Science.gov

Sample records for 3d ultrasound techniques

  1. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  2. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  3. New fabrication techniques for ring-array transducers for real-time 3D intravascular ultrasound.

    PubMed

    Light, Edward D; Lieu, Victor; Smith, Stephen W

    2009-10-01

    We have previously described miniature 2D array transducers integrated into a Cook Medical, Inc. vena cava filter deployment device. While functional, the fabrication technique was very labor intensive and did not lend itself well to efficient fabrication of large numbers of devices. We developed two new fabrication methods that we believe can be used to efficiently manufacture these types of devices in greater than prototype numbers. One transducer consisted of 55 elements operating near 5 MHz. The interelement spacing is 0.20 mm. It was constructed on a flat piece of copper-clad polyimide and then wrapped around an 11 French catheter of a Cook Medical, Inc. inferior vena cava (IVC) filter deployment device. We used a braided wiring technology from Tyco Electronics Corp. to connect the elements to our real-time 3D ultrasound scanner. Typical measured transducer element bandwidth was 20% centered at 4.7 MHz and the 50 Omega round trip insertion loss was --82 dB. The mean of the nearest neighbor cross talk was -37.0 dB. The second method consisted of a 46-cm long single layer flex circuit from MicroConnex that terminates in an interconnect that plugs directly into our system cable. This transducer had 70 elements at 0.157 mm interelement spacing operating at 4.8 MHz. Typical measured transducer element bandwidth was 29% and the 50 Omega round trip insertion loss was -83 dB. The mean of the nearest neighbor cross talk was -33.0 dB. PMID:20458877

  4. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique.

    PubMed

    Kohlhof, Hendrik; Heidt, Christoph; Bähler, Alexandrine; Kohl, Sandro; Gravius, Sascha; Friedrich, Max J; Ziebarth, Kai; Stranzinger, Enno

    2015-06-01

    Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy applicable and powerful tool to identify trochlea dysplasia in newborns and might be used for screening for trochlea dysplasia. PMID:25843417

  5. High definition 3D ultrasound imaging.

    PubMed

    Morimoto, A K; Krumm, J C; Kozlowski, D M; Kuhlmann, J L; Wilson, C; Little, C; Dickey, F M; Kwok, K S; Rogers, B; Walsh, N

    1997-01-01

    We have demonstrated high definition and improved resolution using a novel scanning system integrated with a commercial ultrasound machine. The result is a volumetric 3D ultrasound data set that can be visualized using standard techniques. Unlike other 3D ultrasound images, image quality is improved from standard 2D data. Image definition and bandwidth is improved using patent pending techniques. The system can be used to image patients or wounded soldiers for general imaging of anatomy such as abdominal organs, extremities, and the neck. Although the risks associated with x-ray carcinogenesis are relatively low at diagnostic dose levels, concerns remain for individuals in high risk categories. In addition, cost and portability of CT and MRI machines can be prohibitive. In comparison, ultrasound can provide portable, low-cost, non-ionizing imaging. Previous clinical trials comparing ultrasound to CT were used to demonstrate qualitative and quantitative improvements of ultrasound using the Sandia technologies. Transverse leg images demonstrated much higher clarity and lower noise than is seen in traditional ultrasound images. An x-ray CT scan was provided of the same cross-section for comparison. The results of our most recent trials demonstrate the advantages of 3D ultrasound and motion compensation compared with 2D ultrasound. Metal objects can also be observed within the anatomy. PMID:10168958

  6. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  7. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  8. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  9. Editorial review: pediatric 3D ultrasound

    PubMed Central

    2014-01-01

    Three-dimensional ultrasound is an established diagnostic imaging technique in many specialties. However, in neonates, infants and children three-dimensional ultrasound still is underutilized, partially due to time constraints for post-processing and restricted availability, of devices as well as dedicated pediatric transducers. Also reimbursement issues still need to be addressed. This editorial review presents more or less established pediatric three-dimensional ultrasound applications with proven diagnostic benefit as well as potential future applications of three-dimensional/four-dimensional ultrasound in infants and children, aiming at enhancing research and promoting practical use of three-dimensional ultrasound in relevant pediatric conditions. Particularly, applications in neonatal neurosonography, ultrasound of the urogenital tract as well as some other small part and miscellaneous queries are highlighted. Additional other potential and future indications are discussed briefly, also mentioning restrictions and potential future developments. In summary, three-dimensional ultrasound holds some potential to widen sonographic diagnostic capabilities throughout childhood and hopefully will be increasingly investigated and introduced into clinical practice provided respective equipment and pediatric three-dimensional/four-dimensional ultrasound transducers become available. PMID:26676068

  10. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  11. 3D Flow reconstruction using ultrasound PIV

    NASA Astrophysics Data System (ADS)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  12. Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgen

    2008-03-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using a needle-like RF button electrode is widely used to destroy tumor cells or stop bleeding. To avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment, 3D US guidance system was developed. In this paper, a new automated technique, the 3D Improved Hough Transform (3DIHT) algorithm, which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance, was presented. Based on the coarse-fine search strategy and a four parameter representation of lines in 3D space, 3DIHT algorithm can segment needles quickly, accurately and robustly. The technique was evaluated using the 3D US images acquired by scanning a water phantom. The segmentation position deviation of the line was less than 2mm and angular deviation was much less than 2°. The average computational time measured on a Pentium IV 2.80GHz PC computer with a 381×381×250 image was less than 2s.

  13. Localization of liver tumors in freehand 3D laparoscopic ultrasound

    NASA Astrophysics Data System (ADS)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.

    2012-02-01

    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  14. A 3D airborne ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  15. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  16. Automatic needle segmentation in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Cardinal, H. Neale; Guan, Weiguang; Fenster, Aaron

    2002-05-01

    In this paper, we propose to use 2D image projections to automatically segment a needle in a 3D ultrasound image. This approach is motivated by the twin observations that the needle is more conspicuous in a projected image, and its projected area is a minimum when the rays are cast parallel to the needle direction. To avoid the computational burden of an exhaustive 2D search for the needle direction, a faster 1D search procedure is proposed. First, a plane which contains the needle direction is determined by the initial projection direction and the (estimated) direction of the needle in the corresponding projection image. Subsequently, an adaptive 1D search technique is used to adjust the projection direction iteratively until the projected needle area is minimized. In order to remove noise and complex background structure from the projection images, a priori information about the needle position and orientation is used to crop the 3D volume, and the cropped volume is rendered with Gaussian transfer functions. We have evaluated this approach experimentally using agar and turkey breast phantoms. The results show that it can find the 3D needle orientation within 1 degree, in about 1 to 3 seconds on a 500 MHz computer.

  17. Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model.

    PubMed

    Gutiérrez-Becker, Benjamín; Arámbula Cosío, Fernando; Guzmán Huerta, Mario E; Benavides-Serralde, Jesús Andrés; Camargo-Marín, Lisbeth; Medina Bañuelos, Verónica

    2013-09-01

    Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder-Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data. PMID:23686392

  18. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. PMID:23273891

  19. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  20. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-01-01

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes. PMID:27164066

  1. A novel two-axis micromechanical scanning transducer for handheld 3D ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    This paper reports the development of a new two-axis micromechanical scanning transducer for handheld 3D ultrasound imaging. It consists of a miniaturized single-element ultrasound transducer driven by a unique 2-axis liquid-immersible electromagnetic microactuator. With a mechanical scanning frequency of 19.532 Hz and an ultrasound pulse repetition rate of 5 kHz, the scanning transducer was scanned along 60 concentric paths with 256 detection points on each to simulate a physical 2D ultrasound transducer array of 60 × 256 elements. Using the scanning transducer, 3D pulse-echo ultrasound imaging of two silicon discs immersed in water as the imaging target was successfully conducted. The lateral resolution of the 3D ultrasound image was further improved with the synthetic aperture focusing technique (SAFT). The new two-axis micromechanical scanning transducer doesn't require complex and expensive multi-channel data acquisition (DAQ) electronics. Therefore, it could provide a new approach to achieve compact and low-cost 3D ultrasound and photoacoustic imaging systems, especially for handheld operations.

  2. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  3. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  4. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t ) and after (3D-iCEUS e n d ) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  5. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  6. 3D ultrasound image segmentation using wavelet support vector machines

    PubMed Central

    Akbari, Hamed; Fei, Baowei

    2012-01-01

    Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682

  7. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  8. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

  9. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  10. 3D freehand ultrasound for medical assistance in diagnosis and treatment of breast cancer: preliminary results

    NASA Astrophysics Data System (ADS)

    Torres, Fabian; Fanti, Zian; Arambula Cosío, F.

    2013-11-01

    Image-guided interventions allow the physician to have a better planning and visualization of a procedure. 3D freehand ultrasound is a non-invasive and low-cost imaging tool that can be used to assist medical procedures. This tool can be used in the diagnosis and treatment of breast cancer. There are common medical practices that involve large needles to obtain an accurate diagnosis and treatment of breast cancer. In this study we propose the use of 3D freehand ultrasound for planning and guiding such procedures as core needle biopsy and radiofrequency ablation. The proposed system will help the physician to identify the lesion area, using image-processing techniques in the 3D freehand ultrasound images, and guide the needle to this area using the information of position and orientation of the surgical tools. We think that this system can upgrade the accuracy and efficiency of these procedures.

  11. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  12. Validation of 3D surface reconstruction of vertebrae and spinal column using 3D ultrasound data--a pilot study.

    PubMed

    Nguyen, Duc V; Vo, Quang N; Le, Lawrence H; Lou, Edmond H M

    2015-02-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of spine associated with vertebra rotation. The Cobb angle and axial vertebral rotation are important parameters to assess the severity of scoliosis. However, the vertebral rotation is seldom measured from radiographs due to time consuming. Different techniques have been developed to extract 3D spinal information. Among many techniques, ultrasound imaging is a promising method. This pilot study reported an image processing method to reconstruct the posterior surface of vertebrae from 3D ultrasound data. Three cadaver vertebrae, a Sawbones spine phantom, and a spine from a child with AIS were used to validate the development. The in-vitro result showed the surface of the reconstructed image was visually similar to the original objects. The dimension measurement error was <5 mm and the Pearson correlation was >0.99. The results also showed a high accuracy in vertebral rotation with errors of 0.8 ± 0.3°, 2.8 ± 0.3° and 3.6 ± 0.5° for the rotation values of 0°, 15° and 30°, respectively. Meanwhile, the difference in the Cobb angle between the phantom and the image was 4° and the vertebral rotation at the apex was 2°. The Cobb angle measured from the in-vivo ultrasound image was 4° different from the radiograph. PMID:25550193

  13. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  14. 3D segmentation of prostate ultrasound images using wavelet transform

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Yang, Xiaofeng; Halig, Luma V.; Fei, Baowei

    2011-03-01

    The current definitive diagnosis of prostate cancer is transrectal ultrasound (TRUS) guided biopsy. However, the current procedure is limited by using 2D biopsy tools to target 3D biopsy locations. This paper presents a new method for automatic segmentation of the prostate in three-dimensional transrectal ultrasound images, by extracting texture features and by statistically matching geometrical shape of the prostate. A set of Wavelet-based support vector machines (WSVMs) are located and trained at different regions of the prostate surface. The WSVMs capture texture priors of ultrasound images for classification of the prostate and non-prostate tissues in different zones around the prostate boundary. In the segmentation procedure, these W-SVMs are trained in three sagittal, coronal, and transverse planes. The pre-trained W-SVMs are employed to tentatively label each voxel around the surface of the model as a prostate or non-prostate voxel by the texture matching. The labeled voxels in three planes after post-processing is overlaid on a prostate probability model. The probability prostate model is created using 10 segmented prostate data. Consequently, each voxel has four labels: sagittal, coronal, and transverse planes and one probability label. By defining a weight function for each labeling in each region, each voxel is labeled as a prostate or non-prostate voxel. Experimental results by using real patient data show the good performance of the proposed model in segmenting the prostate from ultrasound images.

  15. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  16. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  17. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  18. Real-time, 3-D ultrasound with multiple transducer arrays.

    PubMed

    Fronheiser, Matthew P; Light, Edward D; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W

    2006-01-01

    Modifications were made to a commercial real-time, three-dimensional (3-D) ultrasound system for near simultaneous 3-D scanning with two matrix array transducers. As a first illustration, a transducer cable assembly was modified to incorporate two independent, 3-D intra-cardiac echo catheters, a 7 Fr (2.3 mm O.D.) side scanning catheter and a 14 Fr (4.7 mm O.D) forward viewing catheter with accessory port, each catheter using 85 channels operating at 5 MHz. For applications in treatment of atrial fibrillation, the goal is to place the sideviewing catheter within the coronary sinus to view the whole left atrium, including a pulmonary vein. Meanwhile, the forward-viewing catheter inserted within the left atrium is directed toward the ostium of a pulmonary vein for therapy using the integrated accessory port. Using preloaded, phasing data, the scanner switches between catheters automatically, at the push of a button, with a delay of about 1 second, so that the clinician can view the therapy catheter with the coronary sinus catheter and vice versa. Preliminary imaging studies in a tissue phantom and in vivo show that our system successfully guided the forward-viewing catheter toward a target while being imaged with the sideviewing catheter. The forward-viewing catheter then was activated to monitor the target while we mimicked therapy delivery. In the future, the system will switch between 3-D probes on a line-by-line basis and display both volumes simultaneously. PMID:16471436

  19. Integration of 3D intraoperative ultrasound for enhanced neuronavigation

    NASA Astrophysics Data System (ADS)

    Paulsen, Keith D.; Ji, Songbai; Hartov, Alex; Fan, Xiaoyao; Roberts, David W.

    2012-03-01

    True three-dimensional (3D) volumetric ultrasound (US) acquisitions stand to benefit intraoperative neuronavigation on multiple fronts. While traditional two-dimensional (2D) US and its tracked, hand-swept version have been recognized for many years to advantage significantly image-guided neurosurgery, especially when coregistered with preoperative MR scans, its unregulated and incomplete sampling of the surgical volume of interest have limited certain intraoperative uses of the information that are overcome through direct volume acquisition (i.e., through 2D scan-head transducer arrays). In this paper, we illustrate several of these advantages, including image-based intraoperative registration (and reregistration) and automated, volumetric displacement mapping for intraoperative image updating. These applications of 3D US are enabled by algorithmic advances in US image calibration, and volume rasterization and interpolation for multi-acquisition synthesis that will also be highlighted. We expect to demonstrate that coregistered 3D US is well worth incorporating into the standard neurosurgical navigational environment relative to traditional tracked, hand-swept 2D US.

  20. Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies

    NASA Astrophysics Data System (ADS)

    Gérard, Maxime; Tang, An; Badoual, Anaïs.; Michaud, François; Bigot, Alexandre; Soulez, Gilles; Kadoury, Samuel

    2016-03-01

    Liver cancer represents the second most common cause of cancer-related mortality worldwide. The prognosis is poor with an overall mortality of 95%. Moreover, most hepatic tumors are unresectable due to their advanced stage at discovery or poor underlying liver function. Tumor embolization by intra-arterial approaches is the current standard of care for advanced cases of hepatocellular carcinoma. These therapies rely on the fact that the blood supply of primary hepatic tumors is predominantly arterial. Feedback on blood flow velocities in the hepatic arteries is crucial to ensure maximal treatment efficacy on the targeted masses. Based on these velocities, the intra-arterial injection rate is modulated for optimal infusion of the chemotherapeutic drugs into the tumorous tissue. While Doppler ultrasound is a well-documented technique for the assessment of blood flow, 3D visualization of vascular anatomy with ultrasound remains challenging. In this paper we present an image-guidance pipeline that enables the localization of the hepatic arterial branches within a 3D ultrasound image of the liver. A diagnostic Magnetic resonance angiography (MRA) is first processed to automatically segment the hepatic arteries. A non-rigid registration method is then applied on the portal phase of the MRA volume with a 3D ultrasound to enable the visualization of the 3D mesh of the hepatic arteries in the Doppler images. To evaluate the performance of the proposed workflow, we present initial results from porcine models and patient images.

  1. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  2. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  3. Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

    2006-03-01

    Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0° in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4°) and intraobserver variability (5.2mm, 3.3mm, 7.0°), and better than the error before registration (9.4mm, 9.0mm, 9.9°). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

  4. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  5. The Ultrasound Brain Helmet: Simultaneous Multi-transducer 3D Transcranial Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.

    In this work, I examine the problem of rapid imaging of stroke and present ultrasound-based approaches for addressing it. Specifically, this dissertation discusses aberration and attenuation due to the skull as sources of image degradation and presents a prototype system for simultaneous 3D bilateral imaging via both temporal acoustic windows. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging via both temporal acoustic windows, allowing for registration and fusion of multiple real-time 3D scans of cerebral vasculature. I examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that signal-to-noise ratio (SNR) may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented depicting cerebral arteries with and without the use of microbubble contrast agent that have been registered and fused using a search algorithm which maximizes normalized cross-correlation. The scanning geometry of a brain helmet-type system is also utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e. several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing or

  6. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  7. Techniques for interactive 3-D scientific visualization

    SciTech Connect

    Glinert, E.P. . Dept. of Computer Science); Blattner, M.M. Hospital and Tumor Inst., Houston, TX . Dept. of Biomathematics California Univ., Davis, CA . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Becker, B.G. . Dept. of Applied Science Lawrence Livermore National La

    1990-09-24

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  8. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    PubMed

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max). PMID:18044549

  9. Pitch–Catch Phase Aberration Correction of Multiple Isoplanatic Patches for 3-D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2013-01-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° × 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke. PMID:23475914

  10. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  11. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  12. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.

  13. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging. PMID:26412926

  14. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time. PMID:26954841

  15. Preliminary results in large bone segmentation from 3D freehand ultrasound

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando

    2013-11-01

    Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.

  16. Bone segmentation and fracture detection in ultrasound using 3D local phase features.

    PubMed

    Hacihaliloglu, Ilker; Abugharbieh, Rafeef; Hodgson, Antony; Rohling, Robert

    2008-01-01

    3D ultrasound (US) is increasingly considered as a viable alternative imaging modality in computer-assisted orthopaedic surgery (CAOS) applications. Automatic bone segmentation from US images, however, remains a challenge due to speckle noise and various other artifacts inherent to US. In this paper, we present intensity invariant three dimensional (3D) local image phase features, obtained using 3D Log-Gabor filter banks, for extracting ridge-like features similar to those that occur at soft tissue/bone interfaces. Our contributions include the novel extension of 2D phase symmetry features to 3D and their use in automatic extraction of bone surfaces and fractured fragments in 3D US. We validate our technique using phantom, in vitro, and in vivo experiments. Qualitative and quantitative results demonstrate remarkably clear segmentations results of bone surfaces with a localization accuracy of better than 0.62 mm and mean errors in estimating fracture displacements below 0.65 mm, which will likely be of strong clinical utility. PMID:18979759

  17. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  18. View synthesis techniques for 3D video

    NASA Astrophysics Data System (ADS)

    Tian, Dong; Lai, Po-Lin; Lopez, Patrick; Gomila, Cristina

    2009-08-01

    To facilitate new video applications such as three-dimensional video (3DV) and free-viewpoint video (FVV), multiple view plus depth format (MVD), which consists of both video views and the corresponding per-pixel depth images, is being investigated. Virtual views can be generated using depth image based rendering (DIBR), which takes video and the corresponding depth images as input. This paper discusses view synthesis techniques based on DIBR, which includes forward warping, blending and hole filling. Especially, we will emphasize on the techniques brought to the MPEG view synthesis reference software (VSRS). Unlike the case in the field of computer graphics, the ground truth depth images for nature content are very difficult to obtain. The estimated depth images used for view synthesis typically contain different types of noises. Some robust synthesis modes to combat against the depth errors are also presented in this paper. In addition, we briefly discuss how to use synthesis techniques with minor modifications to generate the occlusion layer information for layered depth video (LDV) data, which is another potential format for 3DV applications.

  19. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  20. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes. PMID:27067418

  1. Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound.

    PubMed

    Acharya, U Rajendra; S, Vinitha Sree; Molinari, Filippo; Garberoglio, Roberto; Witkowska, Agnieszka; Suri, Jasjit S

    2012-01-01

    In this work, we present a Computer Aided Diagnosis (CAD) based technique for automatic classification of benign and malignant thyroid lesions in 3D contrast-enhanced ultrasound images. The images were obtained from 20 patients. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture based features were extracted from the thyroid images. The resulting feature vectors were used to train and test three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr) using ten-fold cross validation technique. Our results show that combination of DWT and texture features in the K-NN classifier resulted in a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Thus, the preliminary results of the proposed technique show that it could be adapted as an adjunct tool that can give valuable second opinions to the doctors regarding the nature of the thyroid nodule. The technique is cost-effective, non-invasive, fast, completely automated and gives more objective and reproducible results compared to manual analysis of the ultrasound images. We however intend to establish the clinical applicability of this technique by evaluating it with more data in the future. PMID:23365926

  2. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  3. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  4. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  5. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  6. DYNAMIC 3D QSAR TECHNIQUES: APPLICATIONS IN TOXICOLOGY

    EPA Science Inventory

    Two dynamic techniques recently developed to account for conformational flexibility of chemicals in 3D QSARs are presented. In addition to the impact of conformational flexibility of chemicals in 3D QSAR models, the applicability of various molecular descriptors is discussed. The...

  7. Virtual 3d City Modeling: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  8. A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter

    2012-02-01

    Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound imageguided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% +/- 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients.

  9. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used. PMID:25265174

  10. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  11. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  12. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  13. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  14. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study.

    PubMed

    Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W

    2000-01-01

    We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284

  15. GPU accelerated registration of a statistical shape model of the lumbar spine to 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Khallaghi, Siavash; Abolmaesumi, Purang; Gong, Ren Hui; Chen, Elvis; Gill, Sean; Boisvert, Jonathan; Pichora, David; Borschneck, Dan; Fichtinger, Gabor; Mousavi, Parvin

    2011-03-01

    We present a parallel implementation of a statistical shape model registration to 3D ultrasound images of the lumbar vertebrae (L2-L4). Covariance Matrix Adaptation Evolution Strategy optimization technique, along with Linear Correlation of Linear Combination similarity metric have been used, to improve the robustness and capture range of the registration approach. Instantiation and ultrasound simulation have been implemented on a graphics processing unit for a faster registration. Phantom studies show a mean target registration error of 3.2 mm, while 80% of all the cases yield target registration error of below 3.5 mm.

  16. Computer-Assisted Hepatocellular Carcinoma Ablation Planning Based on 3-D Ultrasound Imaging.

    PubMed

    Li, Kai; Su, Zhongzhen; Xu, Erjiao; Guan, Peishan; Li, Liu-Jun; Zheng, Rongqin

    2016-08-01

    To evaluate computer-assisted hepatocellular carcinoma (HCC) ablation planning based on 3-D ultrasound, 3-D ultrasound images of 60 HCC lesions from 58 patients were obtained and transferred to a research toolkit. Compared with virtual manual ablation planning (MAP), virtual computer-assisted ablation planning (CAP) consumed less time and needle insertion numbers and exhibited a higher rate of complete tumor coverage and lower rate of critical structure injury. In MAP, junior operators used less time, but had more critical structure injury than senior operators. For large lesions, CAP performed better than MAP. For lesions near critical structures, CAP resulted in better outcomes than MAP. Compared with MAP, CAP based on 3-D ultrasound imaging was more effective and achieved a higher rate of complete tumor coverage and a lower rate of critical structure injury; it is especially useful for junior operators and with large lesions, and lesions near critical structures. PMID:27126243

  17. Automatic 3D segmentation of ultrasound images using atlas registration and statistical texture prior

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Schuster, David; Master, Viraj; Nieh, Peter; Fenster, Aaron; Fei, Baowei

    2011-03-01

    We are developing a molecular image-directed, 3D ultrasound-guided, targeted biopsy system for improved detection of prostate cancer. In this paper, we propose an automatic 3D segmentation method for transrectal ultrasound (TRUS) images, which is based on multi-atlas registration and statistical texture prior. The atlas database includes registered TRUS images from previous patients and their segmented prostate surfaces. Three orthogonal Gabor filter banks are used to extract texture features from each image in the database. Patient-specific Gabor features from the atlas database are used to train kernel support vector machines (KSVMs) and then to segment the prostate image from a new patient. The segmentation method was tested in TRUS data from 5 patients. The average surface distance between our method and manual segmentation is 1.61 +/- 0.35 mm, indicating that the atlas-based automatic segmentation method works well and could be used for 3D ultrasound-guided prostate biopsy.

  18. Proximal femoral focal deficiency of the fetus - early 3D/4D prenatal ultrasound diagnosis.

    PubMed

    Kudla, Marek J; Beczkowska-Kielek, Aleksandra; Kutta, Katarzyna; Partyka-Lasota, Justyna

    2016-09-01

    Proximal Femoral Focal Deficiency (PFFD) is a rare congenital syndrome of unknown etiology. Additional disorders can be present up to 70% of PFFD cases. Management (including termination) depends on the severity of the malformation. We present a case of a 32-year-old woman referred for routine ultrasound examination in the 12th week of pregnancy. Detailed 3D/4D evaluation revealed asymmetry of lower limbs and diagnosis of isolated PFFD was established. Parents were fully informed and decided to continue the pregnancy. We stress here the importance of early 3D/4D ultrasound diagnosis. Our paper presents the earliest case where the diagnosis of PFFD was established with 3D/4D ultrasound. PMID:27622419

  19. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard

    2015-03-01

    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  20. A framework for human spine imaging using a freehand 3D ultrasound system.

    PubMed

    Purnama, Ketut E; Wilkinson, Michael H F; Veldhuizen, Albert G; van Ooijen, Peter M A; Lubbers, Jaap; Burgerhof, Johannes G M; Sardjono, Tri A; Verkerke, Gijbertus J

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D ultrasound imaging provides information in 3D directly in contrast to projection methods. This paper describes a feasibility study of an ultrasound system to provide a 3D image of the human spine, and presents a framework of procedures to perform this task. The framework consist of an ultrasound image acquisition procedure to image a large part of the human spine by means of a freehand 3D ultrasound system and a volume reconstruction procedure which was performed in four stages: bin-filling, hole-filling, volume segment alignment, and volume segment compounding. The overall results of the procedures in this framework show that imaging of the human spine using ultrasound is feasible. Vertebral parts such as the transverse processes, laminae, superior articular processes, and spinous process of the vertebrae appear as clouds of voxels having intensities higher than the surrounding voxels. In sagittal slices, a string of transverse processes appears representing the curvature of the spine. In the bin-filling stage the estimated mean absolute noise level of a single measurement of a single voxel was determined. Our comparative study for the hole-filling methods based on rank sum statistics proved that the pixel nearest neighbour (PNN) method with variable radius and with the proposed olympic operation is the best method. Its mean absolute grey value error was less in magnitude than the noise level of a single measurement. PMID:20231799

  1. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  2. 3D visualization techniques for the STEREO-mission

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Podlipnik, B.; Inhester, B.; Feng, L.; Ruan, P.

    The forthcoming STEREO-mission will observe the Sun from two different viewpoints We expect about 2GB data per day which ask for suitable data presentation techniques A key feature of STEREO is that it will provide for the first time a 3D-view of the Sun and the solar corona In our normal environment we see objects three dimensional because the light from real 3D objects needs different travel times to our left and right eye As a consequence we see slightly different images with our eyes which gives us information about the depth of objects and a corresponding 3D impression Techniques for the 3D-visualization of scientific and other data on paper TV computer screen cinema etc are well known e g two colour anaglyph technique shutter glasses polarization filters and head-mounted displays We discuss advantages and disadvantages of these techniques and how they can be applied to STEREO-data The 3D-visualization techniques are not limited to visual images but can be also used to show the reconstructed coronal magnetic field and energy and helicity distribution In the advent of STEREO we test the method with data from SOHO which provides us different viewpoints by the solar rotation This restricts the analysis to structures which remain stationary for several days Real STEREO-data will not be affected by these limitations however

  3. Postprocessing techniques for 3D non-linear structures

    NASA Technical Reports Server (NTRS)

    Gallagher, Richard S.

    1987-01-01

    How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.

  4. Intelligent speckle reducing anisotropic diffusion algorithm for automated 3-D ultrasound images.

    PubMed

    Wu, Jun; Wang, Yuanyuan; Yu, Jinhua; Shi, Xinling; Zhang, Junhua; Chen, Yue; Pang, Yun

    2015-02-01

    A novel 3-D filtering method is presented for speckle reduction and detail preservation in automated 3-D ultrasound images. First, texture features of an image are analyzed by using the improved quadtree (QT) decomposition. Then, the optimal homogeneous and the obvious heterogeneous regions are selected from QT decomposition results. Finally, diffusion parameters and diffusion process are automatically decided based on the properties of these two selected regions. The computing time needed for 2-D speckle reduction is very short. However, the computing time required for 3-D speckle reduction is often hundreds of times longer than 2-D speckle reduction. This may limit its potential application in practice. Because this new filter can adaptively adjust the time step of iteration, the computation time is reduced effectively. Both synthetic and real 3-D ultrasound images are used to evaluate the proposed filter. It is shown that this filter is superior to other methods in both practicality and efficiency. PMID:26366596

  5. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  6. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  7. Automated 3D ultrasound elastography of the breast: a phantom validation study.

    PubMed

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H G; de Korte, Chris L

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s(-1)) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D

  8. Case study: The Avengers 3D: cinematic techniques and digitally created 3D

    NASA Astrophysics Data System (ADS)

    Clark, Graham D.

    2013-03-01

    Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.

