal or negative TDT value. PMID:25446331
Time-Dependent Rate Phenomenon in Viruses
Aiewsakun, Pakorn
2016-01-01
ABSTRACT Among the most fundamental questions in viral evolutionary biology are how fast viruses evolve and how evolutionary rates differ among viruses and fluctuate through time. Traditionally, viruses are loosely classed into two groups: slow-evolving DNA viruses and fast-evolving RNA viruses. As viral evolutionary rate estimates become more available, it appears that the rates are negatively correlated with the measurement timescales and that the boundary between the rates of DNA and RNA viruses might not be as clear as previously thought. In this study, we collected 396 viral evolutionary rate estimates across almost all viral genome types and replication strategies, and we examined their rate dynamics. We showed that the time-dependent rate phenomenon exists across multiple levels of viral taxonomy, from the Baltimore classification viral groups to genera. We also showed that, by taking the rate decay dynamics into account, a clear division between the rates of DNA and RNA viruses as well as reverse-transcribing viruses could be recovered. Surprisingly, despite large differences in their biology, our analyses suggested that the rate decay speed is independent of viral types and thus might be useful for better estimation of the evolutionary time scale of any virus. To illustrate this, we used our model to reestimate the evolutionary timescales of extant lentiviruses, which were previously suggested to be very young by standard phylogenetic analyses. Our analyses suggested that these viruses are millions of years old, in agreement with paleovirological evidence, and therefore, for the first time, reconciled molecular analyses of ancient and extant viruses. IMPORTANCE This work provides direct evidence that viral evolutionary rate estimates decay with their measurement timescales and that the rate decay speeds do not differ significantly among viruses despite the vast differences in their molecular features. After adjustment for the rate decay dynamics, the
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Time-Dependent Electronic Populations in Fragment-Based Time-Dependent Density Functional Theory.
Mosquera, Martín A; Wasserman, Adam
2015-08-11
Conceiving a molecule as being composed of smaller molecular fragments, or subunits, is one of the pillars of the chemical and physical sciences and leads to productive methods in quantum chemistry. Using a fragmentation scheme, efficient algorithms can be proposed to address problems in the description of chemical bond formation and breaking. We present a formally exact time-dependent density functional theory for the electronic dynamics of molecular fragments with a variable number of electrons. This new formalism is an extension of previous work [Phys. Rev. Lett. 111, 023001 (2013)]. We also introduce a stable density-inversion method that is applicable to time-dependent and ground-state density functional theories and their extensions, including those discussed in this work. PMID:26574438
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
NASA Astrophysics Data System (ADS)
Billy, F.; Coisne, D.; Sanchez, L.; Perrault, R.
2001-10-01
Color Doppler is routinely used for visualisation of intra cardiac flows and quantification of valvular heart disease, Nevertheless the 2D visualization of a complex 3D phenomenon is the major limitation of this technique, In particular, in clinical setting, the flow rate calculation upstream a regurgitant orifice (i,e, mitral valve insufficiency), assumes that the velocity field in the convergent region have hemispheric shapes and introduce miscalculation specially in case of prolaps regurgitant orifices, The main objective of this study was to characterize the dynamic 3D velocity field of the convergent region upstream a prolaps model of regurgitant orifice based on 2D time dependent PIV reconstruction.
Three-dimensional space and time-dependent analysis of molten salt reactors
Kophazi, J.; Lathouwers, D.; Kloosterman, J. L.; Feher, S.
2006-07-01
This paper presents the development of a 3D time dependent calculation scheme for graphite moderated molten salt reactors (MSRs). The neutronics was modelled by diffusion and the delayed neutron precursor equations were extended with a convection term to take into account the drift of precursors. To account for the heat transfer in the fuel, a ID heat convection equation was applied. All fuel channels were calculated individually. Heat transfer in the moderator was described by the 3D heat conduction equation, thus thermally connecting the fuel channels. The computational scheme was applied for the Molten Salt Reactor Experiment (MSRE). Steady-state and time dependent simulations were carried out, including the investigation of a local fuel channel blocking event where the space dependent effects are especially relevant. (authors)
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
Energy Science and Technology Software Center (ESTSC)
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
[3-D ultrasound in gastroenterology].
Zoller, W G; Liess, H
1994-06-01
Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
None
2014-02-26
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
Glimm, J.; Grove, J. W.; Li, X. L.; Li, Y.; Xu, Z.
2002-01-01
Front tracking traces the dynamic evolution of an interface separating differnt materials or fluid components. In this paper, they describe three types of the grid generation methods used in the front tracking method. One is the unstructured surface grid. The second is a structured grid-based reconstruction method. The third is a time-space grid, also grid based, for a conservative tracking algorithm with improved accuracy.
NASA Astrophysics Data System (ADS)
Alajmi, Mamdoh; Bona, Andrej; Pevzner, Roman
2016-02-01
Seismic monitoring feasibility analysis performed for a particular site usually involves the prediction of the time-lapse seismic signal and an assessment of the detectability of such a signal. In order to do this, level and other characteristics of time-lapse noise should also be known. In general, the observed time-lapse noise is spatially correlated, band-limited and exhibits lateral and temporal variations of its characteristics. If one wants to perform a statistical analysis of the detectability of the time-lapse signal one would need to have multiple realizations of such noise. To obtain such realizations, we propose a method for the modification of a single measured time-lapse noise volume by changing the phase spectra of the noise in sliding windows to random phases to preserve the spatial and temporal variability of the noise. To demonstrate the performance of this approach, we apply the method to CO2CRC Otway Project 4D seismic data.
TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro
Trent, Dr.D.S.; Eyler, Dr.L.L.
1991-04-01
TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435
INCORPORATING DYNAMIC 3D SIMULATION INTO PRA
Steven R Prescott; Curtis Smith
2011-07-01
Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Stanton, M M; Samitier, J; Sánchez, S
2015-08-01
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Arena3D: visualization of biological networks in 3D
Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard
2008-01-01
Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715
NASA Astrophysics Data System (ADS)
Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman
2013-11-01
The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.
Nabeel, A.; Khan, T.A.; Sharma, D.K.
2009-07-01
The kinetics of co-combustion/co-cracking of Topa coal with polystyrene, poly(vinyl chloride), and bakelite have been studied by theromogravimetric analysis at a linear heating rate of 20C/min in a stream of air for combustion and in nitrogen for cracking with a flow rate of 20 cm{sup 3}/min up to the temperature of 900C under non-isothermal conditions. The order of reaction and overall activation energy of the reactions have been calculated. These studies may help in synergistic production of value-added organic compounds and spatiality chemicals from coal and plastics.
Chilcoat, S.R. Hildebrand, S.T.
1995-12-31
Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
Spin fluctuations in 3d paramagnetic metals
NASA Astrophysics Data System (ADS)
Wysocki, Aleksander; Kutepov, Andrey; Antropov, Vladimir
Spin fluctuations (SFs) in 3d paramagnetic metals were investigated using the linear response formalism within the time dependent density functional theory. An efficient scheme of frequency integration using the Matsubara technique has been implemented and tested. The SFs spectrum in 3d paramagnets is analyzed in real and reciprocal spaces as a function of frequency and temperature. For all materials the SFs are characterized by the coexistence of low and high energy branches which originate from different regions of the Brillouin zone. The low-energy ones can be measured by neutron scattering experiments while the high-energy SFs appear to be more localized. Further, we studied the nature of square of fluctuating magnetic moment in these materials. This work was supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), and by the Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.
Bussiere, Pierre Olivier; Therias, Sandrine; Gardette, Jean-Luc; Murariu, Marius; Dubois, Philippe; Baba, Mohamed
2012-09-21
The crystallization of PLA-silane surface-treated ZnO nanocomposites was investigated by DSC and compared to that of neat PLA. Several modes of crystallization were considered: isothermal and non-isothermal cold crystallization and also isothermal and non-isothermal melt crystallization. The kinetics of cold crystallization were studied using different methods, namely the Avrami and Ozawa-Flynn-Wall models, to calculate activation energies and kinetic constants. In contrast to what is typically observed when the foreign particles are added in a polymer matrix, the silane surface-treated ZnO delayed the crystallization of PLA and made it more difficult to start. The nucleation activity of the ZnO nanoparticles, ϕ, was calculated and found to be greater than 1 (ϕ = 1.7). This indicated that ZnO played an anti-nucleating role in the crystallization of PLA nanocomposites. This effect has been linked mainly to the interactions between the silane groups onto the surface of nanoparticles and PLA macromolecules. These interactions which reduce the mobility of polymer chains have been evidenced by rheological experiments. PMID:22858912
Aldars-García, Laila; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia
2015-10-01
Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four theoretical temperature scenarios, including temperature levels observed in pistachio nuts during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. Logistic models, with temperature and time as explanatory variables, were fitted to the probability of growth and AFB1 production under a constant temperature. Subsequently, they were used to predict probabilities under non-isothermal scenarios, with levels of concordance from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information obtained in the present work could be used by producers and processors to predict the time for AFB1 production by A. flavus on pistachio nuts during transport and storage. PMID:26187836
NASA Astrophysics Data System (ADS)
da Costa, Silvanio S. L.; dos Santos, Marcelo L.; Beltrao, Marcelo A. N.; Matos, Charlene R. S.; Alcantara, Ana C. S.; Gimenez, Iara F.; Alves, Oswaldo L.; Barreto, Ledjane S.
2010-11-01
The kinetic parameters for the crystallization of CH3COOLi/CH3COONa glasses varying the Li:Na mole fraction LN21(2:1), LN31(3:1), LN41(4:1) and LN32(3:2) have been evaluated by isothermal and non-isothermal DSC measurements. Crystallization of LN21 samples containing variable amounts of poly(ethylene-terephthalate) (PET) has also been studied. Values of the Avrami exponent n varying between 2.05 and 2.33 were obtained from both isothermal and non-isothermal methods for all LN glasses, indicating a diffusion-controlled crystal growth with a decreasing nucleation rate. The more pronounced effect of PET on glass crystallization has been observed for low polymer amounts, being interpreted as due to polymer miscibility with the glass, which is absent for high PET amounts. The value of n = 4.75 for LN21+PET (3%) suggests a change in the crystallization mechanism from diffusion-controlled to interface-controlled crystal growth. The apparent activation energy (E) decreased with increasing PET amount, evidencing an improvement in glass stability against crystallization.
Non-isothermal crystallization kinetics of the BaTiO3-KNbO3-SiO2 glass
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Yang, Y. S.; Choi, H. W.
2015-04-01
We have investigated the non-isothermal formation kinetics of nanocrystals from the BaTiO3-KNbO3-SiO2 (BKSO) glass at temperatures from room temperature to 800 °C. The thermal characteristics and the structural transformations of the BKSO glass have been studied by means of a differential thermal analysis and X-ray diffraction. The crystallization of BKSO glass is found to accompany a single-step occurrence of a tetragonal Ba3TiNb4O15 nanocrystal structure. During the crystallization, a nanocrystals with a size of ˜40 nm at the initial stage grow with increasing temperature and reach a size of ˜120 nm by the time the crystallization finishes. We use the non-isothermal model of Johnson-Mehl-Avrami-Kolmogorov to characterize the kinetics of the crystallization process for the BKSO glass. The Avrami exponent of 3.5 indicates that the crystallization mechanisms is an increasing nucleation rate with diffusion-controlled growth. In the view of applications, providing information on how to control the size of nanograins systematically by simply controlling the annealing temperature of the glass state, as described in this study, should be useful.
2013-01-01
Background This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. Findings The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Conclusions Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed. PMID:23383684
Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M
2014-04-01
The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. PMID:24290637
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Remote 3D Medical Consultation
NASA Astrophysics Data System (ADS)
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert
2016-03-14
The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2003-05-12
This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.
NASA Astrophysics Data System (ADS)
Amado, Antonio; Schmid, Manfred; Wegener, Konrad
2015-05-01
Polymer processing using Additive Manufacturing Technologies (AM) has experienced a remarkable growth during the last years. The application range has been expanding rapidly, particularly driven by the so-called consumer 3D printing sector. However, for applications demanding higher requirements in terms of thermo-mechanical properties and dimensional accuracy the long established AM technologies such as Selective Laser Sintering (SLS) do not depict a comparable development. The higher process complexity hinders the number of materials that can be currently processed and the interactions between the different physics involved have not been fully investigated. In case of thermoplastic materials the crystallization kinetics coupled to the shrinkage strain development strongly influences the stability of the process. Thus, the current investigation presents a transient Finite Element simulation of the warpage effect during the SLS process of a new developed polyolefin (co-polypropylene) coupling the thermal, mechanical and phase change equations that control the process. A thermal characterization of the material was performed by means of DSC, integrating the Nakamura model with the classical Hoffmann-Lauritzen theory. The viscoelastic behavior was measured using a plate-plate rheometer at different degrees of undercooling and a phase change-temperature superposition principle was implemented. Additionally, for validation porpoises the warpage development of the first sintered layers was captured employing an optical device. The simulation results depict a good agreement with experimental measurements of deformation, describing the high sensitivity of the geometrical accuracy of the sintered parts related to the processing conditions.
Solution of the time-dependent Schrödinger equation using time-dependent basis functions.
Varga, Kálmán
2012-01-01
The time-dependent Schrödinger equation is solved by using an explicitly time-dependent basis. This approach allows efficient reflection-free time propagation of the wave function. The applicability of the method is illustrated by solving various time-dependent problems including the calculation of the above threshold ionization of a model atom and the optical absorption spectrum of a sodium dimer. PMID:22400699
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin
2016-08-01
Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)
Energy Science and Technology Software Center (ESTSC)
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
Dirac equation with some time-dependent electromagnetic terms
NASA Astrophysics Data System (ADS)
Saeedi, K.; Zarrinkamar, S.; Hassanabadi, H.
2016-07-01
We study the motion of relativistic fermions in a time-dependent electromagnetic field within the framework of Dirac equation. We consider the time-dependent scalar potential of the exponential form and the vector potential of linear form. We obtain the eigenfunctions and eigenvalues.
NASA Astrophysics Data System (ADS)
Culas, Sunil; Samuel, Jadu
2013-05-01
The kinetics of the thermal decomposition of untreated and γ-irradiated strontium nitrate, Sr(NO3)2 was studied under non-isothermal conditions at different heating rates (5, 10, 15 and 20 °C min-1) in nitrogen atmosphere. The data were analysed using both isoconversional and non-isoconversional methods. The activation energies were calculated by Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman (FR) methods. The results show that the irradiation enhances the decomposition and the effect increases with the irradiation dose. The activation energy decreases on irradiation. The appropriate conversion model for the thermal decomposition process selected by means of the master-plot method agrees with three-dimensional diffusion model (D3 mechanism), g(α)=[1-(1-α)1/3]2 for both untreated and irradiated salts at all heating rates.
High-field quantum calculation reveals time-dependent negative Kerr contribution.
