Science.gov

Sample records for 3d velocity mapping

  1. Probabilistic Seismic Hazard Maps of Seattle, Washington, Including 3D Sedimentary Basin Effects and Rupture Directivity: Implications of 3D Random Velocity Variations (Invited)

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D.; Odum, J.; Williams, R. A.; Rhea, S.

    2010-12-01

    We have produced probabilistic seismic hazard maps of Seattle for 1 Hz spectral acceleration, using over five hundred 3D finite-difference simulations of earthquakes on the Seattle fault, Southern Whidbey Island fault, and Cascadia subduction zone, as well as for random deep and shallow earthquakes at various locations. The 3D velocity model was validated by modeling the observed waveforms for the 2001 M6.8 Nisqually earthquake and several smaller events in the region. At these longer periods (≥ 1 sec) that are especially important to the response of buildings of ten stories or higher, seismic waves are strongly influenced by sedimentary basins and rupture directivity. We are investigating how random spatial variations in the 3D velocity model affect the simulated ground motions for M6.7 earthquakes on the Seattle fault. A fractal random variation of shear-wave velocity with a Von Karman correlation function produces spatial variations of peak ground velocity with multiple scale lengths. We find that a 3D velocity model with a 10% standard deviation in shear-wave velocity in the top 1.5 km and 5% standard deviation from 1.5-10 km depth produces variations in peak ground velocities of as much as a factor of two, relative to the case with no random variations. The model with random variations generally reduces the peak ground velocity of the forward rupture directivity pulse for sites near the fault where basin-edge focusing of S-waves occurs. It also tends to reduce the peak velocity of localized areas where basin surface waves are focused. However, the medium with random variations also causes small-scale amplification of ground motions over distances of a few kilometers. We are also evaluating alternative methods of characterizing the aleatory uncertainty in the probabilistic hazard calculations.

  2. Mapping Faults from 3-D Tomographic Velocity Model using Image Processing / Computer Vision Algorithms: Application to Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Ramachandran, K.

    2011-12-01

    Three dimensional velocity models constructed through seismic tomography are seldom digitally processed further for imaging structural features. A study conducted to evaluate the potential for imaging subsurface discontinuities in horizontal and vertical direction from three dimensional velocity models using image processing/computer vision techniques has provided significant results. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity model has an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. However, results from the analysis of the 3-D velocity model from northern Cascadia using Roberts, Prewitt, Sobel, and Canny operators show that subsurface faults that are not clearly interpretable from velocity model plots can be identified through this approach. This analysis resulted in inferring the locations of Tacoma Fault, Seattle Fault, Southern Whidbey Island Fault, and Darrington Devils Mountain fault much clearly. The Coast Range Boundary Fault, previously hypothesized on the basis of sedimentological and tectonic observations is inferred clearly from processed images. Many of the fault locations so imaged correlate with earthquake hypocenters indicating their seismogenic nature.

  3. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  4. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  5. A 3D Geostatistical Mapping Tool

    Energy Science and Technology Software Center (ESTSC)

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  6. 3D finite element simulations of high velocity projectile impact

    NASA Astrophysics Data System (ADS)

    Ožbolt, Joško; İrhan, Barış; Ruta, Daniela

    2015-09-01

    An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  7. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  8. State-Of of 3d National Mapping in 2016

    NASA Astrophysics Data System (ADS)

    Stoter, Jantien; Vallet, Bruno; Lithen, Thomas; Pla, Maria; Wozniak, Piotr; Kellenberger, Tobias; Streilein, Andre; Ilves, Risto; Ledoux, Hugo

    2016-06-01

    Techniques for 3D mapping are maturing. At the same time the need for 3D data is increasing. This has pushed national (and regional) mapping agencies (NMAs) to consider extending their traditional task of providing topographic data into the third dimension. To show how research results in 3D mapping obtained over the past twenty years have been adopted by practice, this paper presents the ongoing work on 3D mapping within seven NMAs, all member of the 3D Special Interest Group of European Spatial Data Research (EuroSDR). The paper shows that some NMAs are still in the initial (experimental) phase of 3D mapping, while others have already built solid databases to maintain 2.5D and 3D topographic data covering their whole country.

  9. Interactive photogrammetric system for mapping 3D objects

    NASA Astrophysics Data System (ADS)

    Knopp, Dave E.

    1990-08-01

    A new system, FOTO-G, has been developed for 3D photogrammetric applications. It is a production-oriented software system designed to work with highly unconventional photogrammetric image configurations which result when photographing 3D objects. A demonstration with imagery from an actual 3D-mapping project is reported.

  10. Visualizing 3D velocity fields near contour surfaces

    SciTech Connect

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  11. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  12. Autonomous Exploration for 3D Map Learning

    NASA Astrophysics Data System (ADS)

    Joho, Dominik; Stachniss, Cyrill; Pfaff, Patrick; Burgard, Wolfram

    Autonomous exploration is a frequently addressed problem in the robotics community. This paper presents an approach to mobile robot exploration that takes into account that the robot acts in the three-dimensional space. Our approach can build compact three-dimensional models autonomously and is able to deal with negative obstacles such as abysms. It applies a decision-theoretic framework which considers the uncertainty in the map to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain taking into account possible sensor measurements. We present experimental results obtained with a real robot and in simulation.

  13. 3-D Maps and Compasses in the Brain.

    PubMed

    Finkelstein, Arseny; Las, Liora; Ulanovsky, Nachum

    2016-07-01

    The world has a complex, three-dimensional (3-D) spatial structure, but until recently the neural representation of space was studied primarily in planar horizontal environments. Here we review the emerging literature on allocentric spatial representations in 3-D and discuss the relations between 3-D spatial perception and the underlying neural codes. We suggest that the statistics of movements through space determine the topology and the dimensionality of the neural representation, across species and different behavioral modes. We argue that hippocampal place-cell maps are metric in all three dimensions, and might be composed of 2-D and 3-D fragments that are stitched together into a global 3-D metric representation via the 3-D head-direction cells. Finally, we propose that the hippocampal formation might implement a neural analogue of a Kalman filter, a standard engineering algorithm used for 3-D navigation. PMID:27442069

  14. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  15. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  16. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. PMID:25261742

  17. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    PubMed Central

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  18. 3D Viewer Platform of Cloud Clustering Management System: Google Map 3D

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Ja; Lee, Gang-Soo

    The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].

  19. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    NASA Astrophysics Data System (ADS)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  20. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  1. UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2014-12-01

    Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract

  2. Rapid high-fidelity visualisation of multispectral 3D mapping

    NASA Astrophysics Data System (ADS)

    Tudor, Philip M.; Christy, Mark

    2011-06-01

    Mobile LIDAR scanning typically provides captured 3D data in the form of 3D 'Point Clouds'. Combined with colour imagery these data produce coloured point clouds or, if further processed, polygon-based 3D models. The use of point clouds is simple and rapid, but visualisation can appear ghostly and diffuse. Textured 3D models provide high fidelity visualisation, but their creation is time consuming, difficult to automate and can modify key terrain details. This paper describes techniques for the visualisation of fused multispectral 3D data that approach the visual fidelity of polygon-based models with the rapid turnaround and detail of 3D point clouds. The general approaches to data capture and data fusion are identified as well as the central underlying mathematical transforms, data management and graphics processing techniques used to support rapid, interactive visualisation of very large multispectral 3D datasets. Performance data with respect to real-world 3D mapping as well as illustrations of visualisation outputs are included.

  3. Vehicle teleoperation using 3D maps and GPS time synchronization.

    PubMed

    Suzuki, Taro; Amano, Yoshiharu; Hashizume, Takumi; Kubo, Nobuaki

    2013-01-01

    In conventional vehicle teleoperation systems, using low-bandwidth, high-delay transmission links causes a serious problem for remote control of the vehicles. To solve this problem, a proposed teleoperation system employs 3D maps and GPS time synchronization. Two GPS receivers measure the transmission delay, which the system uses to estimate the vehicle's location and orientation. Field experiments show that the 3D-map-based interface lets users easily comprehend the remote environment while navigating a vehicle. The experiments also show that taking communication delays into account improves maneuverability. PMID:24808084

  4. UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2015-12-01

    Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small

  5. Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Romanowicz, B.; Gung, Y.

    2001-12-01

    Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well

  6. 3D resolved mapping of optical aberrations in thick tissues

    PubMed Central

    Zeng, Jun; Mahou, Pierre; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel; Débarre, Delphine

    2012-01-01

    We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications. PMID:22876353

  7. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  8. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  9. Bayesian 3D velocity field reconstruction with VIRBIUS

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2016-03-01

    I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.

  10. A 3D mosaic algorithm using disparity map

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Kakeya, Hideki

    2015-03-01

    Conventionally there exist two major methods to create mosaics in 3D videos. One is to duplicate the area of mosaics from the image of one viewpoint (the left view or the right view) to that of the other viewpoint. This method, which is not capable of expressing depth, cannot give viewers a natural perception in 3D. The other method is to create the mosaics separately in the left view and the right view. With this method the depth is expressed in the area of mosaics, but 3D perception is not natural enough. To overcome these problems, we propose a method to create mosaics by using a disparity map. In the proposed method the mosaic of the image from one viewpoint is made with the conventional method, while the mosaic of the image from the other viewpoint is made based on the data of the disparity map so that the mosaic patterns of the two images can give proper depth perception to the viewer. We confirm that the proposed mosaic pattern using a disparity map gives more natural depth perception of the viewer by subjective experiments using a static image and two videos.

  11. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  12. Lidar on small UAV for 3D mapping

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. Michael; Larsson, Hâkan

    2014-10-01

    Small UAV:s (Unmanned Aerial Vehicles) are currently in an explosive technical development phase. The performance of UAV-system components such as inertial navigation sensors, propulsion, control processors and algorithms are gradually improving. Simultaneously, lidar technologies are continuously developing in terms of reliability, accuracy, as well as speed of data collection, storage and processing. The lidar development towards miniature systems with high data rates has, together with recent UAV development, a great potential for new three dimensional (3D) mapping capabilities. Compared to lidar mapping from manned full-size aircraft a small unmanned aircraft can be cost efficient over small areas and more flexible for deployment. An advantage with high resolution lidar compared to 3D mapping from passive (multi angle) photogrammetry is the ability to penetrate through vegetation and detect partially obscured targets. Another advantage is the ability to obtain 3D data over the whole survey area, without the limited performance of passive photogrammetry in low contrast areas. The purpose of our work is to demonstrate 3D lidar mapping capability from a small multirotor UAV. We present the first experimental results and the mechanical and electrical integration of the Velodyne HDL-32E lidar on a six-rotor aircraft with a total weight of 7 kg. The rotating lidar is mounted at an angle of 20 degrees from the horizontal plane giving a vertical field-of-view of 10-50 degrees below the horizon in the aircraft forward directions. For absolute positioning of the 3D data, accurate positioning and orientation of the lidar sensor is of high importance. We evaluate the lidar data position accuracy both based on inertial navigation system (INS) data, and on INS data combined with lidar data. The INS sensors consist of accelerometers, gyroscopes, GPS, magnetometers, and a pressure sensor for altimetry. The lidar range resolution and accuracy is documented as well as the

  13. 3-D crustal velocity model for Lithuania and its application to local event studies

    NASA Astrophysics Data System (ADS)

    Budraitis, M.; Kozlovskaya, E.; Janutyte, I.; Motuza, G.

    2009-12-01

    PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania and operated since June, 2006 till January, 2008. One of the main reasons of PASSEQ deployment in Lithuania is identification and characterisation of the local seismic activity. During the data acquisition period a number of local seismic events was identified and preliminary event location was made using LocSat and VELEST algorithms and 1-D velocity models. These standard procedures is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). Another problem was low quality of S-wave arrivals due to thick (up to 2 km) sediments in most part of Lithuania. In order to improve event location, we compiled a 3-D seismic velocity model of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded by controlled source experiments and calculated travel times through the 3-D velocity model. The model was converted into a density model using a special procedure, in which

  14. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  15. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  16. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  17. Sensing and 3D Mapping of Soil Compaction

    PubMed Central

    Tekin, Yücel; Kul, Basri; Okursoy, Rasim

    2008-01-01

    Soil compaction is an important physical limiting factor for the root growth and plant emergence and is one of the major causes for reduced crop yield worldwide. The objective of this study was to generate 2D/3D soil compaction maps for different depth layers of the soil. To do so, a soil penetrometer was designed, which was mounted on the three-point hitch of an agricultural tractor, consisting of a mechanical system, data acquisition system (DAS), and 2D/3D imaging and analysis software. The system was successfully tested in field conditions, measuring soil penetration resistances as a function of depth from 0 to 40 cm at 1 cm intervals. The software allows user to either tabulate the measured quantities or generate maps as soon as data collection has been terminated. The system may also incorporate GPS data to create geo-referenced soil maps. The software enables the user to graph penetration resistances at a specified coordinate. Alternately, soil compaction maps could be generated using data collected from multiple coordinates. The data could be automatically stratified to determine soil compaction distribution at different layers of 5, 10,.…, 40 cm depths. It was concluded that the system tested in this study could be used to assess the soil compaction at topsoil and the randomly distributed hardpan formations just below the common tillage depths, enabling visualization of spatial variability through the imaging software.

  18. 3D velocity structure of upper crust beneath NW Bohemia/Vogtland

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mousavi, Sima; Korn, Michael; Sens-Schönfelder, Christoph; Bauer, Klaus; Rößler, Dirk

    2013-04-01

    surrounding area. Surface wave tomography using ambient noise provides additional constraints on shear velocities. The detailed knowledge of the 3D structure is essential to select the optimal future borehole locations. we use the vertical and transverse component ambient noise data to estimate both Rayleigh and Love waves from ambient noise cross-correlation waveforms to investigate the crustal seismic structure of W-Bohemia/Vogtland. More than 2000 Rayleigh and Love group-velocity dispersion curves are obtained by time-frequency analysis of stacked ambient noise cross-correlation functions between station pairs. We used the data between 2002 and 2004 recorded at 43 seismic stations from BOHEMA experiment and between 2006 and 2008 recorded at 79 seismic stations from permanent station networks of Germany, Czech Academy of Sciences (WEBNET) and PASSEQ experiments. At each period between 1 and 10 s, group velocity maps are constructed, all corresponding to different sampling depths, and thus together giving an indication of the 3D shear wave velocity structure extending to a depth of about 15 km.

  19. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  20. Congruence of 3-D Whole Mantle Models of Shear Velocity

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.

    2012-12-01

    The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to

  1. 3D Gel Map of Arabidopsis Complex I

    PubMed Central

    Peters, Katrin; Belt, Katharina; Braun, Hans-Peter

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana. PMID:23761796

  2. 'Distance mapping' and the 3D structure of BD +30° 3639

    NASA Astrophysics Data System (ADS)

    Akras, S.; Steffen, W.

    2012-06-01

    BD +30° 3639 is a member of a group of uncommon planetary nebulae with Wolf-Rayet central star and higher expansion velocities in [O III] than in [N II] lines. Images and high-resolution spectra from the literature are used in order to construct a 3D model of the nebula using the morpho-kinematic code SHAPE. We find that two homologous expansion laws are needed for the [N II] and [O III] shells. We conclude that the internal velocity field of BD +30° 3639 decreases with the distance from the central star at least between the [O III] and [N II] shells. A cylindrical velocity component is used to replicate the high-speed bipolar collimated outflows. We also present a new kinematic analysis technique called 'distance mapping'. It uses the observed proper motion vectors and the 3D velocity field to generate maps that can be used as a constraint to the morpho-kinematic modelling with SHAPE as well as improve the accuracy for distance determination. It is applied to BD +30° 3639 using 178 internal proper motion vectors from Li, Harrington & Borkowski and our 3D velocity field to determine a distance of 1.52 ± 0.21 kpc. Finally, we find evidence for an interaction between the eastern part of the nebula and the ambient H2 molecular gas.

  3. Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, João.; Bezzeghoud, Mourad; Caldeira, Bento; Dias, Nuno; Borges, José; Matias, Luís.; Dorbath, Catherine; Carrilho, Fernando

    2010-05-01

    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hypoinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used "a priori". The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the

  4. Temperature maps measurements on 3D surfaces with infrared thermography

    NASA Astrophysics Data System (ADS)

    Cardone, Gennaro; Ianiro, Andrea; Dello Ioio, Gennaro; Passaro, Andrea

    2012-02-01

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel.

  5. The 3D Space and Spin Velocities of a Gamma-ray Pulsar

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2016-04-01

    PSR J2030+4415 is a LAT-discovered 0.5My-old gamma-ray pulsar with an X-ray synchrotron trail and a rare Halpha bowshock. We have obtained GMOS IFU spectroscopic imaging of this shell, and show a sweep through the remarkable Halpha structure, comparing with the high energy emission. These data provide a unique 3D map of the momentum distribution of the relativistic pulsar wind. This shows that the pulsar is moving nearly in the plane of the sky and that the pulsar wind has a polar component misaligned with the space velocity. The spin axis is shown to be inclined some 95degrees to the Earth line of sight, explaining why this is a radio-quiet, gamma-only pulsar. Intriguingly, the shell also shows multiple bubbles that suggest that the pulsar wind power has varied substantially over the past 500 years.

  6. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  7. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  8. 3D visualization of endocardial peak velocities during systole and diastole

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Ritman, Erik L.; Robb, Richard A.

    2002-04-01

    Quantitative assessment of regional heart motion has the potential to provide diagnostic data for assessment of cardiac malfunction. Local heart motion may be obtained with various medical imaging scanners, so the goal is to provide an imaging modality-independent display/analysis technique. In this study, 3D reconstructions of a canine heart before and after infarction were obtained from the Dynamic Spatial Reconstructor (DSR) at 15 time points throughout one cardiac cycle. Deformable models of each time point were created. Through this process regional excursions and velocities in the mesh can be assigned to represent a piece of endocardium, which can be calculated for each time-point interval. These calculations are based on the distance change between a single vertex of the mesh and the model centerline from LV apex to aortic/mitral valve separation. This allows computation of color maps corresponding to regional values of contraction or dilation motion of the endocardium relative to the LV long axis (centerline) during systole and/or diastole. These color maps can be illustrated through model animations and multi view static images. Using functional parametric mappings of disturbances in regional contractility and relaxation facilitates appreciation of the effect of altered structure-to-function relationships in the myocardium.

  9. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  10. 3-D crustal velocity model for Lithuania and its application to local event studies

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, Elena; Budraitis, Mantas; Janutyte, Ilma; Motuza, Gediminas; Lazauskiene, Jurga; Passeq-Working Group

    2010-05-01

    PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania. One of the main targets of PASSEQ deployment in Lithuania was identification and characterization of the local seismic activity. The PASSEQ stations in Lithuania were in operation since June, 2006 till January, 2008. During this period a number of local seismic events was recorded and preliminary event location was made using the LocSat algorithm and 1-D velocity model. This standard procedure is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). In order to improve event location, we separated the events into several groups and located each group separately using a VELEST algorithms and own 1-D velocity model for each group. We also compiled a 3-D seismic velocity of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded along previous controlled source profiles and synthetic travel times calculated using the 3-D velocity model. The model was converted

  11. Mapping the holes: 3D ISM maps and diffuse X-ray background

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Puspitarini, L.; Snowden, S.; Galeazzi, M.; Koutroumpa, D.

    3D maps of Galactic interstellar dust and gas reveal empty regions, including cavities carved by stellar winds and supernovae. Such cavities are often filled with hot gas and are sources of soft X-ray background emission. We discuss the combined analysis of the diffuse soft (0.25 keV) X-ray background and the 3D distribution of nearby (<1 kpc) dust, including studies of shadows cast by nearby clouds in the background. This analysis benefits from recent progress in the estimate of the foreground X-ray emission from the heliosphere. New and past X-ray data are found to be consistent with the maps if the ≃ 100-150 pc wide Local Bubble surrounding the Sun is filled with 106K gas with a pressure 2nT ≃ 10,000 K cm-3. On the other hand, the giant cavity found in the 3rd Galactic quadrant has a weaker volume emission than the LB and is very likely filled to a large extent with warm ionized gas. Its geometry suggests a link with the tilted Gould belt, and a potential mechanism for the formation of the whole structure has been recently proposed. According to it, the local inclination of gas and stars, the velocity pattern and enhanced star formation could have been initiated 60-70 Myr ago when a massive globular cluster crossed the Galactic Plane in the vicinity of the Sun. The destabilization of stellar orbits around the Sun may have generated enhanced asteroid falls of the Cretaceous-Tertiary (KT) extinction events. Additionally, a short gamma ray burst may have occurred in the cluster during the crossing, producing intense ionization and subsequent shock waves leading to the star formations seen today in the form of the giant ionized region and OB associations at its periphery. Gaia measurements of nearby stars and clusters should help shedding light on the local history.

  12. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  13. Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Anna, Pietro; Nunes, Joao P.; Bijeljic, Branko; Blunt, Martin J.; Juanes, Ruben

    2014-09-01

    We study the nature of non-Fickian particle transport in 3-D porous media by simulating fluid flow in the intricate pore space of real rock. We solve the full Navier-Stokes equations at the same resolution as the 3-D micro-CT (computed tomography) image of the rock sample and simulate particle transport along the streamlines of the velocity field. We find that transport at the pore scale is markedly anomalous: longitudinal spreading is superdiffusive, while transverse spreading is subdiffusive. We demonstrate that this anomalous behavior originates from the intermittent structure of the velocity field at the pore scale, which in turn emanates from the interplay between velocity heterogeneity and velocity correlation. Finally, we propose a continuous time random walk model that honors this intermittent structure at the pore scale and captures the anomalous 3-D transport behavior at the macroscale.

  14. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  15. 3D strength map of the Asia region

    NASA Astrophysics Data System (ADS)

    Rebetskiy, Y. L.; Baranov, A. A.

    2009-04-01

    The Southern and Central Asia is a tectonically complex region which characterized by the great collision between the Asian and Indian plates. Its tectonic evolution is strongly related to the active subduction process along the Pacific border. Stress investigation in the continental crust is a very important problem not only for science but also for the practical purposes. There are four main factors which produce tectonic stresses: gravity anomalies of the crust, density inhomogeneities, deformation from area with intraplate collision, residual elastic deformations and underthrust stresses conditions from convective mantle. We present the stress model of the crust and lithosphere for the Central and Southern Asia on the basis of the finite element modeling. For the crust we take the elasto-plastic rheology with Drucker-Prager criterion. In the lithosphere the elasto-plastic model with von Mises criterion is assumed. We investigated stresses which are produced by the crustal density inhomogeneities and surface relief. The calculations are done using the U-WAY finite element code developed at the Institute of Applied Mechanics Russian Academy of Sciences. (similar to the Nastran program) Density inhomogeneities are based on the AsCRUST-08 crustal model (Baranov, 2008), which has resolution of 1 x 1 degree. AsCRUST-08 was built using the data of deep seismic reflection, refraction and receiver functions studies from published papers. The complex 3D crustal model consists of three layers: upper, middle, and lower crust. Besides depth of the boundaries, we provided average P-wave velocities in the upper, middle and lower parts of the crystalline crust and sediments. The seismic P-velocity data was also recalculated to the densities and the elastic moduli of the crustal layers using the rheological properties and geological constraints. Strength parameters of rocks strongly depend on temperature, tectonic and fluid pressure. Fluid pressure can reduce resistance forces

  16. Georeferenced LiDAR 3D Vine Plantation Map Generation

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  17. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  18. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  19. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  20. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  1. Disaster Prevention Coastal Map Production by MMS & C3D

    NASA Astrophysics Data System (ADS)

    Hatake, Shuhei; Kohori, Yuki; Watanabe, Yasushi

    2016-06-01

    In March 2011, Eastern Japan suffered serious damage of Tsunami caused by a massive earthquake. In 2012, Ministry of Land, Infrastructure and Transport published "Guideline of setting assumed areas of inundation by Tsunami" to establish the conditions of topography data used for simulation of Tsunami. In this guideline, the elevation data prepared by Geographical Survey Institute of Japan and 2m/5m/10m mesh data of NSDI are adopted for land area, while 500m mesh data of Hydrographic and Oceanographic Department of Japan Coast Guard and sea charts are adopted for water area. These data, however, do not have continuity between land area and water area. Therefore, in order to study the possibility of providing information for coastal disaster prevention, we have developed an efficient method to acquire continuous topography over land and water including tidal zone. Land area data are collected by Mobile Mapping System (MMS) and water area depth data are collected by interferometry echo sounder (C3D), and both data are simultaneously acquired on a same boat. Elaborate point cloud data of 1m or smaller are expected to be used for realistic simulation of Tsunami waves going upstream around shoreline. Tests were made in Tokyo Bay (in 2014) and Osaka Bay (in 2015). The purpose the test in Osaka Bay is to make coastal map for disaster prevention as a countermeasure for predicted Nankai massive earthquake. In addition to Tsunami simulation, the continuous data covering land and marine areas are expected to be used effectively for maintenance and repair of aged port and river facilities, maintenance and investigation of dykes, and ecosystem preservation.

  2. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Cooperative 3D and 2D mapping with heterogenous ground robots

    NASA Astrophysics Data System (ADS)

    Rogers, John G., III; Baran, David; Stump, Ethan; Young, Stuart; Christensen, Henrik I.

    2012-06-01

    Efficient and accurate 3D mapping is desirable in disaster recovery as well as urban warfare situations. The speed with which these maps can be generated is vital to provide situational awareness in these situations. A team of mobile robots can work together to build maps more quickly. We present an algorithm by which a team of mobile robots can merge 2D and 3D measurements to build a 3D map, together with experiments performed at a military test facility.

  4. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  5. 3-D P Wave Velocity Structure of Marmara Region Using Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Işık, S. E.; Gurbuz, C.

    2014-12-01

    The 3D P wave velocity model of upper and lower crust of the Marmara Region between 40.200- 41.200N and 26.500- 30.500E is obtained by tomographic inversion (Simulps) of 47034 P wave arrivals of local earthquakes recorded at 90 land stations between October 2009 and December 2012 and 30 OBO stations and 14162 shot arrivals recorded at 35 OBO stations (Seismarmara Survey, 2001). We first obtained a 1D minimum model with Velest code in order to obtain an initial model for 3D inversion with 648 well located earthquakes located within the study area. After several 3D inversion trials we decided to create a more adequate initial model for 3D inversion. Choosing the initial model we estimated the 3D P wave velocity model representing the whole region both for land and sea. The results are tested by making Checkerboard , Restoring Resolution and Characteristic Tests, and the reliable areas of the resulting model is defined in terms of RDE, DWS, SF and Hit count distributions. By taking cross sections from the resulting model we observed the vertical velocity change along profiles crossing both land and sea. All the profiles crossing the basins showed that the high velocities of lower crust make extensions towards the basin area which looks like the force that gives a shape to the basins. These extensions of lower crust towards the basins appeared with an average velocity of 6.3 km/s which might be the result of the deformation due the shearing in the region. It is also interpreted that the development of these high velocities coincide with the development of the basins. Thus, both the basins and the high velocity zones around them might be resulted from the entrance of the NAF into the Marmara Sea and at the same time a shear regime was dominated due to the resistance of the northern Marmara Region (Yılmaz, 2010). The seismicity is observed between 5 km and 15 km after the 3D location of the earthquakes. The locations of the earthquakes improved and the seismogenic zone

  6. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments. PMID:23062070

  7. GAM & RF for 3D mapping of multinomial peat properties.

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; Aalders, Inge; Morrice, Jane; Hough, Rupert

    2013-04-01

    Different statistical methods have been proposed for fitting the empirical quantitative function linking the soil information to the scorpan factors, while taking into account the spatial structure of the data . Regression kriging extends the methods of kriging and co-kriging and it has been further extended by the use of GAMs (Generalized Additive Models) with the estimation of uncertainty. When multinomial data are modelled, advanced non-parametric methods, such as CART (Classification and Regression Tree), can be used. CARTs have been used widely to estimate soil properties. Bagging trees and Random Forest (RF) approaches have among the best performances among CART methods. CARTs have been used in DSM applications, While RF have often been used in ecological modelling, fewer examples exist in DSM, such as soil erosion occurrence, soil types prediction and soil organic carbon content. In this paper we propose a methodology to map multinomial peat properties in 3D space with a combination of GAMs and RF. The methodology was applied to the humification (according to the VonPost classification) classes in a bog (18 km2) in the north-east of Scotland. A large survey campaign was carried out in 1955 and humification information were collected at 125 points. In order to integrate the information from the GAM in the RT, a series of binary GAMs were fitted using DEM-derived information as covariates. The binary GAMs were fitted assigning 1 if the class considered was present at the location, 0 if the class considered was absent. The probability predictions resulting from the binary GAMs, were included in the pool of covariates used for the RT together with other ancillary covariates. The model diagnostics had a fair to good agreement between measured and modelled values (K statistics). The probability predictions resulting from the binary GAMs proved to be important variables, increasing the agreement of the model. The obtained spatial distribution of values on the

  8. Effects of 3D Velocity and Attenuation in the Tonga-Fiji Subduction Zone

    NASA Astrophysics Data System (ADS)

    Savage, B.; Wiens, D. A.; Tromp, J.