  9. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  10. Catheter-Based Ultrasound for 3D Control of Thermal Therapy

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Chen, Xin; Wootton, Jeffery; Juang, Titania; Nau, Will H.; Kinsey, Adam; Hsu, I.-Chow; Rieke, Viola; Pauly, Kim Butts; Sommer, Graham; Bouley, Donna

    2009-04-01

    Catheter-based ultrasound applicators have been investigated for delivering hyperthermia and thermal ablation for the treatment of cancer and benign diseases. Technology includes an intrauterine applicator integrated with an HDR ring applicator, interstitial applicators for hyperthermia delivery during brachytherapy, interstitial applicators for tumor ablation, and transurethral devices for conformal prostate ablation. Arrays of multiple sectored tubular transducers have been fabricated for interstitial and intrauterine hyperthermia applicators. High-power interstitial versions have been evaluated for percutaneous implantation with directional or dynamic angular control of thermal ablation. Transurethral applicators include curvilinear transducers with rotational sweeping of narrow heating patterns, and multi-sectored tubular devices capable of dynamic angular control without applicator movement. Performance was evaluated in phantom, excised tissue, in vivo experiments in canine prostate under MR temperature monitoring, clinical hyperthermia, and 3D-biothermal simulations with patient anatomy. Interstitial and intrauterine devices can tailor hyperthermia to large treatment volumes, with multisectored control useful to limit exposure to rectum and bladder. Curvilinear transurethral devices with sequential rotation produce target conforming coagulation zones that can cover either the whole gland or defined focal regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the prostate without applicator manipulation. High-power interstitial implants with directional devices can be used to effectively ablate defined target regions while avoiding sensitive tissues. MR temperature monitoring can effectively define the extent of thermal damage and provided a means for real-time control of the applicators. In summary, these catheter-based ultrasound devices allow for dynamic control of heating profiles

  11. Design of a 3D Navigation Technique Supporting VR Interaction

    NASA Astrophysics Data System (ADS)

    Boudoin, Pierre; Otmane, Samir; Mallem, Malik

    2008-06-01

    Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.

  12. Recovery of liver motion and deformation due to respiration using laparoscopic freehand 3D ultrasound system.

    PubMed

    Nakamoto, Masahiko; Hirayama, Hiroaki; Sato, Yoshinobu; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto; Tamura, Shinichi

    2006-01-01

    This paper describes a rapid method for intraoperative recovery of liver motion and deformation due to respiration by using a laparoscopic freehand 3D ultrasound (US) system. Using the proposed method, 3D US images of the liver can be extended to 4D US images by acquiring additional several sequences of 2D US images during a couple of respiration cycles. Time-varying 2D US images are acquired on several sagittal image planes and their 3D positions and orientations are measured using a laparoscopic ultrasound probe to which a miniature magnetic 3D position sensor is attached. During the acquisition, the probe is assumed to move together with the liver surface. In-plane 2D deformation fields and respiratory phase are estimated from the time-varying 2D US images, and then the time-varying 3D deformation fields on the sagittal image planes are obtained by combining 3D positions and orientations of the image planes. The time-varying 3D deformation field of the volume is obtained by interpolating the 3D deformation fields estimated on several planes. The proposed method was evaluated by in vivo experiments using a pig liver. PMID:17354794

  13. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  14. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  15. Automatic 3D ultrasound calibration for image guided therapy using intramodality image registration

    NASA Astrophysics Data System (ADS)

    Schlosser, Jeffrey; Kirmizibayrak, Can; Shamdasani, Vijay; Metz, Steve; Hristov, Dimitre

    2013-11-01

    Many real time ultrasound (US) guided therapies can benefit from management of motion-induced anatomical changes with respect to a previously acquired computerized anatomy model. Spatial calibration is a prerequisite to transforming US image information to the reference frame of the anatomy model. We present a new method for calibrating 3D US volumes using intramodality image registration, derived from the ‘hand-eye’ calibration technique. The method is fully automated by implementing data rejection based on sensor displacements, automatic registration over overlapping image regions, and a self-consistency error metric evaluated continuously during calibration. We also present a novel method for validating US calibrations based on measurement of physical phantom displacements within US images. Both calibration and validation can be performed on arbitrary phantoms. Results indicate that normalized mutual information and localized cross correlation produce the most accurate 3D US registrations for calibration. Volumetric image alignment is more accurate and reproducible than point selection for validating the calibrations, yielding <1.5 mm root mean square error, a significant improvement relative to previously reported hand-eye US calibration results. Comparison of two different phantoms for calibration and for validation revealed significant differences for validation (p = 0.003) but not for calibration (p = 0.795).

  16. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    PubMed Central

    Bleve, Mariella; Capra, Priscilla; Pavanetto, Franca; Perugini, Paola

    2012-01-01

    Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or t0), after 1 month (t1), and at the end of the study (t2). Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment. PMID:22203840

  17. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment.

    PubMed

    Bleve, Mariella; Capra, Priscilla; Pavanetto, Franca; Perugini, Paola

    2012-01-01

    Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a "placebo" formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or t(0)), after 1 month (t(1)), and at the end of the study (t(2)). Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment. PMID:22203840

  18. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  19. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS. PMID:27083978

  20. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    PubMed Central

    Hou, Wenguang; Zhang, Xuming; Ding, Mingyue

    2013-01-01

    Speckle suppression plays an important role in improving ultrasound (US) image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM) provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU-) based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm. PMID:24348747

  1. Modeling of multi-view 3D freehand radio frequency ultrasound.

    PubMed

    Klein, T; Hansson, M; Navab, Nassir

    2012-01-01

    Nowadays ultrasound (US) examinations are typically performed with conventional machines providing two dimensional imagery. However, there exist a multitude of applications where doctors could benefit from three dimensional ultrasound providing better judgment, due to the extended spatial view. 3D freehand US allows acquisition of images by means of a tracking device attached to the ultrasound transducer. Unfortunately, view dependency makes the 3D representation of ultrasound a non-trivial task. To address this we model speckle statistics, in envelope-detected radio frequency (RF) data, using a finite mixture model (FMM), assuming a parametric representation of data, in which the multiple views are treated as components of the FMM. The proposed model is show-cased with registration, using an ultrasound specific distribution based pseudo-distance, and reconstruction tasks, performed on the manifold of Gamma model parameters. Example field of application is neurology using transcranial US, as this domain requires high accuracy and data systematically features low SNR, making intensity based registration difficult. In particular, 3D US can be specifically used to improve differential diagnosis of Parkinson's disease (PD) compared to conventional approaches and is therefore of high relevance for future application. PMID:23285579

  2. OVERALL PROCEDURES PROTOCOL AND PATIENT ENROLLMENT PROTOCOL: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this study is to examine the feasibility of collecting, transmitting,

    and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant

    women. The study will also examine the reliability of measurements obtained from 3-D

    imag...

  3. Integrated endoscope for real-time 3D ultrasound imaging and hyperthermia: feasibility study.

    PubMed

    Pua, Eric C; Qiu, Yupeng; Smith, S W

    2007-01-01

    The goal of this research is to determine the feasibility of using a single endoscopic probe for the combined purpose of real-time 3D (RT3D) ultrasound imaging of a target organ and the delivery of ultrasound therapy to facilitate the absorption of compounds for cancer treatment. Recent research in ultrasound therapy has shown that ultrasound-mediated drug delivery improves absorption of treatments for prostate, cervical and esophageal cancer. The ability to combine ultrasound hyperthermia and 3D imaging could improve visualization and targeting of cancerous tissues. In this study, numerical modeling and experimental measurements were developed to determine the feasibility of combined therapy and imaging with a 1 cm diameter endoscopic RT3D probe with 504 transmitters and 252 receive channels. This device operates at 5 MHz and has a 6.3 mm x 6.3 mm aperture to produce real time 3D pyramidal scans of 60-120 degrees incorporating 64 x 64 = 4096 image lines at 30 volumes/sec interleaved with a 3D steerable therapy beam. A finite-element mesh was constructed with over 128,000 elements in LS-DYNA to simulate the induced temperature rise from our transducer with a 3 cm deep focus in tissue. Quarter-symmetry of the transducer was used to reduce mesh size and computation time. Based on intensity values calculated in Field II using the transducer's array geometry, a minimum I(SPTA) of 3.6 W/cm2 is required from our endoscope probe in order to induce a temperature rise of 4 degrees C within five minutes. Experimental measurements of the array's power output capabilities were conducted using a PVDF hydrophone placed 3 cm away from the face of the transducer in a watertank. Using a PDA14 Signatec data acquisition board to capture full volumes of transmitted ultrasound data, it was determined that the probe can presently maintain intensity values up to 2.4 W/cm2 over indefinite times for therapeutic applications combined with intermittent 3D scanning to maintain targeting

  4. 3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique

    NASA Astrophysics Data System (ADS)

    Lee, Tze Pin; Mohamed, Khairudin

    2016-02-01

    Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photoresist layers. This fabrication method is extremely time consuming, low throughput, costly and complicated to conduct for high volume manufacturing scale. On the other hand, next generation lithography such as electron beam lithography (EBL), focused ion beam lithography (FIB) and extreme ultraviolet lithography (EUV) are however too costly and the machines require expertise to setup. Therefore, the purpose of this study is to develop a simplified method in producing 3D microstructures using single grayscale emulsion mask technique. By using this grayscale fabrication method, microstructures of thickness as high as 500μm and as low as 20μm are obtained in a single photolithography exposure. Finally, the fabrication of 3D microfluidic channel has been demonstrated by using this grayscale photolithographic technique.

  5. 3D Simulation of Ultrasound in the Ultra-Distal Human Radius

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan J.; Luo, Gangming; Siffert, Robert S.

    The overall objective of this research is to develop an ultrasonic method for non-invasive assessment of the ultradistal radius (UDR). The specific objective of this study was to examine the propagation of ultrasound through the UDR and determine the relationships between bone mass and ultrasound, as well as the ability of ultrasound to discriminate between fracture and non-fracture cases. High-resolution peripheral-QCT (HR-pQCT) images were obtained from a set of 110 subjects that were part of a larger study on osteoporosis. Twenty-three of the subjects had experienced a UDR fracture within the past 2 years; the other 87 subjects served as controls. Each 3D image was used to simulate ultrasound measurements that would result from propagation through the UDR, from its anterior to its posterior surfaces. The simulation was carried out using Wave3000 (CyberLogic, Inc., New York, USA), which solves the full 3D viscoelastic wave equation using a finite difference time domain method. Bone mineral density associated with each radius was computed for each subject, and an ultrasound parameter known as net time delay (NTD) was evaluated. NTD has been shown to be highly correlated with total bone mass in both in vitro and clinical studies. Significant correlations were found between NTD and total bone mass (R2 = 0.91, p < 0.001). The data also showed a statistically significant difference in the NTD for the fracture and non-fracture cases (i.e., a decrease in mean NTD of 14% (P < 0.001), with a t-test statistic of 3.8). The study shows that ultrasound is correlated with bone mass at the UDR, as well as with fracture incidence. Therefore ultrasound may prove useful as a simple and convenient method for non-invasive assessment of osteoporosis and fracture risk. Work is ongoing to compare the simulated ultrasound data with clinical ultrasound measurements made on the same individuals.

  6. Model based assessment of vestibular jawbone thickness using high frequency 3D ultrasound micro-scanning

    NASA Astrophysics Data System (ADS)

    Habor, Daniel; Neuhaus, Sarah; Vollborn, Thorsten; Wolfart, Stefan; Radermacher, Klaus; Heger, Stefan

    2013-03-01

    Endosseous implants are well-established in modern dentistry. However, without appropriate therapeutic intervention, progressive peri-implant bone loss may lead to failing implants. Conventionally, the particularly relevant vestibular jawbone thickness is monitored using radiographic 3D imaging methods. Ionizing radiation, as well as imaging artifacts caused by metallic implants and superstructures are major drawbacks of these imaging modalities. In this study, a high frequency ultrasound (HFUS) based approach to assess the vestibular jawbone thickness is being introduced. It should be emphasized that the presented method does not require ultrasound penetration of the jawbone. An in-vitro study using two porcine specimens with inserted endosseous implants has been carried out to assess the accuracy of our approach. The implant of the first specimen was equipped with a gingiva former while a polymer superstructure was mounted onto the implant of the second specimen. Ultrasound data has been acquired using a 4 degree of freedom (DOF) high frequency (<50MHz) laboratory ultrasound scanner. The ultrasound raw data has been converted to polygon meshes including the surfaces of bone, gingiva, gingiva former (first specimen) and superstructure (second specimen). The meshes are matched with a-priori acquired 3D models of the implant, the superstructure and the gingiva former using a best-fit algorithm. Finally, the vestibular peri-implant bone thickness has been assessed in the resulting 3D models. The accuracy of this approach has been evaluated by comparing the ultrasound based thickness measurement with a reference measurement acquired with an optical extra-oral 3D scanner prior to covering the specimens with gingiva. As a final result, the bone thicknesses of the two specimens were measured yielding an error of -46+/-89μm (first specimen) and 70+/-93μm (second specimen).

  7. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble

    PubMed Central

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  8. Microfluidic Techniques for Development of 3D Vascularized Tissue

    PubMed Central

    Hasan, Anwarul; Paul, Arghya; Vrana, Nihal Engin; Zhao, Xin; Memic, Adnan; Hwang, Yu-Shik; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2014-01-01

    Development of a vascularized tissue is one of the key challenges for the successful clinical application of tissue engineered constructs. Despite the significant efforts over the last few decades, establishing a gold standard to develop three dimensional (3D) vascularized tissues has still remained far from reality. Recent advances in the application of microfluidic platforms to the field of tissue engineering have greatly accelerated the progress toward the development of viable vascularized tissue constructs. Numerous techniques have emerged to induce the formation of vascular structure within tissues which can be broadly classified into two distinct categories, namely (1) prevascularization-based techniques and (2) vasculogenesis and angiogenesis-based techniques. This review presents an overview of the recent advancements in the vascularization techniques using both approaches for generating 3D vascular structure on microfluidic platforms. PMID:24906345

  9. A navigation system for flexible endoscopes using abdominal 3D ultrasound.

    PubMed

    Hoffmann, R; Kaar, M; Bathia, Amon; Bathia, Amar; Lampret, A; Birkfellner, W; Hummel, J; Figl, M

    2014-09-21

    A navigation system for flexible endoscopes equipped with ultrasound (US) scan heads is presented. In contrast to similar systems, abdominal 3D-US is used for image fusion of the pre-interventional computed tomography (CT) to the endoscopic US. A 3D-US scan, tracked with an optical tracking system (OTS), is taken pre-operatively together with the CT scan. The CT is calibrated using the OTS, providing the transformation from CT to 3D-US. Immediately before intervention a 3D-US tracked with an electromagnetic tracking system (EMTS) is acquired and registered intra-modal to the preoperative 3D-US. The endoscopic US is calibrated using the EMTS and registered to the pre-operative CT by an intra-modal 3D-US/3D-US registration. Phantom studies showed a registration error for the US to CT registration of 5.1 mm±2.8 mm. 3D-US/3D-US registration of patient data gave an error of 4.1 mm compared to 2.8 mm with the phantom. From this we estimate an error on patient experiments of 5.6 mm. PMID:25170913

  10. Optimizing nonrigid registration performance between volumetric true 3D ultrasound images in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2011-03-01

    Compensating for brain shift as surgery progresses is important to ensure sufficient accuracy in patient-to-image registration in the operating room (OR) for reliable neuronavigation. Ultrasound has emerged as an important and practical imaging technique for brain shift compensation either by itself or through computational modeling that estimates whole-brain deformation. Using volumetric true 3D ultrasound (3DUS), it is possible to nonrigidly (e.g., based on B-splines) register two temporally different 3DUS images directly to generate feature displacement maps for data assimilation in the biomechanical model. Because of a large amount of data and number of degrees-of-freedom (DOFs) involved, however, a significant computational cost may be required that can adversely influence the clinical feasibility of the technique for efficiently generating model-updated MR (uMR) in the OR. This paper parametrically investigates three B-splines registration parameters and their influence on the computational cost and registration accuracy: number of grid nodes along each direction, floating image volume down-sampling rate, and number of iterations. A simulated rigid body displacement field was employed as a ground-truth against which the accuracy of displacements generated from the B-splines nonrigid registration was compared. A set of optimal parameters was then determined empirically that result in a registration computational cost of less than 1 min and a sub-millimetric accuracy in displacement measurement. These resulting parameters were further applied to a clinical surgery case to demonstrate their practical use. Our results indicate that the optimal set of parameters result in sufficient accuracy and computational efficiency in model computation, which is important for future application of the overall biomechanical modeling to generate uMR for image-guidance in the OR.

  11. Histological Evaluation of 3D MRI-Guided Transurethral Ultrasound Therapy in the Prostate

    NASA Astrophysics Data System (ADS)

    Vedula, Siddharth; Boyes, Aaron; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous work from our group has shown that transurethral ultrasound therapy, with a single ultrasound transducer guided by temperature feedback from a single MRI plane (slice), can be used to treat a targeted region accurately in the prostate gland. We have extended this approach to a larger, 3D, targeted volume within the prostate, using a multi-element transducer controlled concurrently by temperature feedback from multiple imaging planes. Animals were placed supine in a 1.5 T clinical MRI, and the transurethral heating device was positioned with image guidance. A four-element transducer (each element was 5 mm long, operating at ˜8 MHz) was rotated to treat a targeted volume around the device. Temperature maps transverse to each element were acquired during heating and used to control the acoustic power of each element and the rate of rotation of the device. T2-weighted and contrast-enhanced (CE) MR images were obtained pre- and post-heating. Following the treatment, prostates were removed and fixed, axially sliced, stained with H&E, and digitally imaged at high-resolution to outline boundaries of cell death. Slice alignment and image registration techniques were developed to enable quantitative comparison of the axial MRI images and matching histological sections. Prostate sections showed clear regions of coagulative necrosis, extending ˜20 mm along the urethra, which correlated well with CE MRI data and transducer length. After registration, the outer border of coagulative necrosis on H&E conformed well to the target isotherm, similar to results from our previous (single element) acute studies. These results confirm that our previous analysis techniques for a single transducer can be extended to multiple elements, and that a large volumetric ablation of the prostate gland is feasible with a high degree of accuracy.

  12. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  13. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  14. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  15. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound

    PubMed Central

    Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system’s signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the “tubularity” of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours. PMID:24231880

  16. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact. PMID:22003612

  17. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  18. Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  19. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-01-01

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236

  20. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  1. Super stereoscopy technique for comfortable and realistic 3D displays.

    PubMed

    Akşit, Kaan; Niaki, Amir Hossein Ghanbari; Ulusoy, Erdem; Urey, Hakan

    2014-12-15

    Two well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters. The pinholes generate blur-free retinal images so as to enable correct accommodation, while the delivery of multiple parallax images per eye creates an approximate blur effect for defocused objects. Experiments performed with cameras and human viewers indicate that the technique works as desired. In case two, pinholes equipped with color filters per eye are used; the technique can be used on a regular stereoscopic display by only uploading a new content, without requiring any change in display hardware, driver, or frame rate. Apart from some tolerable loss in display brightness and decrease in natural spatial resolution limit of the eye because of pinholes, the technique is quite promising for comfortable and realistic 3D vision, especially enabling the display of close objects that are not possible to display and comfortably view on regular 3DTV and cinema. PMID:25503026

  2. Simulated 3D ultrasound LV cardiac images for active shape model training

    NASA Astrophysics Data System (ADS)

    Butakoff, Constantine; Balocco, Simone; Ordas, Sebastian; Frangi, Alejandro F.

    2007-03-01

    In this paper a study of 3D ultrasound cardiac segmentation using Active Shape Models (ASM) is presented. The proposed approach is based on a combination of a point distribution model constructed from a multitude of high resolution MRI scans and the appearance model obtained from simulated 3D ultrasound images. Usually the appearance model is learnt from a set of landmarked images. The significant level of noise, the low resolution of 3D ultrasound images (3D US) and the frequent failure to capture the complete wall of the left ventricle (LV) makes automatic or manual landmarking difficult. One possible solution is to use artificially simulated 3D US images since the generated images will match exactly the shape in question. In this way, by varying simulation parameters and generating corresponding images, it is possible to obtain a training set where the image matches the shape exactly. In this work the simulation of ultrasound images is performed by a convolutional approach. The evaluation of segmentation accuracy is performed on both simulated and in vivo images. The results obtained on 567 simulated images had an average error of 1.9 mm (1.73 +/- 0.05 mm for epicardium and 2 +/- 0.07 mm for endocardium, with 95% confidence) with voxel size being 1.1 × 1.1 × 0.7 mm. The error on 20 in vivo data was 3.5 mm (3.44 +/- 0.4 mm for epicardium and 3.73 +/- 0.4 mm for endocardium). In most images the model was able to approximate the borders of myocardium even when the latter was indistinguishable from the surrounding tissues.

  3. Skeletonization approach for characterization of benign vs. malignant single thyroid nodules using 3D contrast enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Mantovani, Alice; Deandrea, Maurilio; Limone, Paolo; Garberoglio, Roberto; Suri, Jasjit S.

    2011-03-01

    High-resolution ultrasonography (HRUS) has potentialities in differential diagnosis between malignant and benign thyroid lesions, but interpretative pitfalls remain and accuracy is still poor. We developed an image processing technique for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (ten malignant) were analyzed by 3-D contrast-enhanced ultrasound imaging. The 3-D volumes were preprocessed and skeletonized. Seven vascular parameters were computed on the skeletons: number of vascular trees (NT); vascular density (VD); number of branching nodes (or branching points) (NB); mean vessel radius (MR); 2-D (DM) and 3-D (SOAM) tortuosity; and inflection count metric (ICM). Results showed that the malignant nodules had higher values of NT (83.1 vs. 18.1), VD (00.4 vs. 0.01), NB (1453 vs. 552), DM (51 vs. 18), ICM (19.9 vs. 8.7), and SOAM (26 vs. 11). Quantification of nodular vascularization based on 3-D contrast-enhanced ultrasound and skeletonization could help differential diagnosis of thyroid lesions.

  4. Real-time 3D ultrasound imaging on a next-generation media processor

    NASA Astrophysics Data System (ADS)

    Pagoulatos, Niko; Noraz, Frederic; Kim, Yongmin

    2001-05-01

    3D ultrasound (US) provides physicians with a better understanding of human anatomy. By manipulating the 3D US data set, physicians can observe the anatomy in 3D from a number of different view directions and obtain 2D US images that would not be possible to directly acquire with the US probe. In order for 3D US to be in widespread clinical use, creation and manipulation of the 3D US data should be done at interactive times. This is a challenging task due to the large amount of data to be processed. Our group previously reported interactive 3D US imaging using a programmable mediaprocessor, Texas Instruments TMS320C80, which has been in clinical use. In this work, we present the algorithms we have developed for real-time 3D US using a newer and more powerful mediaprocessor, called MAP-CA. MAP-CA is a very long instruction word (VLIW) processor developed for multimedia applications. It has multiple execution units, a 32-kbyte data cache and a programmable DMA controller called the data streamer (DS). A forward mapping 6 DOF (for a freehand 3D US system based on magnetic position sensor for tracking the US probe) reconstruction algorithm with zero- order interpolation is achieved in 11.8 msec (84.7 frame/sec) per 512x512 8-bit US image. For 3D visualization of the reconstructed 3D US data sets, we used volume rendering and in particular the shear-warp factorization with the maximum intensity projection (MIP) rendering. 3D visualization is achieved in 53.6 msec (18.6 frames/sec) for a 128x128x128 8-bit volume and in 410.3 msec (2.4 frames/sec) for a 256x256x256 8-bit volume.

  5. Towards intraoperative monitoring of ablation using tracked 3D ultrasound elastography and internal palpation

    NASA Astrophysics Data System (ADS)

    Foroughi, Pezhman; Burgner, Jessica; Choti, Michael A.; Webster, Robert J., III; Hager, Gregory D.; Boctor, Emad M.

    2012-03-01

    B-mode ultrasound is widely used in liver ablation. However, the necrosis zone is typically not visible under b-mode ultrasound, since ablation does not necessarily change the acoustic properties of the tissue. In contrast, the change in tissue stiffness makes elastography ideal for monitoring ablation. Tissue palpation for elastography is typically applied at the imaging probe, by indenting it slightly into the tissue surface. However, in this paper we propose an alternate approach, where palpation is applied by a surgical instrument located inside the tissue. In our approach, the ablation needle is placed inside a steerable device called an active cannula and inserted into the tissue. A controlled motion is applied to the center of the ablation zone via the active cannula. Since the type and direction of motion is known, displacement can then be computed from two frames with the desired motion. The elastography results show the ablated region around the needle. While internal palpation provides excellent local contrast, freehand palpation from outside of the tissue via the transducer can provide a more global view of the region of the interest. For this purpose, we used a tracked 3D transducer to generate volumetric elastography images covering the ablated region. The tracking information is employed to improve the elastography results by selecting volume pairs suitable for elastography. This is an extension of our 2D frame selection technique which can cope with uncertainties associated with intra-operative elastography. In our experiments with phantom and ex-vivo tissue, we were able to generate high-quality images depicting the boundaries of the hard lesions.

  6. Development of a 3D ultrasound-guided prostate biopsy system

    NASA Astrophysics Data System (ADS)

    Cool, Derek; Sherebrin, Shi; Izawa, Jonathan; Fenster, Aaron

    2007-03-01

    Biopsy of the prostate using ultrasound guidance is the clinical gold standard for diagnosis of prostate adenocarinoma. However, because early stage tumors are rarely visible under US, the procedure carries high false-negative rates and often patients require multiple biopsies before cancer is detected. To improve cancer detection, it is imperative that throughout the biopsy procedure, physicians know where they are within the prostate and where they have sampled during prior biopsies. The current biopsy procedure is limited to using only 2D ultrasound images to find and record target biopsy core sample sites. This information leaves ambiguity as the physician tries to interpret the 2D information and apply it to their 3D workspace. We have developed a 3D ultrasound-guided prostate biopsy system that provides 3D intra-biopsy information to physicians for needle guidance and biopsy location recording. The system is designed to conform to the workflow of the current prostate biopsy procedure, making it easier for clinical integration. In this paper, we describe the system design and validate its accuracy by performing an in vitro biopsy procedure on US/CT multi-modal patient-specific prostate phantoms. A clinical sextant biopsy was performed by a urologist on the phantoms and the 3D models of the prostates were generated with volume errors less than 4% and mean boundary errors of less than 1 mm. Using the 3D biopsy system, needles were guided to within 1.36 +/- 0.83 mm of 3D targets and the position of the biopsy sites were accurately localized to 1.06 +/- 0.89 mm for the two prostates.

  7. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters.

    PubMed

    Toonkum, Pollakrit; Suwanwela, Nijasri C; Chinrungrueng, Chedsada

    2011-02-01

    This paper presents a new three-dimensional (3D) ultrasound reconstruction algorithm for generation of 3D images from a series of two-dimensional (2D) B-scans acquired in the mechanical linear scanning framework. Unlike most existing 3D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the Cyclic Regularized Savitzky-Golay (CRSG) filter, is a new variant of the Savitzky-Golay (SG) smoothing filter. The CRSG filter has been improved upon the original SG filter in two respects: First, the cyclic indicator function has been incorporated into the least square cost function to enable the CRSG filter to approximate nonuniformly spaced data of the unobserved image intensities contained in unfilled voxels and reduce speckle noise of the observed image intensities contained in filled voxels. Second, the regularization function has been augmented to the least squares cost function as a mechanism to balance between the degree of speckle reduction and the degree of detail preservation. The CRSG filter has been evaluated and compared with the Voxel Nearest-Neighbor (VNN) interpolation post-processed by the Adaptive Speckle Reduction (ASR) filter, the VNN interpolation post-processed by the Adaptive Weighted Median (AWM) filter, the Distance-Weighted (DW) interpolation, and the Adaptive Distance-Weighted (ADW) interpolation, on reconstructing a synthetic 3D spherical image and a clinical 3D carotid artery bifurcation in the mechanical linear scanning framework. This preliminary evaluation indicates that the CRSG filter is more effective in both speckle reduction and geometric reconstruction of 3D ultrasound images than the other methods. PMID:20696448

  8. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  9. Registration of Real-Time 3-D Ultrasound to Tomographic Images of the Abdominal Aorta.

    PubMed

    Brekken, Reidar; Iversen, Daniel Høyer; Tangen, Geir Arne; Dahl, Torbjørn

    2016-08-01

    The purpose of this study was to develop an image-based method for registration of real-time 3-D ultrasound to computed tomography (CT) of the abdominal aorta, targeting future use in ultrasound-guided endovascular intervention. We proposed a method in which a surface model of the aortic wall was segmented from CT, and the approximate initial location of this model relative to the ultrasound volume was manually indicated. The model was iteratively transformed to automatically optimize correspondence to the ultrasound data. Feasibility was studied using data from a silicon phantom and in vivo data from a volunteer with previously acquired CT. Through visual evaluation, the ultrasound and CT data were seen to correspond well after registration. Both aortic lumen and branching arteries were well aligned. The processing was done offline, and the registration took approximately 0.2 s per ultrasound volume. The results encourage further patient studies to investigate accuracy, robustness and clinical value of the approach. PMID:27156015

  10. Key techniques for vision measurement of 3D object surface

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Zhang, Shubi; Guo, Guangli; Liu, Chao; Yu, Ruipeng

    2006-11-01

    Digital close-range photogrammetry system and machine vision are widely used in production control, quality inspection. The main aim is to provide accurate 3D objects or reconstruction of an object surface and give an expression to an object shape. First, the key techniques of camera calibration and target image positioning for 3D object surface vision measurement were briefly reviewed and analyzed in this paper. Then, an innovative and effect method for precise space coordinates measurements was proposed. Test research proved that the thought and methods we proposed about image segmentation, detection and positioning of circular marks were effective and valid. A propriety weight value for adding parameters, control points and orientation elements in bundle adjustment with self-calibration are advantageous to gaining high accuracy of space coordinates. The RMS error of check points is less than +/-1 mm, which can meet the requirement in industrial measurement with high accuracy.

  11. Fast and robust 3D ultrasound registration--block and game theoretic matching.

    PubMed

    Banerjee, Jyotirmoy; Klink, Camiel; Peters, Edward D; Niessen, Wiro J; Moelker, Adriaan; van Walsum, Theo

    2015-02-01

    Real-time 3D US has potential for image guidance in minimally invasive liver interventions. However, motion caused by patient breathing makes it hard to visualize a localized area, and to maintain alignment with pre-operative information. In this work we develop a fast affine registration framework to compensate in real-time for liver motion/displacement due to breathing. The affine registration of two consecutive ultrasound volumes in time is performed using block-matching. For a set of evenly distributed points in one volume and their correspondences in the other volume, we propose a robust outlier rejection method to reject false matches. The inliers are then used to determine the affine transformation. The approach is evaluated on 13 4D ultrasound sequences acquired from 8 subjects. For 91 pairs of 3D ultrasound volumes selected from these sequences, a mean registration error of 1.8mm is achieved. A graphics processing unit (GPU) implementation runs the 3D US registration at 8 Hz. PMID:25484018

  12. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  13. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  14. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  15. Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of High-resolution 3-D Contrast-enhanced Ultrasound Images

    PubMed Central

    Molinari, F.; Meiburger, K. M.; Giustetto, P.; Rizzitelli, S.; Boffa, C.; Castano, M.; Terreno, E.