Béjot, P; Cormier, E; Hertz, E; Lavorel, B; Kasparian, J; Wolf, J-P; Faucher, O
2013-01-25
The exact quantum time-dependent optical response of hydrogen under strong-field near-infrared excitation is investigated and compared to the perturbative model widely used for describing the effective atomic polarization induced by intense laser fields. By solving the full 3D time-dependent Schrödinger equation, we exhibit a supplementary, quasi-instantaneous defocusing contribution missing in the weak-field model of polarization. We show that this effect is far from being negligible, in particular when closures of ionization channels occur and stems from the interaction of electrons with their parent ions. It provides an interpretation of the higher-order Kerr effect recently observed in various gases. PMID:25166165
High-Field Quantum Calculation Reveals Time-Dependent Negative Kerr Contribution
NASA Astrophysics Data System (ADS)
Béjot, P.; Cormier, E.; Hertz, E.; Lavorel, B.; Kasparian, J.; Wolf, J.-P.; Faucher, O.
2013-01-01
The exact quantum time-dependent optical response of hydrogen under strong-field near-infrared excitation is investigated and compared to the perturbative model widely used for describing the effective atomic polarization induced by intense laser fields. By solving the full 3D time-dependent Schrödinger equation, we exhibit a supplementary, quasi-instantaneous defocusing contribution missing in the weak-field model of polarization. We show that this effect is far from being negligible, in particular when closures of ionization channels occur and stems from the interaction of electrons with their parent ions. It provides an interpretation of the higher-order Kerr effect recently observed in various gases.
NASA Astrophysics Data System (ADS)
Mahfouz, R. M.; Ahmed, G. A.-W.; Alshammari, M. R.
2014-06-01
The non-isothermal decomposition of unirradiated and γ-irradiated hydrated gadolinium acetylacetone with 102 kGy γ-ray absorbed dose was carried out in air and in nitrogen atmospheres and in the temperature range of 25-1000°C. The results indicate that gadolinium acetylacetonate decomposes through four main decomposition steps leading to the formation of intermediate products whose chemical structure is independent of the gas atmosphere applied and on the investigated absorbed dose. The final product at 820°C was found to be Gd2O3 irrespective of the gas atmosphere and the irradiation conditions. The non-isothermal data were analyzed using linear Flynn-Wall-Ozawa and non-linear Vyazovkin (VYZ) iso-conversional methods. The results of the application of these free models on the present kinetic data showed that the activation energy, Ea is independent of α in a very wide conversion range (0.1-0.9) indicating that the decomposition process is controlled by a unique kinetic model. The results of the model-fitting analysis showed that the decomposition course of the four decomposition steps of hydrated gadolinium acetylacetone was controlled by the D3 Jander diffusion model. Pure phase of Gd2O3 nanoparticles was obtained by thermal oxidation of γ-irradiated GdAcAc.3 H2O at 800°C for 6 h. X-ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques were employed for characterization of the as-synthesized nanoparticles. This is the first attempt to prepare Gd2O3 nanoparticles by solid-state thermal decomposition of γ-irradiated hydrated gadolinium acetylacetone.
3D Inverse problem: Seawater intrusions
NASA Astrophysics Data System (ADS)
Steklova, K.; Haber, E.
2013-12-01
Modeling of seawater intrusions (SWI) is challenging as it involves solving the governing equations for variable density flow, multiple time scales and varying boundary conditions. Due to the nonlinearity of the equations and the large aquifer domains, 3D computations are a costly process, particularly when solving the inverse SWI problem. In addition the heads and concentration measurements are difficult to obtain due to mixing, saline wedge location is sensitive to aquifer topography, and there is general uncertainty in initial and boundary conditions and parameters. Some of these complications can be overcome by using indirect geophysical data next to standard groundwater measurements, however, the inverse problem is usually simplified, e.g. by zonation for the parameters based on geological information, steady state substitution of the unknown initial conditions, decoupling the equations or reducing the amount of unknown parameters by covariance analysis. In our work we present a discretization of the flow and solute mass balance equations for variable groundwater (GW) flow. A finite difference scheme is to solve pressure equation and a Semi - Lagrangian method for solute transport equation. In this way we are able to choose an arbitrarily large time step without losing stability up to an accuracy requirement coming from the coupled character of the variable density flow equations. We derive analytical sensitivities of the GW model for parameters related to the porous media properties and also the initial solute distribution. Analytically derived sensitivities reduce the computational cost of inverse problem, but also give insight for maximizing information in collected data. If the geophysical data are available it also enables simultaneous calibration in a coupled hydrogeophysical framework. The 3D inverse problem was tested on artificial time dependent data for pressure and solute content coming from a GW forward model and/or geophysical forward model. Two
The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses
NASA Astrophysics Data System (ADS)
Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart
2012-01-01
This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.
Time-dependent potential-functional embedding theory
Huang, Chen; Libisch, Florian; Carter, Emily A.
2014-03-28
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na{sub 4} cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na{sub 4} cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.
Optoplasmonics: hybridization in 3D
NASA Astrophysics Data System (ADS)
Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.
2013-12-01
Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Astrophysics Data System (ADS)
Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan
1997-12-01
A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.
3D Printable Graphene Composite.
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
3D light scanning macrography.
Huber, D; Keller, M; Robert, D
2001-08-01
The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
[Real time 3D echocardiography].
Bauer, F; Shiota, T; Thomas, J D
2001-07-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
Time-dependent behavior of positrons in noble gases
Wadehra, J.M. . Dept. of Physics and Astronomy); Drallos, P.J. )
1990-01-01
Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z{sub eff}) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs.
Synchronization of rigid microrotors by time-dependent hydrodynamic interactions.
Theers, Mario; Winkler, Roland G
2013-08-01
We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors. The two rotors are confined in a plane and move along circles driven by active forces. The three-dimensional fluid is described by the linearized, time-dependent Navier-Stokes equations instead of the usually adopted Stokes equations. We demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. The time dependence of the phase difference between the rotors is determined and synchronization times are extracted for various external torques and rotor separations by solving the underlaying integrodifferential equations numerically. In addition, an analytical expression is provided for the synchronization time. PMID:24032929
Time-dependent manipulation of ultracold ion bunches
NASA Astrophysics Data System (ADS)
Reijnders, M. P.; Debernardi, N.; van der Geer, S. B.; Mutsaers, P. H. A.; Vredenbregt, E. J. D.; Luiten, O. J.
2011-02-01
The combination of an ultracold ion source based on photoionization of a laser-cooled gas and time-dependent acceleration fields enables precise manipulation of ion beams. We demonstrate reduction in the longitudinal energy spread and transverse (de)focusing of the beam by applying time-dependent acceleration voltages. In addition, we show how time-dependent acceleration fields can be used to control both the sign and strength of the spherical aberrations. The experimental results are in close agreement with detailed charged particle tracking simulations and can be explained in terms of a simple analytical model.
GPU-Accelerated Denoising in 3D (GD3D)
Energy Science and Technology Software Center (ESTSC)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
Functional differentiability in time-dependent quantum mechanics
Penz, Markus Ruggenthaler, Michael
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
Time-dependent rheological behaviour of bacterial cellulose hydrogel.
Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V
2016-01-01
This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298
Cosmological evolution of cosmic strings with time-dependent tension
Yamaguchi, Masahide
2005-08-15
We discuss the cosmological evolution of cosmic strings with time-dependent tension. We show that, in the case that the tension changes as a power of time, the cosmic string network obeys the scaling solution: the characteristic scale of the string network grows with the time. But due to the time dependence of the tension, the ratio of the energy density of infinite strings to that of the background universe is not necessarily constant.
Time-dependent {P} {T}-symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2013-12-01
The parity-time-reversal ( {P} {T})-symmetric quantum mechanics (QM) (PTQM) has developed into a noteworthy area of research. However, to date, most known studies of PTQM focused on the spectral properties of non-Hermitian Hamiltonian operators. In this work, we propose an axiom in PTQM in order to study general time-dependent problems in PTQM, e.g., those with a time-dependent {P} {T}-symmetric Hamiltonian and with a time-dependent metric. We illuminate our proposal by examining a proper mapping from a time-dependent Schrödinger-like equation of motion for PTQM to the familiar time-dependent Schrödinger equation in conventional QM. The rich structure of the proper mapping hints that time-dependent PTQM can be a fruitful extension of conventional QM. Under our proposed framework, we further study in detail the Berry-phase generation in a class of {P} {T}-symmetric two-level systems. It is found that a closed path in the parameter space of PTQM is often associated with an open path in a properly mapped problem in conventional QM. In one interesting case, we further interpret the Berry phase as the flux of a continuously tunable fictitious magnetic monopole, thus highlighting the difference between PTQM and conventional QM despite the existence of a proper mapping between them.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.
Efficient one-pass 3-D time migration
Brzostowski, M.A.; Snyder, F.F.C.; Smith, P.J.
1996-11-01
An efficient one-pass 3-D time migration algorithm is introduced as an alternative to Ristow`s splitting approach. This algorithm extends Black and Leong`s k{sub y}-separation approach with a time-dependent Stolt stretch operation called dilation. Migration using k{sub y} dilation consists of a single pass over the 3-D data volume after k{sub y} slices are formed with each k{sub y} slice downward continued independently. A number of downward continuation algorithms based upon the 3-D wave equation may be used. Dilation accommodates any lateral variations in velocity before the 3-D data volume is decomposed into k{sub y} slices via a Fourier transform. An inverse dilation operation is performed after the downward-continuation operation and after the data volume have been inverse Fourier transformed subsequently along the k{sub y} direction. Migration using the k{sub y}-dilation approach yields a one-pass 3-D time migration algorithm that is practical and efficient where the medium velocity is smoothly varying.
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
Reactor transient analyses with KIN3D/PARTISN
Gabrielli, F.; Rineiski, A.; Maschek, W.; Marchetti, M.
2013-07-01
Efforts are going on at the Karlsruhe Institute of Technology (KIT) to extend the kinetics capability of the PARTISN code in order to run in parallel two- and three-dimensional transient analyses with the quasistatic method, while taking into account delayed neutrons. In the original code version, time-dependent transport problems are solved by employing a semi-implicit direct kinetics option, the delayed neutrons being not taken into account. The PARTISN 5.97 code has been extended and then coupled with KIN3D, a time-dependent model embedded in the ERANOS code system. In the coupled code, PARTISN 5.97 is used as neutron transport solver to perform transient analyses while employing direct and quasi-static kinetics options of KIN3D. The coupled code can be also applied for first-order and exact perturbation theory calculations. In the paper, the PARTISN 5.97 extensions and coupling procedure are described and the performances of the KIN3D/PARTISN coupled code are investigated by analyzing transients induced by a source-jerk in a three-dimensional ADS model driven by an external source. (authors)
3D Printable Graphene Composite
NASA Astrophysics Data System (ADS)
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
3D acoustic atmospheric tomography
NASA Astrophysics Data System (ADS)
Rogers, Kevin; Finn, Anthony
2014-10-01
This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.
Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.
2013-01-01
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
3D medical thermography device
NASA Astrophysics Data System (ADS)
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
3D Ion Temperature Reconstruction
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi
2009-11-01
The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.
Larry Lawrence; Bruce Miller
2004-09-01
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
NASA Astrophysics Data System (ADS)
Huang, Y.; Shao, H.; Thullner, M.; Kolditz, O.
2014-12-01
In applications of Deep Geothermal reservoirs, thermal recovery processes, and contaminated groundwater sites, the multiphase multicomponent flow and transport processes are often considered the most important underlying physical process. In particular, the behavior of phase appearance and disappearance is the critical to the performance of many geo-reservoirs, and great interests exit in the scientific community to simulate this coupled process. This work is devoted to the modeling and simulation of two-phase, two components flow and transport in the porous medium, whereas the phase change behavior in non-isothermal conditions is considered. In this work, we have implemented the algorithm developed by Marchand, et al., into the open source scientific software OpenGeoSys. The governing equation is formulated in terms of molar fraction of the light component and mean pressure as the persistent primary variables, which leads to a fully coupled nonlinear PDE system. One of the important advantages of this approach is avoiding the primary variables switching between single phase and two phase zones, so that this uniform system can be applied to describe the behavior of phase change. On the other hand, due to the number of unkown variables closure relationships are also formulated to close the whole equation system by using the approach of complementarity constrains. For the numerical technical scheme: The standard Galerkin Finite element method is applied for space discretization, while a fully implicit scheme for the time discretization, and Newton-Raphson method is utilized for the global linearization, as well as the closure relationship. This model is verified based on one test case developed to simulate the heat pipe problem. This benchmark involves two-phase two-component flow in saturated/unsaturated porous media under non-isothermal condition, including phase change and mineral-water geochemical reactive transport processes. The simulation results will be
Information theories for time-dependent harmonic oscillator
Choi, Jeong Ryeol; Kim, Min-Soo; Kim, Daeyeoul; Maamache, Mustapha; Menouar, Salah; Nahm, In Hyun
2011-06-15
Highlights: > Information theories for the general time-dependent harmonic oscillator based on invariant operator method. > Time dependence of entropies and entropic uncertainty relation. > Characteristics of Shannon information and Fisher information. > Application of information theories to particular systems that have time-dependent behavior. - Abstract: Information theories for the general time-dependent harmonic oscillator are described on the basis of invariant operator method. We obtained entropic uncertainty relation of the system and discussed whether it is always larger than or equal to the physically allowed minimum value. Shannon information and Fisher information are derived by means of density operator that satisfies Liouville-von Neumann equation and their characteristics are investigated. Shannon information is independent of time, but Fisher information is explicitly dependent on time as the time functions of the Hamiltonian vary. We can regard that the Fisher information is a local measure since its time behavior is largely affected by local arrangements of the density, whilst the Shannon information plays the role of a global measure of the spreading of density. To promote the understanding, our theory is applied to special systems, the so-called quantum oscillator with time-dependent frequency and strongly pulsating mass system.
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-01
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680
Correlated electron dynamics with time-dependent quantum Monte Carlo: three-dimensional helium.
Christov, Ivan P
2011-07-28
Here the recently proposed time-dependent quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient to cause significant ionization. By solving concurrently sets of up to 20,000 coupled 3D time-dependent Schrödinger equations for the guide waves and corresponding sets of first order equations of motion for the Monte Carlo walkers we obtain ground state energies in close agreement with the exact values. The combined use of spherical coordinates and B-splines along the radial coordinate proves to be especially accurate and efficient for such calculations. Our results for the dipole response and the ionization of an atom with un-correlated electrons are in good agreement with the predictions of the conventional time-dependent Hartree-Fock method while the calculations with correlated electrons show enhanced ionization that is due to the electron-electron repulsion. PMID:21806103
NASA Astrophysics Data System (ADS)
Hoffman, Adam J.; Lee, John C.