    2005-12-01

    The current understanding of a subduction zone's temperature and composition is limited. Much of our recent knowledge of subduction zones comes from earthquake locations, geochemical measurements, and lab based experiments. Recently, two studies of the Tonga-Fiji subduction zone have presented tomographic images of velocity and attenuation (Roth et al., 1999; Zhao et al., 1997). Roth et al. (2000) then combined these two tomographic models of the Tonga-Fiji subduction zone to derive an empirical relationship between changes in velocity and attenuation. This relationship agrees well with two independent, experimental data sets (Jackson et al., 1992; Sato et al., 1989). Using the tomographic velocity model and the empirical relationship between velocity and attenuation we create synthetic seismograms for the Tonga-Fiji subduction zone to test whether a simple increase in velocity accurately depicts this subduction zone. To construct the model we use the tomographic model of Zhao et al. (1997) to create a shear velocity model using a simple Vs/Vp ratio. Following Roth et al. (2000) these tomographic models are combined with the empirical relation between velocity and attenuation to create an attenuation model. The resulting synthetics are compared to recorded data to validate the tomographic velocity model and the empirical relation between velocity and attenuation. Any mismatch in this comparison will provide a basis for further refinement of the tomographic models and the velocity-attenuation relation. The synthetics are created using the SPECFEM3D global code (Komatitsch et al., 2002) with the new addition of a three-dimensional attenuation operator. Attenuation is simulated by a set of standard linear solids over the desired frequency range as described in Liu et al. (1976). Our initial results at a minimum period of 3.3 seconds suggest that the attenuation structure plays a minor role for the present source-receiver geometry. The addition of the 3D attenuation

  9. Probabilistic Seismic Hazard Maps for Seattle, Washington, Based on 3D Ground-Motion Simulations

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D. L.; Williams, R. A.; Odum, J. K.; Rhea, S.

    2007-12-01

    We have produced probabilistic seismic hazard maps for Seattle using over 500 3D finite-difference simulations of ground motions from earthquakes in the Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep source areas. The maps depict 1 Hz response spectral accelerations with 2, 5, and 10% probabilities of being exceeded in 50 years. The simulations were used to generate site and source dependent amplification factors that are applied to rock-site attenuation relations. The maps incorporate essentially the same fault sources and earthquake recurrence times as the 2002 national seismic hazard maps. The simulations included basin surface waves and basin-edge focusing effects from a 3D model of the Seattle basin. The 3D velocity model was validated by modeling several earthquakes in the region, including the 2001 M6.8 Nisqually earthquake, that were recorded by our Seattle Urban Seismic Network and the Pacific Northwest Seismic Network. The simulations duplicate our observation that earthquakes from the south and southwest typically produce larger amplifications in the Seattle basin than earthquakes from other azimuths, relative to rock sites outside the basin. Finite-fault simulations were run for earthquakes along the Seattle fault zone, with magnitudes ranging from 6.6 to 7.2, so that the effects of rupture directivity were included. Nonlinear amplification factors for soft-soil sites of fill and alluvium were also applied in the maps. For the Cascadia subduction zone, 3D simulations with point sources at different locations along the zone were used to determine amplification factors across Seattle expected for great subduction-zone earthquakes. These new urban seismic hazard maps are based on determinations of hazard for 7236 sites with a spacing of 280 m. The maps show that the highest hazard locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and

  10. Cortical Mapping of 3D Optical Topography in Infants

    PubMed Central

    Papademetriou, Maria D; Richards, John; Correia, Teresa; Blasi, Anna; Murphy, D. G.; Lloyd-Fox, Sarah; Johnson, Mark; Elwell, Clare E

    2014-01-01

    Precise localization of cortical activation in the early development of the infant brain remains unclear. It is challenging to co-register haemodynamic responses during functional activation in infants with the underlying anatomy of the brain. We used a multispectral imaging algorithm to reconstruct 3D optical topographic images of haemodynamic responses in an infant during voice processing. In this paper we present a method for co-registering 3D optical topography images reconstructed from functional activation data in infants onto anatomical brain images obtained from MRI structurals of the individual infants. PMID:23852529

  11. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  12. Sector mapping method for 3D detached retina visualization.

    PubMed

    Zhai, Yi-Ran; Zhao, Yong; Zhong, Jie; Li, Ke; Lu, Cui-Xin; Zhang, Bing

    2016-10-01

    A new sphere-mapping algorithm called sector mapping is introduced to map sector images to the sphere of an eyeball. The proposed sector-mapping algorithm is evaluated and compared with the plane-mapping algorithm adopted in previous work. A simulation that maps an image of concentric circles to the sphere of the eyeball and an analysis of the difference in distance between neighboring points in a plane and sector were used to compare the two mapping algorithms. A three-dimensional model of a whole retina with clear retinal detachment was generated using the Visualization Toolkit software. A comparison of the mapping results shows that the central part of the retina near the optic disc is stretched and its edges are compressed when the plane-mapping algorithm is used. A better mapping result is obtained by the sector-mapping algorithm than by the plane-mapping algorithm in both the simulation results and real clinical retinal detachment three-dimensional reconstruction. PMID:27480739

  13. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  14. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  15. Analysis of the rupture process of the 1995 Kobe earthquake using a 3D velocity structure

    NASA Astrophysics Data System (ADS)

    Guo, Yujia; Koketsu, Kazuki; Ohno, Taichi

    2013-12-01

    A notable feature of the 1995 Kobe (Hyogo-ken Nanbu) earthquake is that violent ground motions occurred in a narrow zone. Previous studies have shown that the origin of such motions can be explained by the 3D velocity structure in this zone. This indicates not only that the 3D velocity structure significantly affects strong ground motions, but also that we should consider its effects in order to determine accurately the rupture process of the earthquake. Therefore, we have performed a joint source inversion of strong-motion, geodetic, and teleseismic data, where 3D Green's functions were calculated for strong-motion and geodetic data in the Osaka basin. Our source model estimates the total seismic moment to be about 2.1 × 1019 N m and the maximum slip reaches 2.9 m near the hypocenter. Although the locations of large slips are similar to those reported by Yoshida et al. (1996), there are quantitative differences between our results and their results due to the differences between the 3D and 1D Green's functions. We have also confirmed that our source model realized a better fit to the strong motion observations, and a similar fit as Yoshida et al. (1996) to the observed static displacements.

  16. 3D Simulation of Velocity Profile of Turbulent Flow in Open Channel with Complex Geometry

    NASA Astrophysics Data System (ADS)

    Kamel, Benoumessad; Ilhem, Kriba; Ali, Fourar; Abdelbaki, Djebaili

    Simulation of open channel flow or river flow presents unique challenge to numerical simulators, which is widely used in the applications of computational fluid dynamics. The prediction is extremely difficult because the flow in open channel is usually transient and turbulent, the geometry is irregular and curved, and the free-surface elevation is varying with time. The results from a 3D non-linear k- ɛ turbulence model are presented to investigate the flow structure, the velocity distribution and mass transport process in a meandering compound open channel and a straight open channel. The 3D numerical model for calculating flow is set up in cylinder coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLE algorithm is applied to acquire the coupling of velocity and pressure. The non-linear k- ɛ turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The main contributions of this study are developing a numerical method that can be applied to predict the flow in river bends with various bend curvatures and different width-depth ratios. This study demonstrates that the 3D non-linear k- ɛ turbulence model can be used for analyzing flow structures, the velocity distribution and pollutant transport in the complex boundary open channel, this model is applicable for real river and wetland problem.

  17. Use Models like Maps in a 3D SDI

    NASA Astrophysics Data System (ADS)

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  18. Clutter in the GMTI range-velocity map.

    SciTech Connect

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  19. Probabilistic earthquake location and 3-D velocity models in routine earthquake location

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Husen, S.

    2003-12-01

    Earthquake monitoring agencies, such as local networks or CTBTO, are faced with the dilemma of providing routine earthquake locations in near real-time with high precision and meaningful uncertainty information. Traditionally, routine earthquake locations are obtained from linearized inversion using layered seismic velocity models. This approach is fast and simple. However, uncertainties derived from a linear approximation to a set of non-linear equations can be imprecise, unreliable, or even misleading. In addition, 1-D velocity models are a poor approximation to real Earth structure in tectonically complex regions. In this paper, we discuss the routine location of earthquakes in near real-time with high precision using non-linear, probabilistic location methods and 3-D velocity models. The combination of non-linear, global search algorithms with probabilistic earthquake location provides a fast and reliable tool for earthquake location that can be used with any kind of velocity model. The probabilistic solution to the earthquake location includes a complete description of location uncertainties, which may be irregular and multimodal. We present applications of this approach to determine seismicity in Switzerland and in Yellowstone National Park, WY. Comparing our earthquake locations to earthquake locations obtained using linearized inversion and 1-D velocity models clearly demonstrates the advantages of probabilistic earthquake location and 3-D velocity models. For example, the more complete and reliable uncertainty information of non-linear, probabilistic earthquake location greatly facilitates the identification of poorly constrained hypocenters. Such events are often not identified in linearized earthquake location, since the location uncertainties are determined with a simplified, localized and approximate Gaussian statistic.

  20. 3D velocity measurements in a premixed flame by tomographic PIV

    NASA Astrophysics Data System (ADS)

    Tokarev, M. P.; Sharaborin, D. K.; Lobasov, A. S.; Chikishev, L. M.; Dulin, V. M.; Markovich, D. M.

    2015-06-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV.

  1. 3D Road-Mapping in the Endovascular Treatment of Cerebral Aneurysms and Arteriovenous Malformations

    PubMed Central

    Rossitti, S.; Pfister, M.

    2009-01-01

    Summary 3D road-mapping with syngo iPilot was used as an additional tool for assessing cerebral aneurysms and arteriovenous malformations (AVMs) for endovascular therapy. This method provides accurate superimposition of a live fluoroscopic image (native or vascular road-map) and its matching 2D projection of the 3D data set, delivering more anatomic information on one additional display. In the endovascular management of cases with complex anatomy, 3D road-mapping provides excellent image quality at the intervention site. This method can potentially reduce intervention time, the number of DSA runs, fluoroscopy time and the amount of contrast media used in a procedure, with reservation for these factors being mainly operator-dependent. 3D road-mapping probably does not provide any advantage in the treatment of cerebral aneurysms or AVMs with very simple configuration, and it should not be used when acquisition of an optimum 3D data set is not feasible. PMID:20465911

  2. 3d Velocity Tomography of The Kos - Nisyros Volcanic Area - East Aegean Sea

    NASA Astrophysics Data System (ADS)

    Nikolova, S.; Ilinski, D.; Makris, J.; Chonia, T.; Stavrakakis, J.

    Since June 2000, active and passive seismic observations have been carried out by IfG, GeoPro GmbH, Hamburg and Institute of Geodynamics, Athens within the frame of the project GEOWARN (Geo-Spacial Warning Systems Nisyros Volcano, Greece: An Emergency Case Study of the Volcanic Area of Nisyros) supported by the European Community. In the active experiment 48 recording seismic units were deployed and recorded more than 7000 shots in 3D array. The Nisyros volcano has been identified as an apophytic intrusion of much larger volcanic structure with a caldera of 35 km diameter, extending between the southern coasts of the islands of Kos and Nisyros. To obtain 3-D velocity structure of the area a tomographic inversion was made using 6800 rays which probed the area with a very high ray density. The method applied and the high accuracy of active tomographic data allowed to resolve the high velocity bodies in the caldera. The complex volcanic structure is identified by high velocity rocks in- truding through the upper crust and penetrating the volcanic cone to depth of approx. 1.0 km to 1.8 km below the surface. Particularly high velocity bodies were identified below the islands of Yali and the central caldera of Nisyros. The high velocity bodies at shallow depth were interpreted as high-density cumulates of solidified magma intru- sion in the caldera. These intrusions explain very high temperature of 300C observed in the lower aquifer in the caldera at 1.5 km depth as confirmed by drilling. The vol- canic edifices of Kos, Yali, Nisyros and Strongily are part of a major volcanic caldera nearly 35 km in diameter. This size of the volcanic caldera explains the large volume of ignimbrites erupted 160 000 years ago. By combining geodetic, geophysical, geo- chemical and geological observations it is intended to correlate magma movements and associated changes of physical and chemical parameters of the recent volcanism.

  3. A 3-D crustal velocity structure across the southeastern Carpathians of Romania

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Ritter, J. R. R.; Fielitz, W.; Popa, M.

    2003-04-01

    The Vrancea zone in the southeastern Carpathians is one of the most active seismic regions in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile. All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. A first ever 3-D crustal velocity model of the south-eastern Carpathians within a 115 x 235 km wide region around the Vrancea zone is presented. This model was generated by application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995). In order to enhance the model resolution, first arrival data from local earthquakes were also included. The results indicate a high-velocity structure above the Vrancea zone extending from shallow levels to depths of about 11 km. A possible relation to the Trotus and Capidava-Ovidiu faults, which converge to the north of it, is deemed unlikely. However,the existence of the outstanding high velocities may be explained by crystalline basement thrust onto the sub-Carpathian nappes. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model area extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively.

  4. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  5. A 3-D crustal velocity structure across the Variscides of southwest Ireland

    NASA Astrophysics Data System (ADS)

    Landes, M.; Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.

    2003-04-01

    In the VARNET-96 experiment three seismic refraction profiles were acquired to examine the crustal structure in the south-west of Ireland. The shotpoint geometry allowed for both in-line and off-line fan shot recordings on the three profiles. Results of 3-D inversion modelling illustrate that there is pervasive lateral heterogeneity of the sedimentary and crustal velocity structure south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones beneath Dingle Bay and the Kenmare River region may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from 28-29 km at the south coast to 32-33 km beneath the Dingle-Shannon Basin. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure thus supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent offshore sedimentary basins.

  6. Development of a Regional Velocity Model Using 3D Broadband Waveform Sensitivity

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Romanowicz, B. A.; Kim, A.

    2005-12-01

    We are developing a new approach which relies on a cascade of increasingly accurate theoretical approximations for computation of the seismic wavefield to develop a model of regional seismic velocity structure for eastern Eurasia using full seismic waveforms. The selected area is particularly suitable for the purpose of this experiment, as it is highly heterogeneous, presenting a challenge for standard modeling techniques, but it is well surrounded by earthquake sources and a significant number of high quality broadband digital stations exist, for which data are readily accessible through IRIS (Incorporated Research Institutions for Seismology) and the FDSN (Federation of Digital Seismic Networks). The initial model is derived from a large database of teleseismic long period waveforms (surface waves and overtone wavepackets) using well-developed theoretical approximations, the Path Average Approximation (PAVA) and Nonlinear Asymptotic Coupling Theory (NACT). These approaches assume waveforms are only sensitive to the 1D (PAVA) and 2D (NACT) structure in the vertical plane between source and receiver, which is adequate for the development of a smooth initial 3D velocity model. We refine this model using a more accurate theoretical approach. We utilize an implementation of a 3D Born approximation, which takes into account the contribution to the waveform from single scattering throughout the model, giving full 3D waveform sensitivity kernels. We perform verification tests of this approach for synthetic models, and show that it can accurately represent the wavefield as predicted by numerical approaches in several situations where approximations such as PAVA and NACT are insufficient. The Born 3D waveform sensitivity kernels are used to perform a higher resolution inversion of regional waveforms for a smaller subregion between longitudes 90 and 150 degrees E, and latitudes 15 and 40 degrees N. To further increase the accuracy of this model, we intend to utilize a very

  7. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    SciTech Connect

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  8. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    SciTech Connect

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  9. 3D Droplet velocities and sizes in the Ranque-Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michalek, W. R.

    2012-11-01

    The Ranque-Hilsch vortex tube is a known device that is used to generate spot cooling. In this study, we experimentally investigate the behavior of small water droplets in the vortex tube by means of Phase Doppler Particle Analysis. In an experimental vortex tube, droplets were injected together with a carrier gas to form a fast rotating (up to 80.000 rpm) droplet-gas mixture. Droplet sizes, 3D velocity components, and turbulent properties were measured, showing high intensity isotropic turbulence in the core region. To investigate the cause of the high intensity turbulence, a frequency analysis was applied on the measured velocity. The frequency spectrum of the velocity is presented and indicates that wobbling of the vortex axis is the cause of the high turbulence intensity. It was expected that larger droplets have a higher radial velocity because of the larger centrifugal force. Results show, however, that small and lager droplets behave similar. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs.

  10. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  11. 3-D Velocity Structure of Southwestern British Columbia and Northern Washington

    NASA Astrophysics Data System (ADS)

    Ramachandran, K.; Ramachandran, K.; Spence, G. D.; Dosso, S.; Hyndman, R. D.; Hyndman, R. D.; Brocher, T. M.; Fisher, M. M.

    2001-12-01

    A seismic tomography analysis in S.W. British Columbia and N. Washington has been used to define the velocity structure of the forearc crust and underlying subducting Juan de Fuca plate, and to obtain precise earthquake locations. First arrival travel-times from earthquakes and from the large airgun array used in the `Seismic Hazards Investigation of Puget Sound' (SHIPS) 1998 experiment, were simultaneously inverted for hypocentral parameters and velocity structure. Approximately 16,000 picks from 1,400 earthquakes recorded at 46 permanent stations, and 35,000 picks from the SHIPS experiment were used in the inversion. The velocity model was parameterized in the forward/inverse step by a node/cell spacing of 3 X 3 X 3 km over a volume of 360 X 450 X 93 km depth. The starting and final RMS travel time misfits were 479 ms and 120 ms respectively. Checkerboard tests conducted on the final velocity model imply good lateral resolution ranging from 30 to 50 km. The SHIPS airgun data mainly constrained the upper ~12 km and the earthquake data the deeper structure. The high velocity mafic Crescent Terrane that dips beneath the margin is well mapped in the velocity model on a regional scale. Its thickness beneath southern Vancouver Island is interpreted to reach ~20 km. Three high velocity structures above the subducting Juan de Fuca plate, having mafic to ultramafic velocities of 7.25-7.5 km/s, occur beneath southern Vancouver Island and Puget Sound at a depth of ~25 km. They may be associated with deeper parts of the Crescent Terrane, or with structures such as seamounts on the subducting Juan de Fuca plate. At the southern tip of Vancouver Islands, the Leech River Fault, Southern Whidbey Island Fault, and the Devils Mountain Fault appear to correlate with mapped seismicity. The subducting Juan de Fuca plate is well mapped beneath southern Vancouver Island, Olympic Peninsula, Strait of Georgia, and Puget Sound. The velocity model identifies the steepening dip in the

  12. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    PubMed

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images. PMID:26306866

  13. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Cody, R. P.; Kassin, A.; Gaylord, A.; Manley, W. F.; Dover, M.; Score, R.

    2012-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. With ARMAP's 2D mapping application, 3D globes, and data services (http://armap.org), users can search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Key information about each project is displayed within the application with links to web pages that provide additional information. The ARMAP 2D mapping application has been significantly enhanced to include support for multiple projections, improved base maps, additional reference data layers, and optimization for better performance. The additional functionality of this tool will increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate the effects of the International Polar Year (IPY) on funding of different research disciplines by the U.S. Government.

  14. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  15. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  16. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  17. Communication: Time- and space-sliced velocity map electron imaging

    SciTech Connect

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-14

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  18. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  19. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  20. 3-D Crustal Velocity Structure Across the Vrancea Zone in Romania, Derived From Seismic Data

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Popa, M.

    2002-12-01

    The Vrancea zone in the south-eastern Carpathians is one of the most active seismic zones in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction/wide-angle reflection experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile (E-W). All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. We present an application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995), elaborating the crustal velocity and interface structure within a 115 x 235 km wide region around the Vrancea zone. In order to enhance the model resolution, first arrival data from local earthquakes of the CALIXTO-99 teleseismic project were also included. The results indicate a high-velocity structure beneath the northern part of the Vrancea zone extending from shallow levels to depths of about 11 km. This structure may be related to the Trotus and Capidava-Ovidiu faults, which converge to the north of it. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively. This correlates well with previous results of Hauser et al. (2001).

  1. 3-D Isotropic and Anisotropic S-velocity Structure in the North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Marone, F.; Romanowicz, B.; Abt, D.; Fischer, K.

    2008-12-01

    The tectonic diversity of the North American continent has led to a number of geological, tectonic and geodynamical models, many of which can be better tested with high resolution 3-d tomographic models of the isotropic and anisotropic mantle structure of the continent. In the framework of non-linear asymptotic coupling theory (NACT), we recently developed tools to invert long period seismic waveforms combined with SKS splitting data, for both isotropic and radial and azimuthal anisotropic S-wave velocity structure in the upper mantle at the continental scale (Marone et al., 2007; Marone and Romanowicz, 2007). Striking differences in both isotropic and anisotropic velocity structure were observed: beneath the high velocity stable cratonic region a distinct two-layer anisotropic domain is present, with the bottom layer fast axis direction aligned with the absolute plate motion, and a shallower lithospheric layer with north pointing fast axis most likely showing records of past tectonic history; under the active western US the direction of tomographically inferred anisotropy is stable with depth and compatible with the absolute plate motion direction. Here we present an updated model which includes nearly five more years of data, including data from newly operative USArray stations, and a somewhat more extended frequency band. Our new model confirms our previous results, and reveals greater yet complex details of the anisotropic velocity structure beneath the western U.S.. We also show initial results of incorporating constraints on the depth to the lithosphere-asthenosphere boundary (LAB) using teleseismic receiver functions. We discuss the different anisotropic domains resolved both laterally and in depth, in the context of tectonic history of the north American continent.

  2. Imaging 3D anisotropic upper mantle shear velocity structure of Southeast Asia using seismic waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2011-12-01

    Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period

  3. 3D Globe Support for Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Brady, J.; Johnson, G. W.; Gaylord, A. G.; Cody, R.; Gonzalez, J. C.; Franko, J. C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2008-12-01

    Virtual Globes or 3D Geobrowsers play a crucial role in the visualization of spatial data for scientific research. While many applications provide the ability to visualize data, they lack the necessary GIS functionality to query the information. In addition, many users want to overlay their own tabular, vector and raster data on a virtual globe. The 3D Arctic Research Mapping Application (ARMAP 3D) provides a free 3D geobrowser that includes query functionality and support for many data formats and map services. ARMAP 3D was developed on top of a free software application from the Environmental Systems Research Institute (ESRI) called ArcGIS Explorer (AGX). Several custom tasks as well as a customizable interface have been developed for ARMAP 3D with AGX's own software development kit (SDK) using .NET framework. ARMAP 3D includes high resolution imagery and information from the Arctic Research Logistics Support Service (ARLSS) database which is funded by the National Science Foundation (NSF). ARLSS includes information about NSF research locations plus locations from National Aeronautics and Space Administration (NASA), and National Oceanic and Atmospheric Administration (NOAA) locations. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. Information on the ARMAP suite of applications and services may be accessed via the gateway web site at http://www.armap.org.

  4. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.

    PubMed

    Gual, Jaume; Puyuelo, Marina; Lloveras, Joaquim

    2015-05-01

    Point, linear and areal elements, which are two-dimensional and of a graphic nature, are the morphological elements employed when designing tactile maps and symbols for visually impaired users. However, beyond the two-dimensional domain, there is a fourth group of elements - volumetric elements - which mapmakers do not take sufficiently into account when it comes to designing tactile maps and symbols. This study analyses the effect of including volumetric, or 3D, symbols within a tactile map. In order to do so, the researchers compared two tactile maps. One of them uses only two-dimensional elements and is produced using thermoforming, one of the most popular systems in this field, while the other includes volumetric symbols, thus highlighting the possibilities opened up by 3D printing, a new area of production. The results of the study show that including 3D symbols improves the efficiency and autonomous use of these products. PMID:25683526

  5. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows.

    PubMed

    Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J

    2015-11-01

    We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed. PMID:26486364

  6. Coronal Outflow Velocities in a 3D Coronal Model Determined from UVCS Doppler Dimming Observations

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Panasyuk, A. V.; Dobrzycka, D.; Gibson, S.; Biesecker, D. A.; Ko, Y.-K.; Galvin, A. B.; Romoli, M.; Kohn, J. L.

    1998-04-01

    We constrain coronal outflow velocity solutions, resolved along the line-of-sight, by using Doppler dimming models of H I Lyman alpha and O VI 1032/1037 Angstrom emissivities obtained with data from the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO. The local emissivities, from heliocentric heights of 1.5 to 3.0 radii, were determined from 3-D reconstructions of line-of-sight intensities obtained during the Whole Sun Month Campaign (10 Aug. -- 8 Sep. 1996). The models use electron densities derived from polarized brightness measurements made with the visible light coronagraphs on UVCS and LASCO, supplemented with data from Mark III at NCAR/MLSO. Electron temperature profiles are derived from `freezing-in' temperatures obtained from an analysis of charge state data from SWICS/Ulysses. The work concentrates on O5+ outflow velocities which are determined from an analysis of the the O VI line ratios. This analysis is less sensitive to the uncertainties in the electron density and independent of the ionization balance and elemental abundance than the analyses which use individual spectral lines. This work is supported in part by NASA under grant NAG-3192 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by Swiss funding agencies.

  7. Using Adjoint Methods to Improve 3-D Velocity Models of Southern California

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.

    2006-12-01

    We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical

  8. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  9. Validating 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.

    2010-12-01

    As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.

  10. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  11. SALSA3D: Validating a Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Encarnacao, A.; Phillips, W. S.; Chael, E. P.; Rowe, C. A.

    2012-12-01

    We are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography to assess improvement to seismic event locations obtained using high quality 3D Earth models in lieu of 1D and 2/2.5D models. We present the most recent version of SALSA3D (SAndia LoS Alamos 3D) version 1.9, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events. Our model is derived from the latest version of the GT catalog of P/Pn travel-time picks assembled by Los Alamos National Laboratory. For this current version, we employ more robust data quality control measures than previously used, as well as additional global GT data sources. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays into representative rays. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, overlying a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant such a refinement. In previous versions, we based this refinement on velocity changes from previous model iterations. For the current version, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. In addition to the changes in grid refinement, we also employ a more robust convergence criterion between successive grid refinements, allowing a better fit to first broader

  12. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  13. The application of iterative closest point (ICP) registration to improve 3D terrain mapping estimates using the flash 3D ladar system

    NASA Astrophysics Data System (ADS)

    Woods, Jack; Armstrong, Ernest E.; Armbruster, Walter; Richmond, Richard

    2010-04-01

    The primary purpose of this research was to develop an effective means of creating a 3D terrain map image (point-cloud) in GPS denied regions from a sequence of co-bore sighted visible and 3D LIDAR images. Both the visible and 3D LADAR cameras were hard mounted to a vehicle. The vehicle was then driven around the streets of an abandoned village used as a training facility by the German Army and imagery was collected. The visible and 3D LADAR images were then fused and 3D registration performed using a variation of the Iterative Closest Point (ICP) algorithm. The ICP algorithm is widely used for various spatial and geometric alignment of 3D imagery producing a set of rotation and translation transformations between two 3D images. ICP rotation and translation information obtain from registering the fused visible and 3D LADAR imagery was then used to calculate the x-y plane, range and intensity (xyzi) coordinates of various structures (building, vehicles, trees etc.) along the driven path. The xyzi coordinates information was then combined to create a 3D terrain map (point-cloud). In this paper, we describe the development and application of 3D imaging techniques (most specifically the ICP algorithm) used to improve spatial, range and intensity estimates of imagery collected during urban terrain mapping using a co-bore sighted, commercially available digital video camera with focal plan of 640×480 pixels and a 3D FLASH LADAR. Various representations of the reconstructed point-clouds for the drive through data will also be presented.

  14. 3D Seismic Velocity Structure Around Philippine Sea Slab Subducting Beneath Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Shibutani, T.; Imai, M.; Hirahara, K.; Nakao, S.