    2014-01-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient “theranostic” (i.e. therapeutic + diagnostic) ultrasound probes. PMID:24206210

  16. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  17. A 5 MHz Cylindrical Dual-Layer Transducer Array for 3-D Transrectal Ultrasound Imaging

    PubMed Central

    Chen, Yuling; Nguyen, Man; Yen, Jesse T.

    2012-01-01

    2-D transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user-dependent and unreliable. A real-time 3-D TRUS system could improve reliability and volume rates of imaging during these procedures. In this paper, we present a 5 MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared to fully-sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System (VDAS). Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor (GCF) was applied to improve the contrast of images. The measured −6 dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm. PMID:22972914

  18. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  19. The Evolution of 3D Microimaging Techniques in Geosciences

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Proussevitch, A.

    2009-05-01

    In the analysis of geomaterials, it is essential to be able to analyze internal structures on a quantitative basis. Techniques have evolved from rough qualitative methods to highly accurate quantitative methods coupled with 3-D numerical analysis. The earliest primitive method for "seeing'" what was inside a rock was multiple sectioning to produce a series of image slices. This technique typically completely destroyed the sample being analyzed. Another destructive method was developed to give more detailed quantitative information by forming plastic casts of internal voids in sedimentary and volcanic rocks. For this, void were filled with plastic and the rock dissolved away with HF to reveal plastic casts of internal vesicles. Later, new approaches to stereology were developed to extract 3D information from 2D cross-sectional images. This has long been possible for spheres because the probability distribution for cutting a sphere along any small circle is known analytically (greatest probability is near the equator). However, large numbers of objects are required for statistical validity, and geomaterials are seldom spherical, so crystals, vesicles, and other inclusions would need a more sophisticated approach. Consequently, probability distributions were developed using numerical techniques for rectangular solids and various ellipsoids so that stereological techniques could be applied to these. The "holy grail" has always been to obtain 3D quantitative images non-destructively. A key method is Computed X-ray Tomography (CXT), in which attenuation of X-rays is recorded as a function of angular position in a cylindrical sample, providing a 2D "slice" of the interior. When a series of these "slices" is stacked (in increments equivalent with the resolution of the X-ray to make cubic voxels), a 3D image results with quantitative information regarding internal structure, particle/void volumes, nearest neighbors, coordination numbers, preferred orientations, etc. CXT can

  20. METHODS FOR USING 3-D ULTRASOUND SPECKLE TRACKING IN BIAXIAL MECHANICAL TESTING OF BIOLOGICAL TISSUE SAMPLES

    PubMed Central

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2014-01-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation. PMID:25616585

  1. Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images.

    PubMed

    Uhercík, Marián; Kybic, Jan; Liebgott, Hervé; Cachard, Christian

    2010-08-01

    Ultrasound guidance is used for many surgical interventions such as biopsy and electrode insertion. We present a method to localize a thin surgical tool such as a biopsy needle or a microelectrode in a 3-D ultrasound image. The proposed method starts with thresholding and model fitting using random sample consensus for robust localization of the axis. Subsequent local optimization refines its position. Two different tool image models are presented: one is simple and fast and the second uses learned a priori information about the tool's voxel intensities and the background. Finally, the tip of the tool is localized by finding an intensity drop along the axis. The simulation study shows that our algorithm can localize the tool at nearly real-time speed, even using a MATLAB implementation, with accuracy better than 1 mm. In an experimental comparison with several alternative localization methods, our method appears to be the fastest and the most robust one. We also show the results on real 3-D ultrasound data from a PVA cryogel phantom, turkey breast, and breast biopsy. PMID:20483680

  2. Synthetic Aperture Focusing Technique 3D-CAD-SAFT

    NASA Astrophysics Data System (ADS)

    Schmitz, V.; Kröning, M.; Chakhlov, S.; Fischer, W.

    2000-05-01

    Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique "SAFT." This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the lastest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD—techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation.

  3. Development of a 3D ultrasound-guided system for thermal ablation of liver tumors

    NASA Astrophysics Data System (ADS)

    Neshat, Hamid R. S.; Cool, Derek W.; Barker, Kevin; Gardi, Lori; Kakani, Nirmal; Fenster, Aaron

    2013-03-01

    Two-dimensional ultrasound (2D US) imaging is commonly used for diagnostic and intraoperative guidance of interventional abdominal procedures including percutaneous thermal ablation of focal liver tumors with radiofrequency (RF) or microwave (MW) induced energy. However, in many situations 2D US may not provide enough anatomical detail and guidance information. Therefore, intra-procedural CT or MR imaging are used in many centers for guidance purposes. These modalities are costly and are mainly utilized to confirm tool placement rather than guiding the insertion. Three-dimensional ultrasound (3D US) has been introduced to address these issues. In this paper, we present our integrated solution to provide 3D US images using a newly developed mechanical transducer with a large field-ofview and without the need for external tracking devices to combine diagnostic and planning information of different modalities for intraoperative guidance. The system provides tools to segment the target(s), plan the treatment, and detect the ablation applicators during the procedure for guiding purposes. We present experimental results used to ensure that our system generates accurate measurements and our early clinical evaluation results. The results suggest that 3D US used for focal liver ablation can provide a more reliable planning and guidance tool compared to 2D US only, and in many cases offers comparable measurements to other alternatives at significantly lower cost, faster time and with no harmful radiation.

  4. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  5. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  6. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  7. Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation.

    PubMed

    Yang, L; Wang, J; Ando, T; Kubota, A; Yamashita, H; Sakuma, I; Chiba, T; Kobayashi, E

    2015-03-01

    This work introduces a self-contained framework for endoscopic camera tracking by combining 3D ultrasonography with endoscopy. The approach can be readily incorporated into surgical workflows without installing external tracking devices. By fusing the ultrasound-constructed scene geometry with endoscopic vision, this integrated approach addresses issues related to initialization, scale ambiguity, and interest point inadequacy that may be faced by conventional vision-based approaches when applied to fetoscopic procedures. Vision-based pose estimations were demonstrated by phantom and ex vivo monkey placenta imaging. The potential contribution of this method may extend beyond fetoscopic procedures to include general augmented reality applications in minimally invasive procedures. PMID:25263644

  8. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  9. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  10. A visual probe localization and calibration system for cost-effective computer-aided 3D ultrasound.

    PubMed

    Ali, Aziah; Logeswaran, Rajasvaran

    2007-08-01

    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera. PMID:17126314

  11. 3D Ultrasound Can Contribute to Planning CT to Define the Target for Partial Breast Radiotherapy

    SciTech Connect

    Berrang, Tanya S.; Truong, Pauline T. Popescu, Carmen; Drever, Laura; Kader, Hosam A.; Hilts, Michelle L.; Mitchell, Tracy; Soh, S.Y.; Sands, Letricia; Silver, Stuart; Olivotto, Ivo A.

    2009-02-01

    Purpose: The role of three-dimensional breast ultrasound (3D US) in planning partial breast radiotherapy (PBRT) is unknown. This study evaluated the accuracy of coregistration of 3D US to planning computerized tomography (CT) images, the seroma contouring consistency of radiation oncologists using the two imaging modalities and the clinical situations in which US was associated with improved contouring consistency compared to CT. Materials and Methods: Twenty consecutive women with early-stage breast cancer were enrolled prospectively after breast-conserving surgery. Subjects underwent 3D US at CT simulation for adjuvant RT. Three radiation oncologists independently contoured the seroma on separate CT and 3D US image sets. Seroma clarity, seroma volumes, and interobserver contouring consistency were compared between the imaging modalities. Associations between clinical characteristics and seroma clarity were examined using Pearson correlation statistics. Results: 3D US and CT coregistration was accurate to within 2 mm or less in 19/20 (95%) cases. CT seroma clarity was reduced with dense breast parenchyma (p = 0.035), small seroma volume (p < 0.001), and small volume of excised breast tissue (p = 0.01). US seroma clarity was not affected by these factors (p = NS). US was associated with improved interobserver consistency compared with CT in 8/20 (40%) cases. Of these 8 cases, 7 had low CT seroma clarity scores and 4 had heterogeneously to extremely dense breast parenchyma. Conclusion: 3D US can be a useful adjunct to CT in planning PBRT. Radiation oncologists were able to use US images to contour the seroma target, with improved interobserver consistency compared with CT in cases with dense breast parenchyma and poor CT seroma clarity.

  12. 3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.

    2011-09-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good

  13. 3D transrectal ultrasound prostate biopsy using a mechanical imaging and needle-guidance system

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Cool, Derek; Gardi, Lori; Montreuil, Jacques; Gil, Elena; Bluvol, Jeremy; Knight, Kerry; Smith, David; Romagnoli, Cesare; Fenster, Aaron

    2008-03-01

    Prostate biopsy procedures are generally limited to 2D transrectal ultrasound (TRUS) imaging for biopsy needle guidance. This limitation results in needle position ambiguity and an insufficient record of biopsy core locations in cases of prostate re-biopsy. We have developed a multi-jointed mechanical device that supports a commercially available TRUS probe with an integrated needle guide for precision prostate biopsy. The device is fixed at the base, allowing the joints to be manually manipulated while fully supporting its weight throughout its full range of motion. Means are provided to track the needle trajectory and display this trajectory on a corresponding TRUS image. This allows the physician to aim the needle-guide at predefined targets within the prostate, providing true 3D navigation. The tracker has been designed for use with several end-fired transducers that can be rotated about the longitudinal axis of the probe to generate 3D images. The tracker reduces the variability associated with conventional hand-held probes, while preserving user familiarity and procedural workflow. In a prostate phantom, biopsy needles were guided to within 2 mm of their targets, and the 3D location of the biopsy core was accurate to within 3 mm. The 3D navigation system is validated in the presence of prostate motion in a preliminary patient study.

  14. Visualization of a newborn's hip joint using 3D ultrasound and automatic image processing

    NASA Astrophysics Data System (ADS)

    Overhoff, Heinrich M.; Lazovic, Djordje; von Jan, Ute

    1999-05-01

    Graf's method is a successful procedure for the diagnostic screening of developmental dysplasia of the hip. In a defined 2-D ultrasound (US) scan, which virtually cuts the hip joint, landmarks are interactively identified to derive congruence indicators. As the indicators do not reflect the spatial joint structure, and the femoral head is not clearly visible in the US scan, here 3-D US is used to gain insight to the hip joint in its spatial form. Hip joints of newborns were free-hand scanned using a conventional ultrasound transducer and a localizer system fixed on the scanhead. To overcome examiner- dependent findings the landmarks were detected by automatic segmentation of the image volume. The landmark image volumes and an automatically determined virtual sphere approximating the femoral head were visualized color-coded on a computer screen. The visualization was found to be intuitive and to simplify the diagnostic substantially. By the visualization of the 3-D relations between acetabulum and femoral head the reliability of diagnostics is improved by finding the entire joint geometry.

  15. Accuracy evaluation of a 3D ultrasound-guided biopsy system

    NASA Astrophysics Data System (ADS)

    Wooten, Walter J.; Nye, Jonathan A.; Schuster, David M.; Nieh, Peter T.; Master, Viraj A.; Votaw, John R.; Fei, Baowei

    2013-03-01

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  16. Accuracy Evaluation of a 3D Ultrasound-guided Biopsy System

    PubMed Central

    Wooten, Walter J.; Nye, Jonathan A.; Schuster, David M.; Nieh, Peter T.; Master, Viraj A.; Votaw, John R.; Fei, Baowei

    2013-01-01

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions. PMID:24392206

  17. 3-D statistical cancer atlas-based targeting of prostate biopsy using ultrasound image guidance

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramkrishnan; Shen, Dinggang; Davatzikos, Christos A.; Crawford, E. David; Barqawi, Albaha; Werahera, Priya; Kumar, Dinesh; Suri, Jasjit S.

    2008-03-01

    Prostate cancer is a multifocal disease and lesions are not distributed uniformly within the gland. Several biopsy protocols concerning spatially specific targeting have been reported urology literature. Recently a statistical cancer atlas of the prostate was constructed providing voxelwise probabilities of cancers in the prostate. Additionally an optimized set of biopsy sites was computed with 94 - 96% detection accuracy was reported using only 6-7 needles. Here we discuss the warping of this atlas to prostate segmented side-fire ultrasound images of the patient. A shape model was used to speed up registration. The model was trained from over 38 expert segmented subjects off-line. This training yielded as few as 15-20 degrees of freedom that were optimized to warp the atlas surface to the patient's ultrasound image followed by elastic interpolation of the 3-D atlas. As a result the atlas is completely mapped to the patient's prostate anatomy along with optimal predetermined needle locations for biopsy. These do not preclude the use of additional biopsies if desired. A color overlay of the atlas is also displayed on the ultrasound image showing high cancer zones within the prostate. Finally current biopsy locations are saved in the atlas space and may be used to update the atlas based on the pathology report. In addition to the optimal atlas plan, previous biopsy locations and alternate plans can also be stored in the atlas space and warped to the patient with no additional time overhead.

  18. Thermal analysis of the surrounding anatomy during 3-D MRI-guided transurethral ultrasound prostate therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous numerical simulations have shown that MRI-guided transurethral ultrasound therapy can generate highly accurate volumes of thermal coagulation conforming to 3-D human prostate geometries. The goal of this work is to simulate, quantify and evaluate the thermal impact of these treatments on the rectum, pelvic bone, neurovascular bundles (NVB) and urinary sphincters. This study used twenty 3-D anatomical models of prostate cancer patients and detailed bio-acoustic simulations incorporating an active feedback algorithm which controlled a rotating, planar ultrasound transducer (17-4×3 mm elements, 4.7/9.7 MHz, 10 Wac/cm2). Heating of the adjacent surrounding anatomy was evaluated using thermal tolerances reported in the literature. Heating of the rectum poses the most important safety concern and is influenced largely by the water temperature flowing through an endorectal cooling device; temperatures of 7-37° C are required to limit potential damage to less than 10 mm3 on the outer 1 mm layer of rectum. Significant heating of the pelvic bone was predicted in 30% of the patient models with an ultrasound frequency of 4.7 MHz; setting the frequency to 9.7 MHz when the bone is less than 10 mm away from the prostate reduced heating in all cases below the threshold for irreversible damage. Heating of the NVB was significant in 75% of the patient models in the absence of treatment planning; this proportion was reduced to 5% by using treatment margins of up to 4 mm. To avoid damaging the urinary sphincters, margins from the transducer of 2-4 mm should be used, depending on the transurethral cooling temperature. Simulations show that MRI-guided transurethral therapy can treat the entire prostate accurately. Strategies have been developed which, along with careful treatment planning, can be used to avoid causing thermal injury to the rectum, pelvic bone, NVB and urinary sphincters.

  19. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  20. 3D endobronchial ultrasound reconstruction and analysis for multimodal image-guided bronchoscopy

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher R.; Toth, Jennifer W.; Higgins, William E.

    2014-03-01

    State-of-the-art image-guided intervention (IGI) systems for lung-cancer management draw upon high-resolution three-dimensional multi-detector computed-tomography (MDCT) images and bronchoscopic video. An MDCT scan provides a high-resolution three-dimensional (3D) image of the chest that is used for preoperative procedure planning, while bronchoscopy gives live intraoperative video of the endobronchial airway tree structure. However, because neither source provides live extraluminal information on suspect nodules or lymph nodes, endobronchial ultrasound (EBUS) is often introduced during a procedure. Unfortunately, existing IGI systems provide no direct synergistic linkage between the MDCT/video data and EBUS data. Hence, EBUS proves difficult to use and can lead to inaccurate interpretations. To address this drawback, we present a prototype of a multimodal IGI system that brings together the various image sources. The system enables 3D reconstruction and visualization of structures depicted in the 2D EBUS video stream. It also provides a set of graphical tools that link the EBUS data directly to the 3D MDCT and bronchoscopic video. Results using phantom and human data indicate that the new system could potentially enable smooth natural incorporation of EBUS into the system-level work flow of bronchoscopy.

  1. Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  2. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  3. Semiautomated segmentation and 3D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion

    NASA Astrophysics Data System (ADS)

    Prause, Guido P. M.; DeJong, Steven C.; McKay, Charles R.; Sonka, Milan

    1996-04-01

    In this paper, we describe an approach to 3D reconstruction of the coronary tree based on combined use of biplane coronary angiography and intravascular ultrasound (IVUS). Shortly before the start of a constant-speed IVUS pullback, radiopaque dye is injected into the examined coronary tree and the heart is imaged with a calibrated biplane X-ray system. The 3D centerline of the coronary tree is reconstructed from the geometrically corrected biplane angiograms using an automated segmentation method and manual matching of corresponding branching points. The borders of vessel wall and plaque are automatically detected in the acquired pullback images and the IVUS cross sections are mapped perpendicular to the previously reconstructed 3D vessel centerline. In addition, the twist of the IVUS probe due to the curvature of the coronary artery is calculated for a torsion-free catheter and the whole vessel reconstruction is rotationally adjusted using available anatomic landmarks. The accuracy of the biplane reconstruction procedure is validated by means of a left coronary tree phantom. The feasibility of the entire approach is demonstrated in a cadaveric pig heart.

  4. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  5. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques

    SciTech Connect

    Daftari, Inder k; Aghaian, Elsa; O'Brien, Joan M.; Dillon, William; Phillips, Theodore L.

    2005-11-15

    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights {<=}3 mm. A small intraobserver variation with a mean of (-0.22{+-}4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm{sup 3

  6. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  7. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  8. 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2012-02-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 +/- 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images.

  9. A phantom with reduced complexity for spatial 3-D ultrasound calibration.

    PubMed

    Dandekar, Sangita; Li, Yinbo; Molloy, Janelle; Hossack, John

    2005-08-01

    The design of a new phantom for 3-D ultrasound calibration is presented. The phantom provides a viable alternative to existing phantoms that are significantly more complex and require high precision fabrication. The phantom, referred to as a "plane-of-wires" phantom, consists of two wires mounted at the same fixed height above the bottom of a water tank. Data collection for calibration involved rotating and translating the phantom so that the wires remained in a single plane parallel to the tank bottom. The mean reconstruction accuracy of the plane-of-wires calibration is 0.66 mm at a mean depth of 12.3 mm, with a precision of 1.23 mm at the same mean depth. The calibration was used to determine the volume of a cube with known volume with an error of 2.51%. The calibration performance achieved is comparable with that of existing approaches. PMID:16085099

  10. Simulation of autonomous robotic multiple-core biopsy by 3D ultrasound guidance.

    PubMed

    Liang, Kaicheng; Rogers, Albert J; Light, Edward D; Von Allmen, Daniel; Smith, Stephen W

    2010-04-01

    An autonomous multiple-core biopsy system guided by real-time 3D ultrasound and operated by a robotic arm with 6+1 degrees of freedom has been developed. Using a specimen of turkey breast as a tissue phantom, our system was able to first autonomously locate the phantom in the image volume and then perform needle sticks in each of eight sectors in the phantom in a single session, with no human intervention required. Based on the fraction of eight sectors successfully sampled in an experiment of five trials, a success rate of 93% was recorded. This system could have relevance in clinical procedures that involve multiple needle-core sampling such as prostate or breast biopsy. PMID:20687279

  11. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  12. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  13. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  14. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  15. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  16. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  17. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular

  18. A compact mechatronic system for 3D ultrasound guided prostate interventions

    SciTech Connect

    Bax, Jeffrey; Smith, David; Bartha, Laura; Montreuil, Jacques; Sherebrin, Shi; Gardi, Lori; Edirisinghe, Chandima; Fenster, Aaron

    2011-02-15

    Purpose: Ultrasound imaging has improved the treatment of prostate cancer by producing increasingly higher quality images and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. However, it is critical that the needles be placed accurately within the prostate to deliver the therapy to the planned location and avoid complications of damaging surrounding tissues. Methods: The authors have developed a compact mechatronic system, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This system has been designed to allow guidance of a needle obliquely in 3D space into the prostate, thereby reducing pubic arch interference. The choice of needle trajectory and location in the prostate can be adjusted manually or with computer control. Results: To validate the system, a series of experiments were performed on phantoms. The 3D scan of the string phantom produced minimal geometric error, which was less than 0.4 mm. Needle guidance accuracy tests in agar prostate phantoms showed that the mean error of bead placement was less then 1.6 mm along parallel needle paths that were within 1.2 mm of the intended target and 1 deg. from the preplanned trajectory. At oblique angles of up to 15 deg. relative to the probe axis, beads were placed to within 3.0 mm along a trajectory that were within 2.0 mm of the target with an angular error less than 2 deg. Conclusions: By combining 3D TRUS imaging system to a needle tracking linkage, this system should improve the physician's ability to target and accurately guide a needle to selected targets without the need for the computer to directly manipulate and insert the needle. This would be beneficial as the physician has complete control of the system and can safely maneuver the needle guide around obstacles such as previously placed needles.

  19. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye. PMID:26563101

  20. Predicate-Based Focus-and-Context Visualization for 3D Ultrasound.

    PubMed

    Schulte zu Berge, Christian; Baust, Maximilian; Kapoor, Ankur; Navab, Nassir

    2014-12-01

    Direct volume visualization techniques offer powerful insight into volumetric medical images and are part of the clinical routine for many applications. Up to now, however, their use is mostly limited to tomographic imaging modalities such as CT or MRI. With very few exceptions, such as fetal ultrasound, classic volume rendering using one-dimensional intensity-based transfer functions fails to yield satisfying results in case of ultrasound volumes. This is particularly due its gradient-like nature, a high amount of noise and speckle, and the fact that individual tissue types are rather characterized by a similar texture than by similar intensity values. Therefore, clinicians still prefer to look at 2D slices extracted from the ultrasound volume. In this work, we present an entirely novel approach to the classification and compositing stage of the volume rendering pipeline, specifically designed for use with ultrasonic images. We introduce point predicates as a generic formulation for integrating the evaluation of not only low-level information like local intensity or gradient, but also of high-level information, such as non-local image features or even anatomical models. Thus, we can successfully filter clinically relevant from non-relevant information. In order to effectively reduce the potentially high dimensionality of the predicate configuration space, we propose the predicate histogram as an intuitive user interface. This is augmented by a scribble technique to provide a comfortable metaphor for selecting predicates of interest. Assigning importance factors to the predicates allows for focus-and-context visualization that ensures to always show important (focus) regions of the data while maintaining as much context information as possible. Our method naturally integrates into standard ray casting algorithms and yields superior results in comparison to traditional methods in terms of visualizing a specific target anatomy in ultrasound volumes. PMID:26356952

  1. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    PubMed

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  2. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    SciTech Connect

    Presles, Benoît Rit, Simon; Sarrut, David; Fargier-Voiron, Marie; Liebgott, Hervé; Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal; Lynch, Rod

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  3. In vitro in-stent restenoses evaluated by 3D ultrasound.

    PubMed

    Lécart, Myriam; Cardinal, Marie-Hélène Roy; Qin, Zhao; Soulez, Gilles; Cloutier, Guy

    2009-02-01

    The purpose of this study was to quantify in-stent restenoses with 3D B mode and power Doppler ultrasound (U.S.) imaging. In-stent restenoses were mimicked with vascular phantoms in which a nonferromagnetic prototype stent (Boston Scientific) and a ferromagnetic clinical stainless steel stent (Palmaz P295) were embedded. Each phantom had an 80% in-stent stenosis and a 75% stenosis located outside the stent. These phantoms were compared to a reference phantom reproducing both stenoses without stent. Data sets of 2D cross-sectional U.S. images were acquired in freehand scanning using a magnetic sensor attached to the U.S. probe and in mechanical linear scanning with the probe attached to a step motor device. Each 2D image was automatically segmented before 3D reconstruction of the vessel. Results indicate that the reference phantom (without stent) was accurately assessed with errors below 1.8% for the 75% stenosis and 3.2% for the 80% stenosis in both B mode and power Doppler for the two scanning methods. The 80% in-stent stenoses in Boston Scientific and Palmaz stents were, respectively, evaluated at 73.8 (+/-3.2)% and 75.8 (+/- 3)% in B mode and at 82 (+/- 2.5)% and 86.2 (+/- 6.4)% in power Doppler when freehand scans were used. For comparison, when linear scans were selected, in-stent stenoses in the Boston Scientific or Palmaz stent were, respectively, evaluated at 77.4 (+/- 2.0)% and 73.8 (+/- 2.5)% in B mode and at 87.0 (+/- 1.3)% and 85.6 (+/- 5.8)% in power Doppler. To conclude, 3D freehand U.S. is a valuable method to quantify in-stent restenoses, particularly in B mode. It is thus hoped that, in the clinical setting, noninvasive 3D U.S. may provide sufficient precision to grade in-stent restenoses. PMID:19291990

  4. Intraoperative patient registration using volumetric true 3D ultrasound without fiducials

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2012-01-01

    Purpose: Accurate patient registration is crucial for effective image-guidance in open cranial surgery. Typically, it is accomplished by matching skin-affixed fiducials manually identified in the operating room (OR) with their counterparts in the preoperative images, which not only consumes OR time and personnel resources but also relies on the presence (and subsequent fixation) of the fiducials during the preoperative scans (until the procedure begins). In this study, the authors present a completely automatic, volumetric image-based patient registration technique that does not rely on fiducials by registering tracked (true) 3D ultrasound (3DUS) directly with preoperative magnetic resonance (MR) images. Methods: Multistart registrations between binary 3DUS and MR volumes were first executed to generate an initial starting point without incorporating prior information on the US transducer contact point location or orientation for subsequent registration between grayscale 3DUS and MR via maximization of either mutual information (MI) or correlation ratio (CR). Patient registration was then computed through concatenation of spatial transformations. Results: In ten (N = 10) patient cases, an average fiducial (marker) distance error (FDE) of 5.0 mm and 4.3 mm was achieved using MI or CR registration (FDE was smaller with CR vs MI in eight of ten cases), which are comparable to values reported for typical fiducial- or surface-based patient registrations. The translational and rotational capture ranges were found to be 24.0 mm and 27.0° for binary registrations (up to 32.8 mm and 36.4°), 12.2 mm and 25.6° for MI registrations (up to 18.3 mm and 34.4°), and 22.6 mm and 40.8° for CR registrations (up to 48.5 mm and 65.6°), respectively. The execution time to complete a patient registration was 12–15 min with parallel processing, which can be significantly reduced by confining the 3DUS transducer location to the center of craniotomy in MR before registration (an

  5. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.

  6. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  7. Three different strategies for real-time prostate capsule volume computation from 3-D end-fire transrectal ultrasound.

    PubMed

    Barqawi, Albaha B; Lu, Li; Crawford, E David; Fenster, Aaron; Werahera, Priya N; Kumar, Dinesh; Miller, Steve; Suri, Jasjit S

    2007-01-01

    estimation of prostate capsule volume via segmentation of the prostate from 3-D ultrasound volumetric ultrasound images is a valuable clinical tool, especially during biopsy. Normally, a physician traces the boundaries of the prostate manually, but this process is tedious, laborious, and subject to errors. The prostate capsule edge is computed using three different strategies: (a) least square approach, (b) level set approach, and (c) Discrete Dynamic Contour approach. (a) In the least square method, edge points are defined by searching for the optimal edge based on the average signal characteristics. These edge points constitute an initial curve which is later refined; (b) Level set approach. The images are modeled as piece-wise constant, and the energy functional is defined and minimized. This method is also automated; and (c) The Discrete Dynamic Contour (DDC). A trained user selects several points in the first image and an initial contour is obtained by a model based initialization. Based on this initialization condition, the contour is deformed automatically to better fit the image. This method is semi-automatic. The three methods were tested on database consisting of 15 prostate phantom volumes acquired using a Philips ultrasound machine using an end-fire TRUS. The ground truth (GT) is developed by tracing the boundary of prostate on a slice-by-slice basis. The mean volumes using the least square, level set and DDC techniques were 15.84 cc, 15.55 cc and 16.33 cc, respectively. We validated the methods by calculating the volume with GT and we got an average volume of 15. PMID:18002081

  8. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  9. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    PubMed

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs. PMID:26057610

  10. Adaptive volume rendering of cardiac 3D ultrasound images: utilizing blood pool statistics

    NASA Astrophysics Data System (ADS)

    Åsen, Jon Petter; Steen, Erik; Kiss, Gabriel; Thorstensen, Anders; Rabben, Stein Inge

    2012-03-01

    In this paper we introduce and investigate an adaptive direct volume rendering (DVR) method for real-time visualization of cardiac 3D ultrasound. DVR is commonly used in cardiac ultrasound to visualize interfaces between tissue and blood. However, this is particularly challenging with ultrasound images due to variability of the signal within tissue as well as variability of noise signal within the blood pool. Standard DVR involves a global mapping of sample values to opacity by an opacity transfer function (OTF). While a global OTF may represent the interface correctly in one part of the image, it may result in tissue dropouts, or even artificial interfaces within the blood pool in other parts of the image. In order to increase correctness of the rendered image, the presented method utilizes blood pool statistics to do regional adjustments of the OTF. The regional adaptive OTF was compared with a global OTF in a dataset of apical recordings from 18 subjects. For each recording, three renderings from standard views (apical 4-chamber (A4C), inverted A4C (IA4C) and mitral valve (MV)) were generated for both methods, and each rendering was tuned to the best visual appearance by a physician echocardiographer. For each rendering we measured the mean absolute error (MAE) between the rendering depth buffer and a validated left ventricular segmentation. The difference d in MAE between the global and regional method was calculated and t-test results are reported with significant improvements for the regional adaptive method (dA4C = 1.5 +/- 0.3 mm, dIA4C = 2.5 +/- 0.4 mm, dMV = 1.7 +/- 0.2 mm, d.f. = 17, all p < 0.001). This improvement by the regional adaptive method was confirmed through qualitative visual assessment by an experienced physician echocardiographer who concluded that the regional adaptive method produced rendered images with fewer tissue dropouts and less spurious structures inside the blood pool in the vast majority of the renderings. The algorithm has been

  11. [Radionuclide cisternography: SPECT- and 3D-technique].