2016-02-01
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
Time dependent behavior of impact angle in turbulkent pipe flows experience erosion
NASA Astrophysics Data System (ADS)
Guzman, Amador; Oyarzun, Diego; Walczak, Magdalena; Aguirre, Javiera
Erosion-corrosion in pipe systems transporting slurry turbulent flows is of a great importance in industrial and mining applications, where large volumes of suspended solids are sent up to hundreds of kilometers, to be further processed. The slurry is typically sent over large diameter steel pipes, which not always have an anti-abrasion coating. During the transport, the thickness of the pipe diminishes and eventually leaks and breaks, due to the combined effects of wear and corrosion. The processes of pipe degradation are further enhanced by the content of the slurry electrolytes that might switch from neutral to aggressive. The understanding of these processes in terms of operational parameters is critical for anticipating and mitigating a catastrophic outcome. This paper describes turbulent flow numerical simulations in a slurry transporting steel pipe with an emphasis on the correlation between the time dependent impact angle in the vicinity of the steel pipe and the rate of material loss. Full numerical simulations in a 3D long domain by using an Eulerian -Eulerian two phase flow approach coupled to a κ-epsilon turbulent model are performed for different solid particle concentration and flow velocity and compared to existing experimental and numerical results for validation with and without gravity. Time-dependent axisymmetric turbulent flow simulations are performed for determining both the time dependent behavior of the axial and radial velocities near the pipe wall and the impact angle. Finantial support from Conicyt through the Fondecyt proposal 1141107 is acknowledged.
Time-Dependent Coulomb Stres along the San Andreas Fault System
NASA Astrophysics Data System (ADS)
Smith, B. R.; Sandwell, D. T.
2003-12-01
Many questions remain regarding the evolution of stress along the San Andreas Fault System: Which segments of the San Andreas System are approaching failure? What is the stress interaction along different fault segments for likely slip scenarios? To what extent does locking depth influence the regional stress field? To better address these questions, we have developed and tested a semi-analytic, time-dependent model for 3-D displacement and stress caused by a dislocation in an elastic layer over a viscoelastic half-space. Our model is remarkably efficient: a single time-step computation of 2048 by 2048 horizontal grid cells, containing over 400 fault elements within a 900 x 1700 km fault zone, requires approximately 1 minute of CPU time on an ordinary workstation. This speed enables us to rapidly explore various full 3-D viscoelastic models with realistic 1000-year faulting scenarios. Our approach for investigating time-dependent deformation and stress evolution of the San Andreas Fault System is as follows: We represent far-field plate motion by continuous slip in the lower portion of a 50 km thick elastic layer. Earthquakes are modeled by episodic slip along individual faults using spatially-variable locking depth and geologically-estimated recurrence intervals. Each co-seismic event results in an instantaneous change of stress within the viscoelastic half-space that slowly relaxes with time and is coupled with the evolution of stresses within the elastic plate. We investigate such evolving stresses by computing time-dependent Coulomb stress within the seismogenic zone. We find that the evolving stress field is sensitive to plate thickness, half-space viscosity, and faulting scenario. We are currently establishing a suite of models, consistent with both geodetic and geological observations, that will increase our understanding of how temporal plate-boundary deformation and stress variations within the seismogenic crust can result from different tectonic settings
Energy Science and Technology Software Center (ESTSC)
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less
Sinclair, Michael B
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.
3D Elastic Wavefield Tomography
NASA Astrophysics Data System (ADS)
Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.
2010-12-01
Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal
The computational foundations of time dependent density functional theory
NASA Astrophysics Data System (ADS)
Whitfield, James
2014-03-01
The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. Since a quantum computer can efficiently produce such time-dependent densities, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds. Further, we find that systems do not immediately become non-representable but rather become ill-representable as one approaches this boundary. A representability parameter is defined in our work which quantifies the distance to the boundary of representability and the computational difficulty of finding the Kohn-Sham system.
Computational complexity of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Whitfield, J. D.; Yung, M.-H.; Tempel, D. G.; Boixo, S.; Aspuru-Guzik, A.
2014-08-01
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds.
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
Challenges in Lagrangian transport and predictability in 3D flows
NASA Astrophysics Data System (ADS)
Branicki, M.; Wiggins, S.; Kirwan, A. D.; Malek-Madani, R.
2011-12-01
The interplay between the geometrical theory of dynamical systems and the trajectory-based description of aperiodically time-dependent fluid flows has led to significant advances in understanding the role of chaotic transport in geophysical flows at scales dominated by advection. Lagrangian transport analysis utilizing either the time-dependent geometry of intersecting stable and unstable manifolds of the so-called Distinguished Hyperbolic Trajectories (DHT), or ridges of finite-time Lyapunov exponent fields (LCS), provide a much needed and complementary insight into ephemeral mechanisms responsible for the existence of `leaky' transport barriers and 'leaky' mesoscale eddies. However, to date most oceanic applications have been confined to 2D analysis of near surface regions in 'perfect' flows not accounting for model or measurement error, and with the tacit assumption of negligible vertical velocities. I will systematically address issues concerning the regimes of applicability of two-dimensional analysis in 3D aperiodically time-dependent flows, as well as outstanding challenges in fully 3D Lagrangian transport analysis. Even for perfect horizontal velocities, little is known about the vertical extent of stable/unstable manifolds associated with DHTs and/or other special structures relevant to stratified 3D flows. In particular, their sensitivity to errors in the vertical velocities and data assimilation methods has been little studied. Rigorous results regarding the above issues will be illustrated by revealing and mathematically tractable toy models, as well as examples from a detailed study in an eddy-rich region from the Gulf of Mexico and the Mediterranean. New ways of quantifying the uncertainty in Lagrangian predictions will also be presented.
Handling Time-dependent Variables: Antibiotics and Antibiotic Resistance.
Munoz-Price, L Silvia; Frencken, Jos F; Tarima, Sergey; Bonten, Marc
2016-06-15
Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods, antibiotics constitute time-dependent exposures. Cox regression models are suited for determining such associations. After explaining the concepts of hazard, hazard ratio, and proportional hazards, the effects of treating antibiotic exposure as fixed or time-dependent variables are illustrated and discussed. Wider acceptance of these techniques will improve quantification of the effects of antibiotics on antibiotic resistance development and provide better evidence for guideline recommendations. PMID:27025824
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-15
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Choice of Variables and Preconditioning for Time Dependent Problems
NASA Technical Reports Server (NTRS)
Turkel, Eli; Vatsa, Verr N.
2003-01-01
We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.
Time Dependence of Joint Entropy of Oscillating Quantum Systems
NASA Astrophysics Data System (ADS)
Özcan, Özgür; Aktürk, Ethem; Sever, Ramazan
2008-12-01
The time dependent entropy (or Leipnik’s entropy) of harmonic and damped harmonic oscillator systems is studied by using time dependent wave function obtained by the Feynman path integral method. The Leipnik entropy and its envelope change as a function of time, angular frequency and damping factor. Our results for simple harmonic oscillator are in agreement with the literature. However, the joint entropy of damped harmonic oscillator shows remarkable discontinuity with time for certain values of damping factor. The envelope of the joint entropy curve increases with time monotonically. These results show the general properties of the envelope of the joint entropy curve for quantum systems.
NASA Astrophysics Data System (ADS)
Fadel, M.; Shakra, A. M.; Sakr, G. B.
2016-07-01
The crystallization kinetics for a Ga5Ge15Te80 chalcogenide glass, prepared by melt quenching technique, have been studied by differential thermal analysis (DTA) under non-isothermal condition, with five different heating rates α = 10, 15, 20, 25 and 30 ° C/ min . The DTA trace indicates the presence of two crystallization peaks. The glass transition temperature Tg , the crystallization temperature Tc and the melting point temperature Tm were determined. The dependence of Tg , T_{c1} and T_{c2} on the heating rate α , were used for the determination of the activation energy of glass transition Eg and crystallization Ec . The DTA data have been analyzed in terms of activation energy, stability and dimensionality of growth ( m by different models viz. Kissinger's, Mahadeavan, Augis and Bennet's and Matusita's equations. The Avrami exponents ( n and ( m have also been determined; the obtained values of ( n and ( m are 2.959 and 1.959, respectively, indicating bulk nucleation with two-dimensional growth.
Xu, Tianfu; Pruess, Karsten
1998-09-01
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.
NASA Astrophysics Data System (ADS)
Gong, Pan; Zhao, Shaofan; Wang, Xin; Yao, Kefu
2015-07-01
The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as "strong glass former." The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran-Colmenero's method.
Unstructured 3D grid toolbox for modeling and simulation
George, D.
1997-11-01
Computable 3D grids that accurately represent complex multimaterial geometries are essential for both static and time-dependent modeling and simulation. LaGriT, the grid toolbox developed at Los Alamos provides a sophisticated set of initial grid generation, grid maintenance and grid optimization tools. We present example grids that demonstrate the flexibility of the grid generator. Additionally, we present the results of an electrostatic calculation and a grain growth problem that illustrate the grid optimization features and the utility of the grid server architecture.
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
Quantitative analysis of coronary dynamics by time-dependent ultrasound imaging
NASA Astrophysics Data System (ADS)
Marraccini, Paolo; Salvetti, Ovidio; Braccini, Giovanni; Bragagni, Paolo; Levorato, Dianora; L'Abbate, Antonio; Marzilli, Mario
1995-04-01
Intravascular ultrasound imaging is a new technique that displays information on lumen and arterial walls, and is capable of providing real-time monitoring of cross-sectional high- resolution images. This technique has potential application for studying the dynamics of the arterial wall with respect to the presence or absence of pathology and the vascular response to physiological or pharmacological stimuli. Although the extraction of information related to coronary dynamics and wall pathologies is possible by manual procedures it is very time consuming and influenced by intra- and interobserver errors. We developed an evaluation system for analyzing 3D spaces defined by digitized cross-sectional ultrasound images of coronaries quantifying the vasomotion in relation to the morphology of the arterial wall. Sequences of echographic images were obtained and recorded as ordered stacks of 2D frames on a VHS videotape. For each image, an automatic lumen edge segmentation was performed, then 3D reconstruction was obtained to evaluate time-dependent lumen and vessel wall changes. These 3D representations serve to demonstrate dynamic phenomena and to perform quantitative analyses (e.g., area/hemidiameter variations, projections, sections, 'carving,' etc.).
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
NIF Ignition Target 3D Point Design
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
3D multiplexed immunoplasmonics microscopy.
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-21
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third
Time-Dependent Interfacial Properties and DNAPL Mobility
Tuck, D.M.
1999-03-10
Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.
Pedagogical Aspects of Time-Dependent Rotation Operators.
ERIC Educational Resources Information Center
Leubner, C.
1980-01-01
Describes the reformulation of a classical magnetic moment interacting with various magnetic field configurations in terms of coordinate-free, time-dependent rotation operators. This approach provides useful exercises for the manipulation of three-dimensional rotation operators and provides examples for a number of quantum-mechanics related…
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Time dependent solution for acceleration of tau-leaping
Fu, Jin; Wu, Sheng; Petzold, Linda R.
2013-02-15
The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.
Dynamic structure evolution of time-dependent network
NASA Astrophysics Data System (ADS)
Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong
2016-08-01
In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.
Spike-timing-dependent BDNF secretion and synaptic plasticity.
Lu, Hui; Park, Hyungju; Poo, Mu-Ming
2014-01-01
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite. PMID:24298135
Acceleration in a nonplanar time-dependent billiard.
Raeisi, Sedighe; Eslami, Parvin
2016-08-01
We study the dynamical properties of a particle in a nonplanar square billiard. The plane of the billiard has a sinusoidal shape. We consider both the static and time-dependent plane. We study the affect of different parameters that control the geometry of the billiard in this model. We consider variations of different parameters of the model and describe how the particle trajectory is affected by these parameters. We also investigate the dynamical behavior of the system in the static condition using its reduced phase plot and show that the dynamics of the particle inside the billiard may be regular, mixed, or chaotic. Finally, the problem of the particle energy growth is studied in the billiard with the time-dependent plane. We show that when in the static case, the billiard is chaotic, then the particle energy in the time-dependent billiard grows for a small number of collisions, and then it starts to saturate. But when the dynamics of the static case is regular, then the particle average energy in the time-dependent situation stays constant. PMID:27627308
Extra Dimensions: 3D and Time in PDF Documentation
Graf, Norman A.; /SLAC
2011-11-10
High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.
Extra dimensions: 3d and time in pdf documentation
NASA Astrophysics Data System (ADS)
Graf, N. A.
2008-07-01
High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.
NASA Astrophysics Data System (ADS)
Hermanns, Maria
The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.
NASA Technical Reports Server (NTRS)
1997-01-01
Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2013-03-01
Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
3-D Cavern Enlargement Analyses
EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.
2002-03-01
Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.
Time-dependent density functional theory with twist-averaged boundary conditions
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2016-05-01
Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be
Imaging a Sustainable Future in 3D
NASA Astrophysics Data System (ADS)
Schuhr, W.; Lee, J. D.; Kanngieser, E.
2012-07-01
It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
3D Elastic Seismic Wave Propagation Code
Energy Science and Technology Software Center (ESTSC)
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
3D Printing and Its Urologic Applications.
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
NASA Astrophysics Data System (ADS)
Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.
2011-12-01
This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
A time dependent theory of crazing behavior in polymers
NASA Technical Reports Server (NTRS)
Chern, S. S.; Hsiao, C. C.
1982-01-01
The development of crazing is not only a function of stress, but also a function of time. Under a simple state of tension, a craze opening displacement is closely associated with the viscoelastic behavior of the original bulk polymer medium in which individual crazes initiate and develop. Within each craze region, molecular orientation takes place when conditions permit, and a new phase of rearranged molecules governs its local behavior. Based upon a time-dependent viscoelastic two-dimensional model, using a computer program the craze opening displacement field has been calculated, time-dependent craze length was also computed by taking into consideration the molecular orientation mechanism and large deformations in the craze region. Examples are given for simple viscoelastic media with simplified stress distributions. It is interesting to find out that the occurrence of crazing may be interpreted in terms of the stability or instability of the constitutive behavior of the bulk polymer.
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Time-dependent buoyant puff model for explosive sources
Kansa, E.J.
1997-01-01
Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puff cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.
The Time-Dependent Structure of the Electron Reconnection Layer
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.
Tokamak power reactor ignition and time dependent fractional power operation
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.
Time-dependent nonlinear cosmic ray shocks confirming abstract
NASA Technical Reports Server (NTRS)
Dorfi, E. A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of thie phenomenon are required.
Chromospheric extents predicted by time-dependent acoustic wave models
Cuntz, M. Heidelberg Universitaet )
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.
Chromospheric extents predicted by time-dependent acoustic wave models
NASA Technical Reports Server (NTRS)
Cuntz, Manfred
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.