    2013-12-01

    Kii Peninsula is a part of the source area of Nankai Trough megaquakes and the region through which the strong seismic waves propagate to big cities in Kansai such as Osaka, Kyoto, Nara, Kobe, and so on. Moreover, the rupture starting point is thought to be possibly at off the peninsula. Therefore, it is important for simulations of the megaquakes and the strong motions to estimate accurately the configuration of the Philippine Sea slab and the seismic velocity structure around the slab and to investigate properties and conditions of the plate boundary surface. Deep low frequency events (DLFEs) are widely distributed from western Shikoku to central Tokai at 30 - 40 km depths on the plate boundary (Obara, 2002). Results from seismic tomography and receiver function analyses revealed that the oceanic crust of the Philippine Sea plate had a low velocity and a high Vp/Vs ratio (Hirose et al., 2007; Ueno et al., 2008). Hot springs with high 3He/4He ratios are found in an area between central Kinki and Kii Peninsula despite in the forearc region (Sano and Wakita, 1985). These phenomena suggest the process that H2O subducting with the oceanic crust dehydrates at the depths, causes the DLFEs, and moves to shallower depths. We carried out linear array seismic observations in the Kii Peninsula since 2004 in order to estimate the structure of the Philippine Sea slab and the surrounding area. We have performed receiver function analyses for four profile lines in the dipping direction of the slab and two lines in the perpendicular direction so far. We estimated three dimensional shapes of seismic velocity discontinuities such as the continental Moho, the upper surface of the oceanic crust and the oceanic Moho (Imai et al., 2013, this session). In addition, we performed seismic tomography with a velocity model embedded the discontinuities and observed travel times at stations in the linear arrays, and successfully estimated 3D seismic velocity structure around the Philippine Sea

  15. SALSA3D - Improving Event Locations Using a Global 3D P-Velocity Model of the Earth's Crust and Mantle

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2011-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations that are more accurate and more precise than currently used 1D and 2/2.5D models, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos 3D) version 1.7, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events, compared to existing models and/or systems. Our model is derived from the latest version of the GT catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model elsewhere, over a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant it. In previous versions of SALSA3D, we based this refinement on velocity changes from previous model iterations. For version 1.7, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. We

  16. Energy cost and body centre of mass' 3D intracycle velocity variation in swimming.

    PubMed

    Figueiredo, Pedro; Barbosa, Tiago M; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2012-09-01

    The purpose of this study was to examine the relationship between the energy cost (C) and the 3D intracycle velocity variation (IVV; swimming direction--x, vertical--y and lateral--z axes) throughout the 200 m front crawl event. Ten international level swimmers performed a maximal 200 m front crawl swim followed by 50, 100 and 150 m bouts at the same pace as in the 200 m splits. Oxygen consumption was measured during the bouts and blood samples were collected before and after each one. The C was calculated for each 50 m lap as the ratio of the total energy expenditure (three energy pathways) to the distance. A respiratory snorkel and valve system with low hydrodynamic resistance was used to measure pulmonary ventilation and to collect breathing air samples. Two above water and four underwater cameras videotaped the swim bouts and thereafter APAS was used to assess the centre of mass IVV (x, y and z components). The increase in the C was significantly associated with the increase in the IVV in x for the first 50 m lap (R = -0.83, P < 0.01). It is concluded that the IVV relationship with C in a competitive event does not present the direct relationship found in the literature, revealing a great specificity, which suggests that the relation between these two parameters could not be used as a performance predictor in competitive events. PMID:22262010

  17. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers.

    PubMed

    Ducci, Daniela; Sellerino, Mariangela

    2013-03-01

    The aim of this paper is to apply a methodology in order to reconstruct a lithostratigraphic 3D model of an aquifer so as to define some parameters involved in the evaluation of the aquifer vulnerability to contamination of porous aquifers. The DRASTIC, SINTACS and AVI methods have been applied to an alluvial coastal aquifer of southern Italy. The stratigraphic reconstruction has been obtained by interpolating stratigraphic data from more than one borehole per 2 km. The lithostratigraphic reconstruction of a 3D model has been applied and used for three-dimensional or two-dimensional representations. In the first two methods, the layers of the vadose zone and the aquifer media have been evaluated not only by the interpolation of the single boreholes and piezometers, but also by the 3D model, assigning the scores of the parameters of each layer of the 3D model. The comparison between the maps constructed from the weighted values in each borehole and the maps deriving from the attribution of the values of each layer of the 3D model, highlights that the second representation avoids or minimizes the "bullseye" effect linked to the presence of boreholes with higher or lower values. The study has demonstrated that it is possible to integrate a 3D lithostratigraphic model of an aquifer in the assessment of the parameters involved in the evaluation of the aquifer vulnerability to contamination by Point Count System methods. PMID:23391897

  18. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  19. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  20. A volumetric sensor for real-time 3D mapping and robot navigation

    NASA Astrophysics Data System (ADS)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  1. The Use of Uas for Rapid 3d Mapping in Geomatics Education

    NASA Astrophysics Data System (ADS)

    Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan

    2016-06-01

    With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.

  2. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  3. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  4. Lateral Crustal Velocity Variations across the Andean Foreland in San Juan, Argentina from the JHD Analysis and 3D P and S Velocity inversion

    NASA Astrophysics Data System (ADS)

    Asmerom, B. B.; Chiu, J.; Pujol, J.; Smalley, R.

    2010-12-01

    Lateral crustal velocity variations across the Andean Foreland in San Juan Argentina are explored by joint hypocentral determination (JHD) analysis and 3D velocity inversion. JHD results show consistent positive station corrections beneath Precordillera and negative station corrections beneath Pie de Palo, corresponding to regions of low and high velocity, respectively. These observations are supported by the results from the 3D velocity inversion. A 20% increase in velocity is observed from the Precordilleras in the west to Pie de Palo in the east. The tomography result also reveals a narrow east dipping and NNE trending high velocity anomalous zone bisecting the southern half of Pie de Palo. This anomalous zone was previously identified by a magnetic study and was interpreted to represent the structure corresponding to the Grenvillian Precordillera-Pie de Palo tectonic boundary zone. Finally, P and S station corrections are calculated from the synthetic travel time obtained by using the resultant 3D P- and S- wave velocity model. The observed pattern and magnitude of the P- and S-wave station corrections are recovered successfully from the synthetic calculation, indicating that the resultant 3D velocity model is close to the real earth structure in the Andean Foreland region. Relocation of all intermediate events from the flat subducting slab using this newly acquired 3D velocity model shows a significant change in the slab geometry. The relocated hypocenter distribution is more clustered than previous studies obtained using a 1D model. The slab is simply flat and it resumes a normal subduction angle towards the east of the study area.

  5. SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2010-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a

  6. Pilot Application of 3d Underwater Imaging Techniques for Mapping Posidonia Oceanica (L.) Delile Meadows

    NASA Astrophysics Data System (ADS)

    Rende, F. S.; Irving, A. D.; Lagudi, A.; Bruno, F.; Scalise, S.; Cappa, P.; Montefalcone, M.; Bacci, T.; Penna, M.; Trabucco, B.; Di Mento, R.; Cicero, A. M.

    2015-04-01

    Seagrass communities are considered one of the most productive and complex marine ecosystems. Seagrasses belong to a small group of 66 species that can form extensive meadows in all coastal areas of our planet. Posidonia oceanica beds are the most characteristic ecosystem of the Mediterranean Sea, and should be constantly monitored, preserved and maintained, as specified by EU Habitats Directive for priority habitats. Underwater 3D imaging by means of still or video cameras can allow a detailed analysis of the temporal evolution of these meadows, but also of the seafloor morphology and integrity. Video-photographic devices and open source software for acquiring and managing 3D optical data rapidly became more and more effective and economically viable, making underwater 3D mapping an easier task to carry out. 3D reconstruction of the underwater scene can be obtained with photogrammetric techniques that require just one or more digital cameras, also in stereo configuration. In this work we present the preliminary results of a pilot 3D mapping project applied to the P. oceanica meadow in the Marine Protected Area of Capo Rizzuto (KR, Calabria Region - Italy).

  7. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  8. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  9. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  10. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  11. Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest

    NASA Astrophysics Data System (ADS)

    Cisewski, Jessi; Croft, Rupert A. C.; Freeman, Peter E.; Genovese, Christopher R.; Khandai, Nishikanta; Ozbek, Melih; Wasserman, Larry

    2014-05-01

    Visualizing the high-redshift Universe is difficult due to the dearth of available data; however, the Lyman-alpha forest provides a means to map the intergalactic medium at redshifts not accessible to large galaxy surveys. Large-scale structure surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS), have collected quasar (QSO) spectra that enable the reconstruction of H I density fluctuations. The data fall on a collection of lines defined by the lines of sight (LOS) of the QSO, and a major issue with producing a 3D reconstruction is determining how to model the regions between the LOS. We present a method that produces a 3D map of this relatively uncharted portion of the Universe by employing local polynomial smoothing, a non-parametric methodology. The performance of the method is analysed on simulated data that mimics the varying number of LOS expected in real data, and then is applied to a sample region selected from BOSS. Evaluation of the reconstruction is assessed by considering various features of the predicted 3D maps including visual comparison of slices, probability density functions (PDFs), counts of local minima and maxima, and standardized correlation functions. This 3D reconstruction allows for an initial investigation of the topology of this portion of the Universe using persistent homology.

  12. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  13. A New Regional 3-D Velocity Model of the India-Pakistan Region for Improved Event Location Accuracy

    NASA Astrophysics Data System (ADS)

    Reiter, D.; Vincent, C.; Johnson, M.

    2001-05-01

    A 3-D velocity model for the crust and upper mantle (WINPAK3D) has been developed to improve regional event location in the India-Pakistan region. Results of extensive testing demonstrate that the model improves location accuracy for this region, specifically for the case of small regionally recorded events, for which teleseismic data may not be available. The model was developed by integrating the results of more than sixty previous studies related to crustal velocity structure in the region. We evaluated the validity of the 3-D model using the following methods: (1) cross validation analysis for a variety of events, (2) comparison of model determined hypocenters with known event location, and (3) comparison of model-derived and empirically-derived source-specific station corrections (SSSC) generated for the International Monitoring System (IMS) auxiliary seismic station located at Nilore. The 3-D model provides significant improvement in regional location compared to both global and regional 1-D models in this area of complex structural variability. For example, the epicenter mislocation for an event with a well known location was only 6.4 km using the 3-D model, compared with a mislocation of 13.0 km using an average regional 1-D model and 15.1 km for the IASPEI91 model. We will present these and other results to demonstrate that 3-D velocity models are essential to improving event location accuracy in regions with complicated crustal geology and structures. Such 3-D models will be a prerequisite for achieving improved location accuracies for regions of high monitoring interest.

  14. Automated 3d Road Sign Mapping with Stereovision-Based Mobile Mapping Exploiting Disparity Information from Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Nebiker, S.

    2012-07-01

    This paper presents algorithms and investigations on the automated detection, classification and mapping of road signs which systematically exploit depth information from stereo images. This approach was chosen due to recent progress in the development of stereo matching algorithms enabling the generation of accurate and dense depth maps. In comparison to mono imagery-based approaches, depth maps also allow 3D mapping of the objects. This is essential for efficient inventory and for future change detection purposes. Test measurements with the mobile mapping system by the Institute of Geomatics Engineering of the FHNW University of Applied Sciences and Arts Northwestern Switzerland demonstrated that the developed algorithms for the automated 3D road sign mapping perform well, even under difficult to poor lighting conditions. Approximately 90% of the relevant road signs with predominantly red, blue and yellow colors in Switzerland can be detected, and 85% can be classified correctly. Furthermore, fully automated mapping with a 3D accuracy of better than 10 cm is possible.

  15. New Maps of the 3-D Distribution of Cold and Warm Interstellar Gas within 500pc

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Lallement, R.; Vergely, J.

    2006-12-01

    We present preliminary maps of the 3-D spatial distribution of cold (T <1000K) neutral and warm (T 5000K) partially ionized interstellar gas as traced by the NaI and CaII absorption lines observed towards stars with distances < 500pc from the Sun. These maps have been constructed from high-resolution (R 80,000) spectral data collected towards 1600 sight-lines, with the 3-D local gas density distribution being calculated from an inversion of the derived column density values. Our new maps, which trace the gas density within a 1kpc 3-D data cube surrounding the Sun, clearly show the neutral boundaries to several interstellar cavities that surround our own Local Bubble region (e.g. Loop I) and also reveal several adjacent interstellar tunnels and chimneys. Our final goal is to obtain maps based on 2000 interstellar sight-line measurements, and these data will be a valuable tool in solving several anomalies linked to the distribution of local gas such as the puzzling distribution of D-to-H values as measured within 1kpc by the NASA FUSE satellite.

  16. Retrieving 3D Velocity Fields of Glaciers from X-band SAR Data and Comparison with GPS Observations

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Nagler, T.; Hetzenecker, M.; Palsson, F.; Scharrer, K.; Floricioiu, D.; Berthier, E.; Gudmundsson, S.; Rott, H.

    2013-12-01

    We present 3D velocity fields obtained from time series of TerraSAR-X and TanDEM-X images acquired over the ablation area of the Breidamerkurjökull outlet glacier of Vatnjökull Ice Cap (Iceland) in 2008-2012. Coherent and incoherent offset tracking is applied to repeat pass X-Band data to obtain ice displacement in cross and along track direction. Three methods are tested and compared to extract fields of the 3D ice velocity. First, the conventional surface parallel approach, which we consider as an approximation for deriving the horizontal motion rate, but does not reveal a realistic vertical motion. Second, the combination of offset tracking results from almost simultaneous observations from ascending and descending orbits measuring the glacier motion in four different directions, allowing calculation of the 3D velocity fields without any additional approximations. Third, deriving full 3D velocity fields by using the horizontal flow direction, derived from the ascending-descending combination, as constrain on offset tracking results from a single pair of SAR images. The latter two methods reveal a measurement of the vertical ice motion plus ablation, hence equivalent to the vertical motion component measured by GPS station fixed on a platform laying on the ice surface. The results from all methods are compared with such GPS measurements recorded by permanent stations on the glacier in 2008-2012 and the errors of the different methods are calculated. Additionally, we approximate the contribution of these 3D flow fields to elevation changes (emergence/submergence velocity plus net balance) and compare it with elevation changes from surface DEMs obtained in 2008 (SPIRIT), 2010 (airborne LIDAR) and 2012 (TanDEM-X).

  17. 3D maps of the local ISM from inversion of individual color excess measurements

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.

    2014-01-01

    Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends

  18. Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources

    NASA Astrophysics Data System (ADS)

    Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.

    2015-04-01

    Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better

  19. SU-F-BRF-08: Conformal Mapping-Based 3D Surface Matching and Registration

    SciTech Connect

    Song, Y; Zeng, W; Gu, X; Liu, C

    2014-06-15

    Purpose: Recently, non-rigid 3D surface matching and registration has been used extensively in engineering and medicine. However, matching 3D surfaces undergoing non-rigid deformation accurately is still a challenging mathematical problem. In this study, we present a novel algorithm to address this issue by introducing intrinsic symmetry to the registration Methods: Our computational algorithm for symmetric conformal mapping is divided into three major steps: 1) Finding the symmetric plane; 2) Finding feature points; and 3) Performing cross registration. The key strategy is to preserve the symmetry during the conformal mapping, such that the image on the parameter domain is symmetric and the area distortion factor on the parameter image is also symmetric. Several novel algorithms were developed using different conformal geometric tools. One was based on solving Riemann-Cauchy equation and the other one employed curvature flow Results: Our algorithm was implemented using generic C++ on Windows XP and used conjugate gradient search optimization for acceleration. The human face 3D surface images were acquired using a high speed 3D scanner based on the phase-shifting method. The scanning speed was 30 frames/sec. The image resolution for each frame was 640 × 480. For 3D human face surfaces with different expressions, postures, and boundaries, our algorithms were able to produce consistent result on the texture pattern on the overlapping region Conclusion: We proposed a novel algorithm to improve the robustness of conformal geometric methods by incorporating the symmetric information into the mapping process. To objectively evaluate its performance, we compared it with most existing techniques. Experimental results indicated that our method outperformed all the others in terms of robustness. The technique has a great potential in real-time patient monitoring and tracking in image-guided radiation therapy.

  20. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  1. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  2. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  3. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  4. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  5. VizieR Online Data Catalog: 3D interstellar extinct. map within nearest kpc (Gontcharov, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    The product of the previously constructed 3D maps of stellar reddening (2010AstL...36..584G) and Rv variations (2012AstL...38...12G) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. (1 data file).

  6. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  7. 3D Mapping of Glacially-Sculpted Bedrock in Central Park

    NASA Astrophysics Data System (ADS)

    Laderman, L.; Stark, C. P.; Creyts, T. T.

    2014-12-01

    The movement of glaciers and ice sheets through sliding over bedrock depends on the configuration of the subglacial hydrological system. Over time, the glacier erodes the bedrock, which in turn changes water drainage pathways, the overall interaction with the ice, and potentially sliding rates. Drainage can take many forms. At the largest scale, subglacial lakes tens of kilometers in length store water, but the individual pathways are often on the order of meters or smaller. Studies at such a fine scale are only possible by looking at deglaciated beds to infer water drainage. 3D mapping can resolve centimeter scale features and inform studies of the processes that created them. In this survey, Agisoft Photoscan's structure from motion algorithm is used to create a map of Umpire Rock in New York's Central Park from digital photographs. Over 3300 photographs are taken at a separation of roughly half a meter to cover the 1000 square meter survey area. The surface is imaged in separate sections and the resulting point clouds are each aligned with a central section using Photoscan's Align Chunks tool. This process allows additional areas to easily be added to the 3D map. The scale of the final model is accurate to 1mm across the survey area and 3D meshes with a surface resolution of up to 5mm can be created. The distribution of striation directions and sizes on surfaces across the outcrop gives the overall flow direction of the ice and, more locally, illustrates how ice deforms around bedrock features. In addition to striations, we identify cavities and subtle drainage features that are oblique to ice flow. This study demonstrates the relative ease of 3D mapping bedrock outcrops from digital photographs, and indicates the utility of applying this process to more recently deglaciated areas.

  8. A Photo-Realistic 3-D Mapping System for Extreme Nuclear Environments: Chornobyl

    NASA Technical Reports Server (NTRS)

    Maimone, M.; Matthies, L.; Osborn, J.; Teza, J.; Thayer, S.

    1998-01-01

    We present a novel stereoscopic mapping system for use in nuclear accident settings. First we discuss a radiation shielded sensor array desigtned to tolerate 10(sup 6)R of cumulative dose. Next we give procedures to ensure timely, accurate range estimation using trinocular stereo. Finally, we review the implementation of a system for the integration of range information into a 3-D, textured, metrically accurate surface mesh.

  9. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  10. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life.

    PubMed

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  11. B1 Mapping of Short T2* Spins Using a 3D Radial Gradient Echo Sequence

    PubMed Central

    Kobayashi, Naoharu; Garwood, Michael

    2014-01-01

    Purpose To develop a method to acquire a radiofrequency (B1) field map when the signal has a short T2*. Theory and Methods The method is based on the actual flip angle imaging (AFI) technique and a radial 3D gradient-echo sequence known as COncurrent Dephasing and Excitation (CODE) which preserves short T2* signals. CODE was implemented with Gradient-modulated Offset-Independent Adiabaticity (GOIA) pulses to obtain high estimation sensitivity with AFI. The correlation method, that removes the quadratic phase from the frequency-modulated pulse excitation, was modified to handle gradient-modulated pulses. Validity of the modified correlation procedure was tested by Bloch simulations. CODE experiments with sinc, hyperbolic secant, and GOIA pulses were performed in order to see effects from the frequency- and gradient-modulation. Finally, GOIA-CODE AFI was conducted and compared with conventional AFI with 3D GRE. Results The modified correlation method developed to accommodate frequency- and gradient-modulations of GOIA performed well as judged by the minimal impact on reconstructed image quality. GOIA-CODE AFI provided flip angle maps consistent with those measured by GRE AFI when the T2* was long (> 2 ms) and continued to perform well for short T2* signals. Conclusion The proposed technique provides a means to obtain a 3D B1 field map when imaging spins with short T2*. PMID:23754634

  12. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life

    PubMed Central

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  13. Low Cost and Efficient 3d Indoor Mapping Using Multiple Consumer Rgb-D Cameras

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, B. S.; Song, S.

    2016-06-01

    Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside each

  14. 3-D Crustal Velocity Structure of Central Idaho/ Eastern Oregon from Joint Inversion of Rayleigh Wave Group and Phase Velocities Derived from Ambient Seismic Noise: Newest Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2014-12-01

    We present the latest 3-D isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group and phase velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith. We derived Rayleigh wave group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. 3-D checkerboard resolution tests indicate lateral resolution of better than 40 km. Preliminary results show higher S wave velocities in the western study area, and lower velocities in the lower crust on the east side of the network, consistent with Basin-and-Range style extension there. A tabular velocity anomaly juxtaposing higher above lower seismic velocities dips shallow west in the midcrust on the west side of the network.

  15. Large-scale Inference Problems in Astronomy: Building a 3D Galactic Dust Map

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas

    2016-03-01

    The term ''Big Data'' has become trite, as modern technology has made data sets of terabytes or even petabytes easy to store. Such data sets provide a sandbox in which to develop new statistical inference techniques that can extract interesting results from increasingly rich (and large) databases. I will give an example from my work on mapping the interstellar dust of the Milky Way. 2D emission-based maps have been used for decades to estimate the reddening and emission from interstellar dust, with applications from CMB foregrounds to surveys of large-scale structure. For studies within the Milky Way, however, the third dimension is required. I will present our work on a 3D dust map based on Pan-STARRS1 and 2MASS over 3/4 of the sky (http://arxiv.org/abs/1507.01005), assess its usefulness relative to other dust maps, and discuss future work. Supported by the NSF.

  16. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the

  17. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.

    PubMed

    Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R

    2010-05-28

    The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. PMID:20226465

  18. Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-06-01

    RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method

  19. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  20. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  1. 3D mapping of somatotopic reorganization with small animal functional MRI

    PubMed Central

    Yu, Xin; Wang, Shumin; Chen, Der-Yow; Dodd, Stephen; Goloshevsky, Artem; Koretsky, Alan P.

    2009-01-01

    There are few in vivo noninvasive methods to study neuroplasticity in animal brains. Functional MRI (fMRI) has been developed for animal brain mapping, but few fMRI studies have analyzed functional alteration due to plasticity in animal models. One major limitation is that fMRI maps are characterized by statistical parametric mapping making the apparent boundary dependent on the statistical threshold used. Here, we developed a method to characterize the location of center-of-mass in fMRI maps that is shown not to be sensitive to statistical threshold. Utilizing centers-of-mass as anchor points to fit the spatial distribution of the BOLD response enabled quantitative group analysis of altered boundaries of functional somatosensory maps. This approach was used to study cortical reorganization in the rat primary somatosensory cortex (S1) after sensory deprivation to the barrel cortex by follicle ablation (F.A.). FMRI demonstrated an enlarged nose S1 representation in the 3D somatotopic functional maps. This result clearly demonstrates that fMRI enables the spatial mapping of functional changes that can characterize multiple regions of S1 cortex and still be sensitive to changes due to plasticity. PMID:19770051

  2. 2D Maps, 3D Globes, and OGC Web Services Supporting Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gaylord, A. G.; Brady, J.; Cody, R.; Ramirez, G.; Gonzalez, J. C.; Rubio, C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C.

    2008-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services designed to provide support for Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS), 3D globe applications (Google Earth and ArcGIS Explorer), Open Geospatial Consortium (OGC) Web Map Service (WMS) and Keyhole Markup Language (KML) Service , and a prototype 2D ArcGIS Server Web Mapping Application (WMA). Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. OGC standard web services and metadata) and off the shelf technologies. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of all the ARMAP services and includes US research funded by the National Science Foundation, National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration. With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links to specific information and other web sites associated with particular research projects are included. . The ARMAP suite provides tools for users of various levels of technical ability to interact with data by running text based queries, browsing in 2D or 3D, or importing the KML and OGC web services directly into their own GIS applications and virtual globes. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  3. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  4. On the critical one-component velocity regularity criteria to 3-D incompressible MHD system

    NASA Astrophysics Data System (ADS)

    Liu, Yanlin

    2016-05-01

    Let (u , b) be a smooth enough solution of 3-D incompressible MHD system. We prove that if (u , b) blows up at a finite time T*, then for any p ∈ ] 4 , ∞ [, there holds ∫0T* (‖u3(t‧) ‖ H ˙ 1/2 +2/p p + ‖b(t‧) ‖ H ˙ 1/2 +2/p p) dt‧ = ∞. We remark that all these quantities are in the critical regularity of the MHD system.

  5. Effect of catheter placement on 3-D velocity profiles in curved tubes resembling the human coronary system.

    PubMed

    Krams, R; Wentzel, J J; Cespedes, I; Vinke, R; Carlier, S; van der Steen, A F; Lancee, C T; Slager, C J

    1999-06-01

    Novel measurement techniques based on intravenous ultrasound (IVUS) technology ('IVUS-Flowmetry') require the location of a catheter inside the coronary bed. The present study quantifies disturbances in the 3-D velocity profile induced by catheter placement inside a tube, applying computational fluid dynamics. Two curved, circular meshes (radius K = 0.025 m and K = 0.035 m) with and without a catheter inside the lumen were applied. The catheter was located at the inner curve, the outer curve and at the top position. Boundary conditions were: no slip on the wall, zero stress at the outlet, uniform inflow with entrance velocities of 0.1, 0.2 and 0.4 m/s. Curvature-associated centrifugal forces shifted the maximal velocity to the outer curve and introduced two symmetrical vortices. Additional catheter placement redistributed the 3-D axial velocity field away from the catheter, which was accompanied by the appearance of multiple low-strength vortices. In addition, peak axial velocity increased, peak secondary velocities decreased, axial pressure drop increased and shear stress increased. Flow calculations simulated to resemble IVUS-based flowmetry changed by only 1% after considering secondary velocity. In conclusion, placement of a catheter inside a curved tube resembling the human coronary system changes the velocity field and reduces secondary patterns. The present study supports the usefulness of catheter-based flowmetry during resting flow conditions. During hyperemic flow conditions, flow measurements might be accompanied by large axial pressure drops because the catheter, itself, might act as a significant stenosis. PMID:10414897

  6. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while

  7. On topological mapping of yarn structures in 3-D braided composite preforms

    SciTech Connect

    Wang, Y.Q.; Wang, A.S.D.

    1994-12-31

    Previous studies have established that the internal yarn structure in a 3-D braided preform possesses a certain topological character which is determined by the braiding method alone, regardless of the preform shape or the yarn size used. This unique geometric property provides the possibility that yarn structures in preforms of different shapes may be mathematically connected from one to another, as long as the preforms are produced by the same braiding procedure. Exploring this possibility, the present paper discusses a geometric mapping method for the determination of the internal yarn structures in preforms of complex shapes. The idea is to obtain the desired mapping between two preform shapes, the mapping being able to also link analytically the respective yarn structures. Thus, if the yarn structure in one shape (simple) is known, the yarn structure in the other shape (complex) can be determined by the mapping. Illustrative examples using preforms braided by the 4-step 1x1 method are presented in detail. In general, determination of the desired mapping between two preforms of complex shapes requires a numerical and iterative procedure; between two preforms of relatively simple shapes, closed form mapping functions can be obtained.

  8. 3D Globe Support for Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Gaylord, A. G.; Johnson, G.; Cody, R. P.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With special emphasis on the International Polar Year (IPY), ARMAP has a target audience of science planners, scientists, educators, and the general public. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP and includes information on US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project, which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. ARMAP services may be accessed via the gateway web site at http://www.armap.org. ARMAP's 3D globe services includes a layer users can download into Google Earth and a prototype ArcGIS Explorer (ESRI) application. A comparison of the strengths and weaknesses of the two virtual globe applications will be presented.

  9. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  10. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  11. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  12. Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo

    PubMed Central

    Milkovich, Stephanie; Goldman, Daniel; Ellis, Christopher G.

    2012-01-01

    We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models. PMID:22140042

  13. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  14. A novel technique for visualizing high-resolution 3D terrain maps

    NASA Astrophysics Data System (ADS)

    Dammann, John

    2007-02-01

    A new technique is presented for visualizing high-resolution terrain elevation data. It produces realistic images at small scales on the order of the data resolution and works particularly well when natural objects are present. Better visualization at small scales opens up new applications, like site surveillance for security and Google Earth-type local search and exploration tasks that are now done with 2-D maps. The large 3-D maps are a natural for high-resolution stereo display. The traditional technique drapes a continuous surface over the regularly spaced elevation values. This technique works well when displaying large areas or in cities with large buildings, but falls apart at small scales or for natural objects like trees. The new technique visualizes the terrain as a set of disjoint square patches. It is combined with an algorithm that identifies smooth areas within the scene. Where the terrain is smooth, such as in grassy areas, roads, parking lots and rooftops, it warps the patches to create a smooth surface. For trees or shrubs or other areas where objects are under-sampled, however, the patches are left disjoint. This has the disadvantage of leaving gaps in the data, but the human mind is very adept at filling in this missing information. It has the strong advantage of making natural terrain look realistic, trees and bushes look stylized but still look natural and are easy to interpret. Also, it does not add artifacts to the map, like filling in blank vertical walls where there are alcoves and other structure and extending bridges and overpasses down to the ground. The new technique is illustrated using very large 1-m resolution 3-D maps from the Rapid Terrain Visualization (RTV) program, and comparisons are made with traditional visualizations using these maps.

  15. The effect of sliding velocity on chondrocytes activity in 3D scaffolds.

    PubMed

    Wimmer, Markus A; Alini, Mauro; Grad, Sibylle

    2009-03-11

    Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated +/-25 degrees at 0.01, 0.1, and 1Hz to generate 0.28, 2.8, and 28mm/s, respectively. The median velocity of these 'open' motion trajectories was tested against 'closed' motion trajectories in that the scaffold oscillated +/-20 degrees against the ball at 1Hz, reaching 2.8mm/s. Constructs were loaded twice a day for 1h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed. Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28mm/s, while all other measured variables were considerably up-regulated at 28mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA. To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion. PMID:19152917

  16. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  17. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps

    PubMed Central

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  18. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

    PubMed

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  19. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  20. 3D Seismic Velocity Structure in the Rupture Area of the 2010 Maule Mw=8.8 Earthquake

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Nippress, S.; Haberland, C. A.