    PubMed

    Henkes, H; Huber, G; Hierholzer, J; Cordes, M; Kujat, C; Piepgras, U

    1991-10-01

    Radionuclide cisternography is indicated in the clinical work-up for hydrocephalus, when searching for CSF leaks, and when testing whether or not intracranial cystic lesions are communicating with the adjacent subarachnoid space. This paper demonstrates the feasibility and diagnostic value of SPECT and subsequent 3D surface rendering in addition to conventional rectilinear CSF imaging in eight patients. Planar images allowed the evaluation of CSF circulation and the detection of CSF fistula. They were advantageous in examinations 48 h after application of 111In-DTPA. SPECT scans, generated 4-24 h after tracer application, were superior in the delineation of basal cisterns, especially in early scans; this was helpful in patients with pooling due to CSF fistula and in cystic lesions near the skull base. A major drawback was the limited image quality of delayed scans, when the SPECT data were degraded by a low count rate. 3D surface rendering was easily feasible from SPECT data and yielded high quality images. The presentation of the spatial distribution of nuclide-contaminated CSF proved especially helpful in the area of the basal cisterns. PMID:1956980

  12. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37 ± 0.14 mm, with a similar performance being observed in patient experiments. PMID:26448009

  13. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  14. Highly porous 3D nanofiber scaffold using an electrospinning technique.

    PubMed

    Kim, Geunhyung; Kim, WanDoo

    2007-04-01

    A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly(epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. PMID:16924612

  15. Assessment of rhinoplasty techniques by overlay of before-and-after 3D images.

    PubMed

    Toriumi, Dean M; Dixon, Tatiana K

    2011-11-01

    This article describes the equipment and software used to create facial 3D imaging and discusses the validation and reliability of the objective assessments done using this equipment. By overlaying preoperative and postoperative 3D images, it is possible to assess the surgical changes in 3D. Methods are described to assess the 3D changes from the rhinoplasty techniques of nasal dorsal augmentation, increasing tip projection, narrowing the nose, and nasal lengthening. PMID:22004862

  16. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  17. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications. PMID:23510006

  18. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  19. The effect of object speed and direction on the performance of 3D speckle tracking using a 3D swept-volume ultrasound probe

    NASA Astrophysics Data System (ADS)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Symonds-Tayler, J. Richard N.; Evans, Philip M.

    2011-11-01

    Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s-1. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s-1. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over

  20. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction.

    PubMed

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L

    2013-03-01

    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  1. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  2. 3D Quantitative Assessment of Lesion Response to MR-guided High-Intensity Focused Ultrasound Treatment of Uterine Fibroids

    PubMed Central

    Savic, Lynn J.; Lin, MingDe; Duran, Rafael; Schernthaner, Rüdiger E.; Hamm, Bernd; Geschwind, Jean-François; Hong, Kelvin; Chapiro, Julius

    2015-01-01

    Rationale and Objectives To investigate the response after MR-guided high-intensity focused ultrasound (MRgHIFU) treatment of uterine fibroids (UF) using a 3D quantification of total and enhancing lesion volume (TLV, ELV) on contrast-enhanced MRI (ceMRI) scans. Methods and Materials In a total of 24 patients, ceMRI scans were obtained at baseline and 24 hrs, 6, 12 and 24 months after MRgHIFU treatment. The dominant lesion was assessed using a semi-automatic quantitative 3D segmentation technique. Agreement between software-assisted and manual measurements was then analyzed using a linear regression model. Patients were classified as responders (R) or non-responders (NR) based on their symptom report after 6 months. Statistical analysis included the paired t-test and Mann-Whitney-test. Results Preprocedurally, the median TLV and ELV were 263.74cm3 (30.45–689.56cm3) and 210.13cm3 (14.43–689.53cm3), respectively. The 6-month follow-up demonstrated a reduction of TLV in 21 patients (87.5%) with a median TLV of 171.7cm3 (8.5–791.2cm3) (p<.0001). TLV remained stable with significant differences compared to baseline (p<.001 and p=.047 after 12 and 24 months). A reduction of ELV was apparent in 16 patients (66.6%) with a median ELV of 158.91cm3 (8.55–779.61cm3) after 6 months (p=.065). 3D quantification and manual measurements showed strong intermethod-agreement for fibroid volumes (R2=.889 and R2=.917) but greater discrepancy for enhancement calculations (R2=.659 and R2=.419) at baseline and 6 mo. No significant differences in TLV or ELV were observed between clinical R (n=15) and NR (n=3). Conclusion The 3D assessment has proven feasible and accurate in the quantification of fibroid response to MRgHIFU. Contrary to ELV, changes in TLV may be representative of the clinical outcome. PMID:26160057

  3. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  4. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers

    SciTech Connect

    Meer, Skadi van der; Bloemen-van Gurp, Esther; Hermans, Jolanda; Voncken, Robert; Heuvelmans, Denys; Gubbels, Carol; Fontanarosa, Davide; Visser, Peter; Lutgens, Ludy; Gils, Francis van; Verhaegen, Frank

    2013-07-15

    Purpose: A quantitative 3D intramodality ultrasound (US) imaging system was verified for daily in-room prostate localization, and compared to prostate localization based on implanted fiducial markers (FMs).Methods: Thirteen prostate patients underwent multiple US scans during treatment. A total of 376 US-scans and 817 matches were used to determine the intra- and interoperator variability. Additionally, eight other patients underwent daily prostate localization using both US and electronic portal imaging (EPI) with FMs resulting in 244 combined US-EPI scans. Scanning was performed with minimal probe pressure and a correction for the speed of sound aberration was performed. Uncertainties of both US and FM methods were assessed. User variability of the US method was assessed.Results: The overall US user variability is 2.6 mm. The mean differences between US and FM are: 2.5 {+-} 4.0 mm (LR), 0.6 {+-} 4.9 mm (SI), and -2.3 {+-} 3.6 mm (AP). The intramodality character of this US system mitigates potential errors due to transducer pressure and speed of sound aberrations.Conclusions: The overall accuracy of US (3.0 mm) is comparable to our FM workflow (2.2 mm). Since neither US nor FM can be considered a gold standard no conclusions can be drawn on the superiority of either method. Because US imaging captures the prostate itself instead of surrogates no invasive procedure is required. It requires more effort to standardize US imaging than FM detection. Since US imaging does not involve a radiation burden, US prostate imaging offers an alternative for FM EPI positioning.

  5. A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

    2011-03-01

    Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

  6. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  7. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  8. New ultrasound techniques for lymph node evaluation

    PubMed Central

    Cui, Xin-Wu; Jenssen, Christian; Saftoiu, Adrian; Ignee, Andre; Dietrich, Christoph F

    2013-01-01

    Conventional ultrasound (US) is the recommended imaging method for lymph node (LN) diseases with the advantages of high resolution, real time evaluation and relative low costs. Current indications of transcutaneous ultrasound and endoscopic ultrasound include the detection and characterization of lymph nodes and the guidance for LN biopsy. Recent advances in US technology, such as contrast enhanced ultrasound (CEUS), contrast enhanced endoscopic ultrasound (CE-EUS), and real time elastography show potential to improve the accuracy of US for the differential diagnosis of benign and malignant lymph nodes. In addition, CEUS and CE-EUS have been also used for the guidance of fine needle aspiration and assessment of treatment response. Complementary to size criteria, CEUS could also be used to evaluate response of tumor angiogenesis to anti-angiogenic therapies. In this paper we review current literature regarding evaluation of lymphadenopathy by new and innovative US techniques. PMID:23946589

  9. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  10. Heuristic Techniques Application In A 3-D Space

    NASA Astrophysics Data System (ADS)

    Mazouz, A. Kader

    1989-02-01

    This paper discusses the application of a heuristic technique to stack regular and irregular shapes objects on the same container or on the same pallet. The computer representation of any object is based on the recursive octree method where each unit volume element is a voxel. Then, the choice of the space taken by any shape object within the volume is made through the heuristic approach. The heuristic technique developed is an evaluation function that compares all the available spaces based on weighing factors and threshold levels. The parameters used are shape, space available, contents of the object, and dimensions. The goal is to choose the most feasible available space every time an object is ready to be stacked. The heuristic algorithm is implemented within a knowledge based system to control a flexible material handling cell. Generally the cell comprises a material handling robot, a conveyance system that brings the objects to the cell where objects are distributed randomly to the cell, a vision system to identify the objects and verify the stacking procedure, and a computer to control and initiate the decision making process to stack all shape objects on the same volume.

  11. A preliminary evaluation of 3D mesh animation coding techniques

    NASA Astrophysics Data System (ADS)

    Mamou, Khaled; Zaharia, Titus; Preteux, Francoise

    2005-08-01

    This paper provides an overview of the state-of-the-art techniques recently developed within the emerging field of dynamic mesh compression. Static encoders, wavelet-based schemes, PCA-based approaches, differential temporal and spatio-temporal predictive techniques, and clustering-based representations are considered, presented, analyzed, and objectively compared in terms of compression efficiency, algorithmic and computational aspects and offered functionalities (such as progressive transmission, scalable rendering, computational and algorithmic aspects, field of applicability...). The proposed comparative study reveals that: (1) clustering-based approaches offer the best compromise between compression performances and computational complexity; (2) PCA-based representations are highly efficient on long animated sequences (i.e. with number of mesh vertices much smaller than the number of frames) at the price of prohibitive computational complexity of the encoding process; (3) Spatio-temporal Dynapack predictors provides simple yet effective predictive schemes that outperforms simple predictors such as those considered within the interpolator compression node adopted by the MPEG-4 within the AFX standard; (4) Wavelet-based approaches, which provide the best compression performances for static meshes show here again good results, with the additional advantage of a fully progressive representation, but suffer from an applicability limited to large meshes with at least several thousands of vertices per connected component.

  12. Task-specific evaluation of 3D image interpolation techniques

    NASA Astrophysics Data System (ADS)

    Grevera, George J.; Udupa, Jayaram K.; Miki, Yukio

    1998-06-01

    Image interpolation is an important operation that is widely used in medical imaging, image processing, and computer graphics. A variety of interpolation methods are available in the literature. However, their systematic evaluation is lacking. At a previous meeting, we presented a framework for the task independent comparison of interpolation methods based on a variety of medical image data pertaining to different parts of the human body taken from different modalities. In this new work, we present an objective, task-specific framework for evaluating interpolation techniques. The task considered is how the interpolation methods influence the accuracy of quantification of the total volume of lesions in the brain of Multiple Sclerosis (MS) patients. Sixty lesion detection experiments coming from ten patient studies, two subsampling techniques and the original data, and 3 interpolation methods is presented along with a statistical analysis of the results. This work comprises a systematic framework for the task-specific comparison of interpolation methods. Specifically, the influence of three interpolation methods in MS lesion quantification is compared.

  13. Consequences of Intermodality Registration Errors for Intramodality 3D Ultrasound IGRT.

    PubMed

    van der Meer, Skadi; Seravalli, Enrica; Fontanarosa, Davide; Bloemen-van Gurp, Esther J; Verhaegen, Frank

    2016-08-01

    Intramodality ultrasound image-guided radiotherapy systems compare daily ultrasound to reference ultrasound images. Nevertheless, because the actual treatment planning is based on a reference computed tomography image, and not on a reference ultrasound image, their accuracy depends partially on the correct intermodality registration of the reference ultrasound and computed tomography images for treatment planning. The error propagation in daily patient positioning due to potential registration errors at the planning stage was assessed in this work. Five different scenarios were simulated involving shifts or rotations of ultrasound or computed tomography images. The consequences of several workflow procedures were tested with a phantom setup. As long as the reference ultrasound and computed tomography images are made to match, the patient will be in the correct treatment position. In an example with a phantom measurement, the accuracy of the performed manual fusion was found to be ≤2 mm. In clinical practice, manual registration of patient images is expected to be more difficult. Uncorrected mismatches will lead to a systematically incorrect final patient position because there will be no indication that there was a misregistration between the computed tomography and reference ultrasound images. In the treatment room, the fusion with the computed tomography image will not be visible and based on the ultrasound images the patient position seems correct. PMID:26048909

  14. FINAL INTERIM REPORT, CANDIDATE SITES, MACHINES IN USE, DATA STORAGE AND TRANSMISSION METHODS: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this Work Assignment, 02-03, is to examine the feasibility of collecting transmitting, and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant women. The study will also examine the reliability of measurements obtained from 3-D images< ...

  15. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  16. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  17. Long-term viability and proliferation of alginate-encapsulated 3-D HepG2 aggregates formed in an ultrasound trap.

    PubMed

    Bazou, D; Coakley, W T; Hayes, A J; Jackson, S K

    2008-08-01

    We report proof of principle here of a gel encapsulation technique that departs from the minimum surface area to volume restriction of spherical microcapsules and allows gelation of preformed high-density (>or=2x10(4) cells/aggregate) 3-D HepG2 cell aggregates. The process involves forming a discoid 3-D cell aggregate in an ultrasound standing wave trap (USWT), which is subsequently recovered and encapsulated in alginate/CaCl2 hydrogel. The size of the ultrasound-formed aggregates was dependent upon the initial cell concentration, and was in the range of 0.4-2.6 mm in diameter (for cell concentrations ranging between 10(4) and 5x10(6)/ml). At low cell concentrations (or=10(6)/ml, 3-D aggregates were generated. Cells in non- and encapsulated 3-D HepG2 aggregates remained 70-80% viable over 10 days in culture. The proliferative activity of the aggregates resulted in the doubling of the aggregate cell number and a subsequent increase in the aggregate thickness, while albumin secretion levels in encapsulated aggregates was 4.5 times higher compared to non-encapsulated, control aggregates. The results reported here suggest that the ultrasound trap can provide an alternative, novel approach of hydrogel cell encapsulation and thus rapidly (within 5 min) produce in vitro models for hepatocyte functional studies (for example, toxicity studies particularly if primary hepatocytes are used) in a tissue-mimetic manner. PMID:18490133

  18. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes. PMID:24206210

  19. Multi-modality fusion of CT, 3D ultrasound, and tracked strain images for breast irradiation planning

    NASA Astrophysics Data System (ADS)

    Foroughi, Pezhman; Csoma, Csaba; Rivaz, Hassan; Fichtinger, Gabor; Zellars, Richard; Hager, Gregory; Boctor, Emad

    2009-02-01

    Breast irradiation significantly reduces the risk of recurrence of cancer. There is growing evidence suggesting that irradiation of only the involved area of the breast, partial breast irradiation (PBI), is as effective as whole breast irradiation. Benefits of PBI include shortened treatment time, and perhaps fewer side effects as less tissue is treated. However, these benefits cannot be realized without precise and accurate localization of the lumpectomy cavity. Several studies have shown that accurate delineation of the cavity in CT scans is very challenging and the delineated volumes differ dramatically over time and among users. In this paper, we propose utilizing 3D ultrasound (3D-US) and tracked strain images as complementary modalities to reduce uncertainties associated with current CT planning workflow. We present the early version of an integrated system that fuses 3D-US and real-time strain images. For the first time, we employ tracking information to reduce the noise in calculation of strain image by choosing the properly compressed frames and to position the strain image within the ultrasound volume. Using this system, we provide the tools to retrieve additional information from 3D-US and strain image alongside the CT scan. We have preliminarily evaluated our proposed system in a step-by-step fashion using a breast phantom and clinical experiments.

  20. Phase grouping-based needle segmentation in 3-D trans-rectal ultrasound-guided prostate trans-perineal therapy.

    PubMed

    Qiu, Wu; Yuchi, Ming; Ding, Mingyue

    2014-04-01

    A robust and efficient needle segmentation method used to localize and track the needle in 3-D trans-rectal ultrasound (TRUS)-guided prostate therapy is proposed. The algorithmic procedure begins by cropping the 3-D US image containing a needle; then all voxels in the cropped 3-D image are grouped into different line support regions (LSRs) based on the outer product of the adjacent voxels' gradient vector. Two different needle axis extraction methods in the candidate LSR are presented: least-squares fitting and 3-D randomized Hough transform. Subsequent local optimization refines the position of the needle axis. Finally, the needle endpoint is localized by finding an intensity drop along the needle axis. The proposed methods were validated with 3-D TRUS tissue-mimicking agar phantom images, chicken breast phantom images and patient images obtained during prostate cryotherapy. The results of the in vivo test indicate that our method can localize the needle accurately and robustly with a needle endpoint localization accuracy <1.43 mm and detection accuracy >84%, which are favorable for 3-D TRUS-guided prostate trans-perineal therapy. PMID:24462163

  1. Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array

    PubMed Central

    Song, Liang; Maslov, Konstantin; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2009-01-01

    We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional (B-scan) imaging at 50 Hz with realtime beamforming and 3D imaging consisting of 166 B-scan frames at 1 Hz with post-beamforming. To our knowledge, this speed is currently the fastest in photoacoustic imaging. A custom-designed light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field reflection-mode imaging. Linear mechanical scanning of the array produces 3D images. The system has axial, lateral, and elevational resolutions of 25, 70, and 200 μm, respectively, and can image 3 mm deep in scattering biological tissues. Volumetric images of subcutaneous vasculature in rats are demonstrated in vivo. Fast 3D photoacoustic microscopy is anticipated to facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and clinical procedures that demand immediate diagnosis. PMID:19021408

  2. 3D shape measurements for non-diffusive objects using fringe projection techniques

    NASA Astrophysics Data System (ADS)

    Su, Wei-Hung; Tseng, Bae-Heng; Cheng, Nai-Jen

    2013-09-01

    A scanning approach using holographic techniques to perform the 3D shape measurement for a non-diffusive object is proposed. Even though the depth discontinuity on the inspected surface is pretty high, the proposed method can retrieve the 3D shape precisely.

  3. Ultrasound techniques in the evaluation of the mediastinum, part I: endoscopic ultrasound (EUS), endobronchial ultrasound (EBUS) and transcutaneous mediastinal ultrasound (TMUS), introduction into ultrasound techniques

    PubMed Central

    Annema, Jouke Tabe; Clementsen, Paul; Cui, Xin Wu; Borst, Mathias Maximilian; Jenssen, Christian

    2015-01-01

    Ultrasound imaging has gained importance in pulmonary medicine over the last decades including conventional transcutaneous ultrasound (TUS), endoscopic ultrasound (EUS), and endobronchial ultrasound (EBUS). Mediastinal lymph node staging affects the management of patients with both operable and inoperable lung cancer (e.g., surgery vs. combined chemoradiation therapy). Tissue sampling is often indicated for accurate nodal staging. Recent international lung cancer staging guidelines clearly state that endosonography (EUS and EBUS) should be the initial tissue sampling test over surgical staging. Mediastinal nodes can be sampled from the airways [EBUS combined with transbronchial needle aspiration (EBUS-TBNA)] or the esophagus [EUS fine needle aspiration (EUS-FNA)]. EBUS and EUS have a complementary diagnostic yield and in combination virtually all mediastinal lymph nodes can be biopsied. Additionally endosonography has an excellent yield in assessing granulomas in patients suspected of sarcoidosis. The aim of this review, in two integrative parts, is to discuss the current role and future perspectives of all ultrasound techniques available for the evaluation of mediastinal lymphadenopathy and mediastinal staging of lung cancer. A specific emphasis will be on learning mediastinal endosonography. Part I is dealing with an introduction into ultrasound techniques, mediastinal lymph node anatomy and diagnostic reach of ultrasound techniques and part II with the clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography. PMID:26543620

  4. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.

    PubMed

    Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J

    2008-06-01

    Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the

  5. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    SciTech Connect

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-08-15

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from

  6. Reducing Non-Uniqueness in Satellite Gravity Inversion using 3D Object Oriented Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2013-12-01

    Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.

  7. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  8. NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES

    EPA Science Inventory

    New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...

  9. SIMULTANEOUS BILATERAL REAL-TIME 3-D TRANSCRANIAL ULTRASOUND IMAGING AT 1 MHZ THROUGH POOR ACOUSTIC WINDOWS

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%–29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging—the ultrasound brain helmet—and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field. PMID:23415287

  10. Performance of ultrasound based measurement of 3D displacement using a curvilinear probe for organ motion tracking

    NASA Astrophysics Data System (ADS)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Evans, Phillip M.; Symonds-Tayler, J. Richard N.

    2007-09-01

    Three-dimensional (3D) soft tissue tracking is of interest for monitoring organ motion during therapy. Our goal is to assess the tracking performance of a curvilinear 3D ultrasound probe in terms of the accuracy and precision of measured displacements. The first aim was to examine the depth dependence of the tracking performance. This is of interest because the spatial resolution varies with distance from the elevational focus and because the curvilinear geometry of the transducer causes the spatial sampling frequency to decrease with depth. Our second aim was to assess tracking performance as a function of the spatial sampling setting (low, medium or high sampling). These settings are incorporated onto 3D ultrasound machines to allow the user to control the trade-off between spatial sampling and temporal resolution. Volume images of a speckle-producing phantom were acquired before and after the probe had been moved by a known displacement (1, 2 or 8 mm). This allowed us to assess the optimum performance of the tracking algorithm, in the absence of motion. 3D speckle tracking was performed using 3D cross-correlation and sub-voxel displacements were estimated. The tracking performance was found to be best for axial displacements and poorest for elevational displacements. In general, the performance decreased with depth, although the nature of the depth dependence was complex. Under certain conditions, the tracking performance was sufficient to be useful for monitoring organ motion. For example, at the highest sampling setting, for a 2 mm displacement, good accuracy and precision (an error and standard deviation of <0.4 mm) were observed at all depths and for all directions of displacement. The trade-off between spatial sampling, temporal resolution and size of the field of view (FOV) is discussed.

  11. Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Diederich, Chris J.

    2010-03-01

    Interstitial and transurethral catheter-based ultrasound devices are under development for treatment of prostate cancer and BPH, uterine fibroids, liver tumors and other soft tissue disease. Accurate 3D thermal modeling is essential for designing site-specific applicators, exploring treatment delivery strategies, and integration of patient-specific treatment planning of thermal ablations. We are developing a comprehensive 3D modeling and treatment planning platform for ultrasound ablation of tissue using catheter-based applicators. We explored the applicability of assessing thermal effects in tissue using critical temperature, thermal dose and Arrhenius thermal damage thresholds and performed a comparative analysis of dynamic tissue properties critical to accurate modeling. We used the model to assess the feasibility of automatic feedback control with MR thermometry, and demonstrated the utility of the modeling platform for 3D patient-specific treatment planning. We have identified critical temperature, thermal dose and thermal damage thresholds for assessing treatment endpoint. Dynamic changes in tissue attenuation/absorption and perfusion must be included for accurate prediction of temperature profiles and extents of the ablation zone. Lastly, we demonstrated use of the modeling platform for patient-specific treatment planning.

  12. 2D and 3D endoanal and translabial ultrasound measurement variation in normal postpartum measurements of the anal sphincter complex

    PubMed Central

    MERIWETHER, Kate V.; HALL, Rebecca J.; LEEMAN, Lawrence M.; MIGLIACCIO, Laura; QUALLS, Clifford; ROGERS, Rebecca G.

    2015-01-01

    Introduction Women may experience anal sphincter anatomy changes after vaginal or Cesarean delivery. Therefore, accurate and acceptable imaging options to evaluate the anal sphincter complex (ASC) are needed. ASC measurements may differ between translabial (TL-US) and endoanal ultrasound (EA-US) imaging and between 2D and 3D ultrasound. The objective of this analysis was to describe measurement variation between these modalities. Methods Primiparous women underwent 2D and 3D TL-US imaging of the ASC six months after a vaginal birth (VB) or Cesarean delivery (CD). A subset of women also underwent EA-US measurements. Measurements included the internal anal sphincter (IAS) thickness at proximal, mid, and distal levels and the external anal sphincter (EAS) at 3, 6, 9, and 12 o’clock positions as well as bilateral thickness of the pubovisceralis muscle (PVM). Results 433 women presented for US: 423 had TL-US and 64 had both TL-US and EA-US of the ASC. All IAS measurements were significantly thicker on TL-US than EA-US (all p<0.01), while EAS measurements were significantly thicker on EA-US (p<0.01). PVM measurements with 3D or 2D imaging were similar (p>0.20). On both TL-US and EA-US, there were multiple sites where significant asymmetry existed in left versus right measurements. Conclusion The ultrasound modality used to image the ASC introduces small but significant changes in measurements, and the direction of the bias depends on the muscle and location being imaged. PMID:25344221

  13. Role of 3D MRI with proset technique in the evaluation of lumbar radiculopathy.

    PubMed

    Grasso, D; Borreggine, C; Melchionda, D; Bristogiannis, C; Stoppino, L P; Macarini, L

    2013-01-01

    The aim of this study is to demonstrate the effectiveness of 3-Dimensional Magnetic Resonance Imaging (3D MRI) using the ProSet technique in the diagnosis of lumbar radiculopathy and to compare morphological findings with clinical and neurophysiological data. 40 patients suffering from L5 or S1 mono-radiculopathy caused by a disc herniation were evaluated through preliminary clinical assessment and electromyography (EMG) technique. Both conventional spin-echo sequences and 3D coronal FFE with selective water excitation (ProSet imaging) were acquired. Indentation, swelling and tilt angle of the nerve root were assessed by means of a 3D MR radiculography. 3D ProSet multiplanar reconstructions (MPR) were used for quantitative measurements of L5 and S1 nerve root widths. Widths of the symptomatic nerve root were compared with those of the contralateral nerve. Data were processed using Epi Info 3.3 software (CDC, Atlanta, GA, USA) and were compared through a paired t-Student test. We observed an abnormal tilt angle in 22 patients (57,2 percent, P less than 0.05). Morphologic alterations such as monolateral swelling or indentation of the involved roots were found in 36 patients (90 percent, P less than0.01) using 3D MR radiculography. In 10 patients, EMG revealed more nerve roots involved, while 3D FFE with ProSet technique shows a single root involved. In 2 patients, alterations were demonstrated only through EMG technique. We suggest that 3D MR radiculography can provide more information than other techniques about symptomatic disc herniation, supporting the detection of morphological changes of all nerve segments. 3D FFE with ProSet technique demonstrates high sensibility to exactly identify the level of the root involved and can provide an extremely useful tool to lead a surgical planning. PMID:24152846

  14. 3D ultrasound image guidance system used in RF uterine adenoma and uterine bleeding ablation system

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Luo, Xiaoan; Cai, Chao; Zhou, Chengping; Fenster, Aaron

    2006-03-01

    Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese women. Many women lose their fertility from these diseases. Currently, a minimally invasive ablation system using an RF button electrode is being used in Chinese hospitals to destroy tumor cells or stop bleeding. In this paper, we report on a 3D US guidance system developed to avoid accidents or death of the patient by inaccurate localization of the tumor position during treatment. A 3D US imaging system using a rotational scanning approach of an abdominal probe was built. In order to reduce the distortion produced when the rotational axis is not collinear with the central beam of the probe, a new 3D reconstruction algorithm is used. Then, a fast 3D needle segmentation algorithm is used to find the electrode. Finally, the tip of electrode is determined along the segmented 3D needle and the whole electrode is displayed. Experiments with a water phantom demonstrated the feasibility of our approach.

  15. Fusion of ultrasound B-mode and vibro-elastography images for automatic 3D segmentation of the prostate.

    PubMed

    Mahdavi, S Sara; Moradi, Mehdi; Morris, William J; Goldenberg, S Larry; Salcudean, Septimiu E

    2012-11-01

    Prostate segmentation in B-mode images is a challenging task even when done manually by experts. In this paper we propose a 3D automatic prostate segmentation algorithm which makes use of information from both ultrasound B-mode and vibro-elastography data.We exploit the high contrast to noise ratio of vibro-elastography images of the prostate, in addition to the commonly used B-mode images, to implement a 2D Active Shape Model (ASM)-based segmentation algorithm on the midgland image. The prostate model is deformed by a combination of two measures: the gray level similarity and the continuity of the prostate edge in both image types. The automatically obtained mid-gland contour is then used to initialize a 3D segmentation algorithm which models the prostate as a tapered and warped ellipsoid. Vibro-elastography images are used in addition to ultrasound images to improve boundary detection.We report a Dice similarity coefficient of 0.87±0.07 and 0.87±0.08 comparing the 2D automatic contours with manual contours of two observers on 61 images. For 11 cases, a whole gland volume error of 10.2±2.2% and 13.5±4.1% and whole gland volume difference of -7.2±9.1% and -13.3±12.6% between 3D automatic and manual surfaces of two observers is obtained. This is the first validated work showing the fusion of B-mode and vibro-elastography data for automatic 3D segmentation of the prostate. PMID:22829391

  16. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; OBrien, T. Kevin

    2000-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  17. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  18. The alteration in placental volume and placental mean grey value in growth-restricted pregnancies assessed by 3D ultrasound (Growth Restriction & 3D Ultrasonography).

    PubMed

    Artunc Ulkumen, B; Pala, H G; Uyar, Y; Koyuncu, F M; Bulbul Baytur, Y

    2015-01-01

    We aimed to evaluate the volumetric and echogenic alterations in placentas between the intrauterine growth restriction (IUGR) and normal pregnancies using three-dimensional ultrasound and virtual organ computer-aided analysis (VOCAL) software. This case-control prospective study consisted of 48 singleton pregnancies complicated by IUGR and 60 healthy singleton pregnancies matched for maternal age, gestational age and parity. Placental volume (PV) and placental volumetric mean grey values (MGV) were evaluated. PV (cm(3)) was analysed using the VOCAL imaging analysis program, and 3D histogram was used to calculate the volumetric MGV (%). PV was 278.50 ± 63.68 and 370.98 ± 97.82 cm(3) in IUGR and control groups, respectively (p = 0.004). MGV of the placenta was 38.24 ± 8.41 and 38.24 ± 8.41 in IUGR and control groups, respectively (p = 0.30). receiver operator curve (ROC) curve analysis revealed that area under curve was 0.731 for PV. Correlation analysis revealed that PV was significantly associated with estimated fetal weight (r = 0.319, p = 0.003), biparietal diameter (r = 0.346, p = 0.002), head circumference (r = 0.269, p = 0.019), abdominal circumference (r = 0.344, p = 0.002) and femur length (r = 0.328, p = 0.004). PV was inversely related to the umbilical artery pulsatility index (r = - 0.244, p = 0.017). To the best of our knowledge, this is the first study evaluating volumetric MGV in IUGR placentas by comparing them with healthy pregnancies. Our study showed that PV diminishes significantly in IUGR pregnancies, whereas volumetric MGV does not alter significantly. PMID:25409488

  19. Ultrasound elastographic techniques in focal liver lesions

    PubMed Central

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-01-01

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405

  20. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  1. In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.