Polymer dynamics in time-dependent periodic potentials
NASA Astrophysics Data System (ADS)
Kauttonen, Janne; Merikoski, Juha; Pulkkinen, Otto
2008-06-01
The dynamics of a discrete polymer in time-dependent external potentials is studied with the master equation approach. We consider both stochastic and deterministic switching mechanisms for the potential states and give the essential equations for computing the stationary-state properties of molecules with internal structure in time-dependent periodic potentials on a lattice. As an example, we consider standard and modified Rubinstein-Duke polymers and calculate their mean drift and effective diffusion coefficient in the two-state nonsymmetric flashing potential and symmetric traveling potential. Rich nonlinear behavior of these observables is found. By varying the polymer length, we find current inversions caused by the rebound effect that is only present for molecules with internal structure. These results depend strongly on the polymer type. We also notice increased transport coherence for longer polymers.
Quick Time-dependent Ionization Calculations Depending on MHD Simulations
NASA Astrophysics Data System (ADS)
Shen, Chengcai; Raymond, John C.; Murphy, Nicholas Arnold
2014-06-01
Time-dependent ionization is important in astrophysical environments where the thermodynamic time scale is shorter than ionization time scale. In this work, we report a FORTRAN program that performs fast non-equilibrium ionization calculations based on parallel computing. Using MHD simulation results, we trace the movements of plasma in a Lagrangian framework, and obtain evolutionary history of temperature and electron density. Then the time-dependent ionization equations are solved using the eigenvalue method. For any complex temperature and density histories, we introduce a advanced time-step strategy to improve the computational efficiency. Our tests show that this program has advantages of high numerical stability and high accuracy. In addition, it is also easy to integrate this solver with the other MHD routines.
Time-Dependent Coupled Harmonic Oscillators: Classical and Quantum Solutions
NASA Astrophysics Data System (ADS)
Macedo, Diego Ximenes; Guedes, Ilde
2015-10-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.
Time-dependent coupled harmonic oscillators: Classical and quantum solutions
NASA Astrophysics Data System (ADS)
Macedo, D. X.; Guedes, I.
2014-08-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne-Pinney (MP) equation for each system. We obtain the solutions for the system with m1 = m2 = m0eγt, ω1 = ω01e-γt/2, ω2 = ω02e-γt/2 and k = k0.
Time-dependent response of filamentary composite spherical pressure vessels
NASA Technical Reports Server (NTRS)
Dozier, J. D.
1983-01-01
A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.
Boosting thermoelectric efficiency using time-dependent control
Zhou, Hangbo; Thingna, Juzar; Hänggi, Peter; Wang, Jian-Sheng; Li, Baowen
2015-01-01
Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency. PMID:26464021
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon
2007-08-01
Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon
2007-08-01
Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.
Boosting thermoelectric efficiency using time-dependent control.
Zhou, Hangbo; Thingna, Juzar; Hänggi, Peter; Wang, Jian-Sheng; Li, Baowen
2015-01-01
Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency. PMID:26464021
A semianalytical satellite theory for weak time-dependent perturbations
NASA Technical Reports Server (NTRS)
Cefola, P.; Mcclain, W.; Early, L.; Green, A.
1980-01-01
The modifications of the semianalytical satellite theory required to include these 'weak' time dependent perturbations are described. The new formulation results in additional terms in the short periodic variations but does not change the averaged equations of motion. Thus the m monthly terms are still included in the averaged equations of motion. This contrasts with the usual approach for the strongly time dependent perturbations in which the m monthly (or m daily, if tesseral harmonics are being considered) terms would be eliminated from the averaged equations of motion and included in the short periodics computation. Numerical test results for the GPS case obtained with a numerical averaging implementation of the new theory demonstrate the accuracy improvement.
Student understanding of time dependence in quantum mechanics
NASA Astrophysics Data System (ADS)
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Autoionization in time-dependent density-functional theory
NASA Astrophysics Data System (ADS)
Kapoor, V.
2016-06-01
We compute the exact exchange-correlation potential of the time-dependent density-functional theory (TDDFT) for the correlated process of autoionization. The potential develops barriers which regulate the autoionization rate. TDDFT employing known and practicable exchange-correlation potentials does not capture any autoionization dynamics. Approximate exchange-correlation potentials capturing such dynamics would necessarily require memory effects and are unlikely to be developed, as will be illustrated.
Designing for time-dependent material response in spacecraft structures
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.
1992-01-01
To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.
Time-dependent Brittle Deformation in Darley Dale Sandstone
NASA Astrophysics Data System (ADS)
Baud, P.; Heap, M. J.; Meredith, P. G.; Bell, A. F.; Main, I. G.
2008-12-01
The characterization of time-dependent brittle rock deformation is fundamental to understanding the long- term evolution and dynamics of the Earth's upper crust. The chemical influence of water promotes time- dependent deformation through stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Here we report results from a study of time-dependent brittle creep in water- saturated samples of Darley Dale sandstone (initial porosity of 13%). Conventional creep experiments (or 'static fatigue' tests) show that time to failure decreases dramatically with the imposed deviatoric stress. They also suggest the existence of a critical level of damage beyond which localized failure develops. Sample variability results however in significant scattering in the experimental data and numerous tests are needed to clearly define a relation between the strain rate and the applied stress. We show here that stress-stepping experiments provide a means to overcome this problem and that it is possible this way to obtain the strain rate dependence on applied stress with a single test. This allows to study in details the impact of various thermodynamical conditions on brittle creep. The influence of effective stress was investigated in stress-stepping experiments with effective confining pressures of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the expected purely mechanical influence of an elevated effective stress our results also demonstrate that stress corrosion appears to be inhibited at higher effective stresses. The influence of doubling the pore fluid pressure however, whilst maintaining a constant effective stress, is shown to have no effect on the rate of stress corrosion. We then discuss the results in light of acoustic emission hypocentre location data and optical microscope analysis and use our experimental data to validate proposed macroscopic creep laws. Finally, using
Time Dependent Models of Grain Formation Around Carbon Stars
NASA Technical Reports Server (NTRS)
Egan, M. P.; Shipman, R. F.
1996-01-01
Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.
Time-dependent MOS breakdown. [of Na contaminated capacitors
NASA Technical Reports Server (NTRS)
Li, S. P.; Bates, E. T.; Maserjian, J.
1976-01-01
A general model for time-dependent breakdown in metal-oxide-silicon (MOS) structures is developed and related to experimental measurements on samples deliberately contaminated with Na. A statistical method is used for measuring the breakdown probability as a function of log time and applied field. It is shown that three time regions of breakdown can be explained respectively in terms of silicon surface defects, ion emission from the metal interface, and lateral ion diffusion at the silicon interface.
Quasinormal modes in a time-dependent black hole background
NASA Astrophysics Data System (ADS)
Shao, Cheng-Gang; Wang, Bin; Abdalla, Elcio; Su, Ru-Keng
2005-02-01
We have studied the evolution of the massless scalar field propagating in a time-dependent charged Vaidya black hole background. A generalized tortoise coordinate transformation was used to study the evolution of the massless scalar field. It is shown that, for the slowest damped quasinormal modes, the approximate formulas in the stationary Reissner-Nordström black hole turn out to be a reasonable prescription, showing that results from quasinormal mode analysis are rather robust.
Quasinormal modes in a time-dependent black hole background
Shao Chenggang; Wang Bin; Abdalla, Elcio; Su Rukeng
2005-02-15
We have studied the evolution of the massless scalar field propagating in a time-dependent charged Vaidya black hole background. A generalized tortoise coordinate transformation was used to study the evolution of the massless scalar field. It is shown that, for the slowest damped quasinormal modes, the approximate formulas in the stationary Reissner-Nordstroem black hole turn out to be a reasonable prescription, showing that results from quasinormal mode analysis are rather robust.
Time-dependent first-principles approaches to PV materials
Miyamoto, Yoshiyuki
2013-12-10
Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.
Shoulder pain and time dependent structure in wheelchair propulsion variability.
Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J
2016-07-01
Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain. PMID:27134151
Time-dependent global modeling of the inner heliosphere
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Lyon, J.; Arge, C. N.; Lario, D.; Linker, J.; Lionello, R.
2015-12-01
We present results of time-dependent modeling of the inner heliosphere using the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamic (MHD). Two types of simulations are performed: one concentrates on the background solar wind specification, while the other deals with the propagation of coronal mass ejections (CMEs). For simulations of the first type we coupled the LFM-helio code with the ADAPT-driven WSA model. We present some details of the coupling machinery and then simulate selected periods characterized by very low solar activity with no significant energetic particle events or CMEs. The results of the model are compared with MESSENGER, ACE, STEREO A and B spacecraft to probe both radial and temporal evolution of solar wind structure. The results indicate, in particular, the importance of time-dependent modeling for more accurate prediction of high-speed streams and heliospheric current sheet structure when the spacecraft skim its surface. We will comment on the formation of magnetic field reversals in pseudostreamer regions, which is an intrinsically time-dependent phenomenon, and on the current sheet corrugation caused by solar wind momentum shears. For the second type of time-dependent inner heliosphere simulations we have coupled LFM-helio with the MAS MHD model of the corona. We first present results of idealized coupled MAS/LFM-helio simulations with symmetric solar wind background and no rotation intended to test the interface for seamless propagation of transients from the corona into the inner heliosphere domain. We then simulate an event with a CME propagating through a realistic heliosphere background including corotating interaction regions. We show details of propagation of flux-rope CMEs through the boundary between MAS and LFM-helio and compare the results between the two codes in the heliospheric domain. The results indicate that the coupling works well, although some differences in the solutions are observed probably due to differences in numerical
Gamma time-dependency in Blaxter's compartmental model.
NASA Technical Reports Server (NTRS)
Matis, J. H.
1972-01-01
A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.
Stochastic protein production and time-dependent current fluctuations
NASA Astrophysics Data System (ADS)
Gorissen, Mieke; Vanderzande, Carlo
2011-03-01
Translation is the cellular process in which ribosomes make proteins from information encoded on messenger RNA. We model this process using driven lattice gases and take into account the finite lifetime of mRNA. The stochastic properties of the translation process can then be determined from the time-dependent current fluctuations of the lattice gas model. We illustrate our ideas with a totally asymmetric exclusion process with extended objects.
Time-dependent induced potentials in convoy electron emission
NASA Astrophysics Data System (ADS)
Acuña, G. P.; Miraglia, J. E.
2006-11-01
We study the time-dependent induced potentials at the convoy electron position due to the self-interaction with a metal surface and to the shock wave created by the positive hole (vacancy) left. The time evolution of these potentials are calculated using the linear response theory. Results obtained are fitted with simple functions. We find that those two potentials nearly cancel each other in the first ten atomic units of time.
Relating Time-Dependent Acceleration and Height Using an Elevator
ERIC Educational Resources Information Center
Kinser, Jason M.
2015-01-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…
On the solution of time-dependent problems
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2005-10-01
The time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature to differential equation and ballistic-diffusive equation have been solved by means of two different techniques, namely, flux-limited approach and maximum entropy method. The behaviour of the radiative intensity is shown graphically. Knowing the radiative intensity allows us to calculate directly some physical parameters such as the reflection function and heat flux that are numerically computed.
3-D Perspective Pasadena, California
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms
NASA Astrophysics Data System (ADS)
Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien
2014-10-01
Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.
A 3D parallel simulator for crystal growth and solidification in complex alloy systems
NASA Astrophysics Data System (ADS)
Nestler, Britta
2005-02-01
A 3D parallel simulator is developed to numerically solve the evolution equations of a new non-isothermal phase-field model for crystal growth and solidification in complex alloy systems. The new model and the simulator are capable to simultaneously describe the diffusion processes of multiple components, the phase transitions between multiple phases and the development of the temperature field. Weak and facetted formulations of both, surface energy and kinetic anisotropies are incorporated in the phase-field model. Multicomponent bulk diffusion effects including interdiffusion coefficients as well as diffusion in the interfacial region of phase or grain boundaries are considered. We introduce our parallel simulator that is based on a finite difference discretization including effective adaptive strategies and multigrid methods to reduce computation time and memory usage. The parallelization is realized for distributed as well as shared memory computer architectures using MPI libraries and OpenMP concepts. Applying the new computer model, we present a variety of simulated crystal structures such as dendrites, grains, binary and ternary eutectics in 2D and 3D. The influence of anisotropy on the microstructure evolution shows the formation of facets in preferred crystallographic directions. Phase transformations and solidification processes in a real multi-component alloy can be described by incorporating the physical data (e.g. surface tensions, kinetic coefficients, specific heat, heat and mass diffusion coefficients) and the specific phase diagram (in particular latent heats and melting temperatures) into the diffuse interface model via the free energies.
Analytic controllability of time-dependent quantum control systems
NASA Astrophysics Data System (ADS)
Lan, Chunhua; Tarn, Tzyh-Jong; Chi, Quo-Shin; Clark, John W.
2005-05-01
The question of controllability is investigated for a quantum control system in which the Hamiltonian operator components carry explicit time dependence which is not under the control of an external agent. We consider the general situation in which the state moves in an infinite-dimensional Hilbert space, a drift term is present, and the operators driving the state evolution may be unbounded. However, considerations are restricted by the assumption that there exists an analytic domain, dense in the state space, on which solutions of the controlled Schrödinger equation may be expressed globally in exponential form. The issue of controllability then naturally focuses on the ability to steer the quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert space—and thus on analytic controllability. A relatively straightforward strategy allows the extension of Lie-algebraic conditions for strong analytic controllability derived earlier for the simpler, time-independent system in which the drift Hamiltonian and the interaction Hamiltonian have no intrinsic time dependence. Enlarging the state space by one dimension corresponding to the time variable, we construct an augmented control system that can be treated as time independent. Methods developed by Kunita can then be implemented to establish controllability conditions for the one-dimension-reduced system defined by the original time-dependent Schrödinger control problem. The applicability of the resulting theorem is illustrated with selected examples.
Time-dependent dynamic behavior of light diffraction in ferrofluid
NASA Astrophysics Data System (ADS)
Chung, Min-Feng; Chou, S. E.; Fu, Chao-Ming
2012-04-01
The time-dependent dynamic behavior of diffraction patterns induced by external magnetic field in a suspension of nano-sized magnetic particles (Fe3O4) in a water-based magnetic fluid was investigated. It was observed that the diffraction pattern changed with time as the magnetic field was applied. In the absence of applied magnetic field, there was no diffraction pattern in the screen. When the magnetic field was applied, the transmitted light was perpendicular to the magnetic field, and the diffraction pattern was unstable. There were many small lines and points moving with time. After one minute, the diffraction pattern turned stable, and the small lines became longer. This time-dependent behavior helps us to understand the evolution of the forming chains of magnetic nanoparticles. Moreover, we have measured the other diffraction pattern, the transmitted light propagating parallel to the applied field. These time-dependent diffraction patterns give a new point to understand the dynamic three-dimensional structure of magnetic fluid under a dc magnetic field.