    2011-12-01

    The 2010 Mw=8.8 Maule, Chile earthquake is one of the largest subduction zone earthquakes ever recorded. Up to now numerous co-seismic and some post-seismic slip models have been published based entirely on seismological, geodetic, or tsunami run-up heights, or combinations of these data. Most of these models use a simplified megathrust geometry derived mainly from global earthquake catalogues, and also simplified models of seismic parameters (e.g. shear modulus). By using arrival times for a vast number of aftershocks that have been recorded on a temporary seismic array, we present a new model for the slab geometry based on earthquake locations together with a new 3D seismic velocity model of the region, for both vp and vp/vs. We analyzed 3552 aftershocks that occurred between 18 March and 24 May 2011, recorded by the International Maule Aftershock Dataset (IMAD) seismic network. Event selection from a catalogue of automatically-determined events was based on 20 or more arrival times, from which at least 10 are S-wave observations. In total over 170,000 arrival times (~125,000 and 45,000 P and S wave arrival times respectively) are used for the tomographic reconstructions. Initially, events were relocated in a 2D velocity model based on a previously published model for the southern end of the rupture area (Haberland et al., 2009). Afterwards a staggered inversion scheme is implemented, starting with a 2D inversion followed by a coarse 3D and a subsequent fine 3D inversion. Based on our preliminary inversions we conclude that aftershock seismicity is mainly concentrated between 20 and 35 km depth along the subduction interface. A second band of seismicity between 40 and 50 km depth is also observed. Low seismic velocities and an increased vp/vs ratio characterize the marine forearc. The obtained velocity model will be discussed.

  1. Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.

    2015-12-01

    We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.

  2. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage.

    PubMed

    Christen, David; Levchuk, Alina; Schori, Stefan; Schneider, Philipp; Boyd, Steven K; Müller, Ralph

    2012-04-01

    The resistance to forming microcracks is a key factor for bone to withstand critical loads without fracturing. In this study, we investigated the initiation and propagation of microcracks in murine cortical bone by combining three-dimensional images from synchrotron radiation-based computed tomography and time-lapsed biomechanical testing to observe microdamage accumulation over time. Furthermore, a novel deformable image registration procedure utilizing digital volume correlation and demons image registration was introduced to compute 3D strain maps allowing characterization of the mechanical environment of the microcracks. The displacement and strain maps were validated in a priori tests. At an image resolution of 740 nm the spatial resolution of the strain maps was 10 μm (MTF), while the errors of the displacements and strains were 130 nm and 0.013, respectively. The strain maps revealed a complex interaction of the propagating microcracks with the bone microstructure. In particular, we could show that osteocyte lacunae play a dual role as stress concentrating features reducing bone strength, while at the same time contributing to the bone toughness by blunting the crack tip. We conclude that time-lapsed biomechanical imaging in combination with three-dimensional strain mapping is suitable for the investigation of crack initiation and propagation in many porous materials under various loading scenarios. PMID:22402165

  3. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity

  4. Anisotropic 3-D Crustal Velocity Structure of Idaho/ Oregon from a Joint Inversion of Group and Phase Velocities of Love and Rayleigh Waves from Ambient Seismic Noise: Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2015-12-01

    We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.

  5. Mapping 3D Large-Scale Structure at z ˜2 with Lyman-α Forest Tomographic Mapping

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan; Hennawi, J. F.; White, M.; Croft, R. A.; Prochaska, J. X.; Schlegel, D. J.; Suzuki, N.; Kneib, J.; Bailey, S. J.; Spergel, D. N.; Rix, H.; Strauss, M. A.

    2014-01-01

    The Lyman-α (Lyα) forest absorption at z>2 traces the underlying dark-matter distribution, and with a sufficient density of background sightlines can be used to create 3D tomographic maps of large-scale structure. Since the useful Lyα forest in each sightline spans ˜400-500 h-1Mpc, Lyα forest tomography can efficiently map out large-scale structure at z˜2. The Cosmic Lyman-Alpha Program for the Tomographic Reconstruction of Absorption Probes (CLAPTRAP) will be the first survey to attempt this technique. We aim to obtain spectra for a background grid of faint quasars and bright LBGs at 23D map with similar 3 h-1Mpc resolution to be reconstructed from the data. In a recent paper, we have found that spectra with S/N ˜ 4 per Å are sufficient to make excellent-quality tomographic maps that clearly trace the underlying dark-matter distribution at overdensities of order unity. This requires integrations of several hours on moderate-resolution spectrographs mounted on existing 8-10m telescopes, such as LRIS on the Keck-I telescope and VIMOS on the Very Large Telescopes. We aim to observe ˜1500-2000 background sources over 1 sq deg of the COSMOS field with Lyα forest coverage over 2.0map out a total comoving volume of ˜106h-3Mpc3, equivalent to the zCOSMOS and DEEP2 galaxy redshift maps out to z˜1. The total time requirement is 16 nights on either VLT-VIMOS or Keck-LRIS. The resulting tomographic maps will be the first 3D maps of large-scale structure at z>1. In conjunction with the rich multi-wavelength data from the COSMOS survey, these maps will facilitate the study of galaxies in the context of the large-scale environment, reveal the topology of large-scale structure at high-redshifts, and allow the direct detection of galaxy protoclusters at the intersections of the cosmic web. The

  6. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  7. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  8. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    NASA Astrophysics Data System (ADS)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  9. Evaluation Model for Pavement Surface Distress on 3d Point Clouds from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.; Shimamura, H.

    2012-07-01

    This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS). The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments' specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  10. Mass Movement Susceptibility in the Western San Juan Mountains, Colorado: A Preliminary 3-D Mapping Approach

    NASA Astrophysics Data System (ADS)

    Kelkar, K. A.; Giardino, J. R.

    2015-12-01

    Mass movement is a major activity that impacts lives of humans and their infrastructure. Human activity in steep, mountainous regions is especially at risk to this potential hazard. Thus, the identification and quantification of risk by mapping and determining mass movement susceptibility are fundamental in protecting lives, resources and ensuring proper land use regulation and planning. Specific mass-movement processes including debris flows, rock falls, snow avalanches and landslides continuously modify the landscape of the San Juan Mountains. Historically, large-magnitude slope failures have repeatedly occurred in the region. Common triggers include intense, long-duration precipitation, freeze-thaw processes, human activity and various volcanic lithologies overlying weaker sedimentary formations. Predicting mass movement is challenging because of its episodic and spatially, discontinuous occurrence. Landslides in mountain terrain are characterized as widespread, highly mobile and have a long duration of activity. We developed a 3-D model for landslide susceptibility using Geographic Information Systems Technology (GIST). The study area encompasses eight USGS quadrangles: Ridgway, Dallas, Mount Sneffels, Ouray, Telluride, Ironton, Ophir and Silverton. Fieldwork consisted of field reconnaissance mapping at 1:5,000 focusing on surficial geomorphology. Field mapping was used to identify potential locations, which then received additional onsite investigation and photographic documentation of features indicative of slope failure. A GIS module was created using seven terrain spatial databases: geology, surficial geomorphology (digitized), slope aspect, slope angle, vegetation, soils and distance to infrastructure to map risk. The GIS database will help determine risk zonation for the study area. Correlations between terrain parameters leading to slope failure were determined through the GIS module. This 3-D model will provide a spatial perspective of the landscape to

  11. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  12. Analysis of non linear partially standing waves from 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.

    2003-04-01

    Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.

  13. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  14. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  15. Improved Uav-Borne 3d Mapping by Fusing Optical and Laserscanner Data

    NASA Astrophysics Data System (ADS)

    Jutzi, B.; Weinmann, M.; Meidow, J.

    2013-08-01

    In this paper, a new method for fusing optical and laserscanner data is presented for improved UAV-borne 3D mapping. We propose to equip an unmanned aerial vehicle (UAV) with a small platform which includes two sensors: a standard low-cost digital camera and a lightweight Hokuyo UTM-30LX-EW laserscanning device (210 g without cable). Initially, a calibration is carried out for the utilized devices. This involves a geometric camera calibration and the estimation of the position and orientation offset between the two sensors by lever-arm and bore-sight calibration. Subsequently, a feature tracking is performed through the image sequence by considering extracted interest points as well as the projected 3D laser points. These 2D results are fused with the measured laser distances and fed into a bundle adjustment in order to obtain a Simultaneous Localization and Mapping (SLAM). It is demonstrated that an improvement in terms of precision for the pose estimation is derived by fusing optical and laserscanner data.

  16. Multi-layer 3D imaging using a few viewpoint images and depth map

    NASA Astrophysics Data System (ADS)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  17. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  18. New 3D seismicity maps using chromo-stereoscopy with two alternative freewares

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.

    2011-12-01

    Seismicity maps play a key role in an introduction of geosciences studies or outreach programs. Various techniques are used in order to show earthquakes in a three dimensional field. To use "chromo-stereoscopy" is our simple and easier-making solution. The Chroma Depth 3D Glasses are employed for this purpose. The glasses consist of two transparent blazed grating films covered with a paper holder and cost a little (1 US$). Looking through these glasses, the colored chart turns into three dimensional perspective due to the mechanism that the color codes make a depth dimension with dispersion. We use two complementary freewares to make maps, the GMT (Generic Mapping Tools, Wessel and Smith.1988) and the POV-Ray (Persistence of Vision Pty. Ltd. 2004). The two softwares have their own advantages; the GMT is specialized for map making with simple scripts, while the POV-Ray produces realistic 3D rendering images with more complicated scripts. The earthquakes are plotted with the rainbow color codes depending on their depths in a black background as printed or PC images. Therefore, the red colored shallow earthquakes are float in front and blue colored ones sink deeper. This effect is so amazing that the students who first wear these glasses are strongly moved and fascinated with this simple mechanism. The data used here are from JMA seismicity catalogue and USGS (ANSS) catalogue. The POV-Ray version needs coastline data, so we got them from the Coastline Extractor (NGDC) web site. Also, the POR-Ray has no function to draw lines in three dimensions, so we had to make some trials for showing them in relief. The main target of our map is "the Wadati-Beniof zone", in which the sub-ducting oceanic plate surface is fringed by deeper earthquakes colored yellow, green to blue. The active volcanic regions such as the Hawaii islands or the active fault regions such as the San Andreas Fault are also effective targets of our method. However, since their shallow complicated seismic

  19. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  20. Lapse-time dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-07-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  1. Stardust Under a Microscope - 3D maps of Wild 2/81P Cometary Samples in Aerogel

    NASA Astrophysics Data System (ADS)

    White, Amanda J.; Ebel, Denton

    2016-01-01

    The NASA Stardust mission to comet Wild 2 returned to Earth in 2006 with cometary and interstellar material captured in aerogel. Cometary particles impacted an aerogel collector at a relative velocity of 6.1 km/s, creating three-dimensional (3D) impact tracks of melted and crushed aerogel, void space, and fragmented cometary material. Each track represents the history of a unique hypervelocity capture event. The nature of each impact, including the original state of the impactor, is recorded in track morphology and material distribution. Using a combination of 3D morphological data, chemical data, and microphysical models, it is possible to reconstruct track formation events and a model of the original impactor.The focus of this work is to fully characterize whole tracks both morphologically and chemically using solely non-destructive methods. To achieve this, we combine high-resolution laser scanning confocal microscope (LSCM) 3D imaging with synchrotron X-ray fluorescence (SXRF) chemical mapping. We are also beginning to incorporate Raman spectroscopy to perform mineral phase analysis of fine track wall material. Using a Zeiss LSM 710 LSCM located in the American Museum of Natural History, we have imaged the morphology of over a dozen, whole Stardust tracks at high resolution (<80 nm/pixel in XY). We obtain the distribution of fine material along the track walls both quickly and without disturbing the sample. Complementary chemical data is acquired using the GSECARS X-ray microbe on beamline 13-IDE at the Advance Photon Source (APS) of Argonne National Laboratory. X-ray fluorescence maps of each track were collected with 100ms/pixel dwell time at a resolution of 1 or 2 micron/pixel. Many tracks were tilted and mapped a second time for stereo measurements.A thorough understanding of how cometary material and aerogel is distributed along tracks is required to understand the events which occurred after impact and to back-calculate properties of the original impactor

  2. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  3. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  4. On the location of microseismic sources in instable rock slope areas: heterogeneous vs. homogenous 3D velocity models

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Manconi, Andrea; Occhiena, Cristina; Arattano, Massimo; Scavia, Claudio

    2013-04-01

    Rock-falls are one of the most common and hazardous phenomena occurring in mountainous areas. The formation of cracks in rocks is often accompanied by a sudden release of energy, which propagates in form of elastic waves and can be detected by a suitable transducer array. Therefore, geophones are among the most effective monitoring devices to investigate eventual precursors of rock-fall phenomena. However, the identification of an efficient procedure to forecast rock-fall occurrence in space and time is still an open challenge. In this study, we aim at developing an efficient procedure to locate microseismic sources relevant to cracking mechanisms, and thus gather indications on eventual precursors of rock-fall phenomena. Common seismic location tools usually implement homogeneous or multilayered velocity models but, in case of high slope gradients and heavily fractured rock masses, these simplifications may lead to errors on the correct estimation of the source location. Thus, we analyzed how the consideration of 3D material properties on the propagation medium may influence the location. In the framework of the Alcotra 2007-2013 Project MASSA (Medium And Small Size rock-fall hazard Assessment), a monitoring system composed by 8 triaxial geophones was installed in 2010 at the J.A. Carrel hut (3829 m a.s.l., Matterhorn, NW Italian Alps) and during the first year of operation the network recorded more than 600 natural events that exceeded a fixed threshold [1]. Despite the harsh environmental conditions of the study area, eighteen points distributed as uniformly as possible in space were selected for hammering. The artificial source dataset of known coordinates was used to constrain a 3D heterogeneous velocity model through a Simultaneous Iterative Reconstructive Technique. In order to mitigate the intrinsic uncertainties of the inversion procedure, bootstrapping was performed to extend the dataset and a statistical analysis was issued to improve the model

  5. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  6. Using Ambient Noise Data from the ALBACORE OBS Array to Determine a 3D Seismic Velocity Model Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2014-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary in order to image seismic velocities in the lithosphere. Velocities are modeled through stacked cross correlations of ambient noise data. The offshore data come primarily from the OBS array that collected 12 months of continuous data during 2010-2011, combined with Southern California Seismic Network (SCSN) station data. The cross correlations were stacked for noise correlation functions and examined using standard time- and frequency-domain methods to determine phase velocity and group velocity dispersion curves. Signals between the vertical-component OBS and co-located horizontal-component OBS observations associated with tilt noise, and pressure gauge observations associated with infragravity waves, were examined to further improve signals. The non-elastic noise was estimated by calculating the transfer functions between the vertical-to-horizontal and vertical-to-pressure components, and subtracting the coherent signal between the two from the vertical-component time series. We find that these effects are small in our dataset. We are simultaneously inverting all measureable dispersion curves to solve for 3D crustal velocity structure. Shear-wave velocities comprise the direct solution, and Vp/Vs ratios are constrained as much as the data allow. Calculations on data from 780 OBS-OBS, SCSN-SCSN, and OBS-SCSN pairs filtered around multiple narrow bands between 5 and 50 s show clear propagating waves traveling at group velocities between 1.2 and 3.5 km/s. The longer-term outcome of this work will comprise a 3D crustal and uppermost mantle velocity model with areal coverage not attainable before the deployment of the ocean bottom seismometers. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic

  7. 3D Velocity and Hypocentre Distribution About a Cone-Volcano: Mt Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Sherburn, S.; White, R.

    2003-12-01

    Mt Taranaki is a 2518 m andesite cone-volcano (last eruption AD1755) within an oil-bearing sedimentary basin approximately 50 km west of the deepest part of the Benioff zone beneath the North Island of New Zealand. It is the most recent of a series of volcanoes that have erupted in the Taranaki region in the last 1.7 million years. Although a permanent six-station seismic network monitors Mt Taranaki for signs of unrest, little is known of the structure at the depths earthquakes occur and magma maybe stored. This information is vital for interpreting precursors to any future eruption. For nine months in 2001-2002, a temporary network of 75 three-component, broadband (0.03 - 50 Hz) seismographs (area c. 100 km by 100 km) was used to collect data to image crustal structure and accurately locate earthquakes in the Taranaki region. Three hundred and eighty-nine earthquakes were located using more than 15,000 phase picks (55% P and 45% S). A joint inversion for 1D Vp, Vs and hypocentres was undertaken using Velest followed by a 3D inversion for Vp, Vp/Vs ratio and hypocentres using Simul2000. The base of the seismogenic zone increases gradually from a depth of 20 km immediately west of Mt Taranaki to 35 km deep 100 km to the east, corresponding to a previously observed increase in crustal thickness. The area close to Mt Taranaki is anomalous in that there are few earthquakes and all are shallower than 10 km. Within the upper 5-10 km of the crust Vp is closely related to surface geology, being high beneath Mt Taranaki, low beneath the surrounding sedimentary basin, and very high to the east of the basin. We present the Vp and Vp/Vs structure and hypocentre distribution of the Taranaki region and discuss features that can be attributed to volcanism at Mt Taranaki and older volcanic centres.

  8. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  9. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-03-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  10. On the Velocity Field and the 3D Structure of the Galactic Soccer Ball Abell 43

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas; Werner, Klaus; Ercolano, Barbara; Köppen, Joachim

    2005-11-01

    Planetary nebulae (PNe) and their central stars (CSs) are ideal tools to test evolutionary theory: photospheric properties of their exciting stars give stringent constraints for theoretical predictions of stellar evolution. The nebular abundances display the star's photosphere chemical composition at the time of the nebula's ejection which allows to look back into the history of stellar evolution. More importantly, they even provide a possibility to investigate on the chemical evolution of our Galaxy because most of the nuclear processed material goes back into the interstellar medium via PNe. The recent developments in observation techniques and the new three-dimensional photoionization code MOCASSIN (Ercolano et al. 2003) enable us to analyze PNe properties accurately by the construction of consistent models of PNe and CSs. In addition to PNe imaging and spectroscopy, detailed information about the velocity field within the PNe is a pre-requisite to employ de-projection techniques in modeling the physical structure of the PNe.

  11. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    PubMed Central

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  12. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors.

    PubMed

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  13. 3-D velocity structure around tehri region of the garhwal lesser himalaya: constraints on geometry of the underthrusting indian plate

    NASA Astrophysics Data System (ADS)

    Kanaujia, Jyotima; Kumar, Ashwani; Gupta, S. C.

    2016-02-01

    We investigate the upper crustal velocity structure beneath the Tehri region of the Garhwal Himalaya. The investigated region is situated within the 700-km-long central seismic gap of the Himalaya that has experienced three gap-filling earthquakes since 1991 including the recent 2015 Nepal earthquake (Mw 7.8). The local tomographic inversion is based on a dataset of 1365 events collected from January 2008 to December 2012 by a 12-station local network that covers an area of about 100 × 80 km around Tehri Dam. We perform a simultaneous inversion for P- and S-wave velocity anomalies. Tomograms are interpreted in the backdrop of the regional geological and tectonic framework of the region. The spatial distribution of relocated events from the 3- D velocity model has shed new light on the pattern of seismicity in the vicinity of the Main Central thrust (MCT), and has elucidated the structure of the underthrusting Indian plate. Our model exhibits a significant negative velocity anomaly up to ˜5 per cent beneath the central part of the Garhwal Inner Lesser Himalaya, and a P-wave low velocity anomaly near the Chamoli region. The seismicity zone around the Chamoli region may be attributed to the presence of fluid filled rocks. Furthermore, an area with˜3-4 per cent positive velocity anomaly is delineated to the northwest of the Uttarkashi thrust in the vicinity of the MCT. Significant findings of the study include: a flat-ramp-flat type sub-surface geometry of the underthrusting Indian plate below the Garhwal Himalaya, high velocity images representing the trend and configuration of Delhi-Haridwar-ridge below the Sub Himalaya and Lesser Himalaya, and a seismically active zone representing geometrical asperity on the basement thrust in the vicinity of the MCT.

  14. Numerical Modeling of seismic wave propagation on Etna Volcano (Italy): Construction of 3D realistic velocity structures

    NASA Astrophysics Data System (ADS)

    Trovato, Claudio; Aochi, Hideo; De Martin, Florent

    2014-05-01

    Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.

  15. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  16. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation.

    PubMed

    Langkammer, Christian; Bredies, Kristian; Poser, Benedikt A; Barth, Markus; Reishofer, Gernot; Fan, Audrey Peiwen; Bilgic, Berkin; Fazekas, Franz; Mainero, Caterina; Ropele, Stefan

    2015-05-01

    Quantitative susceptibility mapping (QSM) allows new insights into tissue composition and organization by assessing its magnetic property. Previous QSM studies have already demonstrated that magnetic susceptibility is highly sensitive to myelin density and fiber orientation as well as to para- and diamagnetic trace elements. Image resolution in QSM with current approaches is limited by the long acquisition time of 3D scans and the need for high signal to noise ratio (SNR) to solve the dipole inversion problem. We here propose a new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem. This approach has beneficial characteristics for low SNR data, allowing for phase data to be rapidly acquired with a 3D echo planar imaging (EPI) sequence. The proposed method was evaluated with a numerical phantom and in vivo at 3 and 7 T. Compared to total variation (TV), TGV-QSM enforced higher order smoothness which yielded solutions closer to the ground truth and prevented stair-casing artifacts. The acquisition time for images with 1mm isotropic resolution and whole brain coverage was 10s on a clinical 3 Tesla scanner. In conclusion, 3D EPI acquisition combined with single-step TGV reconstruction yields reliable QSM images of the entire brain with 1mm isotropic resolution in seconds. The short acquisition time combined with the robust reconstruction may enable new QSM applications in less compliant populations, clinical susceptibility tensor imaging, and functional resting state examinations. PMID:25731991

  17. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  18. Synchronous radiation sensing and 3D urban mapping for improved source identification

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Stiltner, L. Justin; Kochersberger, Kevin; McLean, Morgan; Czaja, Wojtek

    2014-05-01

    The acquisition of synchronous EO imagery and gamma radiation data in aerial overflights of an unmanned aircraft can provide valuable spatial context for radioactive source mapping. Using image-based 3D reconstruction methods, a terrain map can be generated and used to reason about more likely radiation source locations. For instance, vehicles may be likely hiding places for nuclear materials, so a source model with assigned probability is used at the vehicle to reduce the overall uncertainty in position estimation. Environment reconstructions based on EO imagery with a mapped gamma radiation overlay provide intrinsic correlations between the datasets. Using radioactive material dispersion models or point source models, the derived correlations serve to enhance coarse gamma radiation data. The use of autonomous unmanned aircraft provide a valuable tool in acquiring these data as they are capable of accurate and repeatable position control while eliminating exposure danger to the operators. In this experiment, two sources (.084 Ci 137Ce and .00048 Ci 133Ba) were distributed in a field with varying terrain and a scan was conducted using the Virginia Tech Yamaha RMAX autonomous helicopter equipped with a two-camera imaging system and a NaI scintillation-type spectrometer. Terrain reconstruction was conducted using both structure from motion (SfM) and stereo vision techniques, and radiation data synchronized to the imagery was overlaid.

  19. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece)

    NASA Astrophysics Data System (ADS)

    Grandjean, G.; Gourry, J. C.

    1996-11-01

    Ground Penetrating Radar (GPR) has been successfully applied to detect and map fractures in marble quarries. The aim was to distinguish quickly intact marketable marble areas from fractured ones in order to improve quarry management. The GPR profiling method was chosen because it is non destructive and quickly provides a detailed image of the subsurface. It was performed in domains corresponding to future working areas in real quarry-exploitation conditions. Field surveying and data processing were adapted to the local characteristics of the fractures: E-W orientation, sub-vertical dip, and karst features. After the GPR profiles had been processed, using methods adapted from seismics (amplitude compensation, filtering and Fourier migration), the interpreted fractures from a 12 × 24 × 15 m zone were incorporated into a 3D model. Due to the low electrical conductivity of the marble, GPR provides penetration depths of about 8 and 15 m, and resolutions of about 1 and 5 cm for frequencies of 900 and 300 MHz respectively. The detection power thus seems to be sufficient to recommend use of this method. As requested by the quarriers, the 3D representation can be used directly by themselves to locate high- or low-quality marble areas. Comparison between the observed surface fractures and the fractures detected using GPR showed reasonable correlation.

  20. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  1. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  2. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  3. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and

  4. Three-Dimensional (3-D) Reconstructions of EISCAT IPS Velocity Data in the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Jackson, B. V.; Breen, A. R.; Dorrian, G. D.; Fallows, R. A.; Clover, J. M.; Hick, P. P.

    2010-08-01

    The European Incoherent SCATter (EISCAT) radar has been used for remote-sensing observations of interplanetary scintillation (IPS) for a quarter of a century. During the April/May 2007 observing campaign, a large number of observations of IPS using EISCAT took place to give a reasonable spatial and temporal coverage of solar wind velocity structure throughout this time during the declining phase of Solar Cycle 23. Many co-rotating and transient features were observed during this period. Using the University of California, San Diego three-dimensional (3-D) time-dependent computer assisted tomography (C.A.T.) solar-wind reconstruction analysis, we show the velocity structure of the inner heliosphere in three dimensions throughout the time interval of 20 April through 20 May 2007. We also compare to white-light remote-sensing observations of an interplanetary coronal mass ejection (ICME) seen by the STEREO Ahead spacecraft inner Heliospheric Imager on 16 May 2007, as well as to in-situ solar-wind measurements taken with near-Earth spacebourne instrumentation throughout this interval. The reconstructions show clear co-rotating regions during this period, and the time-series extraction at spacecraft locations compares well with measurements made by the STEREO, Wind, and ACE spacecraft. This is the first time such clear structures have been revealed using this 3-D technique with EISCAT IPS data as input.

  5. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  6. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron tomography in combination with electron energy-loss spectroscopy (EELS) experiments and simulations was used to unravel the interplay between structure and plasmonic properties of a silver nanocuboid dimer. The precise 3D geometry of the particles fabricated by means of electron beam lithography was reconstructed through electron tomography, and the full three-dimensional information was used as an input for simulations of energy-loss spectra and plasmon resonance maps. Excellent agreement between experiment and theory was found throughout, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic nanostructures. PMID:26495933

  7. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

    PubMed

    Rao, Suhas S P; Huntley, Miriam H; Durand, Neva C; Stamenova, Elena K; Bochkov, Ivan D; Robinson, James T; Sanborn, Adrian L; Machol, Ido; Omer, Arina D; Lander, Eric S; Aiden, Erez Lieberman

    2014-12-18

    We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats. PMID:25497547

  8. 3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin

    2016-04-01

    Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites

  9. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  10. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  11. True-3D Accentuating of Grids and Streets in Urban Topographic Maps Enhances Human Object Location Memory

    PubMed Central

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  12. True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  13. 3-D velocity heterogeneity in earthquake swarm area of NW Bohemia/Vogtland (German-Czech border region)

    NASA Astrophysics Data System (ADS)

    Mousavi, Sima; Bauer, Klaus; Korn, Michael

    2014-05-01

    3-D Vp and Vp/Vs structure of the geodynamically active NW Bohemia/Vogtland area, located at the border region between Germany and Czech republic, has been determined from local earthquake tomography using 543 earthquakes which have been recorded during 2000 to 2010. This region is known for the occurrence of earthquake swarms that are supposed to be triggered by fluid upwelling in the crust, although fluid behaviour and migration paths in the subsurface of NW Bohemia is still poorly known. The events used in this study were selected based on a minimum 12 P and S phase observations and an azimuthal gap less than 160º. This data set is employed to derive a minimum 1-D velocity model and to relocate the hypocenters. The minimum 1-D velocity model is then used as an initial model in non-linear inversion to derive 3-D P-velocity and Vp/Vs ratio. Using synthetic tests, it can be shown that a high resolution is obtained in the central part of the studied region with the given source and receiver configuration. Two branches of high Vp/Vs ratio anomalies have been detected above the swarm quakes' focal zone. These anomalies support the existence of two main fluid passages toward Bad Brambach and Bublak moffette. Another interesting result is a high Vp/Vs line-like anomaly along Mariánské Lázně fault where most of the swarm quakes occur, which could be due to a fluid saturated area around the cracked zone of the fault plain. Hypocenters in the swarm region are located in a low Vp and Vp/Vs anomaly. The correlation between the detected Vp and Vp/Vs anomalies and the location of earthquake swarm suggests a model in which CO2 as part of magmatic fluids exist in a vast area beneath NW Bohemia and frequently migrate up to the surface.

  14. Noninvasive 3D elasticity mapping using phase-stabilized optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Li, Jiasong; Wang, Shang; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We demonstrate a novel method for noninvasive elasticity mapping in three dimensions using phase stabilized swept source optical coherence elastography (PhS-SSOCE). By calculating the velocity in all radial directions from the origin of the induced shear wave, a volumetric elasticity map of the sample was generated. Due to the submicrometer spatial sensitivity of PhS-SSOCE, the loading force and the induced deformation amplitude can be minimal, thus preserving the structure and function of delicate tissues such as the cornea and sclera of the eye. Tissue mimicking agar phantoms were utilized for proof of concept testing and the results show that this method can noninvasively provide a three dimensional estimation of sample elasticity.