    2014-03-01

    Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.

  2. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  3. The technique of ultrasound guided prostate biopsy.

    PubMed

    Romics, Imre

    2004-11-01

    This article discusses the preparations for ultrasound guided prostate biopsy, the conditions used and the process of performing a biopsy. The first step in preparing the patient is a cleansing enema before biopsy. Every author proposes the use of a preoperative antibiotic based prophylaxis. Differences may be found in the type, dosage and the duration of this preoperative application, which can last from 2 h to 2 days. For anaesthesia, lidocaine has been proposed, which may be used as a gel applied in the rectum or in the form of a prostate infiltrate. Quite a few colleagues administer a brief intravenous narcosis. A major debate goes on in respect of defining the number of biopsy samples needed. Hodge proposed sextant biopsy in 1989, for which we had false negative findings in 20% of all cases. Because of this, it has recently been suggested that eight or rather ten samples be taken. There are some who question even this. Twelve biopsy samples do offer an advantage compared to six, although in the case of eight this is not the case. We shall present an in depth discussion of the various opinions on the different numbers of biopsies samples required. For the sample site, the apex, the base and the middle part are proposed, and (completing the process) two additional samples can also be taken from the transition zone (TZ), since 20% of all prostate cancers originate from TZ. In case of a palpable nodule or any lesion made visible by TRUS, an additional, targeted, biopsy has to be performed. Certain new techniques like the 3-D Doppler, contrast, intermittent and others shall also be presented. The control of the full length of samples taken by a gun, as well as the proper conservation of the samples, are parts of pathological processing and of the technical tasks. A repeated biopsy is necessary in the case of PIN atypia, beyond which the author also discusses other indications for a repeated biopsy. We may expect the occurrence of direct postoperative complications

  4. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  5. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  6. Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.

    PubMed

    Greer, Joseph D; Adebar, Troy K; Hwang, Gloria L; Okamura, Allison M

    2014-01-01

    This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71 ± 0.55 mm in needle tip location and 0.38 ± 0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity. PMID:25485402

  7. Application of 3D Photo-reconstruction techniques in Geomorphology: Examples through different landforms and scales

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Susanne, Schnabel; Conoscenti, Christian; Caraballo-Arias, Nathalie A.; Ferro, Vito; di Stefano, Constanza; Juan de Sanjosé, José; Berenguer-Sempere, Fernando; de Matías, Javier

    2014-05-01

    Recent developments made in tri-dimensional photo-reconstruction techniques (3D-PR), such as the use of Structure from Motion (SfM) and MultiView Stereo (MVS) techniques together, have allowed obtaining high resolution 3D point clouds. In order to achieve final point clouds with these techniques, only oblique images from consumer un-calibrated and non-metric cameras are needed. Here, these techniques are used in order to measure, monitor and quantify geomorphological features and processes. Three different applications through a range of scales and landforms are presented here. Firstly, five small gully headcuts located in a small catchment in SW Spain were monitored with the aim of estimating headcut retreat rates. During this field work, 3D models obtained by means of a Terrestrial Laser Scanner (TLS) were captured and used as benchmarks to analyze 3D-PR method accuracy. Results of this analysis showed centimeter-level accuracies with average distances between the 3D-PR model and the TLS model ranging from 0.009 to 0.025 m. Estimated soil loss ranged from -0.246 m3 to 0.114 m3 for a wet period (289 mm) of 54 days in 2013. Secondly, a calanchi type badland in Sicily (Italy) was photo-reconstructed and the quality of the 3D-PR model was analyzed using a Digital Elevation Model produced by classic digital photogrammetry with photos captured by an Unmanned Aerial Vehicle (UAV). In this case, sub-meter calculated accuracies (0.30) showed that it is possible to describe badland morphology using 3D-PR models but it is not feasible to use these models to quantify annual rates of soil erosion in badlands (10 mm eroded per year). Finally, a high-resolution model of the Veleta rock glacier (in SE Spain) was elaborated with 3D-PR techniques and compared with a 3D model obtained by means of a TLS. Results indicated that 3D-PR method can be applied to the micro-scale study of glacier morphologies and processes with average distances to the TLS point cloud of 0.21 m.

  8. Research and implementation of visualization techniques for 3D explosion fields

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen

    2015-12-01

    The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.

  9. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.

    PubMed

    Chiappone, Annalisa; Fantino, Erika; Roppolo, Ignazio; Lorusso, Massimo; Manfredi, Diego; Fino, Paolo; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-03-01

    In this work, three-dimensional (3D) structured hybrid materials were fabricated combining 3D printing technology with in situ generation of inorganic nanoparticles by sol-gel technique. Those materials, consisting of silica nanodomains covalently interconnected with organic polymers, were 3D printed in complex multilayered architectures, incorporating liquid silica precursors into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. A post sol-gel treatment in acidic vapors allowed the in situ generation of the inorganic phase in a dedicated step. This method allows to build hybrid structures operating with a full liquid formulation without meeting the drawbacks of incorporating inorganic powders into 3D printable formulations. The influence of the generated silica nanoparticle on the printed objects was deeply investigated at macro- and nanoscale; the resulting light hybrid structures show improved mechanical properties and, thus, have a huge potential for applications in a variety of advanced technologies. PMID:26871993

  10. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  11. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Aubry, J. F.; Pernot, M.; Fink, M.; Tanter, M.

    2011-11-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior-posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  12. 3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei

    2011-03-01

    We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

  13. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  14. Hyperband Bi-Conical Antenna Design Using 3D Printing Technique

    NASA Astrophysics Data System (ADS)

    Andriambeloson, J. A.; Wiid, P. G.

    2016-03-01

    We combined a 3D printing technique with conductive paint for an antenna manufacturing methodology. The performance of the approach is evaluated through a 3D- printed and coated bi-cone antenna. The antenna far-field pattern and efficiency are measured using near-field spherical scan and reverberation chamber techniques. Good agreement is seen between measurements and simulations and an impedance bandwidth of at least 34:1 is achieved. An extruded bi-conical antenna geometry is also studied for bandwidth extension to lower frequency and an impedance bandwidth of 58:1 is realised.

  15. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  16. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    PubMed

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p < 0.05), but BIC and MI data did not differ significantly. Thus, the results partly indicate improved bone formation at blasted and hydrogen fluoride treated implants, compared to blasted implants. The 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies. PMID:24711247

  17. Drawing on air: input techniques for controlled 3D line illustration.

    PubMed

    Keefe, Daniel; Zeleznik, Robert; Laidlaw, David

    2007-01-01

    We present Drawing on Air, a haptic-aided input technique for drawing controlled 3D curves through space. Drawing on Air addresses a control problem with current 3D modeling approaches based on sweeping movement of the hands through the air. While artists praise the immediacy and intuitiveness of these systems, a lack of control makes it nearly impossible to create 3D form beyond quick design sketches or gesture drawings. Drawing on Air introduces two new strategies for more controlled 3D drawing: one-handed drag drawing and two-handed tape drawing. Both approaches have advantages for drawing certain types of curves. We describe a tangent preserving method for transitioning between the two techniques while drawing. Haptic-aided redrawing and line weight adjustment while drawing are also supported in both approaches. In a quantitative user study evaluation by illustrators, the one and two-handed techniques performed at roughly the same level, and both significantly outperformed freehand drawing and freehand drawing augmented with a haptic friction effect. We present the design and results of this experiment as well as user feedback from artists and 3D models created in a style of line illustration for challenging artistic and scientific subjects. PMID:17622688

  18. Overview of passive and active vision techniques for hand-held 3D data acquistion

    NASA Astrophysics Data System (ADS)

    Mada, Sreenivasa K.; Smith, Melvyn L.; Smith, Lyndon N.; Midha, Prema S.

    2003-03-01

    The digitization of the 3D shape of real objects is a rapidly expanding discipline, with a wide variety of applications, including shape acquisition, inspection, reverse engineering, gauging and robot navigation. Developments in computer product design techniques, automated production, and the need for close manufacturing tolerances will be facts of life for the foreseeable future. A growing need exists for fast, accurate, portable, non-contact 3D sensors. However, in order for 3D scanning to become more commonplace, new methods are needed for easily, quickly and robustly acquiring accurate full geometric models of complex objects using low cost technology. In this paper, a brief survey is presented of current scanning technologies available for acquiring range data. An overview is provided of current 3D-shape acquisition using both active and passive vision techniques. Each technique is explained in terms of its configuration, principle of operation, and the inherent advantages and limitations. A separate section then focuses on the implications of scannerless scanning for hand held technology, after which the current status of 3D acquisition using handheld technology, together with related issues concerning implementation, is considered more fully. Finally, conclusions for further developments in handheld devices are discussed. This paper may be of particular benefit to new comers in this field.

  19. a Comparison Between Active and Passive Techniques for Underwater 3d Applications

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Gallo, A.; Bruno, F.; Muzzupappa, M.

    2011-09-01

    In the field of 3D scanning, there is an increasing need for more accurate technologies to acquire 3D models of close range objects. Underwater exploration, for example, is very hard to perform due to the hostile conditions and the bad visibility of the environment. Some application fields, like underwater archaeology, require to recover tridimensional data of objects that cannot be moved from their site or touched in order to avoid possible damages. Photogrammetry is widely used for underwater 3D acquisition, because it requires just one or two digital still or video cameras to acquire a sequence of images taken from different viewpoints. Stereo systems composed by a pair of cameras are often employed on underwater robots (i.e. ROVs, Remotely Operated Vehicles) and used by scuba divers, in order to survey archaeological sites, reconstruct complex 3D structures in aquatic environment, estimate in situ the length of marine organisms, etc. The stereo 3D reconstruction is based on the triangulation of corresponding points on the two views. This requires to find in both images common points and to match them (correspondence problem), determining a plane that contains the 3D point on the object. Another 3D technique, frequently used in air acquisition, solves this point-matching problem by projecting structured lighting patterns to codify the acquired scene. The corresponding points are identified associating a binary code in both images. In this work we have tested and compared two whole-field 3D imaging techniques (active and passive) based on stereo vision, in underwater environment. A 3D system has been designed, composed by a digital projector and two still cameras mounted in waterproof housing, so that it can perform the various acquisitions without changing the configuration of optical devices. The tests were conducted in a water tank in different turbidity conditions, on objects with different surface properties. In order to simulate a typical seafloor, we used

  20. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images.

    PubMed

    Rattanalappaiboon, Surapong; Bhongmakapat, Thongchai; Ritthipravat, Panrasee

    2015-12-01

    3D reconstruction from nasal endoscopic images greatly supports an otolaryngologist in examining nasal passages, mucosa, polyps, sinuses, and nasopharyx. In general, structure from motion is a popular technique. It consists of four main steps; (1) camera calibration, (2) feature extraction, (3) feature matching, and (4) 3D reconstruction. Scale Invariant Feature Transform (SIFT) algorithm is normally used for both feature extraction and feature matching. However, SIFT algorithm relatively consumes computational time particularly in the feature matching process because each feature in an image of interest is compared with all features in the subsequent image in order to find the best matched pair. A fuzzy zoning approach is developed for confining feature matching area. Matching between two corresponding features from different images can be efficiently performed. With this approach, it can greatly reduce the matching time. The proposed technique is tested with endoscopic images created from phantoms and compared with the original SIFT technique in terms of the matching time and average errors of the reconstructed models. Finally, original SIFT and the proposed fuzzy-based technique are applied to 3D model reconstruction of real nasal cavity based on images taken from a rigid nasal endoscope. The results showed that the fuzzy-based approach was significantly faster than traditional SIFT technique and provided similar quality of the 3D models. It could be used for creating a nasal cavity taken by a rigid nasal endoscope. PMID:26498516

  1. Error analysis of a 3D imaging system based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Dai, Jie

    2013-12-01

    In the past few years, optical metrology has found numerous applications in scientific and commercial fields owing to its non-contact nature. One of the most popular methods is the measurement of 3D surface based on fringe projection techniques because of the advantages of non-contact operation, full-field and fast acquisition and automatic data processing. In surface profilometry by using digital light processing (DLP) projector, many factors affect the accuracy of 3D measurement. However, there is no research to give the complete error analysis of a 3D imaging system. This paper will analyze some possible error sources of a 3D imaging system, for example, nonlinear response of CCD camera and DLP projector, sampling error of sinusoidal fringe pattern, variation of ambient light and marker extraction during calibration. These error sources are simulated in a software environment to demonstrate their effects on measurement. The possible compensation methods are proposed to give high accurate shape data. Some experiments were conducted to evaluate the effects of these error sources on 3D shape measurement. Experimental results and performance evaluation show that these errors have great effect on measuring 3D shape and it is necessary to compensate for them for accurate measurement.

  2. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  3. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field. PMID:26420041

  4. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  5. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  6. A Longitudinal Study of Remodeling in a Revised Peripheral Artery Bypass Graft Using 3D Ultrasound Imaging and Computational Hemodynamics

    PubMed Central

    Leotta, Daniel F.; Beach, Kirk W.; Riley, James J.; Aliseda, Alberto

    2011-01-01

    We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement. PMID:21428682

  7. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.

    2009-05-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  8. Noninvasive Quantification of In Vitro Osteoblastic Differentiation in 3D Engineered Tissue Constructs Using Spectral Ultrasound Imaging

    PubMed Central

    Peterson, Alexis W.; Caldwell, David J.; Stegemann, Jan P.; Deng, Cheri X.

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5–15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×104 at day 1 to 0.9±0.2×104 at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development. PMID:24465680

  9. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging.

    PubMed

    Gudur, Madhu Sudhan Reddy; Rao, Rameshwar R; Peterson, Alexis W; Caldwell, David J; Stegemann, Jan P; Deng, Cheri X

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5-15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×10(4) at day 1 to 0.9±0.2×10(4) at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development. PMID:24465680

  10. Decay pathways after Xe 3d inner shell ionization using a multi-electron coincidence technique

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Hikosaka, Y.; Shigemasa, E.; Lablanquie, P.; Penent, F.; Soejima, K.; Nakano, M.; Kouchi, N.; Ito, K.

    2011-04-01

    Cascade Auger electron emission following Xe 3d photoionization has been investigated using a multi-electron coincidence technique, which utilizes an electron spectrometer of magnetic bottle type. It has been found that the Xe2+ states of the 4p-14d-1 configuration, formed by the Auger decay of the Xe+ 3d3/2, 5/2-1 states, dominantly turn into triply charged states of the 4d-25p-1/4d-25s-1 configurations. The Xe2+ 4s-14d-1 states, formed by the 3d Auger decay, yield the 4p-14d-15p-1 states as well as the 4d-3 states. From the coincidence spectrum among three Auger electrons, it is suggested that the Xe2+ 4p-14d-1 states give rise to the following cascade processes: 4p-14d-1 → 4d-25p-1 → 4d-15p-3.

  11. 3D visualization of biomedical CT images based on OpenGL and VRML techniques

    NASA Astrophysics Data System (ADS)

    Yin, Meng; Luo, Qingming; Xia, Fuhua

    2002-04-01

    Current high-performance computers and advanced image processing capabilities have made the application of three- dimensional visualization objects in biomedical computer tomographic (CT) images facilitate the researches on biomedical engineering greatly. Trying to cooperate with the update technology using Internet, where 3D data are typically stored and processed on powerful servers accessible by using TCP/IP, we should hold the results of the isosurface be applied in medical visualization generally. Furthermore, this project is a future part of PACS system our lab is working on. So in this system we use the 3D file format VRML2.0, which is used through the Web interface for manipulating 3D models. In this program we implemented to generate and modify triangular isosurface meshes by marching cubes algorithm. Then we used OpenGL and MFC techniques to render the isosurface and manipulating voxel data. This software is more adequate visualization of volumetric data. The drawbacks are that 3D image processing on personal computers is rather slow and the set of tools for 3D visualization is limited. However, these limitations have not affected the applicability of this platform for all the tasks needed in elementary experiments in laboratory or data preprocessed.

  12. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect

    Heine, C.J.; Cooper, D.H.

    1995-08-01

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphasis is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  13. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect

    Heine, C.J.; Cooper, D.H. )

    1996-01-01

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  14. Integration of geostatistical techniques and intuitive geology in the 3-D modeling process

    SciTech Connect

    Heine, C.J.; Cooper, D.H.

    1996-12-31

    The development of 3-D geologic models for reservoir description and simulation has traditionally relied on the computer derived interpolation of well data in a geocelluar stratigraphic framework. The quality of the interpolation has been directly dependent on the nature of the interpolation method, and ability of the Interpolation scheme to accurately predict the value of geologic attributes away from the well. Typically, interpolation methods employ deterministic or geostatistical algorithms which offer limited capacity for Integrating data derived from secondary analyses. These secondary analyses, which might include the results from 3-D seismic inversion, borehole imagery studies, or deductive reasoning, introduce a subjective component into what would otherwise be restricted to a purely mathematical treatment of geologic data. At Saudi ARAMCO an increased emphases is being placed on the role of the reservoir geologist in the development of 3-D geologic models. Quantitative results, based on numerical computations, are being enhanced with intuitive geology, derived from years of cumulative professional experience and expertise. Techniques such as template modeling and modified conditional simulation, are yielding 3-D geologic models, which not only more accurately reflect the geology of the reservoir, but also preserve geologic detail throughout the simulation process. This incorporation of secondary data sources and qualitative analysis has been successfully demonstrated in a clastic reservoir environment in Central Saudi Arabia, and serves as a prototype for future 3-D geologic model development.

  15. Pilot Application of 3d Underwater Imaging Techniques for Mapping Posidonia Oceanica (L.) Delile Meadows

    NASA Astrophysics Data System (ADS)

    Rende, F. S.; Irving, A. D.; Lagudi, A.; Bruno, F.; Scalise, S.; Cappa, P.; Montefalcone, M.; Bacci, T.; Penna, M.; Trabucco, B.; Di Mento, R.; Cicero, A. M.

    2015-04-01

    Seagrass communities are considered one of the most productive and complex marine ecosystems. Seagrasses belong to a small group of 66 species that can form extensive meadows in all coastal areas of our planet. Posidonia oceanica beds are the most characteristic ecosystem of the Mediterranean Sea, and should be constantly monitored, preserved and maintained, as specified by EU Habitats Directive for priority habitats. Underwater 3D imaging by means of still or video cameras can allow a detailed analysis of the temporal evolution of these meadows, but also of the seafloor morphology and integrity. Video-photographic devices and open source software for acquiring and managing 3D optical data rapidly became more and more effective and economically viable, making underwater 3D mapping an easier task to carry out. 3D reconstruction of the underwater scene can be obtained with photogrammetric techniques that require just one or more digital cameras, also in stereo configuration. In this work we present the preliminary results of a pilot 3D mapping project applied to the P. oceanica meadow in the Marine Protected Area of Capo Rizzuto (KR, Calabria Region - Italy).

  16. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  17. A Shell/3D Modeling Technique for Delaminations in Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    1999-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provide a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with plate or shell finite elements. For simple double cantilever beam (DCB), end notched flexure (ENF), and single leg bending (SLB) specimens, mixed mode energy release rate distributions were computed across the width from nonlinear finite element analyses using the virtual crack closure technique. The analyses served to test the accuracy of the shell/3D technique for the pure mode I case (DCB), mode II case (ENF) and a mixed mode I/II case (SLB). Specimens with a unidirectional layup where the delamination is located between two 0 plies, as well as a multidirectional layup where the delamination is located between two non-zero degree plies, were simulated. For a local 3D model extending to a minimum of about three specimen thicknesses in front of and behind the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  18. Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation

    NASA Astrophysics Data System (ADS)

    Pouch, Alison M.; Yushkevich, Paul A.; Jackson, Benjamin M.; Gorman, Joseph H., III; Gorman, Robert C.; Sehgal, Chandra M.

    2012-03-01

    Purpose: Patient-specific shape analysis of the mitral valve from real-time 3D ultrasound (rt-3DUS) has broad application to the assessment and surgical treatment of mitral valve disease. Our goal is to demonstrate that continuous medial representation (cm-rep) is an accurate valve shape representation that can be used for statistical shape modeling over the cardiac cycle from rt-3DUS images. Methods: Transesophageal rt-3DUS data acquired from 15 subjects with a range of mitral valve pathology were analyzed. User-initialized segmentation with level sets and symmetric diffeomorphic normalization delineated the mitral leaflets at each time point in the rt-3DUS data series. A deformable cm-rep was fitted to each segmented image of the mitral leaflets in the time series, producing a 4D parametric representation of valve shape in a single cardiac cycle. Model fitting accuracy was evaluated by the Dice overlap, and shape interpolation and principal component analysis (PCA) of 4D valve shape were performed. Results: Of the 289 3D images analyzed, the average Dice overlap between each fitted cm-rep and its target segmentation was 0.880+/-0.018 (max=0.912, min=0.819). The results of PCA represented variability in valve morphology and localized leaflet thickness across subjects. Conclusion: Deformable medial modeling accurately captures valve geometry in rt-3DUS images over the entire cardiac cycle and enables statistical shape analysis of the mitral valve.

  19. The Ultrasound Brain Helmet: New Transducers and Volume Registration for In Vivo Simultaneous Multi-Transducer 3-D Transcranial Imaging

    PubMed Central

    Lindsey, Brooks D.; Light, Edward D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2012-01-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation. PMID:21693401

  20. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  1. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030. PMID:26241161

  2. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  3. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    PubMed

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames. PMID:17215103

  4. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  5. A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.

    PubMed

    Patra, Satyajit; Young, Vanesa

    2016-06-01

    3D printing has been around in the art, micro-engineering, and manufacturing worlds for decades. Similarly, research for traditionally engineered skin tissue has been in the works since the 1990s. As of recent years, the medical field also began to take advantage of the untapped potential of 3D printing for the biofabrication of tissue. To do so, researchers created a set of goals for fabricated tissues based on the characteristics of natural human tissues and organs. Fabricated tissue was then measured against this set of standards. Researchers were interested in not only creating tissue that functioned like natural tissues but in creating techniques for 3D printing that would print tissues quickly, efficiently, and ultimately result in the ability to mass produce fabricated tissues. Three promising methods of 3D printing emerged from their research: thermal inkjet printing with bioink, direct-write bioprinting, and organ printing using tissue spheroids. This review will discuss all three printing techniques, as well as their advantages, disadvantages, and the possibility of future advancements in the field of tissue fabrication. PMID:27193609

  6. 3D Image Acquisition System Based on Shape from Focus Technique

    PubMed Central

    Billiot, Bastien; Cointault, Frédéric; Journaux, Ludovic; Simon, Jean-Claude; Gouton, Pierre

    2013-01-01

    This paper describes the design of a 3D image acquisition system dedicated to natural complex scenes composed of randomly distributed objects with spatial discontinuities. In agronomic sciences, the 3D acquisition of natural scene is difficult due to the complex nature of the scenes. Our system is based on the Shape from Focus technique initially used in the microscopic domain. We propose to adapt this technique to the macroscopic domain and we detail the system as well as the image processing used to perform such technique. The Shape from Focus technique is a monocular and passive 3D acquisition method that resolves the occlusion problem affecting the multi-cameras systems. Indeed, this problem occurs frequently in natural complex scenes like agronomic scenes. The depth information is obtained by acting on optical parameters and mainly the depth of field. A focus measure is applied on a 2D image stack previously acquired by the system. When this focus measure is performed, we can create the depth map of the scene. PMID:23591964

  7. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    PubMed Central

    Verhey, Janko F; Wisser, Josef; Warfield, Simon K; Rexilius, Jan; Kikinis, Ron

    2005-01-01

    Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies. PMID:15777475

  8. Suitability of online 3D visualization technique in oil palm plantation management

    NASA Astrophysics Data System (ADS)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  9. Adaptive noise suppression technique for dense 3D point cloud reconstructions from monocular vision

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    Mobile vision-based autonomous vehicles use video frames from multiple angles to construct a 3D model of their environment. In this paper, we present a post-processing adaptive noise suppression technique to enhance the quality of the computed 3D model. Our near real-time reconstruction algorithm uses each pair of frames to compute the disparities of tracked feature points to translate the distance a feature has traveled within the frame in pixels into real world depth values. As a result these tracked feature points are plotted to form a dense and colorful point cloud. Due to the inevitable small vibrations in the camera and the mismatches within the feature tracking algorithm, the point cloud model contains a significant amount of misplaced points appearing as noise. The proposed noise suppression technique utilizes the spatial information of each point to unify points of similar texture and color into objects while simultaneously removing noise dissociated with any nearby objects. The noise filter combines all the points of similar depth into 2D layers throughout the point cloud model. By applying erosion and dilation techniques we are able to eliminate the unwanted floating points while retaining points of larger objects. To reverse the compression process, we transform the 2D layer back into the 3D model allowing points to return to their original position without the attached noise components. We evaluate the resulting noiseless point cloud by utilizing an unmanned ground vehicle to perform obstacle avoidance tasks. The contribution of the noise suppression technique is measured by evaluating the accuracy of the 3D reconstruction.

  10. Areal 3-D seismic technique for reservoir delineation: Case history from offshore Niger Delta

    SciTech Connect

    Idowu, A.O. )

    1993-02-01

    In the 1950s, early exploration period in the Niger Delta witnessed the use of 2-D (two dimensional) seismic reflection method which adequate for imaging large subsurface geologic features including growth faulting and roll-over anticlines. This technique involves the Common-Depth-Point method (CDP) which acquires a plane of seismic information in distance along the surface and in time into the geological section, and is used to improve the signal-to-noise (S/N) ratio, to remove multiples and consequently give a representation of the subsurface particularly if the data are collected up- or downdip. By mid-1980s, the obvious geological structures have, in general, been discovered and it became necessary to adopt a more sophisticated technique such as the 3-D (three dimensional) seismic method to delineate more subtle reservoirs and resolve complex fault patterns in order to aid exploration as well as facilitate efficient field development. The case history discussed in this paper involves the use of areal 3-D seismic method for delineating the reservoir characterization of the O-field located in a shallow water area of the western Niger Delta. The areal 3-D seismic technique is superior to the earlier CDP method in that a cube of seismic data can be collected in two dimensions in space and one in time by a variety of techniques including the swath seismic shooting pattern adopted for gathering the 3-D data for the O-field's reservoir which involves the line of sources. The objective is to adequately sample the subsurface so that changes in various parameters such as the amplitude phase or power in the siesmic signal or velocity of propagation can be mapped areally and interpreted as an indication of changes in the physical properties of the rock matrix.

  11. A 3-D definition of a pipe wall location using image processing techniques

    NASA Astrophysics Data System (ADS)

    Zeltser, Refael

    1988-06-01

    Measurements of fluid flow through a flexible tube are important in defining blood flow through an artery. One method is an image processing technique called rasterography, which uses a grid, optically projected on the tube from a given angle, and photographed from a different angle. The image is digitized into a computer and processed. The output consists of a 3-D description of a tube wall location after assigning height coordinates to defined x,y coordinates in the photograph.

  12. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  13. A comprehensive EPID-based 3D validation technique for TrueBeam-delivered VMAT plans

    NASA Astrophysics Data System (ADS)

    Ansbacher, W.; Gagne, I. M.; Swift, C.-L.

    2014-03-01

    Purpose: To develop and validate a pre-treatment EPI dosimetry method on Varian TrueBeam linacs using continuous imaging, with reconstruction in a 3D cylindrical phantom geometry. Methods: Delivery of VMAT plans with continuous imaging is currently possible only in Research Mode on TrueBeam linacs, with images acquired in a proprietary format. An earlier technique was adapted to take advantage of technical improvements in EPID delivery, and was tested under various acquisition conditions. The dosimetry of VMAT plans was evaluated at isocentre and within patient volumes that had been transferred to the virtual phantom. Results: Approximately 60 portal image projections per arc were found to be adequate for 3D reconstruction in phantom volumes of 28cm diameter. Twelve prostate, CNS and Head & Neck deliveries were evaluated in Research mode relative to the corresponding Eclipse (v.10) treatment plans, and to measurements on an ArcCheck device in Treatment mode. Mean dose differences at isocentre were within 2% for the three-way comparison, and in PTV volumes were within 1% (s.d. 1%). However, some discrepancies were observed in ArcCheck results that may be related to the small dimensions of certain VMAT apertures. Conclusions: EPI dosimetry with 3D dose reconstruction is an accurate, comprehensive and efficient pre-treatment validation technique for VMAT delivery. Although currently limited to a research mode on TrueBeam, it has the potential to be implemented for clinical use.

  14. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  15. 3-D surface rendering of myocardial SPECT images segmented by level set technique.

    PubMed

    Lee, Hwun-Jae; Lee, Sangbock

    2012-06-01

    SPECT(single photon emission computed tomography) myocardial imaging is a diagnosis technique that images the region of interest and examines any change induced by disease using a computer after injects intravenously a radiopharmaceutical drug emitting gamma ray and the drug has dispersed evenly in the heart . Myocardial perfusion imaging, which contains functional information, is useful for non-invasive diagnosis of myocardial disease but noises caused by physical factors and low resolution give difficulty in reading the images. In order to help reading myocardial images, this study proposed a method that segments myocardial images and reconstructs the segmented region into a 3D image. To resolve difficulty in reading, we segmented the left ventricle, the region of interest, using a level set and modeled the segmented region into a 3D image. PMID:20839037

  16. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures

    PubMed Central

    Jang, Dong-Kyu; Stidd, David A.; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham

    2016-01-01

    Purpose We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. Materials and Methods A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. Results During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (p<0.001), procedure time (P=0.023), total radiation dose (p=0.001), and fluoroscopy dose (P=0.017) relative to Group 1. During Time Period 2, there was no difference of immediate angiographic results and procedure complications between the two groups. Through the transition from Time Period 1 to Time Period 2, Group 2 demonstrated decreased fluoroscopy time (p< 0.001), procedure time (p=0.022), and procedure complication rate (p=0.041) in Time Period 2 relative to Time Period 1. Conclusion The monoplane 3D overlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique. PMID:27621947

  17. Optimization of site characterization and remediation methods using 3-D geoscience modeling and visualization techniques

    SciTech Connect

    Hedegaard, R.F.; Ho, J.; Eisert, J.