Time dependent turbulence modeling and analytical theories of turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1993-01-01
By simplifying the direct interaction approximation (DIA) for turbulent shear flow, time dependent formulas are derived for the Reynolds stresses which can be included in two equation models. The Green's function is treated phenomenologically, however, following Smith and Yakhot, we insist on the short and long time limits required by DIA. For small strain rates, perturbative evaluation of the correlation function yields a time dependent theory which includes normal stress effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-Rodi model is obtained by replacing the Green's function by its long time limit. Eddy damping corrections to short time behavior initiate too quickly in this model; in contrast, the present theory exhibits strong suppression of eddy damping at short times. A time dependent theory for large strain rates is proposed in which large scales are governed by rapid distortion theory while small scales are governed by Kolmogorov inertial range dynamics. At short times and large strain rates, the theory closely matches rapid distortion theory, but at long times it relaxes to an eddy damping model.
The multi-configurational time-dependent Hartree approach revisited.
Manthe, Uwe
2015-06-28
The multi-configurational time-dependent Hartree (MCTDH) approach facilitates accurate high-dimensional quantum dynamics simulations. In the approach, the wavefunction is expanded in a direct product of self-adapting time-dependent single-particle functions (SPFs). The equations of motion for the expansion coefficients and the SPFs are obtained via the Dirac-Frenkel variational principle. While this derivation yields well-defined differential equations for the motion of occupied SPFs, singularities in the working equations resulting from unoccupied SPFs have to be removed by a regularization procedure. Here, an alternative derivation of the MCTDH equations of motion is presented. It employs an analysis of the time-dependence of the single-particle density matrices up to second order. While the analysis of the first order terms yields the known equations of motion for the occupied SPFs, the analysis of the second order terms provides new equations which allow one to identify optimal choices for the unoccupied SPFs. The effect of the optimal choice of the unoccupied SPFs on the structure of the MCTDH equations of motion and their regularization is discussed. Generalized equations applicable in the multi-layer MCTDH framework are presented. Finally, the effects resulting from the initial choice of the unoccupied SPFs are illustrated by a simple numerical example. PMID:26133412
Particle creation in a time-dependent electric field revisited
Mahajan, Gaurang
2009-02-15
We adopt the general formalism for analyzing evolution of gaussian states of quantized fields in time-dependent backgrounds in the Schrodinger picture (presented in detail in Mahajan and Padmanabhan [G. Mahajan, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 661]) to study the example of a spatially uniform electric field background (in a time-dependent gauge) which is kept turned on for a finite duration of time. In particular, we study the time-dependent particle content, defined in terms of the concept of instantaneous eigenstates, and describe how it captures the time evolution of the quantized field modes. The actual particle creation process occurs over a relatively short interval in time, and the particle content saturates rather quickly. We also compare the power spectrum of the field modes, computed in the asymptotic limit, with the corresponding situation in a cosmological de Sitter background. Particle creation under the influence of a spiked electric field localized in time, as a particular limiting case of the above general model, is also considered.
The multi-configurational time-dependent Hartree approach revisited
Manthe, Uwe
2015-06-28
The multi-configurational time-dependent Hartree (MCTDH) approach facilitates accurate high-dimensional quantum dynamics simulations. In the approach, the wavefunction is expanded in a direct product of self-adapting time-dependent single-particle functions (SPFs). The equations of motion for the expansion coefficients and the SPFs are obtained via the Dirac-Frenkel variational principle. While this derivation yields well-defined differential equations for the motion of occupied SPFs, singularities in the working equations resulting from unoccupied SPFs have to be removed by a regularization procedure. Here, an alternative derivation of the MCTDH equations of motion is presented. It employs an analysis of the time-dependence of the single-particle density matrices up to second order. While the analysis of the first order terms yields the known equations of motion for the occupied SPFs, the analysis of the second order terms provides new equations which allow one to identify optimal choices for the unoccupied SPFs. The effect of the optimal choice of the unoccupied SPFs on the structure of the MCTDH equations of motion and their regularization is discussed. Generalized equations applicable in the multi-layer MCTDH framework are presented. Finally, the effects resulting from the initial choice of the unoccupied SPFs are illustrated by a simple numerical example.
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell
2006-08-01
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.
Particle creation in a time-dependent electric field revisited
NASA Astrophysics Data System (ADS)
Mahajan, Gaurang
2009-02-01
We adopt the general formalism for analyzing evolution of gaussian states of quantized fields in time-dependent backgrounds in the Schrodinger picture (presented in detail in Mahajan and Padmanabhan [G. Mahajan, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 661]) to study the example of a spatially uniform electric field background (in a time-dependent gauge) which is kept turned on for a finite duration of time. In particular, we study the time-dependent particle content, defined in terms of the concept of instantaneous eigenstates, and describe how it captures the time evolution of the quantized field modes. The actual particle creation process occurs over a relatively short interval in time, and the particle content saturates rather quickly. We also compare the power spectrum of the field modes, computed in the asymptotic limit, with the corresponding situation in a cosmological de Sitter background. Particle creation under the influence of a spiked electric field localized in time, as a particular limiting case of the above general model, is also considered.
The Esri 3D city information model
NASA Astrophysics Data System (ADS)
Reitz, T.; Schubiger-Banz, S.
2014-02-01
With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
NASA Astrophysics Data System (ADS)
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
NASA Astrophysics Data System (ADS)
Feltus, Madeline Anne
1990-01-01
This thesis examines coupled time-dependent thermal -hydraulic (T/H) and neutronics solution methods for Pressurized Water Reactor (PWR) transient analysis. The degree of equivalence is evaluated between the typical quasi-static approach and a newly-developed iterative tandem method. Four specific PWR transients that exhibit a wide range of Reactor Coolant System (RCS) T/H response were investigated: (1) a Station Blackout Anticipated Transient Without Scram (ATWS), (2) a Loss of Feedwater ATWS, (3) a Total Loss of RCS Flow with Scram, and (4) a Main Steam Line Break (MSLB). Rather than using simplified RCS and core models, the theory and method in this thesis were applied practically by using realistic models for an actual four-loop Westinghouse PWR plant. The time-dependent STAR kinetics code, based on the QUANDRY Analytic Nodal Method, and the RETRAN and MCPWR T/H systems codes were used to develop a new, fully coupled, tandem STAR/MCPWRQ methodology that runs tandemly on an enhanced 386/387 IBM PC architecture. MCPWRQ uses externally calculated power input rather than point kinetics power level results. The tandem method was compared to quasi -static STAR and time-dependent STAR 2-D and 3-D kinetics results. The new STAR/MCPWRQ method uses RETRAN time-dependent T/H and point kinetics power input as a first estimate. STAR and MCPWRQ are used tandemly to couple STAR 3-D, time-dependent core power results with the MCPWRQ RCS T/H phenomena. This thesis shows that: (a) quasi-static and point kinetics methods are not able to describe severe PWR transient phenomena adequately; and (b) fully coupled, 3-D, time -dependent, tandem (or possibly parallel) analysis methods should be used for PWR reactor transients instead. By tandemly coupling the RCS response in terms of updated core inlet conditions with 3-D time-dependent core kinetics response, the core power response and T/H conditions are forced to be self-consistent during the entire transient. The transient analyses
3D laptop for defense applications
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Chenault, David
2012-06-01
Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.
Experimental study of time-dependent dielectric breakdown in tri-gate nanowire transistor
NASA Astrophysics Data System (ADS)
Ota, Kensuke; Tanaka, Chika; Numata, Toshinori; Matsushita, Daisuke; Saitoh, Masumi
2016-08-01
We systematically investigate the size dependence of the time-dependent dielectric breakdown (TDDB) in a tri-gate nanowire transistor (NW Tr.). It is newly found that TDDB reliability is degraded in NW Tr. as compared with that in a planar transistor owing to the locally enhanced electric field at the NW corner. Moreover, in the region with a width (W) less than 40 nm, nanowire width reduction leads to a shorter time to gate dielectric breakdown indicating additional degradation of TDDB reliability in NW Tr. with smaller W. Although TDDB in three-dimensional (3D) MOS structures such as a trench MOS capacitor has already been reported, the size dependence of TDDB in scaled NW Tr. is firstly discussed in this paper since a trench capacitor is different from recent NW Tr. in structure, device size, gate dielectric thickness, and scaling effect on TDDB.
Adjoint-Based Methodology for Time-Dependent Optimal Control (AMTOC)
NASA Technical Reports Server (NTRS)
Yamaleev, Nail; Diskin, boris; Nishikawa, Hiroaki
2012-01-01
During the five years of this project, the AMTOC team developed an adjoint-based methodology for design and optimization of complex time-dependent flows, implemented AMTOC in a testbed environment, directly assisted in implementation of this methodology in the state-of-the-art NASA's unstructured CFD code FUN3D, and successfully demonstrated applications of this methodology to large-scale optimization of several supersonic and other aerodynamic systems, such as fighter jet, subsonic aircraft, rotorcraft, high-lift, wind-turbine, and flapping-wing configurations. In the course of this project, the AMTOC team has published 13 refereed journal articles, 21 refereed conference papers, and 2 NIA reports. The AMTOC team presented the results of this research at 36 international and national conferences, meeting and seminars, including International Conference on CFD, and numerous AIAA conferences and meetings. Selected publications that include the major results of the AMTOC project are enclosed in this report.
Progress Report on Alloy 617 Time Dependent Allowables
Wright, Julie Knibloe
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant
Differences in time-dependent mechanical properties between extruded and molded hydrogels.
Ersumo, N; Witherel, C E; Spiller, K L
2016-01-01
The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945
3-D Technology Approaches for Biological Ecologies
NASA Astrophysics Data System (ADS)
Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team
Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).
Developments in deep brain stimulation using time dependent magnetic fields
Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.
2012-03-07
The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.
Clement, T.P.; Jones, N.L.
1998-02-01
RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.
Characterizing time-dependent mechanics in metallic MEMS
NASA Astrophysics Data System (ADS)
Bergers, L. I. J. C.; Delhey, N. K. R.; Hoefnagels, J. P. M.; Geers, M. G. D.
2010-06-01
Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS) pose challenges: e.g. fabrication and handling (sub)-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm) for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP). This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material parameters
Time-dependent radiation dose estimations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease
3D temperature field reconstruction using ultrasound sensing system
NASA Astrophysics Data System (ADS)
Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei
2016-04-01
3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.
Advances in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
Berger, Arjan
In this work we solve the problem of the gauge dependence of molecular magnetic properties (magnetizabilities, circular dichroism) using time-dependent current-density functional theory [1]. We also present a new functional that accurately describes the optical absorption spectra of insulators, semiconductors and metals [2] N. Raimbault, P.L. de Boeij, P. Romaniello, and J.A. Berger Phys. Rev. Lett. 114, 066404 (2015) J.A. Berger, Phys. Rev. Lett. 115, 137402 (2015) This study has been partially supported through the Grant NEXT No. ANR-10-LABX-0037 in the framework of the Programme des Investissements d'Avenir.
Time dependence of delayed neutron emission for fissionable isotope identification
Kinlaw, M.T.; Hunt, A.W.
2005-06-20
The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.
Brownian motion of electrons in time-dependent magnetic fields.
NASA Technical Reports Server (NTRS)
Iverson, G. J.; Williams, R. M.
1973-01-01
The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.
Time-dependent coupled-cluster method for atomic nuclei
Pigg, David A; Hagen, Gaute; Nam, Hai Ah; Papenbrock, Thomas F
2012-01-01
We study time-dependent coupled-cluster theory in the framework of nuclear physics. Based on Kvaal's bi-variational formulation of this method [S. Kvaal, arXiv:1201.5548], we explicitly demonstrate that observables that commute with the Hamiltonian are conserved under time evolution. We explore the role of the energy and of the similarity-transformed Hamiltonian under real and imaginary time evolution and relate the latter to similarity renormalization group transformations. Proof-of-principle computations of He-4 and O-16 in small model spaces, and computations of the Lipkin model illustrate the capabilities of the method
Time-Dependent Approach to Two-Proton Radioactivity
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Hagino, Kouichi; Sagawa, Hiroyuki
We apply a time-dependent quantum three-body model to the two-proton emission of 6Be nucleus in order to discuss the role of pairing correlation between the emitted two protons during the tunneling process. With this method, we calculate the time-evolution of the two protons, which provides an intuitive way to understand this phenomenon. The calculated decay width is in a good agreement with the experimental data. Furthermore, we also show that the pairing correlation significantly enhances the probabilities of the diproton-like cluster emission, reflecting the "diproton correlation" in proton-rich nuclei.
A variational formulation for time-dependent climate models
NASA Technical Reports Server (NTRS)
Smith, G. L.
1984-01-01
A variational principle for time dependent diffusion problems is presented and is demonstrated by applying it to simple seasonal climate models. Two cases are treated. The first, a North-Coakley-type model with constant properties, is used as a tutorial example for the application of the technique. For the second case, heat capacity and thermal conductivity are considered to be latitude dependent in order to treat the effects of land/ocean distribution on the seasonal temperature distribution over the earth. The variational equations are derived and approximate analytical solutions are developed which delineate the influences of the physical asymmetries of the hemispheres in producing an asymmetric annual cycle.
Time-dependent thermoelectric transport for nanoscale thermal machines
NASA Astrophysics Data System (ADS)
Daré, A.-M.; Lombardo, P.
2016-01-01
We analyze an electronic nanoscale thermal machine driven by time-dependent environment: besides bias and gate voltage variations, we consider also the less prevailing time modulation of the couplings between leads and dot. We provide energy and heat current expressions in such situations, as well as expressions for the power exchanged between the dot+leads system and its outside. Calculations are made in the Keldysh nonequilibrium Green's function framework. We apply these results to design a cyclic refrigerator, circumventing the ambiguity of defining energy flows between subsystems in the case of strong coupling. For fast lead-dot coupling modulation, we observe transient currents which cannot be ascribed to charge tunneling.
Quantum description of a time-dependent mesoscopic RLC circuit
NASA Astrophysics Data System (ADS)
Pedrosa, I. A.
2012-11-01
In this paper, we present a comprehensive quantum description of a mesoscopic RLC circuit with time-dependent resistance, inductance and capacitance. Based on the dynamical invariant method and using quadratic invariants, we derive exact nonstationary quantum states for this circuit and write them in terms of solutions of the Milne-Pinney equation. Afterwards, we use quadratic invariants to construct coherent states for this quantized system and employ them to investigate quantum properties of the RLC circuit. In particular, we show that the product of the quantum fluctuations of the charge and the magnetic flux does not satisfy the minimum uncertainty relation.