  15. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing

    PubMed Central

    Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E.; Pilleul, Frank; Beuf, Olivier

    2013-01-01

    An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today. PMID:27006915

  16. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  17. Advanced Ice Velocity Mapping Using Landsat 8

    NASA Astrophysics Data System (ADS)

    Klinger, M. J.; Scambos, T. A.; Fahnestock, M. A.; Haran, T. M.

    2014-12-01

    Improved image-to-image cross correlation software is applied to pairs of sequential Landsat 8 satellite imagery to accurately measure ice surface velocity over ice sheets and glaciers (±0.1 pixel displacement, 15 meter pixels). The high radiometric fidelity of Landsat 8's panchromatic band (12-bit), and exceptional geolocation accuracy (typically ±5 m) supports the generation of ice velocity fields over very short time intervals (e.g., 16-, 32-, or 48-day repeat images of the same scene location). The high radiometry supports velocity mapping in areas with very subtle topographic detail, including un-crevassed sastrugi regions on ice dome flanks or the ice sheet interior. New Python-based software presently under development (named PyCorr), takes two sequential Landsat 8 OLI scenes (or suitably processed ETM+ or TM scenes) and matches small sub-scenes ('chips') between the images based on similarity in their gray-scale value patterns, using an image correlation algorithm. Peak fitting in the region of maximum correlation for a chip pair yields sub-pixel fits to the feature offset vector. Vector editing after the image correlation runs seeks to eliminate spurious and cloud-impacted vectors, and correct residual geo-location error. This processing is based on plausible values of ice strain rates and known areas of near-zero ice flow (rock outcrops, ice dome areas, etc.). In preliminary processing, we have examined ~800 Landsat 8 image pairs having <20% cloud cover spanning the near-coastal Antarctic ice sheet during the 2013-14 summer season.

  18. 3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow

    NASA Astrophysics Data System (ADS)

    Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J.

    2015-11-01

    We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface.

  19. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  20. Loads and pressure evaluation of the flow around a flapping wing from instantaneous 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Tronchin, Thibaut; David, Laurent; Farcy, Alain

    2015-01-01

    The flow around a flapping wing is characterized by an unsteady evolution of three-dimensional vortices, which are one of the main sources of loads. The difficulty in directly measuring such low forces by means of sensors and the need of the characterization of the evolution of the flow have lead to the evaluation of loads using the integral form of the momentum equation. This paper describes methods for evaluating instantaneous loads and three-dimensional pressure fields using 3D3C velocity fields only. An evaluation of the accuracy of these methods using DNS velocity fields is presented. Loads and pressure fields are then calculated using scanning tomography PIV velocity fields, around a NACA 0012 airfoil for a flapping motion in a water tank at a Reynolds number of 1,000. The results suggest a sufficient accuracy of calculated pressure fields for a global analysis of the topology of the flow and for the evaluation of loads by integrating the calculated pressure field over the surface of the wing.

  1. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    NASA Astrophysics Data System (ADS)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  2. Developed Design for Humeral Head Replacement Using 3D Surface Mapping

    NASA Astrophysics Data System (ADS)

    Salah, H. R.

    2014-12-01

    Assessment of dimensional and geometrical data on the humeral head replacement (HHR) objects is essential for solving the relevant designing problems in the physics of reverse engineering (RE). In this work, 2D-assessment for human humerus was performed using the computed tomography (CT) technique within the RE plan, after which the 2D images of humeral objects were converted into 3D images. The conversion was successful and indicated a clear difference in the 2D and 3D estimates of sizes and geometry of the humerus. The authors have analyzed and confirmed experimentally the statistical information on the relevant anatomical objects. The results of finite-element simulation of the compressive stresses affecting the geometry of 3D surface mapping were analyzed using SolidWorks software. For developing the biomechanical design of an HHR object suitable biomaterials were selected, and different metal-based biomaterials are discussed as applied at various loads. New methodology is presented for the size estimation of humeral head - both anatomical and artificial - in 3D-shape. A detailed interpretation is given for the results of CT D-measurements. Izmēru un ģeometrisko datu novērtējums, kas attiecas uz pleca kaula galviņas nomaiņas (PKGN) objektiem, nepieciešams, lai risinātu virkni reversīvās inženierijas (RI) problēmu. Šajā darbā cilvēka pleca kaula galviņas divdimensiju novērtējums tika veikts ar datortomogrāfijas palīdzību (RI) ietvaros, un pēc tam objekta divdimensiju attēlojums tika pārveidots trīsdimensiju. Pārveidojums bija sekmīgs, parādot pleca kaula galviņas izmēru un ģeometrijas atšķirības starp 2D un 3D novērtējumiem. Autori izanalizēja un eksperimentāli apstiprināja statistisko informāciju pēc dotā veida anatomiskiem objektiem. Saspiešanas sasprindzinājumi, kuri ietekmē trīsdimensiju virsmas attēlojuma ģeometriju, tika analizēti ar gala-elementu simulācijas metodi, lietojot programmu Solid

  3. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  4. A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    SciTech Connect

    Lu, Louise; Sick, Volker; Frank, Jonathan H.

    2013-09-01

    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.

  5. Hot deformation characterization of duplex low-density steel through 3D processing map development

    SciTech Connect

    Mohamadizadeh, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Mehtonen, S.; Porter, D.

    2015-09-15

    The high temperature deformation behavior of duplex low-density Fe–18Mn–8Al–0.8C steel was investigated at temperatures in the range of 600–1000 °C. The primary constitutive analysis indicated that the Zener–Hollomon parameter, which represents the coupled effects of temperature and strain rate, significantly varies with the amount of deformation. Accordingly, the 3D processing maps were developed considering the effect of strain and were used to determine the safe and unsafe deformation conditions in association with the microstructural evolution. The deformation at efficiency domain I (900–1100 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}) was found to be safe at different strains due to the occurrence of dynamic recrystallization in austenite. The safe efficiency domain II (700–900 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1}), which appeared at logarithmic strain of 0.4, was characterized by deformation induced ferrite formation. Scanning electron microscopy revealed that the microband formation and crack initiation at ferrite\\austenite interphases were the main causes of deformation instability at 600–800 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}. The degree of instability was found to decrease by increasing the strain due to the uniformity of microbanded structure obtained at higher strains. The shear band formation at 900–1100 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1} was verified by electron backscattered diffraction. The local dynamic recrystallization of austenite and the deformation induced ferrite formation were observed within shear-banded regions as the results of flow localization. - Graphical abstract: Display Omitted - Highlights: • The 3D processing map is developed for duplex low-density Fe–Mn–Al–C steel. • The efficiency domains shrink, expand or appear with increasing strain. • The occurrence of DRX and DIFF increases the power efficiency. • Crack initiation

  6. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  7. 3D imaging of radiation damage in silicon sensor and spatial mapping of charge collection efficiency

    NASA Astrophysics Data System (ADS)

    Jakubek, M.; Jakubek, J.; Zemlicka, J.; Platkevic, M.; Havranek, V.; Semian, V.

    2013-03-01

    Radiation damage in semiconductor sensors alters the response and degrades the performance of many devices ultimately limiting their stability and lifetime. In semiconductor radiation detectors the homogeneity of charge collection becomes distorted while decreasing the overall detection efficiency. Moreover the damage can significantly increase the detector noise and degrade other electrical properties such as leakage current. In this work we present a novel method for 3D mapping of the semiconductor radiation sensor volume allowing displaying the three dimensional distribution of detector properties such as charge collection efficiency and charge diffusion rate. This technique can visualize the spatially localized changes of local detector performance after radiation damage. Sensors used were 300 μm and 1000 μm thick silicon bump-bonded to a Timepix readout chip which serves as an imaging multichannel microprobe (256 × 256 square pixels with pitch of 55 μm, i.e. all together 65 thousand channels). Per pixel energy sensitivity of the Timepix chip allows to evaluate the local charge collection efficiency and also the charge diffusion rate. In this work we implement an X-ray line scanning technique for systematic evaluation of changes in the performance of a silicon sensor intentionally damaged by energetic protons.

  8. An analytical algorithm for 3D magnetic field mapping of a watt balance magnet

    NASA Astrophysics Data System (ADS)

    Fu, Zhuang; Zhang, Zhonghua; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong

    2016-04-01

    A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e. Li et al (2015 Metrologia 52 445), presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of Li et al (2015 Metrologia 52 445), which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, B r (z). The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.

  9. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  10. 3-D modeling useful tool for planning. [mapping groundwater and soil pollution and subsurface features

    SciTech Connect

    Calmbacher, C.W. )

    1992-12-01

    Visualizing and delineating subsurface geological features, groundwater contaminant plumes, soil contamination, geological faults, shears and other features can prove invaluable to environmental consultants, engineers, geologists and hydrogeologists. Three-dimensional modeling is useful for a variety of applications from planning remediation to site planning design. The problem often is figuring out how to convert drilling logs, map lists or contaminant levels from soil and groundwater into a 3-D model. Three-dimensional subsurface modeling is not a new requirement, but a flexible, easily applied method of developing such models has not always been readily available. LYNX Geosystems Inc. has developed the Geoscience Modeling System (GMS) in answer to the needs of those regularly having to do three-dimensional geostatistical modeling. The GMS program has been designed to allow analysis, interpretation and visualization of complex geological features and soil and groundwater contamination. This is a powerful program driven by a 30 volume modeling technology engine. Data can be entered, stored, manipulated and analyzed in ways that will present very few limitations to the user. The program has selections for Geoscience Data Management, Geoscience Data Analysis, Geological Modeling (interpretation and analysis), Geostatistical Modeling and an optional engineering component.

  11. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-09-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  12. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    SciTech Connect

    Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian

    2013-09-09

    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  13. Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M. A.; Meghraoui, M.

    2008-09-01

    We analyze the aftershocks sequence of the Zemmouri thrust faulting earthquake (21 May 2003, Mw 6.8) located east of Algiers in the Tell Atlas. The seismic sequence located during ˜2 months following the mainshock is made of more than 1500 earthquakes and extends NE-SW along a ˜60-km fault rupture zone crossing the coastline. The earthquake relocation was performed using handpicked P and S phases located with the tomoDD in a detailed 3D velocity structure of the epicentral area. Contrasts between velocity patches seem to correlate with contacts between granitic-volcanic basement rocks and the sedimentary formation of the eastern Mitidja basin. The aftershock sequence exhibits at least three seismic clouds and a well-defined SE-dipping main fault geometry that reflects the complex rupture. The distribution of seismic events presents a clear contrast between a dense SW zone and a NE zone with scattered aftershocks. We observe that the mainshock locates between the SW and NE seismic zones; it also lies at the NNS-SSE contact that separates a basement block to the east and sedimentary formations to the west. The aftershock distribution also suggests fault bifurcation at the SW end of the fault rupture, with a 20-km-long ˜N 100° trending seismic cluster, with a vertical fault geometry parallel to the coastline juxtaposed. Another aftershock cloud may correspond to 75° SE dipping fault. The fault geometry and related SW branches may illustrate the interference between pre-existing fault structures and the SW rupture propagation. The rupture zone, related kinematics, and velocity contrasts obtained from the aftershocks distribution are in agreement with the coastal uplift and reflect the characteristics of an active zone controlled by convergent movements at a plate boundary.

  14. Constructing 3D isotropic and azimuthally anisotropic crustal models across USArray using Rayleigh wave phase velocity and ellipticity: inferring continental stress field

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.; Tsai, V. C.

    2014-12-01

    The EarthScope USArray Transportable Array (TA) has provided a great opportunity for imaging the detailed lithospheric structure beneath the continental US. In this presentation, we will report our recent progress on constructing detailed 3D isotropic and anisotropic crustal models of the contiguous US using Rayleigh wave phase velocity and ellipticity measurements across TA. In particular, we will discuss our recent methodology development of extracting short period Rayleigh wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, using multicomponent noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. Measurements from all available station pairs are used to determine isotropic and directionally dependent Rayleigh-wave H/V ratios at each location between 8- and 24-second period. The isotropic H/V ratio maps, combined with previous longer period Rayleigh-wave H/V ratio maps from earthquakes and Rayleigh-wave phase velocity maps from both ambient noise and earthquakes, are used to invert for a new 3-D isotropic crustal and upper-mantle model in the western United States. The new model has an outstanding vertical resolution in the upper crust and tradeoffs between different parameters are mitigated. A clear 180-degree periodicity is observed in the directionally dependent H/V ratio measurements for many locations where upper crustal anisotropy is likely strong. Across the US, good correlation is observed between the inferred fast directions in the upper crust and documented maximum

  15. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  16. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  17. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  18. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy

    SciTech Connect

    Qin, Zhengbo E-mail: zctang@dicp.ac.cn; Li, Chunsheng; Qu, Zehua; Tang, Zichao E-mail: zctang@dicp.ac.cn

    2015-04-15

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O{sup −} and Au{sup −} ⋅ NH{sub 3}) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  19. Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2015-09-01

    In this article, we consider the global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity. More precisely, assuming a 0 ∈ B˙ q , 1 /3 q ( R 3 ) and u 0 = ( u0 h , u0 3 ) ∈ B˙ p , 1 - 1 + /3 p ( R 3 ) for p, q ∈ (1, 6) with sup ( /1 p , /1 q ) ≤ /1 3 + inf ( /1 p , /1 q ) , we prove that if C a↑0↑ B˙q1/3 q α (↑u0 3↑ B˙ p , 1 - 1 + /3 p/μ + 1 ) ≤ 1 , /C μ (↑u0 h↑ B˙ p , 1 - 1 + /3 p + ↑u03↑ B˙ p , 1 - 1 + /3 p 1 - α ↑u0h↑ B˙ p , 1 - 1 + /3 p α) ≤ 1 , then the system has a unique global solution a ∈ C ˜ ( [ 0 , ∞ ) ; B˙ q , 1 /3 q ( R 3 ) ) , u ∈ C ˜ ( [ 0 , ∞ ) ; B˙ p , 1 - 1 + /3 p ( R 3 ) ) ∩ L 1 ( R + ; B˙ p , 1 1 + /3 p ( R 3 ) ) . It improves the recent result of M. Paicu and P. Zhang [J. Funct. Anal. 262, 3556-3584 (2012)], where the exponent form of the initial smallness condition is replaced by a polynomial form.

  20. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

    PubMed

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

    2015-03-20

    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics. PMID:25968543

  1. Sheet 280—Fossombrone 3D: A study project for a new geological map of Italy in three dimensions

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Borraccini, Francesco; Susini, Sara

    2009-01-01

    The goal of this project is to define and test a method for building a three-dimensional (3D) geological model of Italy based on maps at a 1:50,000 scale, using the new national geological mapping program (CARG project). A structural model of Sheet 280—Fossombrone (Northern Apennines, central Italy) was produced using recently developed 3D visualization techniques. This area is characterized by faulted anticlines and broad synclines, involving a Triassic-Palaeogene succession detached from its underlying basement. Exhaustive knowledge of the regional and local geology, combined with available subsurface (well and seismic) data, makes this area a good test site for developing a 3D geological modeling method. The model of Sheet 280—Fossombrone was built in two steps. In the first step, we built a 2.5D geological model using the digital elevation model combined with the new 1:50,000 scale geological map of the area. This 2.5D model shows relationships between topographic elements, geology and major structures much better than traditional 2D geological maps. In the second step, we constructed an in-depth model integrating a large amount of subsurface data with field data from the recent mapping project. The geological model of Sheet 280—Fossombrone clarifies structural geometries and kinematics of this external part of the Northern Apennines. Structural and geomorphic analyses were performed on the 3D model to evaluate how additional information can be obtained from 3D cartography in order to improve knowledge of the study area. We present results of these analyses as examples.

  2. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    NASA Astrophysics Data System (ADS)

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  3. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  4. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  5. Advances in animal ecology from 3D-LiDAR ecosystem mapping.

    PubMed

    Davies, Andrew B; Asner, Gregory P

    2014-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Here, we review insights gained through the application of LiDAR to animal ecology studies, revealing the fundamental importance of structure for animals. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential compared with traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. To develop a better understanding of animal dynamics, future studies will benefit from considering 3D habitat effects in a wider variety of ecosystems and with more taxa. PMID:25457158

  6. Can we trace the eastern Gondwanan margin in Australia? New perspectives from transdimensional inversion of ambient noise for 3D shear velocity structure

    NASA Astrophysics Data System (ADS)

    Pilia, S.; Rawlinson, N.; Direen, N. G.

    2013-12-01

    Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This

  7. Improving the Pan-STARRs/2MASS 3-D dust map: Regularization for increased resolution and fidelity.

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas P.; Green, Gregory; Lee, Albert; Ford Schlafly, Edward

    2016-01-01

    The Green et al. (2015) 3-D map of interstellar dust uses photometry of nearly 1 billion stars from Pan-STARRS1 and 2MASS to infer the distribution of dust in the Milky Way. The current map treats each angular pixel (~ 6 arcmin) independently, and estimates the dust in 30 distance bins. However, dust structures cut across pixels and the fit could be improved by coupling the dust density in neighboring pixels. This also has the advantage that fewer stars would be required per pixel, allowing finer angular resolution. We propose a simple way to do this, and show that it allows the use of smaller angular pixels and produces sharper resolution in the distance direction for a test case in Orion. We intend to incorporate similar regularization into the next full-sky 3-D dust map.

  8. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  9. PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

    PubMed Central

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-01-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  10. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy.

    PubMed

    Mohapatra, Saswat; Nandi, Somen; Chowdhury, Rajdeep; Das, Gaurav; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-07-21

    A tumor-like multi-cellular spheroid (3D) differs from a 2D cell in a number of ways. This is demonstrated using time resolved confocal microscopy. Two different tumor spheroids - HeLa (cervical cancer) and A549 (lung cancer) - are studied using 3 different fluorescent dyes - C153 (non-covalent), CPM (covalent) and doxorubicin (non-covalent, anti-cancer drug). The pattern of localization of these three fluorescent probes in the 3D tumor cell exhibits significant differences from that in the conventional 2D cells. For both the cells (HeLa and A549), the total uptake of doxorubicin in the 3D cell is much lower than that in the 2D cell. The uptake of doxorubicin molecules in the A549 spheroid is significantly different compared to the HeLa spheroid. The local polarity (i.e. emission maxima) and solvation dynamics in the 3D tumor cell differ from those in 2D cells. The covalent probe CPM exhibits intermittent fluorescence oscillations in the 1-2 s time scale. This is attributed to redox processes. These results may provide new insights into 3D tumors. PMID:27336201

  11. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  12. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    velocity model. Also, the epicenters of these earthquakes are observed to coincide with the mapped surface trace of the NAFZ for this area. A few earthquakes with a hypocenter depth of about 15 km are identified in the west of Kumburgaz Basin where Vp values are higher (5.5 km/s). In contrast, the eastern part of Kumburgaz Basin is characterized by lower Vp (5.0 km/s) values and shows almost no apparent seismicity. Generally, low Vp values are obtained in the western part of Cinarcik Basin where the seismicity is predominantly located between the depths of 10 to 15 km. The highest Vp values (up to 6.5 km/s) are found to be near the northern coastline of the Armutlu Peninsula at a depth of 10 km. Finally, the comparison of our tomographic cross-sections with the interpreted seismic reflection sections from previous studies shows a high correlation down to a depth of 12 km. Future work will involve further investigation of deep structures with the wave propagation modeling using the finite-difference method.

  13. A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Lewis, J.; Begnaud, M. L.; Rowe, C. A.

    2009-12-01

    further refinement takes place around adjusted nodes to form a new model, and the process is repeated until no more improvement can be obtained. We thus produce a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a Java-based distributed computing framework developed by Sandia National Laboratories (SNL), providing us with 300+ processors having an efficiency of better than 90% for the calculations. We evaluate our model both in terms of travel time residual variance reduction and in location improvement for GT events. For the latter, we use a new multi-threaded version of the SNL-developed LocOO code modified to use 3D velocity models.

  14. Mobile 3d Mapping with a Low-Cost Uav System

    NASA Astrophysics Data System (ADS)

    Neitzel, F.; Klonowski, J.

    2011-09-01

    In this contribution it is shown how an UAV system can be built at low costs. The components of the system, the equipment as well as the control software are presented. Furthermore an implemented programme for photogrammetric flight planning and its execution are described. The main focus of this contribution is on the generation of 3D point clouds from digital imagery. For this web services and free software solutions are presented which automatically generate 3D point clouds from arbitrary image configurations. Possibilities of georeferencing are described whereas the achieved accuracy has been determined. The presented workflow is finally used for the acquisition of 3D geodata. On the example of a landfill survey it is shown that marketable products can be derived using a low-cost UAV.

  15. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. PMID:22776549

  16. Mapping Yangtze coastal surface velocities from ASAR

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhou, Y.; Ge, J.

    2013-12-01

    The routine sea surface current velocity measurement is principal and essential for assimilation in ocean circulation models, further for resolving coastal ocean dynamics. The obvious and unique advantages of Synthetic Aperture Radar (SAR) systems have been successfully demonstrated over variously routine ocean surface phenomena. In this paper, the detailed procedures to derive the sea surface range Doppler velocities are presented from ASAR Wide Swath Mode (WSM) products. Doppler anomaly and Doppler range velocity are analyzed in measurements by three different WSM scenes over Yangtze Estuary. At the meantime, this Doppler centroid method is validated with simulated current fields from the numerical circulation model Finite-Volume Coastal Ocean Model (FVCOM) and the results are promising. Comparisons to FVCOM data show that ASAR are capable to retrieve large gradient variation of surface velocities and capture quantitative information of strong surface currents, which are immensely attractive for the routine quantitative observation of sea surface currents from the radial Doppler anomaly. Surface Doppler velocity (V_D) from ASAR WSM scene on 31 Jan 2005 with the corresponding simulated surface currents based on FVCOM superimposed. Doppler anomaly RMS bias over land of the scenes

  17. Unified system for 3D holographic displacement and velocity measurements in fluid and solid mechanics: design and construction of the recording camera and interrogation assembly

    NASA Astrophysics Data System (ADS)

    Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    This paper introduces a new approach to 3D displacement and velocity measurements that unifies the disciplines of holographic interferometry and holographic particle image velocimetry (HPIV). Equally applicable to fluid and solid mechanics, the overall system enables quantitative displacement measurements between two holographically recorded events from either particle or surface scattering sites, working with both pulsed and continuous-wave laser systems. The resulting measurements exhibit an accuracy corresponding to interferometric system, but with a dynamic range found with PIV systems. Most importantly, this paper introduces the novel use of an optical fiber to specify the measurement points, remove optical aberrations of windows, and eliminate directional ambiguity. An optical fiber is used to probe the recorded holographic image space at each 3D measurement point in order to extract the 3D displacement vectors. This fiber system also employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex optical correlation rather than 2D real digital correlation. It is therefore a simple matter to directly obtain 3D displacement and velocity measurements at precisely known 3D locations in the object space. By correlating both the amplitude and phase information in the holographic image, this system can measure spatial distributions of displacements even when the presence of severe aberrations preclude the detection of sharp images.

  18. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  19. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  20. 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs

    PubMed Central

    Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger

    2015-01-01

    We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256

  1. Measuring distances and reddenings for a billion stars: Toward a 3D dust map from Pan-STARRS 1

    SciTech Connect

    Green, Gregory Maurice; Finkbeiner, Douglas P.; Schlafly, Edward F.; Rix, Hans-Walter; Jurić, Mario; Burgett, Will; Chambers, Kenneth C.; Flewelling, Heather; Kudritzki, Rolf Peter; Magnier, Eugene; Tonry, John; Wainscoat, Richard; Waters, Christopher; Draper, Peter W.; Metcalfe, Nigel; Martin, Nicolas

    2014-03-10

    We present a method to infer reddenings and distances to stars based only on their broad-band photometry, and show how this method can be used to produce a three-dimensional (3D) dust map of the Galaxy. Our method samples from the full probability density function of distance, reddening, and stellar type for individual stars, as well as the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1) 3π survey, we demonstrate that our reddening estimates are unbiased and accurate to ∼0.13 mag in E(B – V) for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be constrained to within ∼20%-60%, although this range can vary, depending on the reddening of the star, the precise stellar type, and its position on the sky. A later paper will present a 3D map of dust over the three quarters of the sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic science in the plane. The method we present is not limited to the passbands of the PS1 survey but may be extended to incorporate photometry from other surveys, such as the Two Micron All Sky Survey, the Sloan Digital Sky Survey (where available), and in the future, LSST and Gaia.

  2. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  3. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  4. An efficient algorithm for mapping imaging data to 3D unstructured grids in computational biomechanics.

    PubMed

    Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066

  5. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  6. Segmentation of Hypocenters and 3-D Velocity Structure around the Kii Peninsula Revealed by Onshore and Offshore Seismic Observations

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Mochizuki, K.; Nakahigashi, K.; Yamada, T.; Shinohara, M.; Sakai, S.; Kanazawa, T.; Uehira, K.; Shimizu, H.

    2013-12-01

    The Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~4 cm/year along the Nankai Trough, southwest of Japan. Around the Kii Peninsula, the rupture boundary of the historical Tonankai and Nankai large earthquakes is located, and previous researches have revealed along-strike segmentation of hypocenters [Mochizuki et al., 2010], P-wave anisotropy [Ishise et al., 2009], low frequency earthquake (LFE) distribution [e.g., Obara, 2010] and subduction depth of the Philippine Sea (PHS) Plate, or there may exist a split in the PHS Plate [Ide et al., 2010]. To investigate such segmentation, in our previous work we determined 3-D velocity structure and hypocenters using P- and S-wave arrival times of earthquakes recorded by both ocean bottom seismometers (OBSs) that were deployed from 2003 to 2007 and on-land stations [Akuhara et al., 2013]. As a result, it was discovered that Vp/Vs ratio is also segmented within the oceanic crust and at the bottom of the overriding plate, which coincides with the LFE distribution: segment A is located along the Kii Channel, segment B around the western Kii Peninsula, and segment C around the eastern Kii Peninsula. In segment B, Vp/Vs ratio is low within the oceanic crust and LFE cluster characterized by an anomalously small amount of cumulative slip, compared to the other LFE clusters around the Kii Peninsula, is located [Obara, 2010]. The difference of Vp/Vs ratio and LFE activity among segments were interpreted as difference of pore fluid pressure. In fact, similar segmentation can be seen in hypocenters: Segment A with concentrated seismicity in the oceanic mantle, segment B with that in the oceanic crust, and segment C with little seismicity. To derive characteristic patterns of the hypocenters, we conducted a cluster analysis of earthquakes based on waveform similarity represented by cross-correlation coefficients (CCs) [e.g., Cattaneo, 1999], in which we took varying structural site effects among the OBS stations

  7. System Considerations and Challendes in 3d Mapping and Modeling Using Low-Cost Uav Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2015-08-01

    In the last few years, low-cost UAV systems have been acknowledged as an affordable technology for geospatial data acquisition that can meet the needs of a variety of traditional and non-traditional mapping applications. In spite of its proven potential, UAV-based mapping is still lacking in terms of what is needed for it to become an acceptable mapping tool. In other words, a well-designed system architecture that considers payload restrictions as well as the specifications of the utilized direct geo-referencing component and the imaging systems in light of the required mapping accuracy and intended application is still required. Moreover, efficient data processing workflows, which are capable of delivering the mapping products with the specified quality while considering the synergistic characteristics of the sensors onboard, the wide range of potential users who might lack deep knowledge in mapping activities, and time constraints of emerging applications, are still needed to be adopted. Therefore, the introduced challenges by having low-cost imaging and georeferencing sensors onboard UAVs with limited payload capability, the necessity of efficient data processing techniques for delivering required products for intended applications, and the diversity of potential users with insufficient mapping-related expertise needs to be fully investigated and addressed by UAV-based mapping research efforts. This paper addresses these challenges and reviews system considerations, adaptive processing techniques, and quality assurance/quality control procedures for achievement of accurate mapping products from these systems.

  8. Radial Velocity Eclipse Mapping of Exoplanets

    NASA Astrophysics Data System (ADS)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix

    2015-07-01

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  9. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  10. Comparative Analysis of 3D Expression Patterns of Transcription Factor Genes and Digit Fate Maps in the Developing Chick Wing

    PubMed Central

    Delgado, Irene; Bain, Andrew; Planzer, Thorsten; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-01-01

    Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage. PMID:21526123

  11. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  12. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data

    NASA Astrophysics Data System (ADS)

    GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.

    2012-09-01

    We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.