    1996-12-31

    Three-dimensional (3-D) geoscience volume modeling can be used to improve the efficiency of the environmental investigation and remediation process. At several unsaturated zone spill sites at two Superfund (CERCLA) sites (Military Installations) in California, all aspects of subsurface contamination have been characterized using an integrated computerized approach. With the aide of software such as LYNX GMS{trademark}, Wavefront`s Data Visualizer{trademark} and Gstools (public domain), the authors have created a central platform from which to map a contaminant plume, visualize the same plume three-dimensionally, and calculate volumes of contaminated soil or groundwater above important health risk thresholds. The developed methodology allows rapid data inspection for decisions such that the characterization process and remedial action design are optimized. By using the 3-D geoscience modeling and visualization techniques, the technical staff are able to evaluate the completeness and spatial variability of the data and conduct 3-D geostatistical predictions of contaminant and lithologic distributions. The geometry of each plume is estimated using 3-D variography on raw analyte values and indicator thresholds for the kriged model. Three-dimensional lithologic interpretation is based on either {open_quote}linked{close_quote} parallel cross sections or on kriged grid estimations derived from borehole data coded with permeability indicator thresholds. Investigative borings, as well as soil vapor extraction/injection wells, are sighted and excavation costs are estimated using these results. The principal advantages of the technique are the efficiency and rapidity with which meaningful results are obtained and the enhanced visualization capability which is a desirable medium to communicate with both the technical staff as well as nontechnical audiences.

  18. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  19. Progress in Ring Array Transducers for Real-Time 3D Ultrasound Guidance of Cardiac Interventional Devices

    PubMed Central

    Light, Edward D.; Lieu, Victor; Suhocki, Paul; Wolf, Patrick D.; Smith, Stephen W.

    2012-01-01

    As a treatment for aortic stenosis, several companies have recently introduced prosthetic heart valves designed to be deployed through a catheter using an intravenous or trans-apical approach. This procedure can either take the place of open heart surgery with some of the devices, or delay it with others. Real-time 3D ultrasound could enable continuous monitoring of these structures before, during and after deployment. We have developed a 2D ring array integrated with a 30 French catheter that is used for trans-apical prosthetic heart valve implantation. The transducer array was built using three 46 cm long flex circuits from MicroConnex (Snoqualmie, WA) which terminate in an interconnect that plugs directly into our system cable, thus no cable soldering is required. This transducer consists of 210 elements at .157 mm inter-element spacing and operates at 5 MHz. Average measured element bandwidth was 26% and average round-trip 50 Ohm insertion loss was -81.1 dB. The transducer were wrapped around the 1 cm diameter lumen of a heart valve deployment catheter. Prosthetic heart valve images were obtained in water tank studies. PMID:21842583

  20. Significant acceleration of 2D-3D registration-based fusion of ultrasound and x-ray images by mesh-based DRR rendering

    NASA Astrophysics Data System (ADS)

    Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nöttling, Alois; Kiefer, Philipp; Seeburger, Jörg; Neumuth, Thomas

    2013-03-01

    For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.

  1. Techniques for Assessing 3-D Cell-Matrix Mechanical Interactions In Vitro and In Vivo

    PubMed Central

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W. Matthew

    2013-01-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  2. An Image-Based Technique for 3d Building Reconstruction Using Multi-View Uav Images

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2015-12-01

    Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs) images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  3. 3D colour visualization of label images using volume rendering techniques.

    PubMed

    Vandenhouten, R; Kottenhoff, R; Grebe, R

    1995-01-01

    Volume rendering methods for the visualization of 3D image data sets have been developed and collected in a C library. The core algorithm consists of a perspective ray casting technique for a natural and realistic view of the 3D scene. New edge operator shading methods are employed for a fast and information preserving representation of surfaces. Control parameters of the algorithm can be tuned to have either smoothed surfaces or a very detailed rendering of the geometrical structure. Different objects can be distinguished by different colours. Shadow ray tracing has been implemented to improve the realistic impression of the 3D image. For a simultaneous representation of objects in different depths, hiding each other, two types of transparency mode are used (wireframe and glass transparency). Single objects or groups of objects can be excluded from the rendering (peeling). Three orthogonal cutting planes or one arbitrarily placed cutting plane can be applied to the rendered objects in order to get additional information about inner structures, contours, and relative positions. PMID:8569308

  4. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo.

    PubMed

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W Matthew

    2013-10-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  5. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  6. A novel technique for visualizing high-resolution 3D terrain maps

    NASA Astrophysics Data System (ADS)

    Dammann, John

    2007-02-01

    A new technique is presented for visualizing high-resolution terrain elevation data. It produces realistic images at small scales on the order of the data resolution and works particularly well when natural objects are present. Better visualization at small scales opens up new applications, like site surveillance for security and Google Earth-type local search and exploration tasks that are now done with 2-D maps. The large 3-D maps are a natural for high-resolution stereo display. The traditional technique drapes a continuous surface over the regularly spaced elevation values. This technique works well when displaying large areas or in cities with large buildings, but falls apart at small scales or for natural objects like trees. The new technique visualizes the terrain as a set of disjoint square patches. It is combined with an algorithm that identifies smooth areas within the scene. Where the terrain is smooth, such as in grassy areas, roads, parking lots and rooftops, it warps the patches to create a smooth surface. For trees or shrubs or other areas where objects are under-sampled, however, the patches are left disjoint. This has the disadvantage of leaving gaps in the data, but the human mind is very adept at filling in this missing information. It has the strong advantage of making natural terrain look realistic, trees and bushes look stylized but still look natural and are easy to interpret. Also, it does not add artifacts to the map, like filling in blank vertical walls where there are alcoves and other structure and extending bridges and overpasses down to the ground. The new technique is illustrated using very large 1-m resolution 3-D maps from the Rapid Terrain Visualization (RTV) program, and comparisons are made with traditional visualizations using these maps.

  7. In vitro vascularization of a combined system based on a 3D printing technique.

    PubMed

    Zhao, Xinru; Liu, Libiao; Wang, Jiayin; Xu, Yufan; Zhang, Weiming; Khang, Gilson; Wang, Xiaohong

    2014-01-01

    A vital challenge in complex organ manufacturing is to vascularize large combined tissues. The aim of this study is to vascularize in vitro an adipose-derived stem cell (ADSC)/fibrin/collagen incorporated three-dimensional (3D) poly(d,l-lactic-co-glycolic acid) (PLGA) scaffold (10 × 10 × 10 mm(3) ) with interconnected channels. A low-temperature 3D printing technique was employed to build the PLGA scaffold. A step-by-step cocktail procedure was designed to engage or steer the ADSCs in the PLGA channels towards both endothelial and smooth muscle cell lineages. The combined system had sufficient mechanical properties to support the cell/fibrin/collagen hydrogel inside the predefined PLGA channels. The ADSCs encapsulated in the fibrin/collagen hydrogel differentiated to endothelial and smooth muscle cell lineage, respectively, corresponding to their respective locations in the construct and formed vascular-like structures. This technique allows in vitro vascularization of the predefined PLGA channels and provides a choice for complex organ manufacture. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24399638

  8. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    PubMed

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  9. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  10. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-03-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined by Cone- Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (+/-1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8+/-5.5), superior-inferior (S/I) (-3.5+/-5.2), and left-right (L/R): (0.4+/-4.9). The variations were larger than the CBCT shifts. The largest inter-fractional displacement was from -2 mm to +14 mm in the AP-direction for patient 3. Thus, CBCT bone matching underestimates the uterine positional displacement due to neglecting internal uterine positional change to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match.

  11. Development and comparison of projection and image space 3D nodule insertion techniques

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  12. An accurate quadrature technique for the contact boundary in 3D finite element computations

    NASA Astrophysics Data System (ADS)

    Duong, Thang X.; Sauer, Roger A.

    2015-01-01

    This paper presents a new numerical integration technique for 3D contact finite element implementations, focusing on a remedy for the inaccurate integration due to discontinuities at the boundary of contact surfaces. The method is based on the adaptive refinement of the integration domain along the boundary of the contact surface, and is accordingly denoted RBQ for refined boundary quadrature. It can be used for common element types of any order, e.g. Lagrange, NURBS, or T-Spline elements. In terms of both computational speed and accuracy, RBQ exhibits great advantages over a naive increase of the number of quadrature points. Also, the RBQ method is shown to remain accurate for large deformations. Furthermore, since the sharp boundary of the contact surface is determined, it can be used for various purposes like the accurate post-processing of the contact pressure. Several examples are presented to illustrate the new technique.

  13. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique

    PubMed Central

    Belter, Joseph T.; Dollar, Aaron M.

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications. PMID:25880807

  14. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.

    2007-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.

  15. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    PubMed

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. PMID:24746102

  16. Full-hand 3D non-contact scanner using sub-window-based structured light-illumination technique

    NASA Astrophysics Data System (ADS)

    Yalla, Veeraganesh; Hassebrook, Laurence; Daley, Ray; Boles, Colby; Troy, Mike

    2012-06-01

    Fingerprint identification is a well-regarded and widely accepted modality in the field of biometrics for its high recognition rates. Legacy 2D contact based methods, though highly evolved in terms of technology suffer from certain drawbacks. Being contact based, there are many known issues which affect the recognition rates. Flashscan3D/University of Kentucky (UKY) developed state of the art 3D non-contact fingerprint scanners using different structured light illumination (SLI) techniques namely SLI single Point Of View (POV) and the SLI Subwindowing techniques. Capturing the fingerprints by non-contact means in 3D gives much higher quality fingerprint data which ultimately improves matching rates over a traditional 2D approach. In this paper, we present a full hand 3D non-contact scanner using the SLI Sub-windowing technique. Sample fingerprint data and experimental results for fingerprint matching based on a small sample 3D fingerprint test set are presented.

  17. Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements

    NASA Astrophysics Data System (ADS)

    Alizadeh, Mohamad Mahdi; Schuh, Harald; Schmidt, Michael

    2015-06-01

    For space geodetic techniques, operating in microwave band, ionosphere is a dispersive medium; thus, signals traveling through this medium are in the first approximation, affected proportional to the inverse of the square of their frequencies. This effect allows gaining information about the parameters of the ionosphere in terms of total electron content (TEC) or the electron density (Ne). Making use of this phenomenon, space geodetic techniques have turned into a capable tool for studying the ionosphere in the last decades. Up to now, two-dimensional (2-D) models of Vertical TEC (VTEC) have been widely developed and used by different communities; however, due to the fact that these models provide information about the integral of the whole electron content along the vertical or slant raypath, these maps are not useful when information about the ionosphere at different altitude is required. This paper presents a recent study which aims at developing a global 3-D model of the electron density, using measurements from Global Navigation Satellite Systems and by applying the ray tracing technique to the upper atmosphere. The developed modeling approach represents the horizontal variations of the electron density, with two sets of spherical harmonic expansions of degree and order 15. The height dependency of the electron density is represented by a multilayered Chapman profile function for the bottomside and topside ionosphere, and an appropriate model for the plasmasphere. In addition to the geodetic applications of the developed models, within this study, the 3-D models of electron density can include geophysical parameters like maximum electron density and its corresponding height. High-resolution modeling of these parameters allows an improved geophysical interpretation, which is essential in all studies of the upper atmosphere, space weather, and for the solar-terrestrial environment.

  18. Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2008-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  19. Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2007-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  20. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011

  1. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  2. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism

    NASA Astrophysics Data System (ADS)

    Ba, Ningning; Zhu, Lianjie; Li, Hongbin; Zhang, Guangzhi; Li, Jianfa; Sun, Jingfeng

    2016-03-01

    3-dimensional (3D) rod-like CuO with nanowire hierarchical structure has been synthesized successfully by a facile ultrasound assisted method combined with thermal conversion, using rouaite Cu2(OH)3NO3 as the precursor. The product was characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrum. Its optical properties were studied by means of UV-Vis diffuse reflectance absorption spectroscopy and photoluminescence (PL) spectrum. Series of control experiments have been performed to explore influencing factors to the product morphologies and a possible formation mechanism has been proposed. The results show that each CuO rod assembled by tens of nanowires is 200-300 nm in diameter and about 1000 nm in length. Each nanowire contains many interconnected nanoparticles with sizes of about 15 nm. Particularly, ultrasound processing was found beneficial to the formation of the 3D rod-like CuO with nanowire hierarchical structure.

  3. Cross-Modality Validation of Acetabular Surface Models Using 3-D Ultrasound Versus Magnetic Resonance Imaging in Normal and Dysplastic Infant Hips.

    PubMed

    Diederichs, Chad; Heath, Alana; Hareendranathan, Abhilash R; Zonoobi, Dornoosh; Kuntze, Gregor; Dulai, Sukhdeep; Mabee, Myles G; Ronsky, Janet L; Jaremko, Jacob L

    2016-09-01

    Current imaging diagnosis of developmental dysplasia of the hip (DDH) in infancy relies on 2-D ultrasound (US), which is highly operator-dependent. 3-D US offers more complete, and potentially more reliable, imaging of infant hip geometry. We sought to validate the fidelity of acetabular surface models obtained by 3-D US against those obtained concurrently by magnetic resonance imaging (MRI). 3-D US and MRI scans were performed on the same d in 20 infants with normal to severely dysplastic hips (mean age, 57 d; range 13-181 d). 3-D US was performed by two observers using a Philips VL13-5 probe. Coronal 3-D multi-echo data image combination (MEDIC) magnetic resonance (MR) images (1-mm slice thickness) were obtained, usually without sedation, in a 1.5 T Siemens unit. Acetabular surface models were generated for 40 hips from 3-D US and MRI using semi-automated tracing software, separately by three observers. For each hip, the 3-D US and MRI models were co-registered to overlap as closely as possible using Amira software, and the root mean square (RMS) distances between points on the models were computed. 3-D US scans took 3.2 s each. Inter-modality variability was visually minimal. Mean RMS distance between corresponding points on the acetabular surface at 3-D US and MRI was 0.4 ± 0.3 mm, with 95% confidence interval <1 mm. Mean RMS errors for inter-observer and intra-observer comparisons were significantly less for 3-D US than for MRI, while inter-scan and inter-modality comparisons showed no significant difference. Acetabular geometry was reproduced by 3-D US surface models within 1 mm of the corresponding 3-D MRI surface model, and the 3-D US models were more reliable. This validates the fidelity of 3-D US modeling and encourages future use of 3-D US in assessing infant acetabulum anatomy, which may be useful to detect and monitor treatment of hip dysplasia. PMID:27209429

  4. Adaptive enhancement and visualization techniques for 3D THz images of breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Wu, Yuhao; Bowman, Tyler; Gauch, John; El-Shenawee, Magda

    2016-03-01

    This paper evaluates image enhancement and visualization techniques for pulsed terahertz (THz) images of tissue samples. Specifically, our research objective is to effectively differentiate between heterogeneous regions of breast tissues that contain tumors diagnosed as triple negative infiltrating ductal carcinoma (IDC). Tissue slices and blocks of varying thicknesses were prepared and scanned using our lab's THz pulsed imaging system. One of the challenges we have encountered in visualizing the obtained images and differentiating between healthy and cancerous regions of the tissues is that most THz images have a low level of details and narrow contrast, making it difficult to accurately identify and visualize the margins around the IDC. To overcome this problem, we have applied and evaluated a number of image processing techniques to the scanned 3D THz images. In particular, we employed various spatial filtering and intensity transformation techniques to emphasize the small details in the images and adjust the image contrast. For each of these methods, we investigated how varying filter sizes and parameters affect the amount of enhancement applied to the images. Our experimentation shows that several image processing techniques are effective in producing THz images of breast tissue samples that contain distinguishable details, making further segmentation of the different image regions promising.

  5. Sloped irradiation techniques in deep x-ray lithography for 3D shaping of microstructures

    NASA Astrophysics Data System (ADS)

    Feiertag, Gregor; Ehrfeld, Wolfgang; Lehr, Heinz; Schmidt, Martin

    1997-07-01

    Deep x-ray lithography (DXRL) makes use of synchrotron radiation (SR) to transfer an absorber pattern from a mask into a thick resist layer. For most applications the direction of the SR beam is perpendicular to the mask and the resist plane. Subsequent replication techniques, e.g. electroforming, moulding or hot embossing, convert the resist relief obtained after development into micromechanical, microfluidic or micro- optical elements made from metals, polymers or ceramic materials. This process sequence is well known as the LIGA technique. The normal shadow printing process is complemented and enhanced by advanced techniques, e.g. by tilting the mask and the resist with respect to the SR beam or aligned multiple exposures to produce step-like structures. In this paper a technology for the fabrication of multidirectional inclined microstructures applying multiple tilted DXRL will be presented. Instead of one exposure with the mask/substrate assembly perpendicular to the SR beam, irradiation is performed several times applying tilt and rotational angles of the mask/substrate assembly relative to the SR beam. A huge variety of 3-D structures can be obtained using this technique. Some possible applications will be discussed.

  6. Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques

    ERIC Educational Resources Information Center

    Wang, Yushun; Zhuang, Yueting

    2008-01-01

    Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…

  7. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  8. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  9. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity

    NASA Astrophysics Data System (ADS)

    Yao, Hepeng; Luan, Tian; Li, Chen; Zhang, Yin; Ma, Zhaoyuan; Chen, Xuzong

    2016-01-01

    Pursuing ultralow temperature 3D atom gas under microgravity conditions is one of the popular topics in the field of ultracold research. Many groups around the world are using, or are planning to use, delta-kick cooling (DKC) in microgravity. Our group has also proposed a two-stage crossed beam cooling (TSCBC) method that also provides a path to picokelvin temperatures. In this paper, we compare the characteristics of TSCBC and DKC for producing a picokelvin system in microgravity. Using a direct simulation Monte Carlo (DSMC) method, we simulate the cooling process of 87Rb using the two different cooling techniques. Under the same initial conditions, 87Rb can reach 7 pK in 15 s using TSCBC and 75 pK in 5.1 s with DKC. The simulation results show that TSCBC can reach lower temperatures compared with DKC, but needs more time and a more stable laser.

  10. Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures

    PubMed Central

    Westin, Carl-Fredrik; Vosburgh, Kirby G.

    2010-01-01

    Purpose A method to register endoscopic and laparoscopic ultrasound (US) images in real time with pre-operative computed tomography (CT) data sets has been developed with the goal of improving diagnosis, biopsy guidance, and surgical interventions in the abdomen. Methods The technique, which has the potential to operate in real time, is based on a new phase correlation technique: LEPART, which specifies the location of a plane in the CT data which best corresponds to the US image. Validation of the method was carried out using an US phantom with cyst regions and with retrospective analysis of data sets from animal model experiments. Results The phantom validation study shows that local translation displacements can be recovered for each US frame with a root mean squared error of 1.56 ± 0.78 mm in less than 5 sec, using non-optimized algorithm implementations. Conclusion A new method for multimodality (preoperative CT and intraoperative US endoscopic images) registration to guide endoscopic interventions was developed and found to be efficient using clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel computing system so that full real time operation appears likely. PMID:20033331

  11. A novel mesh processing based technique for 3D plant analysis

    PubMed Central

    2012-01-01

    Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean

  12. Image guided radiation therapy applications for head and neck, prostate, and breast cancers using 3D ultrasound imaging and Monte Carlo dose calculations

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle

    In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck

  13. Advanced 3D-Sonographic Imaging as a Precise Technique to Evaluate Tumor Volume

    PubMed Central

    Pflanzer, R.; Hofmann, M.; Shelke, A.; Habib, A.; Derwich, W.; Schmitz-Rixen, T.; Bernd, A.; Kaufmann, R.; Bereiter-Hahn, J.

    2014-01-01

    Determination of tumor volume in subcutaneously inoculated xenograft models is a standard procedure for clinical and preclinical evaluation of tumor response to treatment. Practitioners frequently use a hands-on caliper method in conjunction with a simplified formula to assess tumor volume. Non-invasive and more precise techniques as investigation by MR or (μ)CT exist but come with various adverse effects in terms of radiation, complex setup or elevated cost of investigations. Therefore, we propose an advanced three-dimensional sonographic imaging technique to determine small tumor volumes in xenografts with high precision and minimized observer variability. We present a study on xenograft carcinoma tumors from which volumes and shapes were calculated with the standard caliper method as well as with a clinically available three-dimensional ultrasound scanner and subsequent processing software. Statistical analysis reveals the suitability of this non-invasive approach for the purpose of a quick and precise calculation of tumor volume in small rodents. PMID:25500076

  14. Use of 2D and 3D Imaging Techniques to Understand Fracture Growth

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.

    2004-05-01

    The monitoring of acoustic emissions (AE) is a valuable tool for studying the brittle fracture process in rock. With the improved characterization of transducer response, researchers are able to apply a broad spectrum of seismological techniques to AE catalogues collected in the laboratory; i.e., moment tensor analysis, Vp/Vs ratios, attenuation, event clustering statistics, Gutenberg-Richter b-value and aftershock analysis. Since AE occurs spontaneously as a result of unstable microcrack growth during rock deformation experiments, it provides a non-destructive method to observe damage accumulation. I will give examples of visualization techniques that have proven helpful in the analysis of fracture nucleation and growth based on 3D event locations in granite and sandstone samples. These techniques are useful in interpreting the development of complex fracture systems in lab samples. Complementary measurements of wave speed anisotropy and heterogeneity are used to infer both the development of damage zones and the rate of infiltration of water during fluid injection experiments. Finally, spatial clustering of AE events is evaluated in terms of the surface roughness of reactivated faults during triaxial deformation experiments.

  15. Thermal characterization of a liquid resin for 3D printing using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, José L.; Pincel, Pavel Vieyra; Cruz-Orea, Alfredo; Correa-Pacheco, Zormy N.

    2016-05-01

    Thermal properties of a liquid resin were studied by thermal lens spectrometry (TLS) and open photoacoustic cell (OPC), respectively. In the case of the TLS technique, the two mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Argon laser was used as the excitation source. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity ( α) of the resin. On the other hand, the sample thermal effusivity ( e) was obtained by using the OPC technique. In this technique, an Argon laser was used as the excitation source and was operated at 514 nm with an output power of 30 mW. From the obtained thermal diffusivity ( α) and thermal effusivity ( e) values, the thermal conductivity ( k) and specific heat capacity per unit volume ( ρc) of resin were calculated through the relationships k = e( α)1/2 and ρc = e/( α)1/2. The obtained thermal parameters were compared with the thermal parameters of the literature. To our knowledge, the thermal characterization of resin has not been reported until now. The present study has applications in laser stereo-lithography to manufacture 3D printing pieces.

  16. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.

    PubMed

    Miyake, Akira; Matsuno, Junya; Toh, Shoichi

    2014-11-01

    Three-dimensional (3D) imaging techniques, such as x-ray computed tomography (XCT), serial sectioning method, transmission electron microtomography (TEMT) and 3D atom probe (3DAP), provides 3D internal structures and external form of objects. In order to obtain the 3D images of one object from the synchrotron-XCT (SR-XCT), FIB-SEM serial sectioning, TEMT and 3DAP, in the present study, the common sample holder and improvement in the TEM tomography retainer were made. We report the sample holder, the TEM retainer, and the sample preparation method using focused ion beam (FIB) and show the 3D images obtained from SR-XCT, FIB-SEM and TEMT of quartz sample containing fluid inclusions.The present common sample holder was made from tungsten needle and copper pipe. The tungsten needle was made from the wire by electropolishing in aqueous ammonia and salt as molten material. A micro-sample of quartz containing fluid inclusions was picked up from the thin section using a focused ion beam (FIB) system (FEI, Quanta 200 3DS), Kyoto University. The FIB system used a Ga(+) ion gun at the condition of 30 kV and 3-65 nA. After a specific area (ca. several ten μm on a side) of the quartz was cut out to a depth of 10 - 30 µm by FIB, it was held at a tip of tungsten needle with platinum deposition (Figure 1a) [1]. Then it was observed by imaging tomography system using a Frenel zone plate at BL47XU, SPring-8, Japan [2]. The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of ∼200 nm. The characteristic of this method (FIB-XCT) is that the XCT sample can be exactly picked up from a specific area from thin section and bulk specimen after the observation using optical microscopy and/or scanning electron microscopy (SEM). After the FIB-XCT observation, the sample held at a tip of tungsten needle was directly inserted into the FIB-SEM system and the cross-section surface were observed by FIB-SEM. Figure 1b shows a snap shot of the cross

  17. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  18. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    PubMed Central

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  19. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment.

    PubMed

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  20. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  1. Tumor Functional and Molecular Imaging Utilizing Ultrasound and Ultrasound-Mediated Optical Techniques

    PubMed Central

    Yuan, Baohong; Rychak, Joshua

    2014-01-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques. PMID:23219728

  2. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  3. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  4. Routine characterization of 3-D profiles of SRF cavity defects using replica techniques

    SciTech Connect

    Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L.D.; /Fermilab

    2010-09-01

    Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this article we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3-D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometer-scale information, and we describe various curious features, such as small peaks at the bottom of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing dose not adversely affect the cavity RF performance.

  5. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  6. A Comparative Analysis between Active and Passive Techniques for Underwater 3D Reconstruction of Close-Range Objects

    PubMed Central

    Bianco, Gianfranco; Gallo, Alessandro; Bruno, Fabio; Muzzupappa, Maurizio

    2013-01-01

    In some application fields, such as underwater archaeology or marine biology, there is the need to collect three-dimensional, close-range data from objects that cannot be removed from their site. In particular, 3D imaging techniques are widely employed for close-range acquisitions in underwater environment. In this work we have compared in water two 3D imaging techniques based on active and passive approaches, respectively, and whole-field acquisition. The comparison is performed under poor visibility conditions, produced in the laboratory by suspending different quantities of clay in a water tank. For a fair comparison, a stereo configuration has been adopted for both the techniques, using the same setup, working distance, calibration, and objects. At the moment, the proposed setup is not suitable for real world applications, but it allowed us to conduct a preliminary analysis on the performances of the two techniques and to understand their capability to acquire 3D points in presence of turbidity. The performances have been evaluated in terms of accuracy and density of the acquired 3D points. Our results can be used as a reference for further comparisons in the analysis of other 3D techniques and algorithms. PMID:23966193

  7. A comparative analysis between active and passive techniques for underwater 3D reconstruction of close-range objects.

    PubMed

    Bianco, Gianfranco; Gallo, Alessandro; Bruno, Fabio; Muzzupappa, Maurizio

    2013-01-01

    In some application fields, such as underwater archaeology or marine biology, there is the need to collect three-dimensional, close-range data from objects that cannot be removed from their site. In particular, 3D imaging techniques are widely employed for close-range acquisitions in underwater environment. In this work we have compared in water two 3D imaging techniques based on active and passive approaches, respectively, and whole-field acquisition. The comparison is performed under poor visibility conditions, produced in the laboratory by suspending different quantities of clay in a water tank. For a fair comparison, a stereo configuration has been adopted for both the techniques, using the same setup, working distance, calibration, and objects. At the moment, the proposed setup is not suitable for real world applications, but it allowed us to conduct a preliminary analysis on the performances of the two techniques and to understand their capability to acquire 3D points in presence of turbidity. The performances have been evaluated in terms of accuracy and density of the acquired 3D points. Our results can be used as a reference for further comparisons in the analysis of other 3D techniques and algorithms. PMID:23966193

  8. Ultrasound-assisted fabrication of a new nano-rods 3D copper(II)-organic coordination supramolecular compound.

    PubMed

    Hanifehpour, Younes; Safarifard, Vahid; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo

    2016-07-01

    High-energy ultrasound irradiation has been used for the synthesis of a new copper(II) coordination supramolecular compound, [Cu2(μ-O2CCH3)2(μ-OOCCH3)(phen)2](BF4) (1), ("phen" is 1,10-phenanthroline) with nano-rods morphology. The new nano-structure was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy and elemental analyses. Compound 1 was structurally characterized by single crystal X-ray diffraction. The utilization of high intensity ultrasound has found as a facile, environmentally friendly, and versatile synthetic tool for the supramolecular coordination compounds. PMID:26964941

  9. [3D real time contrast enhanced ultrasonography,a new technique].

    PubMed

    Dietrich, C F

    2002-02-01

    While 3D sonography has become established in gynecology, abdominal applications have been mainly restricted to case reports. However, recent advances in computer technology have supported the development of new systems with motion detection methods and image registration algorithms - making it possible to acquire 3D data without position sensors, before and after administration of contrast enhancing agents. Hepatic (and also splenic) applications involve the topographic localization of masses in relation to the vessels, e.g. hepatic veins and portal vein branches prior to surgical procedures (segment localization). 3D imaging in the characterization of liver tumors after administration of contrast enhancing agents could become of special importance. We report on the first use of 3D imaging of the liver and spleen under real time conditions in 10 patients, using contrast enhanced phase inversion imaging with low mechanical index, which may improve the detection rate and characterization of liver and splenic tumors. PMID:11898076

  10. 3D rendering of SAR distributions from Thermotron RF-8 using a ray casting technique.

    PubMed

    Paliwal, B R; Gehring, M A; Sanders, C; Mackie, T R; Raffety, H M; Song, C W

    1991-01-01

    A comprehensive 3D visualization package developed for CT-based 3D radiation treatment planning has been modified to volume-render SAR data. The program accepts data from sequential thermographic thermometry measurements as well as calculated data from thermal models. In this presentation sample data obtained from a capacitive heating system 'Thermotron-RF8' is presented. This capability allows the generation of accurate standardized volumetric images of SAR and provides a valuable tool to better preplan hyperthermia treatments. PMID:1919152

  11. Three dimensional (3D) distribution calculation of chlorophyll in rice based on infrared imaging technique

    NASA Astrophysics Data System (ADS)

    Li, Zong-nan; Xie, Jing; Zhang, Jian

    2014-11-01

    Chlorophyll content and distribution in leaf can reflect the plant health and nutrient status of the plant indirectly. It is meaningful to monitor the 3D distribution of chlorophyll in plant science. It can be done by the method in this paper: Firstly, the chlorophyll contents at different point in leaf are measured with the SPAD-502 chlorophyll meter, and the RGN images composed by the channel R, G and NIR are captured with the imaging system. Secondly, the 3D model is built from the RGN images and the RGN texture map containing all the information of R, G and NIR is generated. Thirdly, the regression model between chlorophyll content and color characteristics is established. Finally, the 3D distribution of chlorophyll in rice is captured by mapping the 2D distribution map of chlorophyll calculated by the regression model to the 3D model. This methodology achieves the combination of phenotype and physiology, it can calculated the 3D distribution of chlorophyll in rice well. The color characteristic g is good indicator of chlorophyll content which can be used to measure the 3D distribution of chlorophyll quickly. Moreover, the methodology can be used to high throughout analyze the rice.