Perspective: Fundamental aspects of time-dependent density functional theory
NASA Astrophysics Data System (ADS)
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Rare B decays and time dependent mixing at CDF
Ragan, K.J.; CDF Collaboration
1995-06-01
We report recent results on rare B decays searches -- specifically, the decay modes B{sup 0} {yields} {mu}{sup +}{mu}{sup {minus}}, B{sup 0} {yields} {mu}{sup +}{mu}{sup {minus}}K{sup 0*}, and B{sup {plus_minus}} {yields} {mu}{sup +}{mu}{sup {minus}}K{sup {plus_minus}} -- from the CDF collaboration using data from the 1992--1993 run of the Tevatron collider. In addition, we present the first CDF measurement of time dependent B{sup 0} {minus} {bar B}{sup 0} mixing.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
James W. Dufty
2007-04-28
This is the Final Technical Report for DE-FG02-2ER54677 award “Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas”. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Boundary Sensitivities for Diffusion Processes in Time Dependent Domains
Costantini, C. Gobet, E. Karoui, N. El
2006-09-15
We study the sensitivity, with respect to a time dependent domain D{sub s}, of expectations of functionals of a diffusion process stopped at the exit from D{sub s} or normally reflected at the boundary of D{sub s}. We establish a differentiability result and give an explicit expression for the gradient that allows the gradient to be computed by Monte Carlo methods. Applications to optimal stopping problems and pricing of American options, to singular stochastic control and others are discussed.
Time-dependent Kohn-Sham approach to quantum electrodynamics
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-10-15
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
Time-dependent resonant scattering: an analytical approach.
Lecomte, J M; Kirrander, Adam; Jungen, Ch
2013-10-28
A time-dependent description is given of a scattering process involving a single resonance embedded in a set of flat continua. An analytical approach is presented which starts from an incident free particle wave packet and yields the Breit-Wigner cross-section formula at infinite times. We show that at intermediate times the so-called Wigner-Weisskopf approximation is equivalent to a scattering process involving a contact potential. Applications in cold-atom scattering and resonance enhanced desorption of molecules are discussed. PMID:24182008
Time-dependent resonant scattering: An analytical approach
NASA Astrophysics Data System (ADS)
Lecomte, J. M.; Kirrander, Adam; Jungen, Ch.
2013-10-01
A time-dependent description is given of a scattering process involving a single resonance embedded in a set of flat continua. An analytical approach is presented which starts from an incident free particle wave packet and yields the Breit-Wigner cross-section formula at infinite times. We show that at intermediate times the so-called Wigner-Weisskopf approximation is equivalent to a scattering process involving a contact potential. Applications in cold-atom scattering and resonance enhanced desorption of molecules are discussed.
NASA Astrophysics Data System (ADS)
Yu, H.-S.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Wu, C.-C.; Davies, J. A.; Bisi, M. M.; Tokumaru, M.
2015-09-01
The University of California, San Diego, time-dependent analyses of the heliosphere provide three-dimensional (3D) reconstructions of solar wind velocities and densities from observations of interplanetary scintillation (IPS). Using data from the Solar-Terrestrial Environment Laboratory, Japan, these reconstructions provide a real-time prediction of the global solar-wind density and velocity throughout the whole heliosphere with a temporal cadence of about one day (ips.ucsd.edu). Updates to this modeling effort continue: in the present article, near-Sun results extracted from the time-dependent 3D reconstruction are used as inner boundary conditions to drive 3D-MHD models ( e.g. ENLIL and H3D-MHD). This allows us to explore the differences between the IPS kinematic-model data-fitting procedure and current 3D-MHD modeling techniques. The differences in these techniques provide interesting insights into the physical principles governing the expulsion of coronal mass ejections (CMEs). Here we detail for the first time several specific CMEs and an induced shock that occurred in September 2011 that demonstrate some of the issues resulting from these analyses.
3D Dynamic Echocardiography with a Digitizer
NASA Astrophysics Data System (ADS)
Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro
1998-05-01
In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.
NASA Astrophysics Data System (ADS)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2006-03-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic, and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program. The first example deals with injectivity effects of mineral scaling in a fractured geothermal reservoir. A major concern in the development of hot dry rock and hot fractured rock reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. Rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of these reservoirs. We used recent European studies as a starting point to explore chemically induced effects of fluid circulation in the geothermal systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. The second TOUGHREACT application example is related to CO 2 geologic sequestration in a saline aquifer. We performed numerical simulations for a commonly encountered Gulf Coast sediment
3D Scientific Visualization with Blender
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2015-03-01
This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.
2015-06-01
We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.
Software for 3D radiotherapy dosimetry. Validation
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.
2014-08-01
The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
Stereo 3-D Vision in Teaching Physics
NASA Astrophysics Data System (ADS)
Zabunov, Svetoslav
2012-03-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.
Accuracy in Quantitative 3D Image Analysis
Bassel, George W.
2015-01-01
Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539
Time-dependent strains and stresses in a pumpkin balloon
NASA Astrophysics Data System (ADS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of
Time-dependent strains and stresses in a pumpkin balloon
NASA Technical Reports Server (NTRS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
2006-01-01
This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:
Time Circular Birefringence in Time-Dependent Magnetoelectric Media
Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin
2015-01-01
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect “time circular birefringence” (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via “time refraction” and “time reflection” of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the “time Faraday effect”, namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928
Time-Dependent CP Asymmetries in b {yields} s Penguins
Miyake, H.
2006-07-11
We present measurements of time-dependent CP asymmetry parameters in B{sup 0} {yields} {phi}(1020)K{sup 0}, {eta}'K{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0} K{sub S}{sup 0}, K{sub S}{sup 0}{pi}{sup 0}, f{sub 0}(980)K{sub S}{sup 0}, {omega}(782)K{sub S}{sup 0} and K{sup +}K{sup -}K{sub S}{sup 0} decays based on a sample of 386 x 106BB(bar sign) pairs collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB energy asymmetric e+e- collider. These decays are dominated by the b {yields} s gluonic penguin transition and are sensitive to new CP-violating phases from physics beyond the standard model. One neutral meson is fully reconstructed in one of the specified decay channels, and the flavor of the accompanying B meson is identified from its decay products. CP-violation parameters are obtained from the asymmetries in the distributions of the proper-time intervals between the two B decays. We also perform measurement of time-dependent CP asymmetry parameters in B{sup 0} {yields} K{sub S}{sup 0}{gamma} decay that is dominated by the b {yields} s radiative penguin.
Rayleigh-Taylor mixing with time-dependent acceleration
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana
2015-11-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing -acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. Support of National Science Foundation is warmy appreciated.
Time dependence in B → V ℓℓ decays
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien; Virto, Javier
2015-04-01
We discuss the theory and phenomenology of B d,s → V (→ M 1 M 2)ℓℓ decays in the presence of neutral-meson mixing. We derive expressions for the time-dependent angular distributions for decays into CP eigenstates, and identify the relevant observables that can be extracted from time-integrated and time-dependent analyses with or without tagging, with a focus on the difference between measurements at B-factories and hadronic machines. We construct two observables of interest, which we call Q {8/-} and Q 9, and which are theoretically clean at large recoil. We compute these two observables in the Standard Model, and show that they have good potential for New Physics searches by considering their sensitivity to benchmark New Physics scenarios consistent with current b → sℓℓ data. These results apply to decays such as B d → K ∗(→ K S π0)ℓℓ, B s → ϕ(→ K S K L )ℓℓ and B s → ϕ(→ K + K -)ℓℓ.
Efficient photoheating algorithms in time-dependent photoionization simulations
NASA Astrophysics Data System (ADS)
Lee, Kai-Yan; Mellema, Garrelt; Lundqvist, Peter
2016-02-01
We present an extension to the time-dependent photoionization code C2-RAY to calculate photoheating in an efficient and accurate way. In C2-RAY, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be substantially reduced. We show that our methods work well for several cosmologically relevant test problems and validate our results by comparing to the results of another time-dependent photoionization code.
Time-dependent response of dissipative electron systems
Tremblay, Jean Christophe; Krause, Pascal; Klamroth, Tillmann; Saalfrank, Peter
2010-06-15
We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics using short laser pulses of low intensities. To include environmental effects on the property calculation, we use the time-dependent configuration-interaction method in its reduced density matrix formulation. Both energy dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics gives access to the phase shift between the electric field and the induced dipole moment, which can be used to define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to perturbation theory expressions, as applied to a simple model system, the rigid H{sub 2} molecule. It is shown that both approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary information on the phase of the induced dipole moment, which allows for the definition of an uncertainty associated with the computation of the dynamic polarizability in the linear response regime.
Inverse problem of quadratic time-dependent Hamiltonians
NASA Astrophysics Data System (ADS)
Guo, Guang-Jie; Meng, Yan; Chang, Hong; Duan, Hui-Zeng; Di, Bing
2015-08-01
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wave-packet obeying the quadratic time-dependent Hamiltonian (QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific time-dependent periodic harmonic oscillator, the Berry phase is obtained exactly. Project supported by the National Natural Science Foundation of China (Grant No. 11347171), the Natural Science Foundation of Hebei Province of China (Grant No. A2012108003), and the Key Project of Educational Commission of Hebei Province of China (Grant No. ZD2014052).
Time Circular Birefringence in Time-Dependent Magnetoelectric Media.
Zhang, Ruo-Yang; Zhai, Yan-Wang; Lin, Shi-Rong; Zhao, Qing; Wen, Weijia; Ge, Mo-Lin
2015-01-01
Light traveling in time-dependent media has many extraordinary properties which can be utilized to convert frequency, achieve temporal cloaking, and simulate cosmological phenomena. In this paper, we focus on time-dependent axion-type magnetoelectric (ME) media, and prove that light in these media always has two degenerate modes with opposite circular polarizations corresponding to one wave vector , and name this effect "time circular birefringence" (TCB). By interchanging the status of space and time, the pair of TCB modes can appear simultaneously via "time refraction" and "time reflection" of a linear polarized incident wave at a time interface of ME media. The superposition of the two TCB modes causes the "time Faraday effect", namely the globally unified polarization axes rotate with time. A circularly polarized Gaussian pulse traversing a time interface is also studied. If the wave-vector spectrum of a pulse mainly concentrates in the non-traveling-wave band, the pulse will be trapped with nearly fixed center while its intensity will grow rapidly. In addition, we propose an experimental scheme of using molecular fluid with external time-varying electric and magnetic fields both parallel to the direction of light to realize these phenomena in practice. PMID:26329928
Time-dependent behavior of passive skeletal muscle
NASA Astrophysics Data System (ADS)
Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.
2016-03-01
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.
Mesoscopic structure of neuronal tracts from time-dependent diffusion
Burcaw, Lauren M.; Fieremans, Els; Novikov, Dmitry S.
2015-01-01
Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macroscopic limit slowly, in a (lnt)/t fashion. The logarithmic singularity arises due to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based on histological data from the splenium, and argue that the time dependent contribution to the overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. This dominance may explain the bias in measuring axon diameters in clinical settings. The short range disorder is also reflected in the linear frequency dependence of the diffusion coefficient measured with oscillating gradients, in agreement with recent experiments. Our results relate the measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative interpretation of axonal diameter mapping techniques. PMID:25837598
Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity
Cui, Yihui; Paillé, Vincent; Xu, Hao; Genet, Stéphane; Delord, Bruno; Fino, Elodie; Berry, Hugues; Venance, Laurent
2015-01-01
Key points Although learning can arise from few or even a single trial, synaptic plasticity is commonly assessed under prolonged activation. Here, we explored the existence of rapid responsiveness of synaptic plasticity at corticostriatal synapses in a major synaptic learning rule, spike-timing-dependent plasticity (STDP). We found that spike-timing-dependent depression (tLTD) progressively disappears when the number of paired stimulations (below 50 pairings) is decreased whereas spike-timing-dependent potentiation (tLTP) displays a biphasic profile: tLTP is observed for 75–100 pairings, is absent for 25–50 pairings and re-emerges for 5–10 pairings. This tLTP induced by low numbers of pairings (5–10) depends on activation of the endocannabinoid system, type-1 cannabinoid receptor and the transient receptor potential vanilloid type-1. Endocannabinoid-tLTP may represent a physiological mechanism operating during the rapid learning of new associative memories and behavioural rules characterizing the flexible behaviour of mammals or during the initial stages of habit learning. Abstract Synaptic plasticity, a main substrate for learning and memory, is commonly assessed with prolonged stimulations. Since learning can arise from few or even a single trial, synaptic strength is expected to adapt rapidly. However, whether synaptic plasticity occurs in response to limited event occurrences remains elusive. To answer this question, we investigated whether a low number of paired stimulations can induce plasticity in a major synaptic learning rule, spike-timing-dependent plasticity (STDP). It is known that 100 pairings induce bidirectional STDP, i.e. spike-timing-dependent potentiation (tLTP) and depression (tLTD) at most central synapses. In rodent striatum, we found that tLTD progressively disappears when the number of paired stimulations is decreased (below 50 pairings) whereas tLTP displays a biphasic profile: tLTP is observed for 75–100 pairings, absent for 25
Time Dependent Relative Risks in Life Insurance Medical Underwriting.
Kneepkens, Robert F
2015-01-01
Introduction .- Life insurance medicine focuses on mortality hazards in specified periods. People are free to insure their lives for shorter or longer terms. Because the chosen terms range from 1 year to a life time, life insurers have to take into account the fact that the predictive value of risk indicators can and will change over time. The time a risk indicator keeps its predictive value, will be dependent on its biological effects, volatility, and treatability. For a given applicant this implies that the relative hazard (RH) calculated for his/her medical condition should be dependent on the term of the insurance. The main objective of this study is to determine if some commonly used risk indicators - previously used to study age dependency of relative risks - have a predictive value that increases with the observation period. (1) Methods .- This population-based cohort study uses NHANES-data files from the Third National Health and Nutrition Examination Survey (NHANES III) and the NHANES Linked Mortality Files 2010. Only participants aged 20 to 69 that were examined in mobile examination centers, without a history of some prevalent high risk diseases were included. The observed mortality was compared to the expected mortality in a Generalized Linear Model (GLM) with Poisson error structure with two reference populations, which both can serve as preferred reference for life insurers: The United States Life Tables 2008 (USLT) and the 2008 Valuation Basic Tables (VBT) based on the insured population of 35 US Life insurers. The time dependency of the RHs of the systolic blood pressure (SBP), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), serum albumin and albuminuria, was assessed, with correction for ethnicity, household income, history of diabetes mellitus, BMI and serum cholesterol. To be able to compare the results with the results of the Age Dependency Study (ADS), the same data, risk indicators, statistical analysis method, and the
FastScript3D - A Companion to Java 3D
NASA Technical Reports Server (NTRS)
Koenig, Patti
2005-01-01
FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.
3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D
NASA Astrophysics Data System (ADS)
Slaby, Mark-Fabian; Reimann, Rüdiger
2013-04-01
In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2008-09-29
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured
An aerial 3D printing test mission
NASA Astrophysics Data System (ADS)
Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy
2016-05-01
This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.
3D ultrafast ultrasound imaging in vivo
NASA Astrophysics Data System (ADS)
Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-10-01
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32 × 32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.
Modelling Polymer Deformation during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.
Time-dependent radiation hazard estimations during space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander
Cosmic particle radiation is a limiting factor for the out of magnetosphere crewed flights. The cosmic radiation uncrewed flights inside heliosphere and crewed flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot time flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long term crewed missions set much higher requirements to the radiation shielding, primarily because of long exposition term. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and coronal mass ejections (CME). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. CME are shot term events, comparing to GCR modulation time, but are much more energetic. The probability of CME increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and affection of CME and GCR would be minimized. Applying time dependent models of GCR spectra [1] and estimations of CME we show the time dependence of the radiation dose in a realistic human phantom [2] inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and
An Efficient 3D Stochastic Model for Predicting the Columnar-to-Equiaxed Transition in Alloy 718
NASA Astrophysics Data System (ADS)
Nastac, L.
2015-06-01
A three-dimensional (3D) stochastic model for simulating the evolution of dendritic crystals during the solidification of alloys was developed. The model includes time-dependent computations for temperature distribution, solute redistribution in the liquid and solid phases, curvature, and growth anisotropy. The 3D model can run on PCs with reasonable amount of RAM and CPU time. 3D stochastic mesoscopic simulations at the dendrite tip length scale were performed to simulate the evolution of the columnar-to-equiaxed transition in alloy 718. Comparisons between simulated microstructures and segregation patterns obtained with 2D and 3D stochastic models are also presented.
Topology dictionary for 3D video understanding.
Tung, Tony; Matsuyama, Takashi
2012-08-01
This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004
3-D seismology in the Arabian Gulf
Al-Husseini, M.; Chimblo, R.
1995-08-01
Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.
A 3D Geostatistical Mapping Tool
Energy Science and Technology Software Center (ESTSC)
1999-02-09
This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.
ERIC Educational Resources Information Center
Norbury, Keith
2012-01-01
It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…
Stereoscopic Investigations of 3D Coulomb Balls
Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander
2005-10-31
In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.
3-D structures of planetary nebulae
NASA Astrophysics Data System (ADS)
Steffen, W.
2016-07-01
Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.
Wow! 3D Content Awakens the Classroom
ERIC Educational Resources Information Center
Gordon, Dan
2010-01-01
From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…
3D Printed Block Copolymer Nanostructures
ERIC Educational Resources Information Center
Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.
2015-01-01
The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…
Static & Dynamic Response of 3D Solids
Energy Science and Technology Software Center (ESTSC)
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
Immersive 3D Geovisualization in Higher Education
ERIC Educational Resources Information Center
Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold
2015-01-01
In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…
Stereo 3-D Vision in Teaching Physics
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2012-01-01
Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…
Pathways for Learning from 3D Technology
ERIC Educational Resources Information Center
Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.
2012-01-01
The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…
NASA Astrophysics Data System (ADS)
Bernasconi, Leonardo; Webster, Ross; Tomić, Stanko; Harrison, Nicholas M.
2012-05-01
We describe a unified formulation of time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT) for the accurate and efficient calculation of the optical response of infinite (periodic) systems. The method is formulated within the linear-response approximation, but it can easily be extended to include higher-order response contributions, and, in TD-DFT, it can treat with comparable computational efficiency purely local, semi-local or fully non-local approximations for the ground-state exchange-correlation (XC) functional and for the response TD-DFT XC kernel in the adiabatic approximation. At variance with existing methods for computing excitation energies based on the diagonalisation of suitable coupling matrices, or on the inversion of a dielectric matrix, our approach exploits an iterative procedure similar to a standard self-consistent field calculation. This results in a particularly efficient treatment of the coupling of excitations at different k points in the Brillouin zone. As a consequence, our method has the potential to describe completely from first principles the optically induced formation of bound particle-hole pairs in wide classes of materials. This point is illustrated by computing the optical gaps of a series of representative bulk semiconductors, (non-spin polarised) oxides and ionic insulators.
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
Hua, D; Fowler, T
2004-06-15
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.
Spin-orbit torque induced spike-timing dependent plasticity
NASA Astrophysics Data System (ADS)
Sengupta, Abhronil; Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik
2015-03-01
Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.
String pair production in a time-dependent gravitational field
Tolley, Andrew J.; Wesley, Daniel H.
2005-12-15
We study the pair creation of point particles and strings in a time-dependent, weak gravitational field. We find that, for massive string states, there are surprising and significant differences between the string and point-particle results. Central to our approach is the fact that a weakly curved spacetime can be represented by a coherent state of gravitons, and therefore we employ standard techniques in string perturbation theory. String and point-particle pairs are created through tree-level interactions between the background gravitons. In particular, we focus on the production of excited string states and perform explicit calculations of the production of a set of string states of arbitrary excitation level. The differences between the string and point-particle results may contain important lessons for the pair production of strings in the strong gravitational fields of interest in cosmology and black hole physics.
Time-dependent reliability analysis of ceramic engine components
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1993-01-01
The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.
Equation-free analysis of spike-timing-dependent plasticity.
Laing, Carlo R; Kevrekidis, Ioannis G
2015-12-01
Spike-timing-dependent plasticity is the process by which the strengths of connections between neurons are modified as a result of the precise timing of the action potentials fired by the neurons. We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large number-here, 1000-of Poisson neurons whose synapses are plastic. When correlations are introduced between the firing times of these input neurons, the distribution of synaptic strengths shows interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two different parameter regimes using equation-free techniques, which bypass the explicit derivation of the relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which speeds up the time integration of a dynamical system) and the use of recently developed data mining techniques to identify the appropriate low-dimensional description of the complex dynamical systems in our model. PMID:26577337
Optimal resolution of a time-dependent aberrationless magnetic lens.
Calvo, M
2004-05-01
We analyse the optimal conditions for operation of a time-dependent magnetic field lens recently proposed. The lens consists of an axially symmetric ellipsoidal coil producing a spatially homogeneous but time-pulsating magnetic field. This system is capable of focusing a beam of charged particles drifting parallel to the coil axis as well as forming images of an object emitting electrons. This lens has no spherical aberration and, consequently, opens the possibility of surpassing the resolving power of conventional round static field lenses. The cardinal elements of this lens are functions of time and thereby the image position, its magnification factor and orientation change in time. We show how by a suitable choice of the magnetic field pulse parameters and the introduction of screens with circular apertures, it is possible to render all the image characteristics stationary. The effect of diffraction is also discussed in the context of transfer function theory. PMID:15093944
Doppler tracking in time-dependent cosmological spacetimes
NASA Astrophysics Data System (ADS)
Giulini, Domenico; Carrera, Matteo
I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.
Time-dependent local density measurements in unsteady flows
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.
1979-01-01
A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.
A time dependent anatomically detailed model of cardiac conduction
NASA Technical Reports Server (NTRS)
Saxberg, B. E.; Grumbach, M. P.; Cohen, R. J.
1985-01-01
In order to understand the determinants of transitions in cardiac electrical activity from normal patterns to dysrhythmias such as ventricular fibrillation, we are constructing an anatomically and physiologically detailed finite element simulation of myocardial electrical propagation. A healthy human heart embedded in paraffin was sectioned to provide a detailed anatomical substrate for model calculations. The simulation of propagation includes anisotropy in conduction velocity due to fiber orientation as well as gradients in conduction velocities, absolute and relative refractory periods, action potential duration and electrotonic influence of nearest neighbors. The model also includes changes in the behaviour of myocardial tissue as a function of the past local activity. With this model, we can examine the significance of fiber orientation and time dependence of local propagation parameters on dysrhythmogenesis.
XDAMP. Experimental Time-Dependent Data Analysis, Manipulation, Visualization GUI
Ballard, W.P.
1995-04-01
XDAMP is a graphical user interface (GUI) designed to allow the user to manipulate two-dimensional waveforms (data vs. time) that typically are generated during transient response experiments. A typical single data set from these facilities may generate more than 100 time-dependent waveforms. XDAMP can manipulate waveforms both in time and in amplitude. Typical operations are: time shifting, truncating before or after a specific time, adding, multiplying, integrating, and averaging. The software automatically maintains an audit trail for operations performed on each waveform. Annotation can be added to the overall file so that the data set contains full documentation. PostScript printing graphics and annotation is supported. Data are saved using the Hierarchical Data Format (HDF) from the National Center for Supercomputing Applications.
Time dependent electronic transport in chiral edge channels
NASA Astrophysics Data System (ADS)
Fève, G.; Berroir, J.-M.; Plaçais, B.
2016-02-01
We study time dependent electronic transport along the chiral edge channels of the quantum Hall regime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can be derived from a lumped element description of the circuit. At higher frequencies, the propagation equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Coulomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractionalization process, affects the propagation of a single electron in the circuit. All the above-mentioned topics are illustrated by experimental realizations.
Subsystem real-time time dependent density functional theory
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-01
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Fermion Mass Renormalization Using Time-dependent Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kutnink, Timothy; Santrach, Amelia; Hocket, Sarah; Barcus, Scott; Petridis, Athanasios
2015-10-01
The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with refcecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass, as the self-interacting spinors are no longer mass-eigenfunctions. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Statistical regularization is proposed to remove the grid-size dependence.
Time-dependent reliability analysis and condition assessment of structures
Ellingwood, B.R.
1997-01-01
Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.
Memory Retention and Spike-Timing-Dependent Plasticity
Billings, Guy; van Rossum, Mark C. W.
2009-01-01
Memory systems should be plastic to allow for learning; however, they should also retain earlier memories. Here we explore how synaptic weights and memories are retained in models of single neurons and networks equipped with spike-timing-dependent plasticity. We show that for single neuron models, the precise learning rule has a strong effect on the memory retention time. In particular, a soft-bound, weight-dependent learning rule has a very short retention time as compared with a learning rule that is independent of the synaptic weights. Next, we explore how the retention time is reflected in receptive field stability in networks. As in the single neuron case, the weight-dependent learning rule yields less stable receptive fields than a weight-independent rule. However, receptive fields stabilize in the presence of sufficient lateral inhibition, demonstrating that plasticity in networks can be regulated by inhibition and suggesting a novel role for inhibition in neural circuits. PMID:19297513
External orthogonality in subsystem time-dependent density functional theory.
Chulhai, Dhabih V; Jensen, Lasse
2016-08-01
Subsystem density functional theory (subsystem DFT) is a DFT partitioning method that is exact in principle, but depends on approximations to the kinetic energy density functional (KEDF). One may avoid the use of approximate KEDFs by ensuring that the inter-subsystem molecular orbitals are orthogonal, termed external orthogonality (EO). We present a method that extends a subsystem DFT method, that includes EO, into the time-dependent DFT (TDDFT) regime. This method therefore removes the need for approximations to the kinetic energy potential and kernel, and we show that it can accurately reproduce the supermolecular TDDFT results for weakly and strongly coupled subsystems, and for systems with strongly overlapping densities (where KEDF approximations traditionally fail). PMID:26932176
Spin-orbit torque induced spike-timing dependent plasticity
Sengupta, Abhronil Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik
2015-03-02
Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.
Measuring time-dependent diffusion in polymer matrix composites
NASA Astrophysics Data System (ADS)
Pilli, Siva P.; Smith, Lloyd V.; Vaithiyalingam, Shutthanandan
2014-11-01
Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMCs). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick's Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time-dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60] s , was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C 0, followed by a slow linear increase to the saturation level.
Retroactive modulation of spike timing-dependent plasticity by dopamine
Brzosko, Zuzanna; Schultz, Wolfram; Paulsen, Ole
2015-01-01
Most reinforcement learning models assume that the reward signal arrives after the activity that led to the reward, placing constraints on the possible underlying cellular mechanisms. Here we show that dopamine, a positive reinforcement signal, can retroactively convert hippocampal timing-dependent synaptic depression into potentiation. This effect requires functional NMDA receptors and is mediated in part through the activation of the cAMP/PKA cascade. Collectively, our results support the idea that reward-related signaling can act on a pre-established synaptic eligibility trace, thereby associating specific experiences with behaviorally distant, rewarding outcomes. This finding identifies a biologically plausible mechanism for solving the ‘distal reward problem’. DOI: http://dx.doi.org/10.7554/eLife.09685.001 PMID:26516682
Time-dependent corona models - A numerical method
NASA Astrophysics Data System (ADS)
Korevaar, P.; van Leer, B.
1988-07-01
A time-dependent numerical method for calculating gas flows is described. The method is implicit and especially suitable for finding stationary flow solutions. Although the method is general in its application to ideal compressible fluids, this paper applies it to a stellar atmosphere, heated to coronal temperatures by dissipation of mechanical energy. The integration scheme is based on conservative upwind spatial differencing. The upwind switching is provided by Van Leer's method of differentiable flux-splitting. It is shown that the code can handle large differences in density: up to 14 orders of magnitude. Special attention is paid to the boundary conditions, which are made completely transparent to disturbances. Besides some test-results, converged solutions for various values of the initial mechanical flux are presented which are in good agreement with previous time-independent calculations.
Time-dependent diffusive acceleration of test particles at shocks
NASA Astrophysics Data System (ADS)
Drury, L. O'C.
1991-07-01
A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.
Measuring time-dependent diffusion in polymer matrix composites
Pilli, Siva Prasad; Smith, Lloyd V.; Shutthanandan, V.
2014-11-01
Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMC’s). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick’s Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60]s, was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C0, followed by a slow linear increase to the saturation level.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Time-dependent response of hydrogels under constrained swelling
NASA Astrophysics Data System (ADS)
Drozdov, A. D.; Sommer-Larsen, P.; Christiansen, J. deClaville; Sanporean, C.-G.
2014-06-01
Constitutive equations are developed for the viscoplastic behavior of covalently cross-linked hydrogels subjected to swelling. The ability of the model to describe the time-dependent response is confirmed by comparison of results of simulation with observations on partially swollen poly(2-hydroxyethyl methacrylate) gel specimens in uniaxial tensile tests with a constant strain rate and tensile relaxation tests. The stress-strain relations are applied to study the kinetics of unconstrained and constrained swelling. The following conclusions are drawn from numerical analysis: (i) maximum water uptake under constrained swelling a viscoplastic hydrogel is lower than that for unconstrained swelling of its elastic counterpart and exceeds maximum water uptake under constrained swelling of the elastic gel, (ii) when the rate of water diffusion exceeds the rate of plastic flow in a polymer network, swelling curves (mass uptake versus time) for viscoplastic gels under constraints demonstrate characteristic features of non-Fickian diffusion.
Time-dependent behavior of flax/starch composites
NASA Astrophysics Data System (ADS)
Varna, J.; Spārniņš, E.; Joffe, R.; Nättinen, K.; Lampinen, J.
2012-02-01
The time-dependent mechanical response of flax fiber-reinforced thermoplastic starch matrix composite and neat starch is analyzed. It is demonstrated that the response is highly sensitive to the relative humidity (with specific saturation moisture content in the composite) and special effort has to be made to keep it constant. It was found that the accumulation of micro-damage and the resulting reduction of the elastic modulus in this type of composite is limited. The highly nonlinear behavior of composites is related to the nonlinear viscoelasticity and viscoplasticity. These phenomena are accounted for by simple material models, as suggested in this study. The stress-dependent nonlinearity descriptors in these models are determined in creep and strain recovery tests at low as well as by high stresses.
Time-dependent, optically thick accretion onto a black hole
NASA Technical Reports Server (NTRS)
Gilden, D. L.; Wheeler, J. C.
1980-01-01
A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.
Translation invariant time-dependent solutions to massive gravity
Mourad, J.; Steer, D.A. E-mail: steer@apc.univ-paris7.fr
2013-12-01
Homogeneous time-dependent solutions of massive gravity generalise the plane wave solutions of the linearised Fierz-Pauli equations for a massive spin-two particle, as well as the Kasner solutions of General Relativity. We show that they also allow a clear counting of the degrees of freedom and represent a simplified framework to work out the constraints, the equations of motion and the initial value formulation. We work in the vielbein formulation of massive gravity, find the phase space resulting from the constraints and show that several disconnected sectors of solutions exist some of which are unstable. The initial values determine the sector to which a solution belongs. Classically, the theory is not pathological but quantum mechanically the theory may suffer from instabilities. The latter are not due to an extra ghost-like degree of freedom.
Time-dependent local density measurements in unsteady flows
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.
1979-01-01
A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm-diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.
Relating Time-Dependent Acceleration and Height Using an Elevator
NASA Astrophysics Data System (ADS)
Kinser, Jason M.
2015-04-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time1, a(t), the velocity function and position functions are determined through integration as in v (t ) =∫ a (t ) d t (1) and x (t ) =∫ v (t ) dt. Mobile devices such as smartphones or tablets have accelerometers that capture slowly evolving acceleration with respect to time and can deliver those measurements as a CSV file. A recent example measured the oscillations of the elevator as it starts its motion.2 In the application presented here the mobile device is used to estimate the height of the elevator ride. By estimating the functional form of the acceleration of an elevator ride, it is possible to estimate the height of the ride through Eqs. (1) and (2).
Reprint of : Time dependent electronic transport in chiral edge channels
NASA Astrophysics Data System (ADS)
Fève, G.; Berroir, J.-M.; Plaçais, B.
2016-08-01
We study time dependent electronic transport along the chiral edge channels of the quantum Hall regime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can be derived from a lumped element description of the circuit. At higher frequencies, the propagation equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Coulomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractionalization process, affects the propagation of a single electron in the circuit. All the above-mentioned topics are illustrated by experimental realizations.
Cosmological consequences of a time-dependent Λ term
NASA Astrophysics Data System (ADS)
Carvalho, J. C.; Lima, J. A. S.; Waga, I.
1992-09-01
The phenomenological approach to investigate the decay of the effective cosmological constant, as recently proposed by Chen and Wu, is generalized to include a term proportional to H2 on the time dependence of Λ, where H is the Hubble parameter. This new term can modify some features of the standard Friedmann-Robertson-Walker model and its free parameter may be adjusted in accordance with nucleosynthesis constraints. The model also allows a deceleration parameter q0 assuming negative values so that the density parameter Ω0 is smaller than 2/3 and the age of the Universe is always bigger than H-10. In these cases, the usual matter creation rate appearing in models with a decaying vacuum energy is smaller than the one present in the steady-state model.
Nonlinear fracture mechanics. Volume 1. Time-dependent fracture
Saxena, A.; Landes, J.D.; Bassani, J.L.
1989-01-01
Various papers on time-dependent fracture in nonlinear fracture mechanics are presented. Individual subjects considered include: numerical study of non-steady-state creep at stationary crack tips, crack growth in small-scale creep, growth of macroscopic cracks by void coalescence under extensive creeping conditions, creep embrittlement susceptibility and creep crack growth behavior in low-alloy steels, and experimental determination of the high-temperature crack growth behavior of Incoloy 800H. Also discussed are: three-dimensional transient analysis of a dynamically loaded three-point-bend ductile fracture specimen, experimental study of the validity of a Delta J criterion for fatigue crack growth, combined-mode low-cycle fatigue crack growth under torsional loading, fatigue crack-tip mechanics in 7075-T6 aluminum alloy from high-sensitivity displacement field measurements, and nonlinear fracture of concrete and ceramics.
Light pressure of time-dependent fields in plasmas
Zeidler, A.; Schnabl, H.; Mulser, P.
1985-01-01
An expression of the light pressure Pi is derived for the case of a nearly monochromatic electromagnetic wave with arbitrarily time-dependent amplitude. Thereby Pi is defined as the time-averaged force density exerted on a plasma by the wave. The resulting equations are valid for both transverse and longitudinal waves. The light pressure turns out to consist of two components: the well-known gradient-type term and a new nonstationary solenoidal term. This is true for warm as well as cold plasmas. The importance of the new term for the generation of static magnetic fields is shown, and a model in which shear forces may result is given. Formulas for the nonstationary light pressure developed previously are discussed.
Single trapped ion as a time-dependent harmonic oscillator
Menicucci, Nicolas C.; Milburn, G. J.
2007-11-15
We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et al., [Phys. Rev. Lett. 94, 220401 (2005)] proposed that an exponentially decaying trap frequency could be used to simulate (thermal) Gibbons-Hawking radiation in an expanding universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal, correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-Hawking case, it nevertheless shares an important experimental signature with this result.
Spike-timing dependent plasticity in the striatum.
Fino, Elodie; Venance, Laurent
2010-01-01
The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs), are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP) occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, NO-synthase and cholinergic interneurons) also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway. PMID:21423492
Time-Dependent Model of the Global Electric Circuit
NASA Astrophysics Data System (ADS)
Mallios, S. A.; Pasko, V. P.
2013-12-01
The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weekly-ionized plasma at around 80 km altitude [e.g., Rycroft et al., Space Sci. Rev., 137(1-4), pp. 83-105, 2008]. In the absence of any source, the GEC behaves as a leaky spherical capacitor, with the ground being the negative charged plate and the ionosphere the positive one, which discharges through the weakly conducting atmosphere creating fair-weather current, which is about 1 kA integrated over the entire Earth surface [e.g., Bering et al., Physics Today, Oct., 24-30, 1998]. It is accepted that thunderstorms are the main generators in the GEC [e.g., Williams, Atmospheric Research, 91, 140, 2009; Mareev, Physics Uspekhi, 53, 504, 2010]. In this current work, we developed a two-dimensional cylindrical time-dependent model, which calculates the quasi-electrostatic fields created by the slow accumulation of the charge in the cloud, by taking into account the Maxwellian relaxation of the charges in the conducting atmosphere. The model is capable of simulating the whole volume of the GEC and thus it has the same electrical properties as the three-dimensional spherical system. Two different kinds of boundary conditions (Dirichlet and homogeneous Neumann boundary conditions) were used in order to describe the global circulation of the current, and it has been found that both of them give the same results regarding the general contribution of a storm to the GEC. We present results regarding the response of the fair weather region to lightning transients that occur in the thunderstorm, and in the steady state limit the results of the time-dependent model are compared to static GEC solutions similar to those reported previously by Tzur and Roble [JGR, 90, 5989, 1985].
Time dependent patient no-show predictive modelling development.
Huang, Yu-Li; Hanauer, David A
2016-05-01
Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows. PMID:27142954
Time-Dependence and Pattern Formation in Flowing Granular Media.
NASA Astrophysics Data System (ADS)
Baxter, George William, III
1990-01-01
We study the time dependence and pattern formation of gravity driven flows of granular media in three experiments. In three dimensional flows of sand, the normal stress on the wall of a conical hopper is measured. There is no evidence of characteristic time scales predicted by a linear stability analysis of a current continuum theory of granular media. Instead, the signal is characterized by a power law power spectrum, and the time variation of the normal stress obeys a scaling law consistent with fractional Brownian motion with H ~ 0.2. As one of the best examples to date of fractional Brownian motion in a physical experiment, this provides a unique opportunity for a study of the theory's application. In digital subtraction radiography studies of sand flow through a thin (nearly two dimensional) wedge, density waves are found. The formation and motion of these depends on the geometry of the wedge and the roughness of the sand grains. The waves form in rough sand but not in smooth sand of the same approximate size, demonstrating that grain structure has a dramatic effect on the flow. Also, the position of stagnant regions along the sides of the wedge is found to scale as a power law of the wedge angle. Neither the density waves nor the position of the stagnant regions are predicted by current theories. Finally, a cellular automata model is proposed to model the two dimensional flow of ellipsoidal grains (such as grass seed) through a wedge. By including particle shape and orientation as degrees of freedom, this model is able to capture many features of real physical flows. In sum, these experiments demonstrate that flows of even simple materials like sand or grass seed contain time dependent patterns that are not predicted by current theoretical models. This demonstrates the need to include particle structure and orientation. Finally, the cellular automata model shows that even relatively simple models which include these added degrees of freedom can reproduce the
Understanding and Predicting Time-Dependent Dune Erosion
NASA Astrophysics Data System (ADS)
Long, J.; Stockdon, H. F.; Smith, J. R.
2014-12-01
The vulnerability of coastal ecosystems, habitats, and infrastructure is largely dictated by how protective sand dunes respond to extreme waves and water levels during storms. Predicting the type of dune response (e.g., scarping, overwashing, breaching) is often done with conditional storm-impact scale models (e.g. Sallenger 2000) however, these models do not describe the magnitude of expected changes or account for the continuum of dune responses throughout the duration of a storm event. Alternatively, process-based dune erosion models like XBeach explicitly compute interactions between waves, water levels, and sediment transport but are limited in regional applications due to computational requirements and inadequate knowledge of required boundary conditions. Using historical observations of storm-induced coastal change, we are developing and testing a variety of new static, probabilistic, and time-dependent models for dune erosion. Model development is informed by the observed dune response from four events that impacted geomorphically diverse regions along the U.S. Atlantic and Gulf of Mexico coastlines. Results from the static models indicate that alongshore differences in the magnitude of dune elevation change can be related to the depth of water over of the dune crest (e.g. freeboard) but that increasing freeboard does not always correspond to an increased lowering of the dune crest. Applying the concept of dune freeboard in a time-dependent approach that incorporates rising water levels that cause a dune to sequentially experience collision, overwash and then inundation shows that reasonable estimates of dune erosion are obtained. The accuracy of each of the models is now being evaluated along the large and diverse regions of coast that were impacted by Hurricane Sandy in 2012 where dune response was highly variable.
Clinical applications of 3-D dosimeters
NASA Astrophysics Data System (ADS)
Wuu, Cheng-Shie
2015-01-01
Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.
Biocompatible 3D Matrix with Antimicrobial Properties.
Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria
2016-01-01
The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790
Fabrication of 3D Silicon Sensors
Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.
2012-06-06
Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
3D Visualization Development of SIUE Campus
NASA Astrophysics Data System (ADS)
Nellutla, Shravya
Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.
3D Ultrafast Ultrasound Imaging In Vivo
Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-01-01
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828
The psychology of the 3D experience
NASA Astrophysics Data System (ADS)
Janicke, Sophie H.; Ellis, Andrew
2013-03-01
With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Dame, L. T.; Mcknight, R. L.
1983-01-01
The objective of this research is to develop an analytical tool capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. The techniques developed must be capable of accommodating large excursions in temperatures with the associated variations in material properties including plasticity and creep. The overall objective of this proposed program is to develop advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost effective analysis of combustors, turbine blades, and vanes. The approach will be to develop four different theories, one linear and three higher order with increasing complexities including embedded singularities.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Coumou, D.
2005-12-01
We compare temperature-based and enthalpy-based numerical schemes for compressible non-isothermal subsurface fluid flow. We formulate a diffusion equation for the fluid pressure, a diffusion equation for heat conduction, and an equation for the advective transport of temperature or enthalpy in the fluid. These equations can readily be solved by a combination of finite element and higher-order finite volume methods, which are capable of preserving steep temperature gradients in advection dominated flows and handling complex two- and three-dimensional geologic structures with orders of magnitude variation in permeability. Since the time-scale of pressure diffusion is slower than the time-scale for advective fluid flow, it is possible to decouple the equations and use implicit finite element methods for the parabolic (diffusion) equations and explicit finite volume methods for the hyperbolic (advection) equations. For single-phase flow, we use the thermal wave speed to compute the advection of the temperature field on the finite volumes. Since the thermal front is advected at a slower rate than the actual fluid flow, a significant (i.e., a factor 10 at liquid and a factor 1000 at vapor conditions) computational speedup can be achieved in comparison to the formulation where enthalpy is advected. The results for temperature-based and enthalpy-based formulations at vapor or liquid conditions, however, are identical and compare extremely well with results obtained from other codes that use fully coupled solution techniques. Our results do not improve if we use Picard iteration to couple the pressure, conduction, and advection equations. For the enthalpy-based transport schemes, we use a Newton iteration to equilibrate the energy in the fluid and rock. This also allows us to use more modern equation of states for complex multi-component systems, that are formulated in terms of pressure p, temperature T, and composition X, and hence cannot use the specific enthalpy h to
Zhang, Keni; Yamamoto, Hajime; Pruess, Karsten
2008-02-15
TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. With its sophisticated parallel computing techniques, TMVOC-MP can handle much larger problems than TMVOC, and can be much more computationally efficient. TMVOC-MP models multiphase fluid systems containing variable proportions of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The user can specify the number and nature of NCGs and VOCs. There are no intrinsic limitations to the number of NCGs or VOCs, although the arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may select NCGs from a data bank provided in the software. The currently available choices include O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N{sub 2} and O{sub 2}). Thermophysical property data of VOCs can be selected from a chemical data bank, included with TMVOC-MP, that provides parameters for 26 commonly encountered chemicals. Users also can input their own data for other fluids. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL
Medical 3D Printing for the Radiologist.
Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J
2015-01-01
While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233
3D bioprinting of tissues and organs.
Murphy, Sean V; Atala, Anthony
2014-08-01
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879
Optically rewritable 3D liquid crystal displays.
Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S
2014-11-01
Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316
Harvey, R. W.; Prater, R.; Petty, C. C.
2007-09-28
In strongly driven ECCD experiments, consideration of radial transport can be crucial for accurate modeling of otherwise localized electron cyclotron current drive. The DIII-D experiment is in an intermediate driven regime with t{sub transport}{approx}t{sub slowing} for the EC driven electrons. We report computational results from the CQL3D Fokker-Planck simulation code showing radial spreading of driven ECCD in DIII-D. Progress on implementation of a new iterative sparse matrix fully-implicit solve for the full 3D electron distribution, f(u,{theta}{sub u},{rho},t) and toroidal electric potential, V{sub loop({rho},t)} is described. We give a new algorithm for implicit determination of the self-consistent solution of the Ampere-Faraday equation for the time-dependent toroidal electric field.
Extra Dimensions: 3D in PDF Documentation
NASA Astrophysics Data System (ADS)
Graf, Norman A.
2012-12-01
Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.