  13. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    NASA Astrophysics Data System (ADS)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  14. 3D mapping of geological contacts by coupling Aerial Laser Scanning, Gigapixel photography and open access pictures

    NASA Astrophysics Data System (ADS)

    Nguyen, Liliane; Guerin, Antoine; Abellán, Antonio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel

    2015-04-01

    Multiple sources of geological data exist nowadays, most of them are in 2D (e.g. geological maps, geological panoramic sketch), and only a few are in 3D (e.g. block diagram). One of the current challenges in geological mapping consists not only in providing a more consistent 3D data, but also in pursuing a gathering and a harmonisation of the geological information in order to obtain a more consistent interpretations of the 3D geological models. New remote sensing techniques have significantly improved the representation of three-dimensional surfaces during the last decade, especially for steep and inaccessible rockcliffs. Therefore, we present an exploratory study aiming to find a reliable method for carrying out a three-dimensional mapping of geological contacts using a High Resolution Digital Elevation Model (HRDEM) with a 1 meter cell size. To this end, we selected the "Scex Rouge Mountain" as pilot study area. This outcrop, which is located in the Diablerets Massif (Vaud, Swiss Alps), has the particularity to present very distinguishable folded geological boundaries on its Southern face. The Southern slope belongs to the Wildhorn nappe, which is mainly composed of sedimentary rocks. The top-layer is composed of siliceous limestones, the well-visible fold layer is the "Pygurus layer" and consist of sandy limestone. Finally the bottom-layer includes marly schist and clayey limestones. At first, different sources of information has been draped on the HRDEM of the Scex Rouge Mountain, including not only classical geological maps (1:25 000) but also different sources of imagery (e.g. gigapixel panoramas, open access images, etc.). In a second step, several three-dimensional polylines have been drawn following the geological limit on each drapped HRDEM. Then we investigated the accuracy of 2D classical geological maps by comparing these geological limits with the drawn 3D polylines. Furthermore, in order to evaluate the accuracy of the method, a ground truth needs

  15. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  16. a Multiple Data Set Joint Inversion Global 3d P-Velocity Model of the Earth's Crust and Mantle for Improved Seismic Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.

    2013-12-01

    SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.

  17. EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy

    PubMed Central

    Barad, Benjamin A; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D; Fraser, James S

    2015-01-01

    Advances in high resolution electron cryomicroscopy (cryo-EM) have been accompanied by the development of validation metrics to independently assess map quality and model geometry. EMRinger assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM. PMID:26280328

  18. Mapping dynamic mechanical remodeling in 3D tumor models via particle tracking microrheology

    NASA Astrophysics Data System (ADS)

    Jones, Dustin P.; Hanna, William; Celli, Jonathan P.

    2015-03-01

    Particle tracking microrheology (PTM) has recently been employed as a non-destructive way to longitudinally track physical changes in 3D pancreatic tumor co-culture models concomitant with tumor growth and invasion into the extracellular matrix (ECM). While the primary goal of PTM is to quantify local viscoelasticity via the Generalized Stokes-Einstein Relation (GSER), a more simplified way of describing local tissue mechanics lies in the tabulation and subsequent visualization of the spread of probe displacements in a given field of view. Proper analysis of this largely untapped byproduct of standard PTM has the potential to yield valuable insight into the structure and integrity of the ECM. Here, we use clustering algorithms in R to analyze the trajectories of probes in 3D pancreatic tumor/fibroblast co-culture models in an attempt to differentiate between probes that are effectively constrained by the ECM and/or contractile traction forces, and those that exhibit uninhibited mobility in local water-filled pores. We also discuss the potential pitfalls of this method. Accurately and reproducibly quantifying the boundary between these two categories of probe behavior could result in an effective method for measuring the average pore size in a given region of ECM. Such a tool could prove useful for studying stromal depletion, physical impedance to drug delivery, and degradation due to cellular invasion.

  19. Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping

    NASA Astrophysics Data System (ADS)

    Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.

    2002-10-01

    This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.

  20. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  1. Quantitative analysis of nanoripple and nanoparticle patterns by grazing incidence small-angle x-ray scattering 3D mapping

    NASA Astrophysics Data System (ADS)

    Babonneau, D.; Camelio, S.; Vandenhecke, E.; Rousselet, S.; Garel, M.; Pailloux, F.; Boesecke, P.

    2012-06-01

    3D reciprocal space mapping in the grazing incidence small-angle x-ray scattering geometry was used to obtain accurate morphological characteristics of nanoripple patterns prepared by broad beam-ion sputtering of Al2O3 and Si3N4 amorphous thin films as well as 2D arrays of Ag nanoparticles obtained by glancing angle deposition on Al2O3 nanorippled buffer layers. Experiments and theoretical simulations based on the distorted-wave Born approximation make it possible to determine the average 3D shape of the ripples and nanoparticles together with crucial information on their in-plane organization. In the case of nanoparticle arrays, the approach was also used to quantify the growth conformity of an additional capping layer, which proceeds by replication of the buried ripple pattern.

  2. Large-scale 3D mapping of the intergalactic medium using the Lyman α forest

    NASA Astrophysics Data System (ADS)

    Ozbek, Melih; Croft, Rupert A. C.; Khandai, Nishikanta

    2016-03-01

    Maps of the large-scale structure of the Universe at redshifts 2-4 can be made with the Lyman α forest which are complementary to low-redshift galaxy surveys. We apply the Wiener interpolation method of Caucci et al. to construct three-dimensional maps from sets of Lyman α forest spectra taken from cosmological hydrodynamic simulations. We mimic some current and future quasar redshift surveys [Baryon Oscillation Spectroscopic Survey (BOSS), extended BOSS (eBOSS) and Mid-Scale Dark Energy Spectroscopic Instrument (MS-DESI)] by choosing similar sightline densities. We use these appropriate subsets of the Lyman α absorption sightlines to reconstruct the full three-dimensional Lyman α flux field and perform comparisons between the true and the reconstructed fields. We study global statistical properties of the intergalactic medium (IGM) maps with autocorrelation and cross-correlation analysis, slice plots, local peaks and point-by-point scatter. We find that both the density field and the statistical properties of the IGM are recovered well enough that the resulting IGM maps can be meaningfully considered to represent large-scale maps of the Universe in agreement with Caucci et al., on larger scales and for sparser sightlines than had been tested previously. Quantitatively, for sightline parameters comparable to current and near future surveys the correlation coefficient between true and reconstructed fields is r > 0.9 on scales >30 h-1 Mpc. The properties of the maps are relatively insensitive to the precise form of the covariance matrix used. The final BOSS quasar Lyman α forest sample will allow maps to be made with a resolution of ˜30 h-1 Mpc over a volume of ˜15 h-3 Gpc3 between redshifts 1.9 and 2.3.

  3. Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping

    NASA Astrophysics Data System (ADS)

    Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable

  4. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    PubMed Central

    Drasbek, Kim Ryun; Holm, Mai Marie; Delenclos, Marion; Jensen, Kimmo

    2008-01-01

    Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking. Findings We sequenced the Ap3d1 gene (HGNC GeneID: 8943) around the deletion site in the mocha mouse and revealed a 10639 bp deletion covering exon 2 to 6. Subsequently, new PCR primers were designed yielding a reliable genotyping protocol of both newborn and adult tissue. To examine the genotypes further, hippocampal neurons were cultured from mocha and control mice. Patch-clamp recordings showed that mocha neurons had a higher input resistance, and that autaptic EPSC in mocha cultures depressed faster and stronger as compared with control cultures. Conclusion Our study reports the sequence of the deleted part of the Ap3d1 gene in mocha mice, as well as a reliable PCR-based genotyping protocol. We cultured hippocampal neurons from control and mocha mice, and found a difference in input resistance of the neurons, and in the synaptic short-term plasticity of glutamatergic autapses showing a larger synaptic depression than controls. The described procedures may be useful for the future utilization of the mocha mouse as a model of defective vesicle biogenesis. Importantly, as genotyping by eye color is complicated in newborn mice, the designed protocol is so fast and reliable that newborn mice could rapidly be genotyped and hippocampal neurons dissociated and cultured, which is normally best done at P0-P2. PMID:19032734

  5. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%. PMID:26342493

  6. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGESBeta

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D.; Fraser, James S.

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  7. Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography

    PubMed Central

    Leahy, Conor; Radhakrishnan, Harsha; Weiner, Geoffrey; Goldberg, Jeffrey L.; Srinivasan, Vivek J.

    2015-01-01

    Purpose The purpose of this study is to demonstrate three-dimensional (3D) graphing based on optical coherence tomography (OCT) angiography for characterization of the inner retinal vascular architecture and determination of its topologic principles. Methods Rat eyes (N = 3) were imaged with a 1300-nm spectral/Fourier domain OCT microscope. A topologic model of the inner retinal vascular network was obtained from OCT angiography data using a combination of automated and manually-guided image processing techniques. Using a resistive network model, with experimentally-quantified flow in major retinal vessels near the optic nerve head as boundary conditions, theoretical changes in the distribution of flow induced by vessel dilations were inferred. Results A topologically-representative 3D vectorized graph of the inner retinal vasculature, derived from OCT angiography data, is presented. The laminar and compartmental connectivity of the vasculature are characterized. In contrast to sparse connectivity between the superficial vitreal vasculature and capillary plexuses of the inner retina, connectivity between the two capillary plexus layers is dense. Simulated dilation of single arterioles is shown to produce both localized and lamina-specific changes in blood flow, while dilation of capillaries in a given retinal vascular layer is shown to lead to increased total flow in that layer. Conclusions Our graphing and modeling data suggest that vascular architecture enables both local and lamina-specific control of blood flow in the inner retina. The imaging, graph analysis, and modeling approach presented here will help provide a detailed characterization of vascular changes in a variety of retinal diseases, both in experimental preclinical models and human subjects. PMID:26325417

  8. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  9. View-independent Contour Culling of 3D Density Maps for Far-field Viewing of Iso-surfaces

    PubMed Central

    Feng, Powei; Ju, Tao; Warren, Joe

    2011-01-01

    In many applications, iso-surface is the primary method for visualizing the structure of 3D density maps. We consider a common scenario where the user views the iso-surfaces from a distance and varies the level associated with the iso-surface as well as the view direction to gain a sense of the general 3D structure of the density map. For many types of density data, the iso-surfaces associated with a particular threshold may be nested and never visible during this type of viewing. In this paper, we discuss a simple, conservative culling method that avoids the generation of interior portions of iso-surfaces at the contouring stage. Unlike existing methods that perform culling based on the current view direction, our culling is performed once for all views and requires no additional computation as the view changes. By pre-computing a single visibility map, culling is done at any iso-value with little overhead in contouring. We demonstrate the effectiveness of the algorithm on a range of bio-medical data and discuss a practical application in online visualization. PMID:21673830

  10. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  11. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  12. GPR Detection and 3D Mapping of Lateral Macropores II. Riparian Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphology and prevalence of 1-10 cm diameter macropores in forested riparian wetland buffers is largely unknown despite their importance as a source of preferential nutrient delivery to stream channels. Here, we validated in situ procedures for detecting and mapping the three-dimensional struct...

  13. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  14. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  15. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    NASA Astrophysics Data System (ADS)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  16. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  17. Geo-Referenced Mapping Using AN Airborne 3d Time-Of Camera

    NASA Astrophysics Data System (ADS)

    Kohoutek, T. K.; Nitsche, M.; Eisenbeiss, H.

    2011-09-01

    This paper presents the first experience of a close range bird's eye view photogrammetry with range imaging (RIM) sensors for the real time generation of high resolution geo-referenced 3D surface models. The aim of this study was to develop a mobile, versatile and less costly outdoor survey methodology to measure natural surfaces compared to the terrestrial laser scanning (TLS). Two commercial RIM cameras (SR4000 by MESA Imaging AG and a CamCube 2.0 by PMDTechnologies GmbH) were mounted on a lightweight crane and on an unmanned aerial vehicle (UAV). The field experiments revealed various challenges in real time deployment of the two state-of-the-art RIM systems, e.g. processing of the large data volume. Acquisition strategy and data processing and first measurements are presented. The precision of the measured distances is less than 1 cm for good conditions. However, the measurement precision degraded under the test conditions due to direct sunlight, strong illumination contrasts and helicopter vibrations.

  18. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.

    PubMed

    Schrof, Susanne; Varga, Peter; Galvis, Leonardo; Raum, Kay; Masic, Admir

    2014-09-01

    Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues. PMID:25025981

  19. Evaluating the presentation and usability of 2D and 3D maps generated by unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gregory, Jason; Baran, David; Evans, A. W.

    2013-05-01

    Currently fielded small unmanned ground vehicles (SUGVs) are operated via teleoperation. This method of operation requires a high level of operator involvement within, or near within, line of sight of the robot. As advances are made in autonomy algorithms, capabilities such as automated mapping can be developed to allow SUGVs to be used to provide situational awareness with an increased standoff distance while simultaneously reducing operator involvement. In order to realize these goals, it is paramount the data produced by the robot is not only accurate, but also presented in an intuitive manner to the robot operator. The focus of this paper is how to effectively present map data produced by a SUGV in order to drive the design of a future user interface. The effectiveness of several 2D and 3D mapping capabilities was evaluated by presenting a collection of pre-recorded data sets of a SUGV mapping a building in an urban environment to a user panel of Soldiers. The data sets were presented to each Soldier in several different formats to evaluate multiple factors, including update frequency and presentation style. Once all of the data sets were presented, a survey was administered. The questions in the survey were designed to gauge the overall usefulness of the mapping algorithm presentations as an information generating tool. This paper presents the development of this test protocol along with the results of the survey.

  20. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm

    PubMed Central

    Pandurangan, Arun Prasad; Vasishtan, Daven; Alber, Frank; Topf, Maya

    2015-01-01

    Summary We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. PMID:26655474

  1. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  2. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    NASA Astrophysics Data System (ADS)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  3. 3D modelling of soil texture: mapping and incertitude estimation in centre-France

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Martin, Manuel P.; Saby, Nicolas P. A.; Richer de Forges, Anne C.; Nehlig, Pierre; Martelet, Guillaume; Arrouays, Dominique

    2014-05-01

    Soil texture is an important component of all soil physical-chemical processes. The spatial variability of soil texture plays a crucial role in the evaluation and modelling of all distributed processes. The object of this study is to determine the spatial variation of soil granulometric fractions (i.e., clay, silt, sand) in the region "Centre" of France in relation to the main controlling factors, and to create extended maps of these properties following GlobalSoilMap specifications. For this purpose we used 2487 soil profiles of the French soil database (IGCS - Inventory Management and Soil Conservation) and continuum depth values of the properties within the soil profiles have been calculated with a quadratic splines methodology optimising the spline parameters in each soil profile. We used environmental covariates to predict soil properties within the region at depth intervals 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm. Concerning environmental covariates, we used SRTM and ASTER DEM with 90m and 30m resolution, respectively, to generate terrain parameters and topographic indexes. Other covariates we used are Gamma Ray maps, Corine land cover, available geological and soil maps of the region at scales 1M, 250k and 50k. Soil texture is modeled with the application of the compositional data analysis theory namely, alr-transform (Aitchison, 1986) which considers in statistical calculation the complementary dependence between the different granulometric classes (i.e. 100% constraint). The prediction models of the alr-transformed variables have been developed with the use of boosting regression trees (BRT), then, using a LMM - Linear Mixed Model - that separates a fixed effect from a random effect related to the continuous spatially correlated variation of the property. In this case, the LMM is applied to the two co-regionalized properties (clay and sand alr-transforms). Model uncertainty mapping represents a practical way to describe efficiency and limits of

  4. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  5. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  6. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  7. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  8. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio

    2016-02-01

    The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment

  9. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture

    PubMed Central

    Topp, Christopher N.; Iyer-Pascuzzi, Anjali S.; Anderson, Jill T.; Lee, Cheng-Ruei; Zurek, Paul R.; Symonova, Olga; Zheng, Ying; Bucksch, Alexander; Mileyko, Yuriy; Galkovskyi, Taras; Moore, Brad T.; Harer, John; Edelsbrunner, Herbert; Mitchell-Olds, Thomas; Weitz, Joshua S.; Benfey, Philip N.

    2013-01-01

    Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops. PMID:23580618

  10. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  11. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images.

    PubMed

    Cusack, R; Papadakis, N

    2002-07-01

    The phase, as well as the magnitude, of MRI images can carry useful information. It may be used to encode flow or temperature, or to map the magnetic field for the undistorting of EPIs and automated shimming. In all cases, we measure the extra spin given to nuclei. Unfortunately, we can only measure the final phase of the spins: the rotation is wrapped into the range [-pi, +pi], and to obtain a measure of the parameter of interest the missing multiples of 2pi must be replaced--a process known as phase unwrapping. While simple in principle, standard phase unwrapping algorithms fail catastrophically in the presence of even small amounts of noise. Here we present a new algorithm for robust three-dimensional phase unwrapping, in which unwrapping is guided, so that it initially works on less noisy regions. We test the algorithm on simulated phase data, and on maps of magnetic field, which were then used to successfully undistort EPI images. The unwrapping algorithm could be directly applied to other kinds of phase data. PMID:12169259

  12. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  13. 3D reconstruction and heat map of porcine recurrent laryngeal nerve anatomy: branching and spatial location.

    PubMed

    Mason, Nena Lundgreen; Christiansen, Marc; Wisco, Jonathan J

    2015-01-01

    Recurrent laryngeal nerve palsy is a common post-operative complication of many head and neck surgeries. Theoretically, the best treatment to restore partial function to a damaged recurrent laryngeal nerve would be reinnervation of the posterior cricoarytenoid muscle via anastomosis of the recurrent laryngeal and phrenic nerves. The pig is an excellent model of human laryngeal anatomy and physiology but a more thorough knowledge of porcine laryngeal anatomy is necessary before the pig can be used to improve existing surgical strategies, and develop new ones. This study first identifies the three most common recurrent laryngeal nerve branching patterns in the pig. Secondly, this study presents three-dimensional renderings of the porcine larynx onto which the recurrent laryngeal nerve patterns are accurately mapped. Lastly, heat maps are presented to display the spatial variability of recurrent laryngeal nerve trunks and primary branches on each side of 15 subjects (28 specimens). We intend for this study to be useful to groups using a porcine model to study posterior cricoarytenoid muscle reinnervation techniques. PMID:27086418

  14. 3D maps of the local interstellar medium: searching for the imprints of past events

    NASA Astrophysics Data System (ADS)

    Lallement, R.

    2015-01-01

    Inversion of interstellar (IS) gas or dust absorbing columns measured along the path to stars distributed in distance and direction allows reconstructing the distribution of interstellar matter (ISM) in three dimensions. A low resolution IS dust map based on reddening measurements towards 23,000 nearby stars is used to illustrate the potential of the more detailed maps that are expected within the next several years. The map reveals the location of the main IS cloud complexes up to distances on the order of 600 to 1200 pc depending on directions. Owing to target selection biases towards weakly reddened, brighter stars, the map is especially revealing in terms of regions devoid of IS matter. It traces the Local Bubble and its neighboring cavities, including a conspicuous, giant, >=1000 pc long cavity in the third quadrant located beyond the so-called βMa tunnel. This cavity is bordered by the main constituents of the Gould belt, the well-known and still unexplained rotating and expanding ring of clouds and young stars, inclined by ~ 20° to the galactic plane. Comparing the dust distribution with X-ray emission maps and IS gas observations shows that the giant cavity contains a large fraction of warm, fully ionized and dust-poor gas in addition to million K, X-ray bright gas. This set of structures must reflect the main events that occurred in the past; today however even the formation of the Gould belt is still a matter of controversy. It has been suggested recently that the Cretaceus-Tertiary (KT) mass extinction is potentially due to a gamma-ray burst (GRB) that occurred in the massive globular cluster (GC) 47 Tuc during its close encounter with the Sun ~70 Myrs ago. Such a hypothesis is based on computations of the cluster and Sun trajectories and the frequency of short GRBs in GC's. Given the mass, speed and size of 47 Tuc, wherever it crossed the Galactic plane it must have produced at the crossing site significant dynamical effects on the disk stars and IS

  15. 2D and 3D Shear-Wave Velocity Structure to >1 Km Depth from Ambient and Active Surface Waves: Three "Deep Remi" Case Studies

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.

    2014-12-01

    Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.

  16. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  17. Initial Results of 3D Topographic Mapping Using Lunar Reconnaissance Orbiter Camera (LROC) Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Li, R.; Oberst, J.; McEwen, A. S.; Archinal, B. A.; Beyer, R. A.; Thomas, P. C.; Chen, Y.; Hwangbo, J.; Lawver, J. D.; Scholten, F.; Mattson, S. S.; Howington-Kraus, A. E.; Robinson, M. S.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO), launched June 18, 2009, carries the Lunar Reconnaissance Orbiter Camera (LROC) as one of seven remote sensing instruments on board. The camera system is equipped with a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NAC) for systematic lunar surface mapping and detailed site characterization for potential landing site selection and resource identification. The LROC WAC is a pushframe camera with five 14-line by 704-sample framelets for visible light bands and two 16-line by 512-sample (summed 4x to 4 by 128) UV bands. The WAC can also acquire monochrome images with a 14-line by 1024-sample format. At the nominal 50-km orbit the visible bands ground scale is 75-m/pixel and the UV 383-m/pixel. Overlapping WAC images from adjacent orbits can be used to map topography at a scale of a few hundred meters. The two panchromatic NAC cameras are pushbroom imaging sensors each with a Cassegrain telescope of a 700-mm focal length. The two NAC cameras are aligned with a small overlap in the cross-track direction so that they cover a 5-km swath with a combined field-of-view (FOV) of 5.6°. At an altitude of 50-km, the NAC can provide panchromatic images from its 5,000-pixel linear CCD at a ground scale of 0.5-m/pixel. Calibration of the cameras was performed by using precision collimator measurements to determine the camera principal points and radial lens distortion. The orientation of the two NAC cameras is estimated by a boresight calibration using double and triple overlapping NAC images of the lunar surface. The resulting calibration results are incorporated into a photogrammetric bundle adjustment (BA), which models the LROC camera imaging geometry, in order to refine the exterior orientation (EO) parameters initially retrieved from the SPICE kernels. Consequently, the improved EO parameters can significantly enhance the quality of topographic products derived from LROC NAC imagery. In addition, an analysis of the spacecraft

  18. Mapping and Modelling of the PNG Slump - 3-D Evidence to demonstrate a Tsunami Source?

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; McMurtry, G. M.; Smith, J. R.; Watts, P.

    2004-12-01

    The original offshore data set for the slump that is now generally accepted as the source of the 1998 PNG tsunami was originally presented as 2-D bathymetry images, seismic sections and as seabed photographs. The dataset images a cohesive rotational failure offshore off the north coast of Papua New Guinea, mathematical modelling of which provides appropriate run-ups comparable with onshore measurements from field surveys. The regional bathymetry and seismic data acquired off the north coast of PNG images a deeply incised, sediment-starved convergent margin subsiding along the New Guinea Trench. An arcuate shaped feature off the Sissano Lagoon, termed the `amphitheatre', is identified as the source location of the failure that is located in the east of this feature. The presence of a slump in this eastern area is confirmed by seismic data and observations from Remote and Manned Submersibles, that show seabed features, such as fissures and fractured limestone, on the surface of the slump and interpreted as due to sediment movement. Absolute dating of slump failure is not possible with the present data set, but the relative, recent, age of failure is based on the fresher appearance of fissures in the slump area as well as a greater concentration of a chemosynthetic cold-water biota together with active fluid expulsion on the slump surface. The chemosynthetic biotas comprise mussels and tubeworms and bacterial mats. Laminar bedded chemosynthetic limestone was only observed on the slump surface and represents a low volume background sulphide and methane rich fluid seepage. The concentration of living cold-water faunas on the slump surface is interpreted as the result of an increased fluid expulsion rate associated with the slumping. This presentation uses new interactive software, Fledermaus, to image the northern PNG offshore area, including the amphitheatre, to show the seabed morphology in 3-D and the relationships between the regional geology and the slump area. Use

  19. A 3-D shear velocity model of the southern North America and the Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2014-10-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  20. A 3D map of the islet routes throughout the healthy human pancreas

    PubMed Central

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  1. 3D Vegetation Mapping Using UAVSAR, LVIS, and LIDAR Data Acquisition Methods

    NASA Technical Reports Server (NTRS)

    Calderon, Denice

    2011-01-01

    The overarching objective of this ongoing project is to assess the role of vegetation within climate change. Forests capture carbon, a green house gas, from the atmosphere. Thus, any change, whether, natural (e.g. growth, fire, death) or due to anthropogenic activity (e.g. logging, burning, urbanization) may have a significant impact on the Earth's carbon cycle. Through the use of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and NASA's Laser Vegetation Imaging Sensor (LVIS), which are airborne Light Detection and Ranging (LIDAR) remote sensing technologies, we gather data to estimate the amount of carbon contained in forests and how the content changes over time. UAVSAR and LVIS sensors were sent all over the world with the objective of mapping out terrain to gather tree canopy height and biomass data; This data is in turn used to correlate vegetation with the global carbon cycle around the world.

  2. Photocurrent mapping of 3D CdSe/CdTe windowless solar cells.

    PubMed

    Hangarter, Carlos M; Debnath, Ratan; Ha, Jong Y; Sahiner, Mehmet A; Reehil, Christopher J; Manners, William A; Josell, Daniel

    2013-09-25

    This paper details the use of scanning photocurrent microscopy to examine localized current collection efficiency of thin-film photovoltaic devices with in-plane patterning at a submicrometer length scale. The devices are based upon two interdigitated comb electrodes at the micrometer length scale prepatterned on a substrate, with CdSe electrodeposited on one electrode and CdTe deposited over the entire surface of the resulting structure by pulsed laser deposition. Photocurrent maps provide information on what limits the performance of the windowless CdSe/CdTe thin-film photovoltaic devices, revealing "dead zones" particularly above the electrodes contacting the CdTe which is interpreted as recombination over the back contact. Additionally, the impact of ammonium sulfide passivation is examined, which enables device efficiency to reach 4.3% under simulated air mass 1.5 illumination. PMID:23968397

  3. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  4. 3D mapping of stellar populations in galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2015-08-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600A to 10300 A for a representative sample of 10,000 nearby galaxies. MaNGA will allow the internal kinematics and spatially-resolved properties of stellar populations and gas inside galaxies to be studied as a function of local environment and halo mass for the very first time. I will present results from our analysis of the first year MaNGA data. The main focus is on the 3-dimensional distribution of stellar population properties in galaxies - formation age, element abundance, IMF slope - studying how these vary spatially in galaxies as a function of galaxy environment and dark matter halo mass.

  5. A 3D map of the islet routes throughout the healthy human pancreas.

    PubMed

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  6. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  7. 3-D Shear Wave Velocity Model of Mexico and South US: Bridging Seismic Networks with Ambient Noise Cross-Correlations (C1) and Correlation of Coda of Correlations (C3).

    NASA Astrophysics Data System (ADS)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba Montiel, Francisco; Iglesias, Arturo

    2016-07-01

    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group travel times are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  8. 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3)

    NASA Astrophysics Data System (ADS)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo

    2016-09-01

    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  9. 3D Simultaneous Traveltime Inversion for Velocity Structure, Hypocenter Locations, and Reflector Geometry Using Multiple Classes of Arrivals

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Huang, Guo-jiao; Li, Xing-wang; Greenhalgh, Stewart

    2015-10-01

    Traditionally, traveltime tomography entails inversion of either the velocity field and the reflector geometry sequentially, or the velocity field and the hypocenter locations simultaneously or in a cascaded fashion, but seldom are all three types (velocities, geometry of reflectors, and source locations) updated simultaneously because of the compromise between the different classes of model variable and the lack of different seismic phases to constrain these variables. By using a state-of-the-art ray-tracing algorithm for the first and later arrivals combined with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model variables. In the work discussed in this paper we combined the multistage irregular shortest-path ray-tracing algorithm with a subspace inversion solver to achieve simultaneous inversion of multi-class variables, using arrival times for different phases to concurrently obtain the velocity field, the reflector shapes, and the hypocenter locations. Simulation and comparison tests for two sets of source-receiver arrangements (one the ideal case and the other an approximated real case) indicate that the combined triple-class inversion algorithm is capable of obtaining nearly the same results as the double-class affect inversion scheme (velocity and reflector geometry, or velocity and source locations) even if a lower ray density and irregular source-receiver geometry are used to simulate the real situation. In addition, the new simultaneous inversion method is not sensitive to a modest amount of picking error in the traveltime data and reasonable uncertainty in earthquake hypocenter locations, which shows it to be a feasible and promising approach in real applications.

  10. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  11. a Shared Database of Underground Utility Lines for 3d Mapping and GIS Applications

    NASA Astrophysics Data System (ADS)

    Cazzaniga, N. E.; Carrion, D.; Migliaccio, F.; Barzaghi, R.

    2013-05-01

    For the purpose of facility management it is very important to have detailed and up-to-date databases of underground utility lines, but such data are not always available with adequate accuracy. Hence, the need of collecting and organizing suitable information on underground services is a fundamental issue when dealing with urban data. Besides, by analyzing the process of designing and laying new underground infrastructures it is possible to implement an efficient and cost-effective approach to integrate and update existing maps by exploiting the surveying required for the installation of new facilities. It is also important to underline that collecting all the data in a unique integrated database (and GIS) gives the possibility to share (at least at a local level) the cartographic and thematic information for an optimal management of underground networks. In this paper, a database (DB) model for archiving the underground lines data is presented. The structure of the DB has been designed by following the standard methodology for the modelling of a relational DB, going through successive phases and originating the external, conceptual and logical model. Finally, preliminary tests have been carried on for parts of the DB to verify quality parameters.

  12. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.

    PubMed

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  13. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace

    PubMed Central

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  14. Full circle: 3D femoral mapping demonstrates age-related changes that influence femoral implant positioning.

    PubMed

    Tucker, Damien; Surup, Timm; Petersik, Andreas; Kelly, Michael

    2016-02-01

    The geometry of the femur is important in the final position of an intramedullary implant; we hypothesised that the femoral geometry changes with age and this may predispose the elderly to anterior mal-positioning of these implants. We used CT DICOM data of 919 intact left femora and specialist software that allowed us to defined landmarks for measurement reference - such as the linea aspera - on a template bone that could be mapped automatically to the entire database. We found that older (>80 years) cortical bone is up to 1.5 mm thinner anteriorly and 2 mm thinner posteriorly than younger (<40 years) bone but the rate of change of posterior to anterior cortex thickness is greater in the older bone. We also found the isthmus in the elderly to be more distal and less substantial than in the younger bone. This study has demonstrated femoral geometry changes with age that may explain our perception that the elderly are at increased risk for anterior mal-positioning of intramedullary implants. PMID:26686594

  15. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  16. 3D Inversion of a Self-Potential Dataset for Contaminant Detection and Mapping

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Sogade, J.; Briggs, V.; Lambert, M.; Reppert, P.; Coles, D.; Morgan, F.; Rossabi, J.; Riha, B.; Shi, W.

    2003-12-01

    Due to the complicated nature of subsurface contaminant migration, it is difficult to determine the spatial extent and severity of contamination, which can provide essential information for efficient remediation efforts. Self-potential (SP) geophysics is employed to provide a minimally invasive, fast, and inexpensive method for remote in-situ detection and three-dimensional mapping of subsurface DNAPL (Dense Non-Aqueous Phase Liquid) in conjunction with inverse methods. The self-potential method is commonly used to detect a variety of phenomena that are typically related to thermoelectric, electrochemical, or electrokinetic coupling processes. Surface self-potential surveys have been documented to show anomalies over areas known to be contaminated, but interpretation of these datasets is often mostly qualitative, and can be plagued with problems of non-uniqueness. In this study, oxidation-reduction (redox) reactions, one of the mechanisms associated with the attenuation of chemicals released into the environment, provide an electrochemical source for the SP signal. Electrochemical potentials associated with subsurface zones of redox activity are analogous to localized 'batteries' buried within native earth materials, and produce an electric field that is remotely detected using electrodes placed at the surface and in nearby boreholes. Three-dimensional inversion of the self-potential data incorporating resistivity information is the necessary step in characterizing the source parameters, which are directly related to the redox activity, and therefore to the contaminant itself. Surface and borehole SP data are collected in order to help constrain the solution in depth, and resistivity information is taken from an induced polarization survey performed over the same area during this field excursion. Inversion results are correlated with contaminant concentration data sampled from a series of ground-truth boreholes within the region of interest.

  17. Mapping the Monoceros Ring in 3D with Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Morganson, Eric; Conn, Blair; Rix, Hans-Walter; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth; Dolphin, Andrew; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene A.; Martin, Nicolas F.; Martinez-Delgado, David; Metcalfe, Nigel; Schlafly, Edward F.; Slater, Colin T.; Wainscoat, Richard J.; Waters, Christopher Z.

    2016-07-01

    Using the Pan-STARRS1 survey, we derive limiting magnitude, spatial completeness, and density maps that we use to probe the three-dimensional structure and estimate the stellar mass of the so-called Monoceros Ring. The Monoceros Ring is an enormous and complex stellar sub-structure in the outer Milky Way disk. It is most visible across the large Galactic Anticenter region, 120^\\circ \\lt l\\lt 240^\\circ , -30^\\circ \\lt b\\lt +40^\\circ . We estimate its stellar mass density profile along every line of sight in 2° × 2° pixels over the entire 30,000 deg2 Pan-STARRS1 survey using the previously developed match software. By parsing this distribution into a radially smooth component and the Monoceros Ring, we obtain its mass and distance from the Sun along each relevant line of sight. The Monoceros Ring is significantly closer to us in the south (6 kpc) than in the north (9 kpc). We also create 2D cross-sections parallel to the Galactic plane that show 135° of the Monoceros Ring in the south and 170° of the Monoceros Ring in the north. We show that the northern and southern structures are also roughly concentric circles, suggesting that they may be waves rippling from a common origin. Excluding the Galactic plane ˜ +/- 4^\\circ , we observe an excess mass of 4× {10}6{M}ȯ across 120^\\circ \\lt l\\lt 240^\\circ . If we interpolate across the Galactic plane, we estimate that this region contains 8× {10}6{M}ȯ . If we assume (somewhat boldly) that the Monoceros Ring is a set of two Galactocentric rings, its total mass is 6× {10}7{M}ȯ . Finally, if we assume that it is a set of two circles centered at a point 4 kpc from the Galactic center in the anti-central direction, as our data suggests, we estimate its mass to be 4× {10}7{M}ȯ .

  18. SERAPIS project - 3D imaging of the Campi Flegrei caldera (southern Italy) : high resolution P-wave velocity tomography

    NASA Astrophysics Data System (ADS)

    Judenherc, S.; Zollo, A.; Auger, E.; Boschi, L.; Satriano, C.; Serapis Working Group

    2003-04-01

    In September 2001, the SERAPIS project was carried out as an extended active seismic survey in the gulfs of Naples and Pozzuoli. A dense array of 60 three-component on-land stations and 72 sea bottom seismographs (OBS) have been deployed to record more than 5000 air gun shots at a spacing of about 125~m. As a preliminary analysis, the first P-arrival times of a the small offset data in the central part of the region has been inverted using the codes of H.M. Benz. The linearized iterative inversion of 38000 arrival times provided a >80% variance reduction with a node spacing of 250m. At the first order, our model shows a 2-layer structure : low velocity volcanic sediments (2.5-3.5km/s) lying on an inclined high velocity limestone platform (>6km/s). The caldera itself is very well identified, the rim is characterized by a 500-1000m upward shift of the velocity isolines. The whole dataset is expected to provide a wider image with the same resolution (250m). It includes the detailed shape of the refractor beneath the caldera as well as its irregularities out of the bay which have been observered in the seismic sections.

  19. Comparative study of software techniques for 3D mapping of perforators in deep inferior epigastric artery perforator flap planning

    PubMed Central

    Hunter-Smith, David J.; Rozen, Warren Matthew

    2016-01-01

    Background Computed tomographic (CT) angiography (CTA) is widely considered the gold standard imaging modality for preoperative planning autologous breast reconstruction with deep inferior epigastric artery (DIEA) perforator (DIEP) flap. Improved anatomical understanding from CTA has translated to enhanced clinical outcomes. To achieve this, the use of appropriate CT hardware and software is vital. Various CT scanners and contrast materials have been demonstrated to consistently produce adequate scan data. However, the availability of affordable and easily accessible imaging software capable of generating 3D volume-rendered perforator images to clinically useful quality has been lacking. Osirix (Pixmeo, Geneva, Switzerland) is a free, readily available medical image processing software that shows promise. We have previously demonstrated in a case report the usefulness of Osirix in localizing perforators and their course. Methods In the current case series of 50 consecutive CTA scans, we compare the accuracy of Osirix to a commonly used proprietary 3D imaging software, Siemens Syngo InSpace 4D (Siemens, Erlangen, Germany), in identifying perforator number and location. Moreover, we compared both programs to intraoperative findings. Results We report a high rate of concordance with Osirix and Siemens Syngo InSpace 4D (99.6%). Both programs correlated closely with operative findings (92.2%). Most of the discrepancies were found in the lateral row perforators (90%). Conclusions In the current study, we report the accuracy of Osirix that is comparable to Siemens Syngo InSpace 4D, a proprietary software, in mapping perforators. However, it provides an added advantage of being free, easy-to-use, portable, and potentially a superior quality of 3D reconstructed image. PMID:27047778

  20. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  1. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030. PMID:26241161

  2. C2SM: a mobile system for detecting and 3D mapping of chemical, radiological, and nuclear contamination

    NASA Astrophysics Data System (ADS)

    Jasiobedzki, Piotr; Ng, Ho-Kong; Bondy, Michel; McDiarmid, C. H.

    2009-05-01

    CBRN Crime Scene Modeler (C2SM) is a prototype mobile CBRN mapping system for First Responders in events where Chemical, Biological, Radiological and Nuclear agents where used. The prototype operates on board a small robotic platform, increases situational awareness of the robot operator by providing geo-located images and data, and current robot location. The sensor suite includes stereo and high resolution cameras, a long wave infra red (thermal) camera and gamma and chemical detectors. The system collects and sends geo-located data to a remote command post in near real-time and automatically creates 3D photorealistic model augmented with CBRN measurements. Two prototypes have been successfully tested in field trials and a fully ruggedised commercial version is expected in 2010.

  3. Combined interpretation of 3D seismic reflection attributes for geothermal exploration in the Polish Basin using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Pussak, Marcin; Stiller, Manfred; Bujakowski, Wieslaw

    2014-05-01

    Self-organizing maps (SOM) are neural network techniques which can be used for the joint interpretation of multi-disciplinary data sets. In this investigation we apply SOM within a geothermal exploration project using 3D seismic reflection data. The study area is located in the central part of the Polish basin. Several sedimentary target horizons were identified at this location based on fluid flow rate measurements in the geothermal research well Kompina-2. The general objective is a seismic facies analysis and characterization of the major geothermal target reservoir. A 3D seismic reflection experiment with a sparse acquisition geometry was carried out around well Kompina-2. Conventional signal processing (amplitude corrections, filtering, spectral whitening, deconvolution, static corrections, muting) was followed by normal-moveout (NMO) stacking, and, alternatively, by common-reflection-surface (CRS) stacking. Different signal attributes were then derived from the stacked images including root-mean-square (RMS) amplitude, instantaneous frequency and coherency. Furthermore, spectral decomposition attributes were calculated based on the continuous wavelet transform. The resulting attribute maps along major target horizons appear noisy after the NMO stack and clearly structured after the CRS stack. Consequently, the following SOM-based multi-parameter signal attribute analysis was applied only to the CRS images. We applied our SOM work flow, which includes data preparation, unsupervised learning, segmentation of the trained SOM using image processing techniques, and final application of the learned knowledge. For the Lower Jurassic target horizon Ja1 we derived four different clusters with distinct seismic attribute signatures. As the most striking feature, a corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and low frequencies. In our interpretation we assume that this combination of signal properties can be

  4. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.

    2015-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  5. Closed formulae to determine the angular velocity of a body-segment based on 3D measurements.

    PubMed

    Kocsis, L; Béda, G

    2001-01-01

    This paper suggests a simple method to determine the global coordinates of the angular velocity and the angular acceleration of a body segment determined by the coordinates of minimum three markers. There are commonly used calculations for the angular quantities basing on the "hypothesis" of planar motion. The usage of approximate methods can result in quantitative and qualitative errors that may completely disort the reality. The method mentioned here is theoretically absolutely correct and can be well used for smoothing noisy data. PMID:11811842

  6. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    Fault systems are important structural elements within many petroleum reservoirs, acting as potential conduits, baffles or barriers to hydrocarbon migration. Large, seismic-scale faults often serve as reservoir bounding seals, forming structural traps which have proved to be prolific plays in many petroleum provinces. Though inconspicuous within most seismic datasets, smaller subsidiary faults, commonly within the damage zones of parent structures, may also play an important role. These smaller faults typically form narrow, tabular low permeability zones which serve to compartmentalize the reservoir, negatively impacting upon hydrocarbon recovery. Though considerable improvements have been made in the visualization field to reservoir-scale fault systems with the advent of 3D seismic surveys, the occlusion of smaller scale faults in such datasets is a source of significant uncertainty during prospect evaluation. The limited capacity of conventional subsurface datasets to probe the spatial distribution of these smaller scale faults has given rise to a large number of outcrop based studies, allowing their intensity, connectivity and size distributions to be explored in detail. Whilst these studies have yielded an improved theoretical understanding of the style and distribution of sub-seismic scale faults, the ability to transform observations from outcrop to quantities that are relatable to reservoir volumes remains elusive. These issues arise from the fact that outcrops essentially offer a pseudo-3D window into the rock volume, making the extrapolation of surficial fault properties such as areal density (fracture length per unit area: P21), to equivalent volumetric measures (i.e. fracture area per unit volume: P32) applicable to fracture modelling extremely challenging. Here, we demonstrate an approach which harnesses advances in the extraction of 3D trace maps from surface reconstructions using calibrated image sequences, in combination with a novel semi

  7. Shear wave velocity for the upper 30 m: Combining a 3D voxel model and seismic CPTS for the Groningen gas field, the Netherlands.

    NASA Astrophysics Data System (ADS)

    Dambrink, Roula; Gunnink, Jan; Stafleu, Jan; de Lange, Ger; Kruiver, Pauline

    2016-04-01

    The Groningen gas field in the Netherlands is one of the largest gas fields of Europe and has been in production since the 1960's. Due to the progressive depletion of the reservoir, induced seismic activity has increased in recent years. In 2012, an earthquake of magnitude 3.6 initiated further research in prediction and management of risks related to man-induced earthquakes. Last year the government decided to reduce the gas extraction for this reason. One of the topics of concern is the large difference in earthquake-related damage to buildings which, in addition to the distance to the epicenter, appears to be also related to the composition of the shallow subsurface. To improve the spatial distribution of Shear Wave Velocities (Vs) in the shallow subsurface, used for hazard prediction, the Geological Survey of the Netherlands and Deltares constructed a Vs30 map of the upper 30 m of the gas field. In this map a high-resolution geological model (GeoTOP) is combined with seismic cone penetration tests (SCPT) from the area. The GeoTOP model is a 3D voxel model of the upper 50 m, in which each voxel (100x100x0.5 m) is attributed with lithostratigraphy and the most likely lithological class (peat, clay, fine sand, etc.). To obtain statistical distributions (with mean and standard deviation) of Vs for each combination of lithostratigraphical unit and lithoclass, 60 SCPTs were analyzed. In this way, it was possible to assign a specific Vs to each voxel in the model. For each voxel in the stack of voxels that covers the upper 30 m (i.e. 60 voxels), a Vs value was randomly drawn from the statistical distribution of the lithostratigraphical - lithoclass combination it belongs to. The Vs30 for each voxelstack is then calculated using the harmonic mean of the Vs of the 60 voxels. By repeating this procedure 100 times, an (average) Vs30 map and the uncertainty in Vs30 has been constructed. Using the procedure described above we were able to delineate zones with distinct Vs30

  8. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    NASA Astrophysics Data System (ADS)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  9. Computation of flow pressure fields from magnetic resonance velocity mapping.

    PubMed

    Yang, G Z; Kilner, P J; Wood, N B; Underwood, S R; Firmin, D N

    1996-10-01

    Magnetic resonance phase velocity mapping has unrivalled capacities for acquiring in vivo multi-directional blood flow information. In this study, the authors set out to derive both spatial and temporal components of acceleration, and hence differences of pressure in a flow field using cine magnetic resonance velocity data. An efficient numerical algorithm based on the Navier-Stokes equations for incompressible Newtonian fluid was used. The computational approach was validated with in vitro flow phantoms. This work aims to contribute to a better understanding of cardiovascular dynamics and to serve as a basis for investigating pulsatile pressure/flow relationships associated with normal and impaired cardiovascular function. PMID:8892202

  10. The Utility of 3D Left Atrial Volume and Mitral Flow Velocities as Guides for Acute Volume Resuscitation

    PubMed Central

    Santosa, Claudia M.; Rose, David D.; Fleming, Neal W.

    2015-01-01

    Left ventricular end-diastolic pressure (LVEDP) is the foundation of cardiac function assessment. Because of difficulties and risks associated with its direct measurement, correlates of LVEDP derived by pulmonary artery (PA) catheterization or transesophageal echocardiography (TEE) are commonly adopted. TEE has the advantage of being less invasive; however TEE-based estimation of LVEDP using correlates such as left ventricular end-diastolic volume (LVEDV) has technical difficulties that limit its clinical usefulness. Using intraoperative acute normovolemic hemodilution (ANH) as a controlled hemorrhagic model, we examined various mitral flow parameters and three-dimensional reconstructions of left atrial volume as surrogates of LVEDP. Our results demonstrate that peak E wave velocity and left atrial end-diastolic volume (LAEDV) correlated with known changes in intravascular volume associated with ANH. Although left atrial volumetric analysis was done offline in our study, recent advances in echocardiographic software may allow for continuous display and real-time calculation of LAEDV. Along with the ease and reproducibility of acquiring Doppler images of flow across the mitral valve, these two correlates of LVEDP may justify a more widespread use of TEE to optimize intraoperative fluid management. The clinical applicability of peak E wave velocity and LAEDV still needs to be validated during uncontrolled resuscitation. PMID:26236733

  11. 3D geological modelling and geothermal mapping - the first results of the transboundary Polish - Saxon project "TransGeoTherm"

    NASA Astrophysics Data System (ADS)

    Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario

    2014-05-01

    TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series

  12. Constraints on Crustal Shear Wave Velocity Structure beneath Central Tibet from 3-D Multi-scale Finite-frequency Rayleigh Wave Travel-time Tomography

    NASA Astrophysics Data System (ADS)

    Jheng, Y.; Hung, S.; Zhou, Y.; Chang, Y.

    2012-12-01

    Surface wave travel-time tomography has been widely used as a powerful strategy to image shear wave velocity structure of the Earth's crust and upper mantle, providing comparable information other than body wave tomography. Traditionally, lateral variations of dispersive phase velocities are first obtained at multiple frequencies and then used to invert for shear wave velocity with 1-D depth-dependent sensitivity kernels. However, this approach runs short on considering the directional- and depth-dependence of scattering while surface wave propagating through laterally heterogeneous Earth. To refrain from these shortcomings, we here provide a fully 3-D finite-frequency method based on the Born scattering theory formulated with surface wave mode summation, and apply it to regional fundamental Rayleigh wave travel-time tomography in central Tibet. Our data were collected from Project Hi-CLIMB, which deployed an N-S trending linear array of over 100 broadband seismic stations with a large aperture of 800 km and very dense spacing of ~3-8 km across the Lhasa and Qiangtang terranes during 2004-2005. We follow a standard procedure of ambient noise cross correlation to extract empirical Green's functions of fundamental Rayleigh waves at 10-33 s between station pairs. A multi-taper method is employed to measure the phase differences as a function of period between observed and synthetic Rayleigh waves as well as the corresponding sensitivity kernels for the measured phase delays to 3-D shear wave velocity perturbations in a spherically-symmetric model suitable for central Tibet. A wavelet-based, multi-scale parameterization is invoked in the tomographic inversion to deal with the intrinsically multi-scale nature of unevenly distributed data and resolve the structure with data-adaptive spectral and spatial resolutions. The preliminary result shows that to the north of the Banggong-Nujiang suture (BNS), the crustal shear wave velocity beneath the Qiangtang terrane is

  13. Development of Inundation Map for Bantayan Island, Cebu Using Delft3D-Flow Storm Surge Simulations of Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.

  14. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969

  15. A nearly complete longitude-velocity map of neutral hydrogen

    NASA Technical Reports Server (NTRS)

    Waldes, F.

    1978-01-01

    A longitude-velocity map based on two recent 21-cm neutral hydrogen surveys and covering all but 42 deg of galactic longitude is presented. Latitude information between -2 and +2 deg is included as an integrated quantity by averaging the observed brightness temperatures over latitude at constant longitude and velocity to produce intensity information corresponding to a surface density distribution of neutral hydrogen in the galactic plane. The northern and southern rotation curves of the Galaxy within the solar galactic orbit are derived from the maximum radial velocities by the usual tangent-point method. Five interesting features of the map are discussed: (1) the scale of density variations in the neutral hydrogen; (2) a region of very high brightness centered at 81 deg and 0 km/s which is probably due to the spiral arm with which the sun is associated; (3) a region of very low brightness centered at 242 deg and 39 km/s; (4) negative-velocity features visible in the anticenter direction; and (5) a strong absorption feature at 289 deg having a kinematic distance of about 4 kpc.

  16. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    NASA Astrophysics Data System (ADS)

    Shiddiqi, Hasbi Ash; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono, Sutiyono, Handayani, Titi; Nugroho, Hendro

    2015-04-01

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  17. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    SciTech Connect

    Shiddiqi, Hasbi Ash E-mail: h.a.shiddiqi@gmail.com; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono,; Sutiyono,; Handayani, Titi; Nugroho, Hendro

    2015-04-24

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  18. Field Trial Results of a 14-channel GPR Integrated with a U.S. Program for 3-D Utility Mapping

    NASA Astrophysics Data System (ADS)

    Anspach, James H.

    2013-04-01

    utilities were mostly undetectable. Through a ground-truthing program of test holes to expose utilities, the depth values derived from the enhanced GPR were fairly consistent and within 15 cm of actual depth. The incomplete underground picture determined by the enhanced GPR reinforces previous studies that show that the mapping of existing underground utilities is a multi-tool effort that takes highly trained and skilled field technicians and data interpreters. The addition of a new GPR tool is valuable in determining continuous depth profiles of imaged utilities. A second and significant benefit is the interpretation of other geotechnical data that benefit project designers. This might include showing geometry, location, intensity, and depths of either areas of anomalies, or of known structures, such as paving thickness, substrate thickness, voids, water table, soil lenses, boulders, bedrock, and so forth. The Florida Department of Transportation has decided to take advantage of this new technology and has entered into an experimental contract with Cardno TBE to incorporate several enhanced GPR arrays with traditional utility detection tools. The goal of this contract will be to provide a 3-D model of existing underground utilities for use in automated construction. The GPR 3-D data model will be melded with conventional subsurface utility engineering and mapping practices and will be required to follow the ASCE 38 standard for utility data reliability.

  19. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  20. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  1. Simultaneous measurement of the geometry and the internal 3D velocity field of a micron sized droplet confined in a channel using Astigmatism-PTV

    NASA Astrophysics Data System (ADS)

    Mack, Tobias; Cierpka, Christian; Kähler, Christian J.

    2012-11-01

    Astigmatism-PTV is a method that allows to measure with a single camera the fully three-dimensional, three-component velocity field. The technique is ideally suited for microfluidic velocity measurements without errors due to in-plane and out-of-plane averaging (Cierpka et al. Meas Scie Tech 21, 2010). Recently it was shown, that the interface between two fluids or the surrounding fluid and droplets or bubbles can be estimated as well with the technique (Rossi et al., Meas Scie Tech 22, 2010). In this contribution the advantages of both techniques are combined to measure the shape of a droplet inside a micro channel along with the internal 3D flow field of the droplet induced by the surrounding fluid. For the current investigation, particles were only distributed within oil-droplets. Therefore the shape of the droplet could be later reconstructed by the volumetric particle positions and the velocity can be estimated tracking the same particles in consecutive frames of the same dataset. The procedure allows the simultaneous determination of the shape and the droplet velocity as well as the inner flow field and offers a great potential for current research.

  2. The LLNL-G3D global P-wave velocity model and the significance of the BayesLoc multiple-event location procedure

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2011-12-01

    LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.

  3. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NASA Astrophysics Data System (ADS)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  4. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  5. The 3-D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu; Obana, Koichiro; Yamamoto, Yojiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-05-01

    waves at high frequencies (>1 Hz) show collapsed and broadened wave trains caused by multiple scattering in the lithosphere. This study analyzed the envelopes of direct S waves in southwestern Japan and on the western side of the Nankai trough and estimated the spatial distribution of random inhomogeneities by assuming a von Kármán type power spectral density function (PSDF). Strongly inhomogeneous media have been mostly imaged at shallow depth (0-20 km depth) in the onshore area of southwestern Japan, and their PSDF is represented as P(m) ≈ 0.05m-3.7 km3, with m being the spatial wave number, whereas most of the other area shows weak inhomogeneities of which PSDF is P(m) ≈ 0.005m-4.5 km3. At Hyuga-nada in Nankai trough, there is an anomaly of inhomogeneity of which PSDF is estimated as P(m) ≈ 0.01m-4.5 km3. This PSDF has the similar spectral gradient with the weakly inhomogeneous media, but has larger power spectral density than other offshore areas. This anomalous region is broadly located in the subducted Kyushu Palau ridge, which was identified by using velocity structures and bathymetry, and it shows no clear correlation with the fault zones of large earthquakes in past decades. These spatial correlations suggest that possible origins of inhomogeneities at Hyuga-nada are ancient volcanic activity in the oceanic plate or deformed structures due to the subduction of the Kyushu Palau ridge.

  6. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea.

    PubMed

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  7. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea

    PubMed Central

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  8. Test of high-resolution 3D P-wave velocity model of Poland by back-azimuthal sections of teleseismic receiver function

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2015-04-01

    Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.

  9. Combined velocity and depth mapping on developing laboratory alluvial fans

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K. B.; Hoyal, D. C.

    2011-12-01

    Large-scale particle image velocimetry (LSPIV) is a nonintrusive method for measuring free-surface velocities using tracer patterns in a sequence of images. This method has been applied in both natural rivers and large-scale hydraulic models (Muste et al., 2008). Here the method is used to map channel and sheet flow velocity during the development of laboratory-scale alluvial fans. Measuring the time and space varying hydraulics on laboratory fans by traditional methods is not practical since flows are quite shallow (~1 cm). Additionally, the highly dynamic environment makes positioning of traditional probe-type instruments difficult and their physical presence could alter autogenic fan evolution. These difficulties can be overcome by using particle image velocimetry techniques. Furthermore, images collected in the LSPIV method can be used to extract flow depth using a calibrated dye-intensity method (Gran and Paola, 2001). This allows for simultaneous measurement of flow velocity and depth everywhere over the fan at any point in time. To validate the method, a set of controlled small-scale experiments were run for depths ranging from 0.2-1.5 cm and velocities from 10-100 cm/sec. Comparison of the LSPIV and dye-intensity method measurements to the known values indicated that the methodology was able to accurately capture simultaneous flow velocity and depth in this range of conditions, i.e., those encountered during the development of laboratory-scale alluvial fans and streams. The method is then used to map the hydraulics associated with various fan processes during development as demonstrated in figure 1. The ability to measure hydraulic properties during fan development is important since physical models provide an arena for observing the time evolution and morphodynamic feedback in depositional systems such as alluvial fans.

  10. Relocation of the Waldkirch seismic event, December 5, 2004, with regional 1D- and 3D-velocity models in the presence of upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Muench, Thomas; Koch, Manfred; Schlittenhard, Jörg

    2010-05-01

    On December 5, 2004 a strong earthquake occurred near the city of Waldkirch, about 30 km's north of Freiburg, with a local magnitude of ML = 5.4. This seismic event was one of the strongest observed since the ML = 5.7 'Schwäbische Alb' event of September 3, 1978, 30 years before. In the aftermath of the event several institutions (Bens, BGR, LGBR, LED, SED and NEIC) have attempted to relocate this earthquake that came up with a hypocentral depth range of 9 - 12 km which. In fact, as the exact hypocentral location of the Waldkirch - and other events in the area - namely, the seismic depths, are of utmost importance for the further understanding of the seismotectonics as well as of the seismic hazard in the upper Rhinegraben area, one cannot over stress the necessity for a hypocenter relocation as best as possible. This requires a careful analysis of all factors that may impede an unbiased relocation of such an event. In the present talk we put forward the question whether the Waldkirch seismic event can be relocated with sufficient accuracy by a regional network when, additionally, improved regional 1D- and 3D seismic velocity models for the crust and upper mantle that take into consideration Pn-anisotropy of the upper mantle beneath Germany are employed in the hypocentral determination process. The seismological work starts with a comprehensive analysis of the dataset available for the relocation of the event. By means of traveltime curves a reevaluation of the observed phases is done and it is shown that some of the big observed traveltime residuals are most likely the consequence of wrongly associated phases as well as of the neglect of the anisotropic Pn traveltime correction for the region. Then hypcocenter relocations are done for 1D vertically inhomogeneous and 3D laterally inhomogeneous seismic velocity models, without and with the anisotropic Pn-traveltime correction included. The effects of the - often not well-known - Moho depth and of the VP

  11. A high-resolution 3D seismic velocity model of the 2010 Mw 8.8 Maule, Chile earthquake rupture zone using land & OBS networks

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Miller, M.; Lee, C.

    2013-12-01

    Knowledge of seismic properties along a subduction megathrust can shed light on the composition and structure of rocks along the fault. By comparing seismic velocity structure with models of interseismic locking, co-seismic slip and afterslip, we can begin to understand how physical properties may affect fault dynamics throughout the subduction seismic cycle. The Maule earthquake, which hit the coast of central Chile in 2010, is the 6th largest earthquake ever recorded, rupturing a 500 x 80 km area of the Chilean megathrust. Published models demonstrate a complex bilateral rupture, with most co-seismic slip occurring to the north of the mainshock epicentre, although significant slip likely stopped short of the trench and the continental Moho. Here, we show a new high-resolution 3D velocity model (vp and vp/vs ratio) of the central Chilean margin Our velocity model is based on manually picked P- and S-wave arrival times from 670 aftershocks recorded by the International Maule Aftershock Deployment (IMAD) network. Seismic properties of the marine forearc are poorly understood in subduction zones, but by incorporating picks from two ocean-bottom seismometer (OBS) networks, we can resolve the velocity structure of the megathrust as far as the trench. In total, the catalogue used for the tomographic inversion yields a total of ~50,000 high quality P- and S-wave picks. We analyse the quality of our model by analysis of the resolution matrix and by testing characteristic models. The 3D velocity model shows the main structures associated within a subduction forearc: the marine forearc basin (vp < 6.0 km/s), continental mantle (vp > 7.5 km/s), and subducting oceanic crust (vp ~ 7.7 km/s). The plate interface is well defined by relocated aftershock seismicity. P-wave velocities along the megathrust range from 6.5 km/s beneath the marine forearc to 7.7 km/s at the intersection of the megathrust with the continental Moho. We infer several high vp anomalies within the South

  12. 3-D P-wave velocity structure and seismicity in Central Costa Rica from Local Earthquake Tomography using an amphibic network

    NASA Astrophysics Data System (ADS)

    Arroyo, I.; Husen, S.; Flueh, E.; Alvarado, G. E.

    2008-12-01

    The Central Pacific sector of the erosional margin in Costa Rica shows a high seismicity rate, coincident with the subduction of rough-relief ocean floor, and generates earthquakes up to Mw 7. Precise earthquake locations and detailed knowledge of the 3-D velocity structure provide key insights into the dynamics of subduction zones. To this end, we performed a 3-D Local Earthquake Tomography using P-wave traveltimes from 595 selected events recorded by a seismological network of off- and onshore stations, deployed for 6 months in the area. The results reflect the complexity associated to subduction of bathymetric highs and the transition from normal to thickened oceanic crust (Cocos Ridge). The slab is imaged as a high-velocity anomaly with a band of low velocities (LVB) on top enclosing the intraslab events deeper than ~30 km. Below the margin slope, the LVB is locally thickened by at least two seamounts. We observe an abrupt, eastward widening of the LVB, preceded by a low-velocity anomaly under the continental shelf, which we interpret as a big seamount. The thickening coincides with an inverted basin at the inner forearc and a low-velocity anomaly under it. The latter appears in a sector where blocks of inner forearc are uplifted, possibly by underplating of eroded material against the base of the crust. The anomaly promotes seismicity by high-friction with the upper plate, and could be linked to a Mw 6.4 earthquake in 2004. In the west part of the area, the interplate seismicity forms a cluster beneath the continental shelf. Its updip limit coincides with the 150° C isotherm and an increase in Vp along the plate boundary. This further supports a proposed model in which the seismicity onset along the plate interface is mainly due to a decrease in the abundance of the fluids released by subducted sediments. Higher seismicity rates locally concur with seamounts present at the seismogenic zone, while seamounts under the margin slope may shallow the onset of

  13. Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2013-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds

  14. VizieR Online Data Catalog: 3D reddening map for stars from 2MASS phot. (Gontcharov, 2010)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    A three-dimensional reddening map for stars within 1100pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude MKs=2.5m. The shift of this maximum toward large (J-Ks) with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0.03m for spatial cells with a side of 100pc. All of the known large absorbing clouds within 1100pc of the Sun have manifested themselves in the results obtained. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1100pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. Also the data of the Rv (2012AstL...38...12G) and Av (2012AstL...38...87G) 3D maps are added. (1 data file).

  15. Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-11-01

    Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.

  16. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    SciTech Connect

    Liu, C.; Liu, Z.

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  17. Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-09-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H,H2+, CH4+ and N2+ is stronger than in the previous simulations when O + ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfvén wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  18. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  19. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  20. Velocity Map Imaging Studies of Non-Conventional Methanethiol Photochemistry

    NASA Astrophysics Data System (ADS)

    Toulson, Benjamin W.; Alaniz, Jonathan; Murray, Craig

    2014-06-01

    Velocity map imaging (VMI) in combination with state-selective resonance enhanced multiphoton ionization (REMPI) has been used to study the photodissociation dynamics of methanethiol following excitation to the first and second singlet electronically excited states. Formation of sulfur atoms, in both the singlet and triplet manifolds, is observed and can be attributed to primary dissociation of the parent molecule. We will report the nascent photofragment velocity distributions, and hence the internal energy of the methane co-fragment. Sulfur atom quantum yields are benchmarked against a known standard to evaluate the significance of this pathway. The role of non-conventional photochemical mechanisms such as roaming-mediated intersystem crossing, previously observed in methylamine photochemistry, will be discussed. James O. Thomas, Katherine E. Lower, and Craig Murray, The Journal of Physical Chemistry Letters, 2012, 3 (10), 1341-1345.

  1. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography

    NASA Astrophysics Data System (ADS)

    Wawerzinek, B.; Ritter, J. R. R.; Roy, C.

    2013-08-01

    We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.

  2. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  3. A 3-D velocity structure in and around the Miura peninsula, Japan, using a 3-component off-line seismographic array.

    NASA Astrophysics Data System (ADS)

    Kawamura, T.; Hirata, N.; Sato, H.; Onishi, M.; Noda, K.; Saito, H.

    2004-12-01

    A deep seismic profiling around the Metropolitan Tokyo region, the Kanto district, started in 2002 under the project titled as the Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion. The deep seismic profiling, Tokyo Bay 2003, was performed along the major axis of the Tokyo Bay. Because the seismic line in the Miura peninsula passes through a densely populated area, we have a low signal-to-noise ratio data due to the cultural noise. Thus, in addition to the conventional reflection profiling, we deployed 51 off-line recorders with a 3-compornent geophone of 4.5 Hz at carefully selected, quiet receiver points. During 90 days, we had continuous records including many shot signals produced by vibrators on land and air-guns at the bay area. These data provided far-offset first arrival signals and wide angle reflections. We focus on the common receiver gather records of the Tokyo Bay 2003 off-line stations data to identify first arrival and wide angle phases. We applied the first arrival tomography method using a finite difference travel time solver (Hole, 1992) to those data to obtain a 3-D P-wave velocity structure of the uppermost crust along the profile. We obtained a velocity model in and around the Miura peninsula as follows: Across the Tokyo Bay, near surface is a layer with velocities of 2.0-2.5 km/s. A low velocity area corresponds to the fore-arc basin sediment (post Early Miocene) which extends to a depth of approximately 4 km. High velocity patches are located at a depth of approximately 6 km under the Miura peninsula, which we interpreted as Pre-Neogene basement rocks. Finally, the velocity structure obtained by the tomography analysis is used to improve the processing of the reflection profiling data to clarify the deeper structure in the peninsula, including a good velocity constraint for a pre-stack migration of the reflection profiling data.

  4. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    NASA Astrophysics Data System (ADS)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    this work we propose instead to directly tackle the non-linearity of the inverse problem by using stochastic methods to construct a 3D starting model with a good estimate of the depths of the main layering interfaces. We present preliminary results of the construction of such a starting 3D model based on: (1) Regionalizing the study area to define provinces within which lateral variations are smooth; (2) Applying trans-dimensional stochastic inversion (Bodin et al., 2012) to obtain accurate 1D models in each province as well as the corresponding error distribution, constrained by receiver function and surface wave dispersion data as well as the previously constructed 3D model (name), and (3) connecting these models laterally using data-driven smoothing operators to obtain a starting 3D model with errors. References Bodin, T.,et al. 2012, Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301, doi:10.1029/2011JB008560. Yuan and Romanowicz, 2013, in revison. Yuan, H., et al. 2011, 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophysical Journal International, 184: 1237-1260. doi: 10.1111/j.1365-246X.2010.04901.x Yuan, H. & Romanowicz, B., 2010. Lithospheric layering in the North American Craton, Nature, 466, 1063-1068.

  5. Contribution of a 3D velocity model and of beam forming method for the location of microseismic sources generated in soft rock landslides

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Helmstetter, Agnès; Doubre, Cécile; Gance, Julien

    2016-04-01

    Microseismicity monitoring has proven to be an important tool for a better understanding of the deformation occurring in slow-sliding landslides. However locating the seismic sources generated by a landslide remains a challenging problem due to (1) the small sizes of the landslide, (b) the heterogenous and time-changing petro-physical properties of the landslide material, (c) the complexity of the recorded signals with unclear discriminations of the wave onsets, and (d) the difficulties to install and maintain a dense seismological network on-site close to the seismic sources. We studied the seismic sources generated by the deformation of the clay-rich Super-Sauze landslide (South French Alps). Previous studies show that the most active zone is the uphill part of the landslide within a zone of 300x300m2. Two seismic antennas have been installed on the sides of this zone and a seismic campaign was conducted to build a 3D velocity model of the area. Calibration shots were performed to test the performance of the location method. We show that the use of a 3D velocity model integrated in a beam forming location method slightly improves the accuracy of the shot location epicenter. However, this approach does not help to interpret with confidence the location of the natural events because the horizontal error remains larger than 50m for more than 50% of the shots. Nevertheless, adding station corrections and constraining the grid search area with additional informations based on the signal and the landslide behavior such as SNR, seismic event typology, and surface kinematics of the landslide allow obtaining reliable results. More than 70% of the calibration shots could be located with a horizontal error of less than 40m. The lack of sensor installed in depth as well as the the lack of calibration shots realized at different depths does not permit us to identify the depth of the sources.

  6. Multi-scale Finite-Frequency Travel-time Tomography Applied to Imaging 3-D Velocity Structure of the Upper Mantle Beneath the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hung, S.

    2007-12-01

    Seismic tomographic imaging has played a key component to unravel the deep processes that caused the surface morphology and rift magmatism in the southwest United States. Several studies used teleseismic body- wave arrivals recorded by the La Ristra experiment, a dense broadband array of 950-km in length deployed during 1999-2001 and run through the Great Plains, the Rio Grande Rift, and the Colorado Plateau, to construct a 2-D tomographic image of the upper mantle structure beneath this linear array (e.g., Gao et al., 2004). However, because of the inevitable smoothing and damping imposed in the tomographic model, the resulting velocity contrast is too weak to explain distinct P and S waveform changes across the array (Song and Helmberger, 2007). In this study, we include all the data from the La Ristra and available nearby arrays and reexamine finite- frequency travel time delays measured by inter-station cross correlation of waveforms at both high- (0.3-2 Hz for P and 0.1-0.5 Hz for S) and low-frequencies (0.03-0.125 Hz for P and 0.03-0.1 Hz for S). Differing from the previous models that rely on classical ray theory and simple grid parameterization, our inversion considers more realistic 3-D sensitivity kernels for relative travel-time delays and a wavelet-based, multi-scale parameterization that enables to yield robust features with spatially-varying resolutions. Our preliminary P-wave model reveals a prominent low-velocity zone extending from near surface to the depth of 300 km beneath the Rio Grande Rift, while the upper mantle which underlies the Great Plains and the Colorado Plateau is seismically fast. We will demonstrate the difference and improvement of 3-D tomographic models through the use of finite-frequency kernels and multi-scale parameterization.

  7. Using twelve years of USGS refraction lines to calibrate the Brocher and others (1997) 3D velocity model of the Bay Area

    USGS Publications Warehouse

    Boatwright, John; Blair, Luke; Catchings, Rufus; Goldman, Mark; Perosi, Fabio; Steedman, Clare

    2004-01-01

    Campbell (1983) demonstrated that site amplification correlates with depths to the 1.0, 1.5, and 2.5 km/s S-wave velocity horizons. To estimate these depths for the Bay Area stations in the PEER/NGA database, we compare the depths to the 3.2 and 4.4 km/s P-wave velocities in the Brocher and others (1997) 3D velocity model with the depths to these horizons determined from 6 refraction lines shot in the Bay Area from 1991 to 2003. These refraction lines range from two recent 20 km lines that extend from Los Gatos to downtown San Jose, and from downtown San Jose into Alum Rock Park, to two older 200 km lines than run axially from Hollister up the San Francisco Peninsula to Inverness and from Hollister up the East Bay across San Pablo Bay to Santa Rosa. Comparison of these cross-sections with the Brocher and others (1997) model indicates that the 1.5 km/s S-wave horizon, which we correlate with the 3.2 km/s P-wave horizon, is the most reliable horizon that can be extracted from the Brocher and others (1997) velocity model. We determine simple adjustments to bring the Brocher and others (1997) 3.2 and 4.4 km/s P-wave horizons into an average agreement with the refraction results. Then we apply these adjustments to estimate depths to the 1.5 and 2.5 km/s S-wave horizons beneath the strong motion stations in the PEER/NGA database.

  8. 3D full-waveform inversion of time-lapse horizontal borehole GPR data to map soil water content variability

    NASA Astrophysics Data System (ADS)

    Klotzsche, A.; Van Der Kruk, J.; Oberroehrmann, M.; Vanderborght, J.; Vereecken, H.

    2015-12-01

    Soil moisture is a key state variable that controls water and mass fluxes in soil-plant systems and is variable in space and time. Over the last year's, hydrogeophysical methods such as ground penetrating radar (GPR) have been used to determine electromagnetic properties as proxies for soil water content (SWC). Here, we combined zero-offset-profiles (ZOP) GPR measurements within multiple horizontal minirhizotubes at different depths to determine the spatial and temporal variability of SWC under a winter wheat stand at the Selhausen test site (Germany). We studied spatio-temporal variations of SWC under three different treatments: rainfed, irrigated and sheltered. We acquired 15 time-lapse ZOP GPR dataset during the growing season of the wheat in the rhizotron facility using horizontal boreholes with a separation of 0.75m and a length of 6m at six depths between 0.1-1.2m. The obtained radar velocities were converted to SWC using the 4-phase volumetric complex refractive index model. SWC values obtained using standard ray-based processing methods were not reliable close to the surface (0.1-0.2m depth) because of the inference of the critically refracted air wave and the direct wave through the subsurface. Therefore, we implemented a full-waveform inversion that uses accurate 3D forward modeling of GPRMax that incorporates the air and soil interactions. The shuffled complex evolution (SCE) method allowed us to retrieve quantitative medium properties that explained the measured data with a R² of at least 0.95, and improved SWC estimates at all depths. The final SWC distributions for wet and dry conditions showed that the vertical variability is significantly larger than the lateral variability caused by strong influence of precipitation and irrigation events.

  9. 3D velocity structure of the outer forearc of the Colombia-Ecuador subduction zone; implications for the 1958 megathrust earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Galve, A.; Charvis, P.; Garcia Cano, L.; Marcaillou, B.

    2013-12-01

    In 2005, we conducted an onshore-offshore 3D refraction and wide-angle reflection seismic experiment over the rupture zone of the 1958 subduction earthquake that occurred near the border between Colombia and Ecuador. This earthquake was part of a sequence of 3 large ruptures (1942, Mw=7.8; 1958, Mw=7.7; 1979, Mw=8.2), which successively broke from south to north the segments of the megathrust that had been ruptured in 1906 by a single, very large magnitude (8.8) earthquake. Using first arrival traveltime inversion, we constructed a well-defined Vp velocity model of the plate boundary and of the upper and lower plates, down to 25 km depth. The model reveals a 5-km thick, low velocity zone in the upper plate, located immediately above the interplate contact. Because similar low-velocity zones are commonly observed along margins made of oceanic or island-arc accreted terranes, we suggest that the low-velocity zone might result from the alteration and hydration of mafic and ultramafic rocks in the upper plate basement, rather than from hydrofracturing alone. Sediments underplated beneath the inner wedge might contribute to the low-velocity zone but it is unlikely that they are several kilometers thick. Nevertheless, fluids expelled by the compaction and dehydration of those underplated sediments possibly favor the alteration of the overlying rocks. The low-velocity zone is spatially coincident with the 1958 rupture area. Near the toe of the margin, the model shows a low velocity gradient in the outer wedge that we interpret as a zone of highly faulted and fractured rocks or of poorly consolidated sediments. This low velocity/low gradient region forms the oceanward limit of the rupture zones of both the 1958 and the 1979 earthquakes. We suggest that the two earthquake ruptures were arrested by the low velocity zone because its low rigidity contributed to dissipate most of the seismic energy and of the coseismic strain/stress. This might be the reason why the 1958

  10. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  11. Mapping the 3D Geometry of the San Leandro Block of the Hayward Fault Zone Using Geologic, Geophysical and Remote Sensing Data, California State University, East Bay Campus

    NASA Astrophysics Data System (ADS)

    McEvilly, A.; Abimbola, A.; Chan, J. H.; Strayer, L. M.

    2015-12-01

    California State University, East Bay (CSUEB), located in Hayward, California, lies atop the San Leandro block (SLB) in the Hayward fault zone. The SLB is a J-K aged lithotectonic assemblage dominated by gabbro and intercalated with minor volcanics and sediments. It is bound by the subparallel northwest-trending western Hayward and eastern Chabot (CF) faults and pervasively cut by anastomosing secondary faults. The block itself is ~30 km along strike and 2-3 km wide. Previous studies suggest the block dips steeply to the northeast and extends to a depth of at least 7 km. In May of 2015, as part of an ongoing collaborative effort led by the USGS to create a 3D velocity model of the San Francisco Bay Area, researchers from CSUEB and the USGS conducted a seismic survey on the CSUEB campus. The primary goal of this pilot study was to locate the trace of the CF on the CSUEB campus and to determine bedrock depth. We deployed a 60-channel, 300m profile using 4.5Hz sensors spaced at 5m intervals. Active seismic sources were used at each geophone location. A 226kg accelerated weight-drop was used to generate P and Rayleigh waves for P-wave tomography and multichannel analysis of surface waves (MASW), and a 3.5kg sledgehammer and block were used to generate S and Love waves for S-wave tomography and multichannel analysis of Love waves (MALW). Preliminary P-wave tomography, MASW, and MALW results from this pilot study suggest the location of an eastward-dipping CF as well as the presence of a high-velocity unit at about 20m depth, presumably an unmapped sliver of bedrock from the San Leandro block. Further studies planned for the fall of 2015 include additional seismic lines and surface mapping along the Chabot fault on and near the CSUEB campus. These new geophysical, GPS, and field geological data will be integrated with LiDAR imagery and existing geological, gravity and magnetic maps to create a 3-dimensional model of the portion of the SLB that contains the CSUEB campus.

  12. A DETAILED KINEMATIC MAP OF CASSIOPEIA A'S OPTICAL MAIN SHELL AND OUTER HIGH-VELOCITY EJECTA

    SciTech Connect

    Milisavljevic, Dan; Fesen, Robert A.

    2013-08-01

    We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A's optically bright ejecta populate a torus-like geometry tilted approximately 30 Degree-Sign with respect to the plane of the sky with a -4000 to +6000 km s{sup -1} radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/interstellar medium environment suggest that this geometry and velocity asymmetry may not be faithfully representative of the remnant's true 3D structure or the kinematic properties of the original explosion. The majority of the optical ejecta are arranged in several well-defined and nearly circular ring-like structures with diameters between approximately 30'' (0.5 pc) and 2' (2 pc). These ejecta rings appear to be a common phenomenon of young core-collapse remnants and may be associated with post-explosion input of energy from plumes of radioactive {sup 56}Ni-rich ejecta that rise, expand, and compress non-radioactive material. Our optical survey encompasses Cas A's faint outlying ejecta knots and exceptionally high-velocity NE and SW streams of S-rich debris often referred to as ''jets''. These outer knots, which exhibit a chemical make-up suggestive of an origin deep within the progenitor star, appear to be arranged in opposing and wide-angle outflows with opening half-angles of Almost-Equal-To 40 Degree-Sign.

  13. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  14. Unified system for holographic measurement in fluid and solid mechanics: use of the system for 3D velocity measurement in fluids through a thick curved window

    NASA Astrophysics Data System (ADS)

    Chan, Victor S. S.; Barnhart, Donald H.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    A new holographic technique has been developed to measure displacement in solid and fluid mechanics. The method uses double exposure holograms of large numerical aperture to record the light scattered from a solid surface or seeding particles that are assumed to follow the fluid motion. Analysis of the resulting hologram is performed in a piece- wise fashion through spatial correlation of the field that passes through a sampling aperture placed in the real image. In this way it is possible to map 3D displacement of an irregular surface or map the movement of seeding throughout an extended volume of fluid. This paper discusses the cancellation of gross aberrations using a phase conjugate holographic optical element to generate a converging reference wave. Seeded flow or solid surfaces recorded with this reference wave geometry can be reconstructed efficiently using a fiber-optic probe. In addition to aberration cancelling the technique allows a method of image shifting to be introduced thus resolving the direction of the flow or surface displacement.

  15. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  16. Ice Velocity Mapping in Antarctica: A Game Changing ESDR

    NASA Astrophysics Data System (ADS)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.

    2011-12-01

    We present a new ESDR, an accomplishment of historical importance for geophysics: A complete mapping of the flow of ice surface over the Antarctic continent. This ESDR is based on data from a suite of spaceborne Synthetic Aperture Radar (SAR) sensors acquired during the International Polar Year 2007-2009. It is a reference digital mosaic of ice motion that will establish a long-term legacy for quantitative measurements of the dynamics of polar ice sheets. The resulting map will benefit glaciologists and ice sheet modelers, but also climate modelers interested in how ice sheets are evolving, physical oceanographers studying sea level change and changes in oceanic circulation, solid earth scientists interested in post-glacial rebound, and atmospheric scientists interested in surface mass balance in Antarctica. The ESDR will be made available to the scientific community via institutional links already in place. The data products have a simple definition: Ice velocity, in meters per year, measured on a regular earth fixed grid, at 1km resolution. A higher resolution product will be made available in subsequent years. The product is a snapshot of the entire continent as opposed to a series of discrete measurements. Calibration and mosaicking of the data required the development of new algorithms and workflows fully utilizing the unique combination of sensors available. Sensor-based stacking of the multiple coverages available further reduces the error of the product where possible. An error map is part of the ESDR; it was constructed to be distributed with the ice motion information. We also released the first complete and accurate map of grounding line positions around Antarctica combining 19 years of satellite data. This map completely refines the coastline of Antarctica since prior maps included large (km to 10 km) errors. This work was conducted at the Department of Earth System Science, University of California Irvine under a contract with the National Aeronautics

  17. Validation of velocity map imaging conditions over larger areas

    SciTech Connect

    Reid, Mike; Koehler, Sven P. K.

    2013-04-15

    We have established through simulations and experiments the area over which Velocity Map Imaging (VMI) conditions prevail. We designed a VMI setup in which we can vary the ionization position perpendicular to the center axis of the time-of-flight spectrometer. We show that weak extraction conditions are far superior over standard three-plate setups if the aim is to increase the ionization volume without distorting VMI conditions. This is important for a number of crossed molecular beam experiments that already utilize weak extraction conditions, but to a greater extent for surface studies where fragments are desorbed or scattered off a surface in all directions. Our results on the dissociation of NO{sub 2} at 226 nm show that ionization of the fragments can occur up to {+-}5.5 mm away from the center axis of the time-of-flight spectrometer without affecting resolution or arrival position.

  18. Velocity map imaging using an in-vacuum pixel detector

    NASA Astrophysics Data System (ADS)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J. J.

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256×256 square pixels, 55×55 μm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 μs. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  19. Velocity-map imaging study of the photodissociation of acetaldehyde

    SciTech Connect

    Cruse, H.A.; Softley, T.P.

    2005-03-22

    Velocity-map imaging studies are reported for the photodissociation of acetaldehyde over a range of photolysis wavelengths (317.5-282.5 nm). Images are obtained for both the HCO and CH{sub 3} fragments. The mean rotational energy of both fragments increases with photodissociation energy, with a lesser degree of excitation in the CH{sub 3} fragment. The CH{sub 3} images demonstrate that the CH{sub 3} fragments are rotationally aligned with respect to the recoil direction and this is interpreted, and well modeled, on the basis of a propensity for forming CH{sub 3} fragments with M{approx}K, where M is the projection of the rotational angular momentum along the recoil direction. The origin of the CH{sub 3} rotation is conserved motion from the torsional and methyl-rocking modes of the parent molecule. Nonstatistical vibrational distributions for the CH{sub 3} fragment are obtained at higher energies.

  20. Exploring the Impact of Visual Complexity Levels in 3d City Models on the Accuracy of Individuals' Orientation and Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Çöltekin, A.; Coetzee, S.

    2015-08-01

    In this paper we report results from a qualitative user experiment (n=107) designed to contribute to understanding the impact of various levels of complexity (mainly based on levels of detail, i.e., LoD) in 3D city models, specifically on the participants' orientation and cognitive (mental) maps. The experiment consisted of a number of tasks motivated by spatial cognition theory where participants (among other things) were given orientation tasks, and in one case also produced sketches of a path they `travelled' in a virtual environment. The experiments were conducted in groups, where individuals provided responses on an answer sheet. The preliminary results based on descriptive statistics and qualitative sketch analyses suggest that very little information (i.e., a low LoD model of a smaller area) might have a negative impact on the accuracy of cognitive maps constructed based on a virtual experience. Building an accurate cognitive map is an inherently desired effect of the visualizations in planning tasks, thus the findings are important for understanding how to develop better-suited 3D visualizations such as 3D city models. In this study, we specifically discuss the suitability of different levels of visual complexity for development planning (urban planning), one of the domains where 3D city models are most relevant.

  1. Rayleigh-wave Phase-velocity Maps beneath Eastern China

    NASA Astrophysics Data System (ADS)

    Legendre, C. P.; Deschamps, F.; Zhao, L.; Lebedev, S.; Chen, Q.

    2013-12-01

    Eastern China is a geologically complex region with strong lateral changes in Moho depth. It is also a tectonically active region with active faults and protocratonic units. We investigated the variations of isotropic and anisotropic Rayleigh-wave phase velocity beneath eastern China using broadband records at 38 stations with roughly even distribution from the China National Seismic Network. Rayleigh-wave dispersion curves are manually measured by the two-station technique for a total of 741 inter-station paths from the vertical-component waveforms. We complemented this dataset with 599 automated inter-station measurements. When selecting the data, we imposed an upper bound of 10° for the angle between the great circle connecting a pair of stations and the great circle connecting the stations and the event. The inter-station distances are in the range 250-2500 km, enabling phase-velocity measurements over a broad period range, 8-200 s. We extracted 59306 records from 438 events with epicentral distances between 10° and 170°. These dispersion curves are then inverted using the LSQR algorithm for the high-resolution isotropic and azimuthally anisotropic phase-velocity maps at selected periods between 16 and 200 s. The isotropic as well as anisotropic models of Rayleigh-wave phase velocities we obtain are consistent with the tectonic features observed in this region. Furthermore, the anisotropic anomalies we observe are compatible with previous SKS splitting measurements. Interestingly, we observe different azimuthal anisotropy patterns in several distinct period ranges, suggesting both lateral and depth variations of azimuthal anisotropy in this region. At crustal depths, the isotropic structure exhibits a clear contrast between the Yangtze Craton in the southeast, which appears faster than regional average by up to 5%, and the northwest region, which is slower than average by about 3-4%. The Jiangnan Belt separates regions with different velocity expressions

  2. Improved sliced velocity map imaging apparatus optimized for H photofragments.

    PubMed

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments. PMID:24981528

  3. Improved sliced velocity map imaging apparatus optimized for H photofragments

    SciTech Connect

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of {approx}5 ns out of a cloud stretched to Greater-Than-Or-Slanted-Equal-To 50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H{sub 2}S, and the CH{sub 2}OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution Less-Than-Or-Equivalent-To 1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  4. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  5. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye. PMID:26563101

  6. Evaluation of the User Strategy on 2d and 3d City Maps Based on Novel Scanpath Comparison Method and Graph Visualization

    NASA Astrophysics Data System (ADS)

    Dolezalova, J.; Popelka, S.

    2016-06-01

    The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).

  7. Relocations and 3-D Velocity Structure for Aftershocks of the 2000 W. Tottori (Japan) Earthquake and 2001 Gujarat (India) Earthquake, Using Waveform Cross-correlations

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Mori, J.

    2004-12-01

    The newly developed double-difference tomography method (Zhang and Thurber,2003) makes use of both absolute and relative arrival times to produce an improved velocity model and highly accurate hypocenter locations. By using this technique, we relocate the aftershocks of the 2000 Western Tottori earthquake (Mw 6.7) and 2001 Gujarat (Mw 7.7) earthquake and obtain a 3D-velocity model of the aftershock region. The first data set consists of 1035 aftershocks recorded at 62 stations during a period of about a month following the mainshock (Shibutani et al.,2002). In order to get the best arrival times a cross-correlation analysis was used to align the waveforms. The epicentral distribution of the relocated events reveals clear earthquake lineations, some of them close to the mainshock, and an increased clustering. The aftershocks' depth distribution shows a mean shift of the hypocenters' centroid of about 580m; a clear upper cutoff of the seismic activity and some clustering can be also seen. The final P-wave velocity model shows higher-value anomalies in the vicinity of the mainshock's hypocenter, in good agreement with the results of Shibutani et al.(2004). The second data set consists of about 1300 earthquakes, recorded during one week of observations by a Japanese-Indian research team in the aftershock region of the Gujarat earthquake (Sato et al.,2001). Using the double-difference algorithm and waveform cross-correlations, we were able to identify a more clear alignment of hypocenters that define the mainshock's fault and an area of relatively few aftershocks in the region of the mainshock's hypocenter. Both studies demonstrate that the cross-correlation techniques applied for events with inter-event distances as large as 10km and cross correlation coefficients as low as 50% can produce more accurate locations than those determined from catalog phase data. We are going to discuss briefly the critical role of frequency filtering and of the time window used for cross

  8. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    SciTech Connect

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  9. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Kim, Hannah; Hong,