  12. Accelerating orthodontic tooth movement: A new, minimally-invasive corticotomy technique using a 3D-printed surgical template

    PubMed Central

    Giansanti, Matteo

    2016-01-01

    Background A reduction in orthodontic treatment time can be attained using corticotomies. The aggressive nature of corticotomy due to the elevation of muco-periosteal flaps and to the duration of the surgery raised reluctance for its employ among patients and dental community. This study aims to provide detailed information on the design and manufacture of a 3D-printed CAD-CAM (computer-aided design and computer-aided manufacturing) surgical guide which can aid the clinician in achieving a minimally-invasive, flapless corticotomy. Material and Methods An impression of dental arches was created; the models were digitally-acquired using a 3D scanner and saved as STereoLithography ( STL ) files. The patient underwent cone beam computed tomography (CBCT): images of jaws and teeth were transformed into 3D models and saved as an STL file. An acrylic template with the design of a surgical guide was manufactured and scanned. The STLs of jaws, scanned casts, and acrylic templates were matched. 3D modeling software allowed the view of the 3D models from different perspectives and planes with perfect rendering. The 3D model of the acrylic template was transformed into a surgical guide with slots designed to guide, at first, a scalpel blade and then a piezoelectric cutting insert. The 3D STL model of the surgical guide was printed. Results This procedure allowed the manufacturing of a 3D-printed CAD/CAM surgical guide, which overcomes the disadvantages of the corticotomy, removing the need for flap elevation. No discomfort, early surgical complications or unexpected events were observed. Conclusions The effectiveness of this minimally-invasive surgical technique can offer the clinician a valid alternative to other methods currently in use. Key words:Corticotomy, orthodontics, CAD/CAM, minimally invasive, surgical template, 3D printer. PMID:27031067

  13. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  14. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI).

    PubMed

    Qiu, Jian-Jian; Chang, Zheng; Horton, Janet K; Wu, Qing-Rong Jackie; Yoo, Sua; Yin, Fang-Fang

    2014-01-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V10) or 20Gy (V20) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V5 and D5). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery

  15. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    SciTech Connect

    Qiu, Jian-Jian; Chang, Zheng; Horton, Janet K.; Wu, Qing-Rong Jackie; Yoo, Sua; Yin, Fang-Fang

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In

  16. Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching

    NASA Astrophysics Data System (ADS)

    Nam, Woo Hyun; Kang, Dong-Goo; Lee, Duhgoon; Lee, Jae Young; Ra, Jong Beom

    2012-01-01

    The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.

  17. Effects of Processing and Medical Sterilization Techniques on 3D-Printed and Molded Polylactic Acid

    NASA Astrophysics Data System (ADS)

    Geritano, Mariah Nicole

    Manufacturing industries have evolved tremendously in the past decade with the introduction of Additive Manufacturing (AM), also known as 3D Printing. The medical device industry has been a leader in adapting this new technology into research and development. 3D printing enables medical devices and implants to become more customizable, patient specific, and allows for low production numbers. This study compares the mechanical and thermal properties of traditionally manufactured parts versus parts manufactured through 3D printing before and after sterilization, and the ability of an FDM printer to produce reliable, identical samples. It was found that molded samples and 100% infill high-resolution samples have almost identical changes in properties when exposed to different sterilization methods, and similar cooling rates. The data shown throughout this investigation confirms that manipulation of printing parameters can result in an object with comparable material properties to that created through traditional manufacturing methods.

  18. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  19. Evaluation of a prototype 3D ultrasound system for multimodality imaging of cervical nodes for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle; Fava, Palma; Cury, Fabio; Vuong, Te; Falco, Tony; Verhaegen, Frank

    2007-03-01

    Sonography has good topographic accuracy for superficial lymph node assessment in patients with head and neck cancers. It is therefore an ideal non-invasive tool for precise inter-fraction volumetric analysis of enlarged cervical nodes. In addition, when registered with computed tomography (CT) images, ultrasound information may improve target volume delineation and facilitate image-guided adaptive radiation therapy. A feasibility study was developed to evaluate the use of a prototype ultrasound system capable of three dimensional visualization and multi-modality image fusion for cervical node geometry. A ceiling-mounted optical tracking camera recorded the position and orientation of a transducer in order to synchronize the transducer's position with respect to the room's coordinate system. Tracking systems were installed in both the CT-simulator and radiation therapy treatment rooms. Serial images were collected at the time of treatment planning and at subsequent treatment fractions. Volume reconstruction was performed by generating surfaces around contours. The quality of the spatial reconstruction and semi-automatic segmentation was highly dependent on the system's ability to track the transducer throughout each scan procedure. The ultrasound information provided enhanced soft tissue contrast and facilitated node delineation. Manual segmentation was the preferred method to contour structures due to their sonographic topography.

  20. Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377

  1. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  2. Building on realism and magic for designing 3D interaction techniques.

    PubMed

    Kulik, A

    2009-01-01

    Imagination-based interaction can complement reality-based interaction in the design of 3D user interfaces. This hybrid approach could lead to interface design guidelines that promote higher-level consistency, and thus usability, for a large range of diverse interfaces. PMID:24806776

  3. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    PubMed

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull. PMID:24206011

  4. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    PubMed

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry. PMID:25686978

  5. 3D filtering technique in presence of additive noise in color videos implemented on DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Palacios, Alfredo

    2014-05-01

    A filtering method for color videos contaminated by additive noise is presented. The proposed framework employs three filtering stages: spatial similarity filtering, neighboring frame denoising, and spatial post-processing smoothing. The difference with other state-of- the-art filtering methods, is that this approach, based on fuzzy logic, analyses basic and related gradient values between neighboring pixels into a 7 fi 7 sliding window in the vicinity of a central pixel in each of the RGB channels. Following, the similarity measures between the analogous pixels in the color bands are taken into account during the denoising. Next, two neighboring video frames are analyzed together estimating local motions between the frames using block matching procedure. In the final stage, the edges and smoothed areas are processed differently in a current frame during the post-processing filtering. Numerous simulations results confirm that this 3D fuzzy filter perform better than other state-of-the- art methods, such as: 3D-LLMMSE, WMVCE, RFMDAF, FDARTF G, VBM3D and NLM, in terms of objective criteria (PSNR, MAE, NCD and SSIM) as well as subjective perception via human vision system in the different color videos. An efficiency analysis of the designed and other mentioned filters have been performed on the DSPs TMS320 DM642 and TMS320DM648 by Texas Instruments through MATLAB and Simulink module showing that the novel 3D fuzzy filter can be used in real-time processing applications.

  6. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.

    PubMed

    Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N

    2007-01-01

    We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties. PMID:18265416

  7. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  8. Recovering a collapsed medieval fresco by using 3D modeling techniques

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Rinaudo, F.

    2014-05-01

    The paper presents the results of a reconstruction of the 3D model of a dome and of a medieval fresco, collapsed after an earthquake and now reconstructed in significant portions, to offer to the visitors a possible reconstruction of the lost masterpiece of medieval art. After the earthquake the collapsed dome was replaced by means of a concrete sphere connected with the survived portions of the old dome's timber. The old dome shape and the fresco were virtually reconstructed thanks to a set of historical pictures obtained by Italian, USA and German archives; those images have been calibrated and oriented by using modern digital photogrammetric approach and a realistic 3D model of the old inner surface of the dome has been realised. By using a LiDAR survey the 3D model of the apse and of the dome, has been set up and the boundaries between original and new structures have been reconstructed by visual evidences.The new dome has been virtually erased and the old dome with the fresco 3D model inserted allowing the reconstruction of the apse as it was before the earthquake. This virtual 3D model has been used to realise a 1:1 scale model of the old dome where the restorers fit some parts of the old fresco fragments recovered just after the earthquake, cleaned and classified. The fresco images correctly oriented inside the reconstructed dome have been projected on plane surfaces by using azimuthal orthographic projections of small portions of the dome in order to reduce the geometric deformations and to allow the mosaicking of these small planes onto a spherical surface.

  9. Postpartum translabial 2D and 3D ultrasound measurements of the anal sphincter complex in primiparous women delivering by vaginal birth versus Cesarean delivery

    PubMed Central

    Hall, Rebecca J.; Leeman, Lawrence M.; Migliaccio, Laura; Qualls, Clifford; Rogers, Rebecca G.

    2015-01-01

    Introduction and hypothesis Consensus on normal translabial ultrasound (TL-US) anal sphincter complex measurements for postpartum women is lacking. We aimed to evaluate normative measurements in 2D and 3D TL-US for the anal sphincter complex (ASC) at 6 months postpartum and compare these measurements in women who had a vaginal birth (VB) and in those who had a Cesarean delivery (CD). Methods A large, prospective cohort of primiparous women underwent 2D and 3D TL-US 6 months after their first delivery. For normative sphincter measurements, we excluded women with third- or fourth-degree lacerations or with sphincter interruption on TL-US. Measurements included the sphincter thickness at the 3, 6, 9, and 12 o'clock positions of the external anal sphincter (EAS) and the internal anal sphincter (IAS) at proximal, mid, and distal levels. We also measured the mean coronal diameter of the pubovisceralis muscle (PVM). Results 696 women consented to participate, and 433 women presented for ultrasound imaging 6 months later. Women who sustained a third- or fourth-degree laceration had significantly thicker EAS measurements at 12 o'clock. Sphincter asymmetry was common (69 %), but was not related to mode of delivery. Only IAS measurements at the proximal and distal 12 o'clock position were significantly thicker for CD patients. There were no significant differences in the EAS or PVM measurements between VB and CD women. Conclusions There appear to be few differences in normative sphincter ultrasound measurements between primiparous patients who had VB or CD. PMID:24105408

  10. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm.

    PubMed

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão

    2016-06-01

    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p < 0.001). The median global maximum rotation decreased progressively from group 1 to group 3 (1.38º (IR: 0.77-2.13), 0.80º (IR: 0.57-1.0) and 0.50º (IR: 0.31-0.75), p < 0.001). AAA volume estimations by 3D-US correlated well with CT (R(2) = 0.76). In conclusion, US with 3D properties is non-invasive and has the potential to evaluate volumetry and biomechanical characteristics of AAA. PMID:26896335

  11. NOTE: Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    NASA Astrophysics Data System (ADS)

    Narayanan, R.; Werahera, P. N.; Barqawi, A.; Crawford, E. D.; Shinohara, K.; Simoneau, A. R.; Suri, J. S.

    2008-10-01

    Due to lack of imaging modalities to identify prostate cancer in vivo, current TRUS guided prostate biopsies are taken randomly. Consequently, many important cancers are missed during initial biopsies. The purpose of this study was to determine the potential clinical utility of a high-speed registration algorithm for a 3D prostate cancer atlas. This 3D prostate cancer atlas provides voxel-level likelihood of cancer and optimized biopsy locations on a template space (Zhan et al 2007). The atlas was constructed from 158 expert annotated, 3D reconstructed radical prostatectomy specimens outlined for cancers (Shen et al 2004). For successful clinical implementation, the prostate atlas needs to be registered to each patient's TRUS image with high registration accuracy in a time-efficient manner. This is implemented in a two-step procedure, the segmentation of the prostate gland from a patient's TRUS image followed by the registration of the prostate atlas. We have developed a fast registration algorithm suitable for clinical applications of this prostate cancer atlas. The registration algorithm was implemented on a graphical processing unit (GPU) to meet the critical processing speed requirements for atlas guided biopsy. A color overlay of the atlas superposed on the TRUS image was presented to help pick statistically likely regions known to harbor cancer. We validated our fast registration algorithm using computer simulations of two optimized 7- and 12-core biopsy protocols to maximize the overall detection rate. Using a GPU, patient's TRUS image segmentation and atlas registration took less than 12 s. The prostate cancer atlas guided 7- and 12-core biopsy protocols had cancer detection rates of 84.81% and 89.87% respectively when validated on the same set of data. Whereas the sextant biopsy approach without the utility of 3D cancer atlas detected only 70.5% of the cancers using the same histology data. We estimate 10-20% increase in prostate cancer detection rates

  12. Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique.

    PubMed

    Ahadian, Samad; Yamada, Shukuyo; Ramón-Azcón, Javier; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2014-10-01

    In this manuscript, we demonstrate the rapid formation of three-dimensional (3D) embryonic stem cell (ESC) aggregates with controllable sizes and shapes in hydrogels using dielectrophoresis (DEP). The ESCs encapsulated within a methacrylated gelatin (GelMA) prepolymer were introduced into a DEP device and, upon applying an electric field and crosslinking of the GelMA hydrogel, formed 3D ESC aggregates. Embryoid bodies (EBs) fabricated using this method showed high cellular viability and pluripotency. The proposed technique enables production of EBs on a large scale and in a high-throughput manner for potential cell therapy and tissue regeneration applications. PMID:25082412

  13. Shape optimization of 3D continuum structures via force approximation techniques

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kodiyalam, Srinivas

    1988-01-01

    The existing need to develop methods whereby the shape design efficiency can be improved through the use of high quality approximation methods is addressed. An efficient approximation method for stress constraints in 3D shape design problems is proposed based on expanding the nodal forces in Taylor series with respect to shape variations. The significance of this new method is shown through elementary beam theory calculations and via numerical computations using 3D solid finite elements. Numerical examples including the classical cantilever beam structure and realistic automotive parts like the engine connecting rod are designed for optimum shape using the proposed method. The numerical results obtained from these methods are compared with other published results, to assess the efficiency and the convergence rate of the proposed method.

  14. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  15. Mitigation of Variability among 3D Echocardiography-Derived Regional Strain Values Acquired by Multiple Ultrasound Systems by Vendor Independent Analysis

    PubMed Central

    Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Sahn, David J.; Ashraf, Muhammad

    2016-01-01

    Introduction This study compared the variability of 3D echo derived circumferential and longitudinal strain values computed from vendor-specific and vendor-independent analyses of images acquired using ultrasound systems from different vendors. Methods Ten freshly harvested porcine hearts were studied. Each heart was mounted on a custom designed phantom and driven to simulate normal cardiac motion. Cardiac rotation was digitally controlled and held constant at 5°, while pumped stroke volume (SV) ranged from 30-70ml. Full-volume image data was acquired using three different ultrasound systems from different vendors. The image data was analyzed for longitudinal and circumferential strains (LS, CS) using both vendor-specific and vendor-independent analysis packages. Results Good linear relationships were observed for each vendor-specific analysis package for both CS and LS at the mid-anterior segment, with correlation coefficients ranging from 0.82–0.91 (CS) and 0.86–0.89 (LS). Comparable linear regressions were observed for results determined by a vendor independent program (CS: R = 0.82–0.89; LS: R = 0.86–0.89). Variability between analysis packages was examined via a series of ANOVA tests. A statistical difference was found between vendor-specific analysis packages (p<0.001), while no such difference was observed between ultrasound systems when using the vendor-independent program (p>0.05). Conclusions Circumferential and longitudinal regional strain values differ when quantified by vendor-specific analysis packages; however, this variability is mitigated by use of a vendor-independent quantification method. These results suggest that echocardiograms acquired using different ultrasound systems could be meaningfully compared using vendor-independent software. PMID:27149685

  16. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.

  17. Generation of 3D Model for Urban area using Ikonos and Cartosat-1 Satellite Imageries with RS and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Rajpriya, N. R.; Vyas, A.; Sharma, S. A.

    2014-11-01

    Urban design is a subject that is concerned with the shape, the surface and its physical arrangement of all kinds of urban elements. Although urban design is a practice process and needs much detailed and multi-dimensional description. 3D city models based spatial analysis gives the possibility of solving these problems. Ahmedabad is third fastest growing cities in the world with large amount of development in infrastructure and planning. The fabric of the city is changing and expanding at the same time, which creates need of 3d visualization of the city to develop a sustainable planning for the city. These areas have to be monitored and mapped on a regular basis and satellite remote sensing images provide a valuable and irreplaceable source for urban monitoring. With this, the derivation of structural urban types or the mapping of urban biotopes becomes possible. The present study focused at development of technique for 3D modeling of buildings for urban area analysis and to implement encoding standards prescribed in "OGC City GML" for urban features. An attempt has been to develop a 3D city model with level of details 1 (LOD 1) for part of city of Ahmedabad in State of Gujarat, India. It shows the capability to monitor urbanization in 2D and 3D.

  18. Techniques for Field Application of Lingual Ultrasound Imaging

    ERIC Educational Resources Information Center

    Gick, Bryan; Bird, Sonya; Wilson, Ian

    2005-01-01

    Techniques are discussed for using ultrasound for lingual imaging in field-related applications. The greatest challenges we have faced distinguishing the field setting from the laboratory setting are the lack of controlled head/transducer movement, and the related issue of tissue compression. Two experiments are reported. First, a pilot study…

  19. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    PubMed Central

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-01-01

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT

  20. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    SciTech Connect

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-12-15

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm

  1. Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC(2) Metric.

    PubMed

    Fuerst, Bernhard; Wein, Wolfgang; Müller, Markus; Navab, Nassir

    2014-12-01

    To enable image guided neurosurgery, the alignment of pre-interventional magnetic resonance imaging (MRI) and intra-operative ultrasound (US) is commonly required. We present two automatic image registration algorithms using the similarity measure Linear Correlation of Linear Combination (LC(2)) to align either freehand US slices or US volumes with MRI images. Both approaches allow an automatic and robust registration, while the three dimensional method yields a significantly improved percentage of optimally aligned registrations for randomly chosen clinically relevant initializations. This study presents a detailed description of the methodology and an extensive evaluation showing an accuracy of 2.51mm, precision of 0.85mm and capture range of 15mm (>95% convergence) using 14 clinical neurosurgical cases. PMID:24842859

  2. Ultrafast holographic technique for 3D in situ documentation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter

    2003-10-01

    A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.

  3. Ultrasound imaging techniques in density separation of polyolefin waste.

    PubMed

    Sanaee, Seyed Ali; Bakker, M C M

    2012-12-01

    Ultrasound imaging techniques are investigated using a multi-element sensor array for purposes of monitoring and measurement ofpolyolefin waste particles inside the black ferrous liquid ofa magnetic density separator (MDS). A medical ultrasound imaging system with real-time capability was adapted first to assess the potential of imaging technology inside the MDS. An image processing routine was developed to determine the depth distribution of the detected particles as they are carried by the flow in the MDS channel. This real-time information is vital for optimizing the splitter position, which directly influences quality and recovery of the MDS polyolefin products. Despite successes in the laboratory, the medical technology proved unsatisfactory for continuous high-quality image forming in the industrial set-up as it requires regular operator intervention. Therefore, research has been initiated into alternative imaging methods, which are also being investigated in other fields such as non-destructive testing and geophysics. The influence of different ultrasound datasets and related image-forming techniques were investigated, for which dedicated algorithms were implemented in Matlab. The main advantages and disadvantages of the different techniques are addressed. It is concluded that the alternative imaging methods may be more robust and deliver higher image quality compared to the commercial medical imager. In particular, sizing of polyolefin particles may improve significantly if the method takes into account the correct ultrasound velocities of both the ferrous liquid and the immersed polyolefin particles. PMID:23437658

  4. Monitoring the solid-liquid interface in tanks using profiling sonar and 3D visualization techniques

    NASA Astrophysics Data System (ADS)

    Sood, Nitin; Zhang, Jinsong; Roelant, David; Srivastava, Rajiv

    2005-03-01

    Visualization of the interface between settled solids and the optically opaque liquid above is necessary to facilitate efficient retrieval of the high-level radioactive waste (HLW) from underground storage tanks. A profiling sonar was used to generate 2-D slices across the settled solids at the bottom of the tank. By incrementally rotating the sonar about its centerline, slices of the solid-liquid interface can be imaged and a 3-D image of the settled solids interface generated. To demonstrate the efficacy of the sonar in real-time solid-liquid interface monitoring systems inside HLW tanks, two sets of experiments were performed. First, various solid objects and kaolin clay (10 μm dia) were successfully imaged while agitating with 30% solids (by weight) entrained in the liquid. Second, a solid with a density similar to that of the immersed fluid density was successfully imaged. Two dimensional (2-D) sonar images and the accuracy and limitations of the in-tank imaging will be presented for these two experiments. In addition, a brief review of how to utilize a 2-D sonar image to generate a 3-D surface of the settled layer within a tank will be discussed.

  5. A new 3D shape measurement method using digital fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Jiarui; Zhang, Yingjie; Yu, Mingrang; Xiang, Dehu

    2015-10-01

    This paper proposes a novel optical three-dimensional (3D) measurement method using the traditional space-time stereo system. In the proposed method, the projector not only shoots fringe pattern onto the measurement object to achieve precise matching, but also plays a vital role in the 3D information calculation. With the combination of two cameras and a projector, two digital fringe projection (DFP) measurement systems and one traditional space-time stereo measurement system can be obtained. In another word, the measurand will be measured three times simultaneously, which results in three independent point clouds of the same region of the object to be measured. So it is necessary to register these three sets of points for obtaining one final data set. The iterative closest points (ICP) method, which is known as the most popular registration approach, is sensitive to the initial estimation of the transformation between the two sets of points to be matched. Thus, a robust rough registration, which is introduced from Natasha, is useful for ICP to realize accurate registration. After registration, a scattered point set with redundant and errors, which are caused by overlapping, is obtained. Then some local surfaces are constructed for those overlapping regions using the moving least squares (MLS) method, and the points extracted from those surfaces are used to replace the points of the overlapping regions. Finally, a simplified, precise point cloud can be obtained.

  6. Investigation of Manipulation Technique of Microbubbles Using Focused Ultrasound.

    NASA Astrophysics Data System (ADS)

    Osaki, Taichi; Inoue, Kazuhito; Matsumoto, Yoichiro; Takagi, Shu; Azuma, Takashi; Ichiyanagi, Mitsuhisa

    2015-11-01

    Recently, it has been thought that the application of ultrasound and microbubbles(MB) is utility to the medical field. Should MB be manipulated contactlessly, it will contribute to the mechanism investigation on the drug delivery system using MB as drug carrier. However no technique has yet to be established that can trap MB at any desired position, manipulate them along any desired path. Accordingly in this research, we investigated whether it was possible to trap MB at desired position, manipulate them along desired paths through experiments aimed at the development of MB manipulation tools that utilize ultrasound. Moreover, we analyzed the microbubble behaviors in ultrasound field. Bubbles in the ultrasound wave field are subjected to the primary Bjerknes force. Our method aimed that MB are trapped at the antinode or the node and manipulated with moving the antinode or node. We fabricated a concave transducer which radiates focused ultrasound and used sonazoid as MB and they were trapped at the focus as a cluster. The transducer moves its own position to move its focus and manipulate MB. Besides, we observed the trapped cluster with several incident frequencies. MB were trapped and manipulated along a locus of alphabet ?M? about 100 µm. From this result, it is implied that MB can be manipulated along any desired path. Moreover, there was the inverse correlation between the trapped cluster size and the incident frequency.

  7. Analysis of Composite Skin-Stiffener Debond Specimens Using a Shell/3D Modeling Technique and Submodeling

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin (Technical Monitor); Krueger, Ronald; Minguet, Pierre J.

    2004-01-01

    The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to tension and three-point bending was studied. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlation of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents. In addition, the application of the submodeling technique for the simulation of skin/stringer debond was also studied. Global models made of shell elements and solid elements were studied. Solid elements were used for local submodels, which extended between three and six specimen thicknesses on either side of the delamination front to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from the simulations using the submodeling technique were not in agreement with results obtained from full solid models.

  8. Application of the Shell/3D Modeling Technique for the Analysis of Skin-Stiffener Debond Specimens

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; O'Brien, T. Kevin; Minguet, Pierre J.

    2002-01-01

    The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/13D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  9. Neural network techniques for invariant recognition and motion tracking of 3-D objects

    SciTech Connect

    Hwang, J.N.; Tseng, Y.H.

    1995-12-31

    Invariant recognition and motion tracking of 3-D objects under partial object viewing are difficult tasks. In this paper, we introduce a new neural network solution that is robust to noise corruption and partial viewing of objects. This method directly utilizes the acquired range data and requires no feature extraction. In the proposed approach, the object is first parametrically represented by a continuous distance transformation neural network (CDTNN) which is trained by the surface points of the exemplar object. When later presented with the surface points of an unknown object, this parametric representation allows the mismatch information to back-propagate through the CDTNN to gradually determine the best similarity transformation (translation and rotation) of the unknown object. The mismatch can be directly measured in the reconstructed representation domain between the model and the unknown object.

  10. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Astrophysics Data System (ADS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III; Wiedner, Brian G.

    1992-09-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  11. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.

  12. High-Throughput, High-Frequency 3D Ultrasound for In Utero Analysis of Embryonic Mouse Brain Development

    PubMed Central

    Aristizábal, Orlando; Mamou, Jonathan; Ketterling, Jeffrey A.; Turnbull, Daniel H.

    2013-01-01

    With the emergence of the mouse as the predominant model system for studying mammalian brain development, in utero imaging methods are urgently required to analyze the dynamics of brain growth and patterning in mouse embryos. To address this need, we combined synthetic focusing with a high-frequency (38-MHz) annular-array ultrasound imaging system for extended depth-of-field, coded excitation for improved penetration, and respiratory-gated transmit-receive. This combination allowed noninvasive in utero acquisition of motion-free, three-dimensional data from individual embryos in approximately 2 minutes, and data from 4 or more embryos in a pregnant mouse in less than 30 minutes. Data were acquired from 148 embryos spanning 5 days of early-to-mid gestational stages of brain development. The results showed that brain anatomy and cerebral vasculature can be imaged with this system, and that quantitative analyses of segmented cerebral ventricles can be used to characterize volumetric changes associated with mouse brain development. PMID:24035625

  13. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  14. Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 1: Dorsal wrist

    PubMed Central

    Łasecki, Mateusz; Zaleska-Dorobisz, Urszula

    2015-01-01

    Ultrasound imaging of the musculoskeletal system is superior to other imaging methods in many aspects, such as multidimensional character of imaging, possibility of dynamic evaluation and precise assessment of soft tissues. Moreover, it is a safe and relatively inexpensive method, broadly available and well-tolerated by patients. A correctly conducted ultrasound examination of the wrist delivers detailed information concerning the condition of tendons, muscles, ligaments, nerves and vessels. However, the knowledge of anatomy is crucial to establish a correct ultrasound diagnosis, also in wrist assessment. An ultrasound examination of the wrist is one of the most common US examinations conducted in patients with rheumatological diseases. Ultrasonographic signs depend on the advancement of the disease. The examination is equally frequently conducted in patients with pain or swelling of the wrist due to non-rheumatological causes. The aim of this publication was to present ultrasound images and anatomic schemes corresponding to them. The correct scanning technique of the dorsal part of the wrist was discussed and some practical tips, thanks to which highly diagnostic images can be obtained, were presented. The following anatomical structures should be visualized in an ultrasound examination of the dorsal wrist: distal radio-ulnar joint, radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament, compartments of extensor tendons, radial artery, cephalic vein, two small branches of the radial nerve: superficial and deep, as well as certain midcarpal ligaments, particularly the scapholunate ligament and lunotriquetral ligament. The paper was distinguished in 2014 as the “poster of the month” (poster number C-1896) during the poster session of the European Congress of Radiology in Vienna. PMID:26675810

  15. Wrist ultrasound examination - scanning technique and ultrasound anatomy. Part 1: Dorsal wrist.

    PubMed

    Olchowy, Cyprian; Łasecki, Mateusz; Zaleska-Dorobisz, Urszula

    2015-06-01

    Ultrasound imaging of the musculoskeletal system is superior to other imaging methods in many aspects, such as multidimensional character of imaging, possibility of dynamic evaluation and precise assessment of soft tissues. Moreover, it is a safe and relatively inexpensive method, broadly available and well-tolerated by patients. A correctly conducted ultrasound examination of the wrist delivers detailed information concerning the condition of tendons, muscles, ligaments, nerves and vessels. However, the knowledge of anatomy is crucial to establish a correct ultrasound diagnosis, also in wrist assessment. An ultrasound examination of the wrist is one of the most common US examinations conducted in patients with rheumatological diseases. Ultrasonographic signs depend on the advancement of the disease. The examination is equally frequently conducted in patients with pain or swelling of the wrist due to non-rheumatological causes. The aim of this publication was to present ultrasound images and anatomic schemes corresponding to them. The correct scanning technique of the dorsal part of the wrist was discussed and some practical tips, thanks to which highly diagnostic images can be obtained, were presented. The following anatomical structures should be visualized in an ultrasound examination of the dorsal wrist: distal radio-ulnar joint, radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament, compartments of extensor tendons, radial artery, cephalic vein, two small branches of the radial nerve: superficial and deep, as well as certain midcarpal ligaments, particularly the scapholunate ligament and lunotriquetral ligament. The paper was distinguished in 2014 as the "poster of the month" (poster number C-1896) during the poster session of the European Congress of Radiology in Vienna. PMID:26675810

  16. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  17. The Relationship of 3D Translabial Ultrasound Anal Sphincter Complex Measurements to Postpartum Anal and Fecal Incontinence

    PubMed Central

    MERIWETHER, Kate V.; HALL, Rebecca J.; LEEMAN, Lawrence M.; MIGLIACCIO, Laura; QUALLS, Clifford; ROGERS, Rebecca G.

    2015-01-01

    Objective We aimed to determine whether ASC measurements on translabial ultrasound (TL-US) were related to anal incontinence (AI) or fecal incontinence (FI) symptoms six months postpartum. Methods A prospective cohort of primiparous women underwent TL-US six months after a vaginal birth (VB) or Cesarean delivery (CD). Muscle thickness was measured at 3, 6, 9, and 12 o’clock positions of the external sphincter (EAS), the same four quadrants of the internal sphincter (IAS) at proximal, mid, and distal levels, and at the bilateral pubovisceralis muscle (PVM). Measurements were correlated to AI and FI on the Wexner Fecal Incontinence Scale, with sub-analyses by mode of delivery. The odds ratio (OR) of symptoms was calculated for every one millimeter increase in muscle thickness (E1MIT). Results 423 women (299 VB, 124 CD) had TL-US six months postpartum. Decreased AI risk was associated with thicker measurements at the 6 o’clock (OR 0.74 E1MIT) and 9 o’clock proximal IAS (OR 0.71 E1MIT) in the entire cohort. For CD women, thicker measurements of the 9 o’clock proximal IAS were associated with decreased risk of AI (OR 0.56 E1MIT) and thicker distal 6 o’clock IAS measurements were related to a decreased risk of FI (OR 0.37 E1MIT). For VB women, no sphincter measurements were significantly related to symptoms, but thicker PVM measurements were associated with increased risk of AI (right side OR 1.32 E1MIT; left side OR 1.21 E1MIT). Conclusions ASC anatomy is associated with AI and FI in certain locations; these locations varybased on the patient’s mode of delivery. PMID:26085463

  18. Fusion of 3D models derived from TLS and image-based techniques for CH enhanced documentation

    NASA Astrophysics Data System (ADS)

    Bastonero, P.; Donadio, E.; Chiabrando, F.; Spanò, A.

    2014-05-01

    Recognizing the various advantages offered by 3D new metric survey technologies in the Cultural Heritage documentation phase, this paper presents some tests of 3D model generation, using different methods, and their possible fusion. With the aim to define potentialities and problems deriving from integration or fusion of metric data acquired with different survey techniques, the elected test case is an outstanding Cultural Heritage item, presenting both widespread and specific complexities connected to the conservation of historical buildings. The site is the Staffarda Abbey, the most relevant evidence of medieval architecture in Piedmont. This application faced one of the most topical architectural issues consisting in the opportunity to study and analyze an object as a whole, from twice location of acquisition sensors, both the terrestrial and the aerial one. In particular, the work consists in the evaluation of chances deriving from a simple union or from the fusion of different 3D cloudmodels of the abbey, achieved by multi-sensor techniques. The aerial survey is based on a photogrammetric RPAS (Remotely piloted aircraft system) flight while the terrestrial acquisition have been fulfilled by laser scanning survey. Both techniques allowed to extract and process different point clouds and to generate consequent 3D continuous models which are characterized by different scale, that is to say different resolutions and diverse contents of details and precisions. Starting from these models, the proposed process, applied to a sample area of the building, aimed to test the generation of a unique 3Dmodel thorough a fusion of different sensor point clouds. Surely, the describing potential and the metric and thematic gains feasible by the final model exceeded those offered by the two detached models.

  19. Determination of 3D paleostress systems: An additional technique for basin analysis

    SciTech Connect

    Bakker, H.E.

    1988-08-01

    The present structure of the western Mediterranean has been largely determined by several phases of rifting and oceanic spreading which began during the Oligocene. The main rifting event took place during the middle Oligocene-earliest Miocene. This is indicated by structural, stratigraphic, metamorphic, and volcanic data. During this event Corsica and Sardinia drifted eastward from the previously amalgamated Iberian-European plate, and the Provencal and Algerian basins were developed. The plate movements related to the development of these basins have been reconstructed by using the orientation of the present plate boundaries, the strike of transform faults, the age and trend of magnetic anomalies, and paleomagnetic data. An additional approach is proposed, based on detailed field study of faults at specific locations on the continental plates. From fault-plane and slip-direction data the author can calculate the responsible 3D paleostress systems. These stress systems apparently can be used to reconstruct in detail the kinematics of the rifting and drifting processes on both a local and regional scale. The method is illustrated by the geodynamic evolution of Mallorca, Menorca, and the Gulf of Valencia.

  20. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  1. Study on a robust insert-bump (ISB) bonding technique for a 3D package

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Song, J. Y.; Kim, S. M.; Kim, Y. J.; Lee, Y. K.

    2016-07-01

    The Cu pillar bump to Cu pillar bump bonding process, commonly used in bonding technology for the 3D stacking of TSV (through silicon via) formed chips, requires an additional process for the generation of bumps on the face and back-side of the chip, and it has a drawback in that it is structurally vulnerable to mechanical stresses, such as thermal stress. This study proposes an ISB (insert-bump) bonding process to overcome such drawbacks. Compared to the conventional Cu pillar bump to Cu pillar bump bonding process, the ISB bonding process has advantages in that it is simple and has high mechanical reliability of the package due to the mechanical interlocking. The stress distributions at the joints of the packages produced from Cu pillar bump to Cu pillar bump bonding and ISB processes were compared and analyzed through FEM analyses, and characteristics analyses of the fracture mode and joint characteristics; process variable optimization with respect to the bonding parameters was also conducted through experiments. The results of the analyses and experiments verified that the ISB bonding process yields a bonding strength of 917.6 mgf/bump, which is approximately twice as much as that of the conventional Cu pillar bump to Cu pillar bump bonding, and which yields a highly reliable mechanical structure.

  2. Ultrasound techniques in the evaluation of the mediastinum, part 2: mediastinal lymph node anatomy and diagnostic reach of ultrasound techniques, clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography

    PubMed Central

    Jenssen, Christian; Annema, Jouke Tabe; Clementsen, Paul; Cui, Xin-Wu; Borst, Mathias Maximilian

    2015-01-01

    Ultrasound imaging has gained importance in pulmonary medicine over the last decades including conventional transcutaneous ultrasound (TUS), endoscopic ultrasound (EUS), and endobronchial ultrasound (EBUS). Mediastinal lymph node (MLN) staging affects the management of patients with both operable and inoperable lung cancer (e.g., surgery vs. combined chemoradiation therapy). Tissue sampling is often indicated for accurate nodal staging. Recent international lung cancer staging guidelines clearly state that endosonography should be the initial tissue sampling test over surgical staging. Mediastinal nodes can be sampled from the airways [endobronchial ultrasound combined with transbronchial needle aspiration (EBUS-TBNA)] or the esophagus [endoscopic ultrasound fine needle aspiration (EUS-FNA)]. EBUS and EUS have a complementary diagnostic yield and in combination virtually all MLNs can be biopsied. Additionally endosonography has an excellent yield in assessing granulomas in patients suspected of sarcoidosis. The aim of this review in two integrative parts is to discuss the current role and future perspectives of all ultrasound techniques available for the evaluation of mediastinal lymphadenopathy and mediastinal staging of lung cancer. A specific emphasis will be on learning mediastinal endosonography. Part 1 deals with an introduction into ultrasound techniques, MLN anatomy and diagnostic reach of ultrasound techniques and part 2 with the clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography. PMID:26623120

  3. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  4. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis.

    PubMed

    Meleo, Deborah; Baggi, Luigi; Di Girolamo, Michele; Di Carlo, Fabio; Pecci, Raffaella; Bedini, Rossella

    2012-01-01

    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues. PMID:22456016

  5. Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates.

    PubMed

    Bulantová, Jana; Macháček, Tomáš; Panská, Lucie; Krejčí, František; Karch, Jakub; Jährling, Nina; Saghafi, Saiedeh; Dodt, Hans-Ulrich; Horák, Petr

    2016-04-01

    Migration of parasitic worms through the host tissues, which may occasionally result in fatal damage to the internal organs, represents one of the major risks associated with helminthoses. In order to track the parasites, traditionally used 2D imaging techniques such as histology or squash preparation do not always provide sufficient data to describe worm location/behavior in the host. On the other hand, 3D imaging methods are widely used in cell biology, medical radiology, osteology or cancer research, but their use in parasitological research is currently occasional. Thus, we aimed at the evaluation of suitability of selected 3D methods to monitor migration of the neuropathogenic avian schistosome Trichobilharzia regenti in extracted spinal cord of experimental vertebrate hosts. All investigated methods, two of them based on tracking of fluorescently stained larvae with or without previous chemical clearing of tissue and one based on X-ray micro-CT, exhibit certain limits for in vivo observation. Nevertheless, our study shows that the tested methods as ultramicroscopy (used for the first time in parasitology) and micro-CT represent promising tool for precise analyzing of parasite larvae in the CNS. Synthesis of these 3D imaging techniques can provide more comprehensive look at the course of infection, host immune response and pathology caused by migrating parasites within entire tissue samples, which would not be possible with traditional approaches. PMID:26897588

  6. Shape and Surface: The challenges and advantages of 3D techniques in innovative fashion, knitwear and product design

    NASA Astrophysics Data System (ADS)

    Bendt, E.

    2016-07-01

    The presentation wants to show what kind of problems fashion and textile designers are facing in 3D-knitwear design, especially regarding fashionable flat-knit styles, and how they can use different kinds of techniques and processes to generate new types of 3D-designs and structures. To create really new things we have to overcome standard development methods and traditional thinking and should start to open our minds again for the material itself to generate new advanced textile solutions. This paper mainly introduces different results of research projects worked out in the master program “Textile Produkte” during lectures in “Innovative Product Design” and “Experimental Knitting”.

  7. Investigation of molten metal droplet deposition and solidification for 3D printing techniques

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Hsun; Tsai, Ho-Lin; Wu, Yu-Che; Hwang, Weng-Sing

    2016-09-01

    This study investigated the transient transport phenomenon during the pile up of molten lead-free solder via the inkjet printing method. With regard to the droplet impact velocity, the distance from nozzle to substrate can be controlled by using the pulse voltage and distance control apparatus. A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We  =  2.1–15.1 and Oh  =  5.4  ×  10‑3–3.8  ×  10‑3. The effects of impact velocity and relative distance between two types of molten droplets on the shape of the impact mode are examined. The results show that the optimal parameters of the distance from nozzle to substrate and the spreading factor in this experiment are 0.5 mm and 1.33. The diameter, volume and velocity of the inkjet solder droplet are around 37–65 μm, 25–144 picoliters, and 2.0–3.7 m s‑1, respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The end-shapes of the 3D micro structure have been found to be dependent upon the distance from nozzle to substrate and the impact velocity of the molten lead-free solder droplet.

  8. Three-dimensional endoanal ultrasound for diagnosis of perianal fistulas: Reliable and objective technique

    PubMed Central

    Garcés-Albir, Marina; García-Botello, Stephanie Anne; Espi, Alejandro; Pla-Martí, Vicente; Martin-Arevalo, Jose; Moro-Valdezate, David; Ortega, Joaquin

    2016-01-01

    AIM: To evaluate accuracy of three-dimensional endoanal ultrasound (3D-EAUS) as compared to 2D-EAUS and physical examination (PE) in diagnosis of perianal fistulas and correlate with intraoperative findings. METHODS: A prospective observational consecutive study was performed with patients included over a two years period. All patients were studied and operated on by the Colorectal Unit surgeons. The inclusion criteria were patients over 18, diagnosed with a criptoglandular perianal fistula. The PE, 2D-EAUS and 3D-EAUS was performed preoperatively by the same colorectal surgeon at the outpatient clinic prior to surgery and the fistula anatomy was defined and they were classified in intersphincteric, high or low transsphincteric, suprasphincteric and extrasphincteric. Special attention was paid to the presence of a secondary tract, the location of the internal opening (IO) and the site of external opening. The results of these different examinations were compared to the intraoperative findings. Data regarding location of the IO, primary tract, secondary tract, and the presence of abscesses or cavities was analysed. RESULTS: Seventy patients with a mean age of 47 years (range 21-77), 51 male were included. Low transsphincteric fistulas were the most frequent type found (33, 47.1%) followed by high transsphincteric (24, 34.3%) and intersphincteric fistulas (13, 18.6%). There are no significant differences between the number of IO diagnosed by the different techniques employed and surgery (P > 0.05) and, there is a good concordance between intraoperative findings and the 2D-EAUS (k = 0.67) and 3D-EAUS (k = 0.75) for the diagnosis of the primary tract. The ROC curves for the diagnosis of transsphincteric fistulas show that both ultrasound techniques are adequate for the diagnosis of low transsphincteric fistulas, 3D-EAUS is superior for the diagnosis of high transsphincteric fistulas and PE is weak for the diagnosis of both types. CONCLUSION: 3D-EAUS shows a higher

  9. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms.

    PubMed

    Acharya, U R; Faust, O; Sree, S V; Molinari, F; Garberoglio, R; Suri, J S

    2011-08-01

    Ultrasound has great potential to aid in the differential diagnosis of malignant and benign thyroid lesions, but interpretative pitfalls exist and the accuracy is still poor. To overcome these difficulties, we developed and analyzed a range of knowledge representation techniques, which are a class of ThyroScan™ algorithms from Global Biomedical Technologies Inc., California, USA, for automatic classification of benign and malignant thyroid lesions. The analysis is based on data obtained from twenty nodules (ten benign and ten malignant) taken from 3D contrast-enhanced ultrasound images. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture algorithms are used to extract relevant features from the thyroid images. The resulting feature vectors are fed to three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr). The performance of these classifiers is compared using Receiver Operating Characteristic (ROC) curves. Our results show that combination of DWT and texture features coupled with K-NN resulted in good performance measures with the area of under the ROC curve of 0.987, a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Finally, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI), which is made up of texture features, to diagnose benign or malignant nodules using just one index. We hope that this TMI will help clinicians in a more objective detection of benign and malignant thyroid lesions. PMID:21728394

  10. Impact of 3D Rotational Angiography on Liver Embolization Procedures: Review of Technique and Applications

    SciTech Connect

    Lucatelli, Pierleone Corona, Mario Argirò, Renato Anzidei, Michele; Vallati, Giulio; Fanelli, Fabrizio Bezzi, Mario Catalano, Carlo

    2015-06-15

    In the last years, the interest into interventional applications of C-arm cone-beam CT (CBCT) progressively raised, widening its clinical application from the original field of interventional neuroradiology to the field of peripheral procedures. Liver embolization procedures, due to their complexity and potential treatment-related life-threatening complications, represent one of the main clinical applications of this novel angiographic technique. CBCT has been demonstrated to render procedures safer and technically easier, and to predict outcome as well as to avoid major complications in different treatment scenarios (trans-arterial embolization, trans-arterial chemoembolization, selective internal radiation therapy, percutaneous portal vein embolization). This review summarizes all technical, dosimetric and procedural aspects of CBCT techniques, underlying all its potential clinical advantages in the field of liver embolization procedures. Moreover, the paper provides all the instructions to obtain the best diagnostic performance out of this novel angiographic technique.

  11. A Review of 3D imaging techniques for visualisation of the structure of energetic composites

    NASA Astrophysics Data System (ADS)

    Carmichael, A. E.; Williamson, D. M.; Govier, R.

    2011-06-01

    A review of imaging techniques which can be used to acquire three dimensional data on the structure of polymer composite materials is presented. The techniques chosen utilise a variety of mechanisms for forming contrast, and include x-ray tomography (XCT), nuclear magnetic resonance (NMR), and optical & electron microscopy. Discussion is illustrated with reference to a particular HMX based UK PBX. The achievable contrast and spatial resolutions are considered, along with arguments relating to the destructive and non-destructive methods of acquiring data. Particular emphasis is given to the safety concerns and the added experimental complications which arise when studying energetic materials.

  12. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    NASA Astrophysics Data System (ADS)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  13. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  14. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  15. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  16. Clinical Impact of Ultrasound-Related Techniques on the Diagnosis of Focal Liver Lesions

    PubMed Central

    Salvatore, Veronica; Bolondi, Luigi

    2012-01-01

    Since its introduction in clinical practice, ultrasound technology has greatly impacted patient management, particularly in the case of liver diseases, where hepatologists usually perform ultrasound examinations. Clinicians are increasingly aware of the great potential of ultrasound waves and of the recent innovations that exploit the mechanical properties of ultrasound waves. Thus, at present, not only B-mode ultrasound but also contrast-enhanced ultrasound and, more recently, elastosonography are used worldwide in various settings. This review aims to describe why clinicians should be aware of ultrasound-based techniques, how they should use these techniques for assessing focal liver lesions, and how these techniques impact patient management. We will review the clinical potential of ultrasound-related techniques, starting from lesion detection, moving to characterization, and concluding with their utility in guiding treatments and analyzing their effects. PMID:24159588

  17. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  18. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.

    PubMed

    Caixinha, Miguel; Santos, Mário; Santos, Jaime

    2016-04-01

    To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. PMID:26742891

  19. The Long Gestation of the Small Naked Mole-Rat (Heterocephalus glaber RÜPPELL, 1842) Studied with Ultrasound Biomicroscopy and 3D-Ultrasonography

    PubMed Central

    Roellig, Kathleen; Drews, Barbara; Goeritz, Frank; Hildebrandt, Thomas Bernd

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is one of the two known mammalian species that live in a eusocial population structure. Here we investigate the exceptionally long gestation period of 70 days observed in the mole-rat queen. The course of seven successful pregnancies in two individuals was recorded in a colony of captive naked mole-rats using ultrasound biomicroscopy (UBM) and 3D-ultrasonography. We establish a catalogue of basic reference ultrasound data for this species by describing the ultrasonographic appearance of reproductive organs, calculating growth curves to predict gestational age and defining ultrasonographic milestones to characterize pregnancy stages. Mean litter size was 10.9±2.7, of which 7.2±1.5 survived the weaning period. Mean interbirth interval was 128.8±63.0 days. The reproductive success in our colony did not differ from previously published data. In the queen the active corpora lutea had an anechoic, fluid filled centre. Using UBM, pregnancy could be detected 53 days before parturition. The period of embryonic development is assumed to last until 30 days before parturition. Embryonic resorptions were detected frequently in the queen, indicating that this might be an ordinary event in this species. We discuss the extraordinary long gestation period of this small rodent and postulate that the long gestation is beneficial to both the eusocial structure and longevity. An increased litter size, twice as large as for other rodents of similar size, seemingly compensates for the doubling of pregnancy length. We demonstrate that the lifetime reproductive effort of a naked mole-rat queen is equivalent to the mass of offspring that would be produced if all of the females of a colony would be reproducing. PMID:21408185

  20. Hyoid bone development: An assessment of optimal CT scanner parameters and 3D volume rendering techniques

    PubMed Central

    Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.

    2015-01-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349

  1. Nanomaterial characterization through image treatment, 3D reconstruction and AI techniques

    NASA Astrophysics Data System (ADS)

    Lopez de Uralde Huarte, Juan Jose

    Nanotechnology is not only the science of the future, but it is indeed the science of today. It is used in all sectors, from health to energy, including information technologies and transport. For the present investigation, we have taken carbon black as a use case. This nanomaterial is mixed with a wide variety of materials to improve their properties, like abrasion resistance, tire and plastic wear or tinting strength in pigments. Nowadays, indirect methods of analysis, like oil absorption or nitrogen adsorption are the most common techniques of the nanomaterial industry. These procedures measure the change in the physical state while adding oil and nitrogen. In this way, the superficial area is estimated and related with the properties of the material. Nevertheless, we have chosen to improve the existent direct methods, which consist in analysing microscopy images of nanomaterials. We have made progress in the image processing treatments and in the extracted features. In fact, some of them have overcome the existing features in the literature. In addition, we have applied, for the first time in the literature, machine learning to aggregate categorization. In this way, we identify automatically their morphology, which will determine the final properties of the material that is mixed with. Finally, we have presented an aggregate reconstruction genetic algorithm that, with only two orthogonal images, provides more information than a tomography, which needs a lot of images. To summarize, we have improved the state of the art in direct analysing techniques, allowing in the near future the replacement of the current indirect techniques.

  2. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    Energy Science and Technology Software Center (ESTSC)

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random numbermore » and for measuring the time of simulation.« less

  3. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  4. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    SciTech Connect

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random number and for measuring the time of simulation.

  5. CW laser generated ultrasound techniques for microstructure material properties evaluation

    NASA Astrophysics Data System (ADS)

    Thursby, Graham; Culshaw, Brian; Pierce, Gareth; Cleary, Alison; McKee, Campbell; Veres, Istvan

    2009-03-01

    Mechanical properties of materials may be obtained from the inversion of ultrasonic Lamb wave dispersion curves. In order to do this broadband excitation and detection of ultrasound is required. As sample size and, in particular, thickness, are reduced to those of microstructures, ultrasound frequencies in the range of the gigahertz region will be required. We look at two possible cw laser excitation techniques which, having far lower peak powers than the more frequently used Q-switched lasers, therefore give a negligible risk of damaging the sample through ablation. In the first method the modulation frequency of a sinusoidally modulated laser is swept over the required range. In the second, the laser is modulated with a series of square pulses whose timing is given by a PRBS (pseudo random binary sequence) in the form of a modified m-sequence.

  6. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique.

    PubMed

    Wang, Yajun; Laughner, Jacob I; Efimov, Igor R; Zhang, Song

    2013-03-11

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  7. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    NASA Astrophysics Data System (ADS)

    Huang, S.; Guo, J.; Yang, F. X.

    2013-12-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.

  8. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Ferrara, Matthew; Jackson, Julie A.; Austin, Christian

    2009-05-01

    This paper demonstrates image enhancement for wide-angle, multi-pass three-dimensional SAR applications. Without sufficient regularization, three-dimensional sparse-aperture imaging from realistic data-collection scenarios results in poor quality, low-resolution images. Sparsity-based image enhancement techniques may be used to resolve high-amplitude features in limited aspects of multi-pass imagery. Fusion of the enhanced images across multiple aspects in an approximate GLRT scheme results in a more informative view of the target. In this paper, we apply two sparse reconstruction techniques to measured data of a calibration top-hat and of a civilian vehicle observed in the AFRL publicly-released 2006 Circular SAR data set. First, we employ prominent-point autofocus in order to compensate for unknown platform motion and phase errors across multiple radar passes. Each sub-aperture of the autofocused phase history is digitally-spotlighted (spatially low-pass filtered) to eliminate contributions to the data due to features outside the region of interest, and then imaged with l1-regularized least squares and CoSaMP. The resulting sparse sub-aperture images are non-coherently combined to obtain a wide-angle, enhanced view of the target.

  9. Variable Quality Compression of Fluid Dynamical Data Sets Using a 3D DCT Technique

    NASA Astrophysics Data System (ADS)

    Loddoch, A.; Schmalzl, J.

    2005-12-01

    In this work we present a data compression scheme that is especially suited for the compression of data sets resulting from computational fluid dynamics (CFD). By adopting the concept of the JPEG compression standard and extending the approach of Schmalzl (Schmalzl, J. Using standard image compression algorithms to store data from computational fluid dynamics. Computers and Geosciences, 29, 10211031, 2003) we employ a three-dimensional discrete cosine transform of the data. The resulting frequency components are rearranged, quantized and finally stored using Huffman-encoding and standard variable length integer codes. The compression ratio and also the introduced loss of accuracy can be adjusted by means of two compression parameters to give the desired compression profile. Using the proposed technique compression ratios of more than 60:1 are possible with an mean error of the compressed data of less than 0.1%.

  10. 3D modelling of trompe l'oeil decorated vaults using dense matching techniques

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Lingua, A.; Noardo, F.; Spano, A.

    2014-05-01

    Dense matching techniques, implemented in many commercial and open source software, are useful instruments for carrying out a rapid and detailed analysis of complex objects, including various types of details and surfaces. For this reason these tools were tested in the metric survey of a frescoed ceiling in the hall of honour of a baroque building. The surfaces are covered with trompe-l'oeil paintings which theoretically can give a very good texture to automatic matching algorithms but in this case problems arise when attempting to reconstruct the correct geometry: in fact, in correspondence with the main architectonic painted details, the models present some irregularities, unexpectedly coherent with the painted drawing. The photogrammetric models have been compared with data deriving from a LIDAR survey of the same object, to evaluate the entity of this blunder: some profiles of selected sections have been extracted, verifying the different behaviours of the software tools.

  11. An innovative technique for recording picture-in-picture ultrasound videos.

    PubMed

    Rajasekaran, Sathish; Finnoff, Jonathan T

    2013-08-01

    Many ultrasound educational products and ultrasound researchers present diagnostic and interventional ultrasound information using picture-in-picture videos, which simultaneously show the ultrasound image and transducer and patient positions. Traditional techniques for creating picture-in-picture videos are expensive, nonportable, or time-consuming. This article describes an inexpensive, simple, and portable way of creating picture-in-picture ultrasound videos. This technique uses a laptop computer with a video capture device to acquire the ultrasound feed. Simultaneously, a webcam captures a live video feed of the transducer and patient position and live audio. Both sources are streamed onto the computer screen and recorded by screen capture software. This technique makes the process of recording picture-in-picture ultrasound videos more accessible for ultrasound educators and researchers for use in their presentations or publications. PMID:23887962

  12. Parametric Characterization of Porous 3D Bioscaffolds Fabricated by an Adaptive Foam Reticulation Technique

    NASA Astrophysics Data System (ADS)

    Winnett, James; Mallick, Kajal K.

    2014-04-01

    Commercially pure titanium (Ti) and its alloys, in particular, titanium-vanadium-aluminium (Ti-6Al-4V), have been used as biomaterials due to their mechanical similarities to bone, good biocompatibility, and inertness in vivo. The introduction of porosity to the scaffolds leads to optimized mechanical properties and enhanced biological activity. The adaptive foam reticulation (AFR) technique has been previously used to generate hydroxyapatite bioscaffolds with enhanced cell behavior due to the generation of macroporous structures with microporous struts that provided routes for cell infiltration as well as attachment sites. Sacrificial polyurethane templates of 45 ppi and 90 ppi were coated in biomaterial-based slurries containing either Ti or Ti-6Al-4V as the biomaterial and camphene as the porogen. The resultant macropore sizes of 100-550 μm corresponded well with the initial template pore sizes while camphene produced micropores of 1-10 μm, with the level of microporosity related to the amount of porogen inclusion.

  13. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  14. Feasibility of Using Volumetric Contrast-Enhanced Ultrasound with a 3-D Transducer to Evaluate Therapeutic Response after Targeted Therapy in Rabbit Hepatic VX2 Carcinoma.

    PubMed

    Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn

    2015-12-01

    The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. PMID:26365926

  15. Accuracy Assessment of a Canal-Tunnel 3d Model by Comparing Photogrammetry and Laserscanning Recording Techniques

    NASA Astrophysics Data System (ADS)

    Charbonnier, P.; Chavant, P.; Foucher, P.; Muzet, V.; Prybyla, D.; Perrin, T.; Grussenmeyer, P.; Guillemin, S.

    2013-07-01

    With recent developments in the field of technology and computer science, conventional methods are being supplanted by laser scanning and digital photogrammetry. These two different surveying techniques generate 3-D models of real world objects or structures. In this paper, we consider the application of terrestrial Laser scanning (TLS) and photogrammetry to the surveying of canal tunnels. The inspection of such structures requires time, safe access, specific processing and professional operators. Therefore, a French partnership proposes to develop a dedicated equipment based on image processing for visual inspection of canal tunnels. A 3D model of the vault and side walls of the tunnel is constructed from images recorded onboard a boat moving inside the tunnel. To assess the accuracy of this photogrammetric model (PM), a reference model is build using static TLS. We here address the problem comparing the resulting point clouds. Difficulties arise because of the highly differentiated acquisition processes, which result in very different point densities. We propose a new tool, designed to compare differences between pairs of point cloud or surfaces (triangulated meshes). Moreover, dealing with huge datasets requires the implementation of appropriate structures and algorithms. Several techniques are presented : point-to-point, cloud-to-cloud and cloud-to-mesh. In addition farthest point resampling, octree structure and Hausdorff distance are adopted and described. Experimental results are shown for a 475 m long canal tunnel located in France.

  16. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    PubMed

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  17. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field

    PubMed Central

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P < 0.05) was obtained after 15 min of RUF exposure. We further demonstrated that the enhanced CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery. PMID:26267789

  18. Ultrasound-guided implantation techniques in treatment of prostate cancer

    SciTech Connect

    Carter, S.S.; Torp-Pedersen, S.T.; Holm, H.H. )

    1989-11-01

    Percutaneous ultrasound-guided interstitial radiotherapy is an attractive and elegant technique for the administration of high-dose local radiotherapy to the prostate. The complications of seed implantation are those associated with the radiation rather than with the technique of implantation. However, radiotherapy has not provided impressive local control of the disease or prolonged survival. The poor disease control was not attributed to poor seed placement, but rather to the inadequacy of {sup 125}I in controlling the cancer. The essence of nonsurgical treatment for prostate cancer is the use of effective imaging. Experience in the field of minimally invasive surgery has shown that ultrasound is the ideal imaging system for targeting treatments because of its ease of use and the absence of adverse effects. As the newer techniques of implantation come to be accepted, it is hoped that the complications of rectal and bladder radiation injury will decrease and the therapeutic benefits increase. The clinical trials required to define the precise role of each of the modalities of treatment must take nodal staging into account and must be compared with the gold standard of radical prostatectomy in the treatment of early confined disease.

  19. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact.

    PubMed

    Liu, K; Rutt, B K

    1998-01-01

    This work addresses the elimination of the slab boundary artifact (SBA) or venetian blind artifact in three-dimensional multiple overlapped thin slab acquisition (3D MOTSA) for magnetic resonance angiography (MRA). Our method uses a sliding-slab, interleaved kY (SLINKY) data acquisition strategy, equalizing flow-related signal intensity weighting across the entire slab dimension. This technique demodulates signal intensity changes along the slab direction and can essentially eliminate the SBA while retaining the same or better imaging time efficiency than that of conventional MOTSA, providing robustness to complicated flow patterns and thereby resulting in more accurate depiction of vascular morphology. In addition, this technique does not need specialized reconstruction and extra computation. The unique penalty of this technique is the sensitivity to phase inconsistency in the data. Both phantom and in vivo experiments verify the clinical significance of the technique. The new MRA images acquired with this imaging technique show highly reliable mapping of vascular morphology without the SBA and reduction of signal voids in complex/slow flow regions. PMID:9702893

  20. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain

    SciTech Connect

    Sonnik, Deborah; Selvaraj, Raj N. . E-mail: selvarajrn@upmc.edu; Faul, Clare; Gerszten, Kristina; Heron, Dwight E.; King, Gwendolyn C.

    2007-04-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified 'Kuske Technique'). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  1. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimatio