Science.gov

Sample records for 3he-particle induced nuclear

  1. Excitation function of (3)He-particle induced nuclear reactions on natural palladium.

    PubMed

    Al-Abyad, M; Tárkányi, F; Ditrói, F; Takács, S

    2014-12-01

    Excitation functions of (3)He-particle induced nuclear reactions on natural palladium were measured using the standard stacked foil technique and high resolution γ-ray spectroscopy. From their threshold energies up to 27MeV, cross-sections for (nat)Pd((3)He,x)(103,104,105,106m,110m,111,112)Ag and (nat)Pd((3)He,x)(104,105,107,111m)Cd reactions were measured. The nuclear model codes TALYS-1.4, and EMPIRE-3.1 were used to describe the formation of these products. The present data were compared to theoretical results and to the available experimental data. Integral yields for some important radioisotopes were determined. PMID:25218461

  2. Calculation of induced reactions of 3He-particles on natSb in 10-34MeV energy range.

    PubMed

    Gul, K

    2009-01-01

    Calculations for the excitation functions of the (121)Sb((3)He, xn) (121,122,123)I, and (123)Sb((3)He xn) (122,123,124,125)I reactions have been carried out using statistical and pre-equilibrium nuclear reaction models in 10-34MeV energy range. These excitation functions have been used to derive the excitation functions of the (nat)Sb((3)He, xn)(121,123,124)I reactions and compared with reported measurements. For studying the improvement with measurements two values of the diffuseness parameter a(w) equal to 0.9 and 0.7fm have been used in the calculations. The dependence of pre-equilibrium calculations on the initial exciton numbers has also been considered. PMID:18951811

  3. Cross sections for the formation of {sup 195}Hg{sup m,g}, {sup 197}Hg{sup m,g}, and {sup 196}Au{sup m,g} in {alpha} and {sup 3}He-particle induced reactions on Pt: Effect of level density parameters on the calculated isomeric cross-section ratio

    SciTech Connect

    Sudar, S.; Qaim, S.M.

    2006-03-15

    Excitation functions were measured for the reactions {sup nat}Pt({sup 3}He,xn){sup 195}Hg{sup m,g},{sup nat}Pt({sup 3}He,xn){sup 197}Hg{sup m,g},{sup nat}Pt({sup 3}He,= x){sup 196}Au{sup m,g}, and {sup nat}Pt({alpha},xn){sup 197}Hg{sup m,g} over the energy range of 18-35 MeV for {sup 3}He particles and 17-26 MeV for {alpha} particles. The reactions {sup 197}Au(p,n){sup 197}Hg{sup m,g} were also investigated over the proton energy range of 6-20 MeV. The three projectiles were produced at the Juelich variable-energy compact cyclotron (CV 28). Use was made of the activation technique in combination with conventional high-resolution as well as low-energy HPGe-detector {gamma}-ray spectroscopy. For most of the reactions, the present measurements provide the first consistent sets of data. From the available experimental data, isomeric cross-section ratios were determined for the above-mentioned reactions. Nuclear model calculations using the code STAPRE, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of both the isomeric and the ground states of the products. The calculations were compared with the results of the EMPIRE-II code. The excitation functions of the ({sup 3}He,xn) and ({alpha},xn) processes are described well by the theory. In the case of ({sup 3}He,pxn) reactions, however, considerable deviations were observed between the experiment and the theory, presumably due to strong contributions from direct interactions. A description of the isomeric cross-section ratio by the model was possible only with a very low value of {eta}, i.e., the {theta}{sub eff}/{theta}{sub rig} ratio. A mass dependence of {eta} is proposed.

  4. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  5. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  6. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  7. Neutrino-induced nuclear excitations

    NASA Astrophysics Data System (ADS)

    Belusevic, R.

    1995-04-01

    We present an improved, compared to that of Belusevic and Rein, theoretical value of the cross section for the neutrino-induced nuclear excitation of iron. This result is based on a measurement of the photoabsorption cross section on the same nucleus, which can be related to the transverse part of the neutrino cross section via the conserved vector current hypothesis. The longitudinal part is related to the pion absorption cross section through the partial conservation of the axial-vector current, and thus reflects the spontaneous breaking of chiral symmetry. A general formula for the excitation cross section is derived, which is valid for both low and high incident neutrino energies. When caused by a weak neutral current, this process may play an important role in core-collapse supernovae. It can also be detected using low-temperature techniques with the purpose of cosmological and weak-interaction studies. A new estimate of the cross sections for neutrino-induced nonscaling processes described by Belusevic and Rein is discussed in the context of two experiments using iron targets, but at very different beam energies.

  8. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  9. Nuclear reactions induced by a pyroelectric accelerator.

    PubMed

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)]. PMID:16486940

  10. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  11. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  12. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  13. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    SciTech Connect

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions.

  14. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (ESTSC)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  15. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  16. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  17. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  18. Polarized nuclear target based on parahydrogen induced polarization

    NASA Astrophysics Data System (ADS)

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (˜100 Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  19. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release.

    PubMed

    Lindenboim, Liora; Sasson, Tiki; Worman, Howard J; Borner, Christoph; Stein, Reuven

    2014-01-01

    Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE. PMID:25482068

  20. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  1. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  2. Microbial-induced corrosion in nuclear power plant materials

    NASA Astrophysics Data System (ADS)

    Licina, George J.; Cubicciotti, Daniel

    1989-12-01

    The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which microbial-induced corrosion (MIC) can occur. Carbon and low-alloy steels, stainless steels and copper alloys are all susceptible to MIC in raw-water applications. Visual examination is particularly useful in performing preliminary assessments of MIC. If properly diagnosed, MIC can be effectively treated during plant construction, operation and temporary shutdowns.

  3. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  4. Irradiation-induced changes in nuclear shape and cell cycle

    SciTech Connect

    Iwata, M.; Sasaki, H.; Kishino, Y.; Tsuboi, T.; Sugishita, T.; Hosokawa, T.

    1982-03-01

    Using human uterine cervical carcinoma cells transplanted in nude mice and mice leukemia L5178Y cells, changes in the cell cycle following irradiation were observed by flow cytometry (FCM), and changes in the cell nuclei during the course of irradiation were measured by FCM. Experiments in vivo as well as in vitro caused accumulation of cells in the G2 to M populations, resulting in the so-called G2 block phenomenon as revealed by FCM analysis of DNA distributions. The radiation-induced changes of nuclear shapes were dependent on abnormal mitoses, which occurred more frequently in the G2 to M phases. Therefore it is suggested that the G2 block phenomenon plays an important role in radiation-induced cell death because the process of cell death by irradiation has been shown to proceed via these abnormal mitoses.

  5. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  6. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  7. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    PubMed

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells. PMID:22038300

  8. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation.

    PubMed

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui; Ren, Huan

    2016-02-01

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. PMID:26742423

  9. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  11. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  12. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-01

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. PMID:26996543

  13. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    SciTech Connect

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  14. COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor.

    PubMed

    Yin, Ruohe; Skvortsova, Mariya Y; Loubéry, Sylvain; Ulm, Roman

    2016-07-26

    The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling. PMID:27407149

  15. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  16. Phosphorothioate Antisense Oligonucleotides Induce the Formation of Nuclear Bodies

    PubMed Central

    Lorenz, Peter; Baker, Brenda F.; Bennett, C. Frank; Spector, David L.

    1998-01-01

    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides. PMID:9571236

  17. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-02-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  18. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  19. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    SciTech Connect

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-08-12

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the {sup 18}F+p{yields}{sup 15}O+{alpha} process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  20. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  1. Status of the Nuclear-Induced Conductivity Experiment (NICE) Project

    NASA Technical Reports Server (NTRS)

    Bitteker, Leo; Bragg-Sitton, Shannon M.; Litchford, Ron J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear-based magnetohydrodynamic (MHD) energy conversion has been pursued in various forms since the 1950's. The majority of this work was motivated by the compatibility of MHD generators with the high temperature achievable with a nuclear reactor and the associated potential for very high cycle efficiency. As a result of this perspective, methods for enhancing the electrical conductivity of the MHD flow have primarily focused on traditional thermal ionization processes, especially those utilizing alkali metal seeds. However, electrical conductivity enhancement via thermal interactions imposes significant limitations on the flow expansion through the generator, and hence on the ultimate power density. Furthermore, the introduction of an alkali metal seed into the flow significantly complicates the engineering design and increases the potential for system failures due to plating of the evaporated metal on cold surfaces.

  2. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  3. Nuclear fusion induced by x rays in a crystal

    NASA Astrophysics Data System (ADS)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  4. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  5. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  6. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  7. Voltage-induced conversion of helical to uniform nuclear spin polarization in a quantum wire

    NASA Astrophysics Data System (ADS)

    Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel

    2015-05-01

    We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on nonequilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.

  8. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGESBeta

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  9. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  10. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  11. A Theory of Laser Induced Nuclear Reaction in Single Atoms

    SciTech Connect

    Faisal, F. H. M.; Donner, C.

    2010-02-02

    An 'electron-bridge' mechanism of nuclear reaction in an atom or ion by ultra-intense laser fields is presented. A preliminary estimate of the intensity dependence of the rate of disintegration reaction of deuteron nucleus in deuterium atom is made for 800 nm laser fields. For intensities below 5x10{sup 21} W/cm{sup 2}, the rate of disintegration by the 'electron-bridge' mechanism is found to be small, but it rises sharply and becomes large already for {approx_equal}10{sup 22} W/cm{sup 2}.

  12. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  13. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    SciTech Connect

    Arai, Roberto J.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P. . E-mail: hpmonte@uol.com.br

    2006-10-06

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21{sup RasC118S}). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway.

  14. Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways.

    PubMed

    Meyer, Thomas; Begitt, Andreas; Lödige, Inga; van Rossum, Marleen; Vinkemeier, Uwe

    2002-02-01

    STAT1 functions as both a constitutive transcriptional regulator and, in response to cytokine stimulation of cells, as an inducible tyrosine-phosphorylated transcription factor. Here, we identify and characterize a non-transferable nuclear targeting sequence in the STAT1 DNA-binding domain. This conserved signal is critical for the interferon-gamma (IFN-gamma)-induced nuclear import of phosphorylated STAT1 dimers and requires adjacent positively charged and hydrophobic residues for functioning. Additionally, the constitutive nucleocytoplasmic shuttling of STAT1 in the absence of IFN-gamma stimulation is revealed. Nuclear import and export of unphosphorylated STAT1 are demonstrated to be sensitive towards wheat germ agglutinin and to occur independently of the import receptor p97. Loss-of-function mutations of the dimer-specific import signal block nuclear entry of tyrosine-phosphorylated STAT1, which in turn also prevents induction of cytokine-inducible target genes. Nevertheless, nuclear import of unphosphorylated STAT1 continues and the STAT1-dependent constitutive expression of caspases and the tumor necrosis factor-alpha-mediated induction of apoptosis proceed unaltered. Thus, tyrosine-phosphorylated and unphosphorylated STAT1 molecules shuttle via independent pathways to distinct sets of target genes. PMID:11823427

  15. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).

    PubMed

    Wehler, Pierre; Niopek, Dominik; Eils, Roland; Di Ventura, Barbara

    2016-01-01

    Many biological processes are regulated by the timely import of specific proteins into the nucleus. The ability to spatiotemporally control the nuclear import of proteins of interest therefore allows study of their role in a given biological process as well as controlling this process in space and time. The light-inducible nuclear localization signal (LINuS) was developed based on a natural plant photoreceptor that reversibly triggers the import of proteins of interest into the nucleus with blue light. Each LINuS is a small, genetically encoded domain that is fused to the protein of interest at the N or C terminus. These protocols describe how to carry out initial microscopy-based screening to assess which LINuS variant works best with a protein of interest. © 2016 by John Wiley & Sons, Inc. PMID:27258691

  16. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies.

    PubMed

    Geoffroy, Marie-Claude; Jaffray, Ellis G; Walker, Katherine J; Hay, Ronald T

    2010-12-01

    In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML. PMID:20943951

  17. Nuclear reactions induced by. pi. /sup -/ at rest

    SciTech Connect

    Gadioli, E.; Gadioli Erba, E.

    1987-08-01

    The experimental information on reactions induced by stopped ..pi../sup -/ absorbed in nuclei is critically reviewed. Evidence for the presence of ..cap alpha..-cluster absorptions is presented and arguments are given to show that approx. =25% of ..pi../sup -/ absorptions are of this kind. In the case of two-nucleon absorption, the existing experimental information concerning the ratio of n-p to p-p absorbing pairs is discussed. Calculations of particle spectra and residue spallation yield distributions that, in addition to two-nucleon absorption, include ..cap alpha..-cluster absorption are presented, and it is shown that a satisfactory reproduction of the data is achieved.

  18. Immobilization induces nuclear accumulation of HDAC4 in rat skeletal muscle.

    PubMed

    Yoshihara, Toshinori; Machida, Shuichi; Kurosaka, Yuka; Kakigi, Ryo; Sugiura, Takao; Naito, Hisashi

    2016-07-01

    The study described herein aimed to examine changes in HDAC4 and its downstream targets in immobilization-induced rat skeletal muscle atrophy. Eleven male Wistar rats were used, and one hindlimb was immobilized in the plantar flexion position using a plaster cast. The contralateral, non-immobilized leg served as an internal control. After 10 days, the gastrocnemius muscles were removed from both hindlimbs. Ten days of immobilization resulted in a significant reduction (-27.3 %) in gastrocnemius muscle weight. A significant decrease in AMPK phosphorylation was also observed in nuclear fractions from immobilized legs relative to the controls. HDAC4 expression was significantly increased in immobilized legs in both the cytoplasmic and nuclear fractions. Moreover, Myogenin and MyoD mRNA levels were upregulated in immobilized legs, resulting in increased Atrogin-1 mRNA expression. Our data suggest that nuclear HDAC4 accumulation is partly related to immobilization-induced muscle atrophy. PMID:26759025

  19. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway.

    PubMed

    Schulz, Katharina S; Klupp, Barbara G; Granzow, Harald; Passvogel, Lars; Mettenleiter, Thomas C

    2015-11-01

    Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. PMID:25678269

  20. Investigation of ultrafast nuclear spin polarization induced by short laser pulses.

    PubMed

    Nakajima, Takashi

    2007-07-13

    We theoretically investigate the dynamics of nuclear spin induced by short laser pulses and show that ultrafast nuclear spin polarization can take place. Combined use of the hyperfine interaction together with the static electric field is the key for that. Specifically we apply the idea to unstable isotopes, (27)Mg and (37)Ca, with nuclear spin of 1/2 and 3/2, respectively, and show that 88% and 62% of nuclear spin polarization can be achieved within a few to tens of ns, which is 2-3 orders of magnitude shorter than the time needed for any known optical methods. Because of its ultrafast nature, our scheme would be very effective not only for stable nuclei but also unstable nuclei with a lifetime as short as mus. PMID:17678226

  1. Imaging special nuclear material with muon-induced neutron emission.

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2015-10-01

    Cosmic ray muons are a ubiquitous source of energetic charged particles that can be used to image high-Z material through significant amounts of shielding. Negative muons which come to rest inside fissile material can be captured into atomic orbitals and induce fission, which may lead to detectable neutron emission. Muon tracks that are correlated with neutron emission can therefore serve as a signal for the presence of fissile material, and laminography with the tagged muon tracks can be performed to produce an image of the neutron emission source. In this presentation, we will discuss results of imaging tests using this technique at Los Alamos National Laboratory, and possible applications in treaty verification.

  2. Reactions Induced by Real Photons for Nuclear Structure and Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Enders, J.

    This contribution presents examples for recent experimental studies with real photons. Topics include the electric dipole response below the particle separation energy (pygmy resonance), the magnetic scissors mode in deformed nu, an analysis of low-lying electric quadrupole strength and astrophysical applications. Results of reactions induced by real photons are compared to those obtained from virtual photons (electron scattering, Coulomb excitation).

  3. Delayed gamma radiation from lightning induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Greenfield, M. B.; Sakuma, K.; Ikeda, Y.; Kubo, K.

    2004-03-01

    An increase in atmospheric gamma radiation observed with NaI and Ge detectors positioned about 15 m above ground was observed following natural lightning near Tokyo, Japan [1]. Background subtracted gamma ray rates GRR following numerous lightning strokes observed since 2001 persisted for a few hours and subsequently decayed with a half-life of about 50 minutes. Using a 3x3 Ge detector, with 2 KeV resolution, positioned about 2 m from one of the NaI detectors increases in GRR were observed minutes after the onset of lightning with a delayed 50 min exponential decay. Although most of the increase in activity occured at less than a few 100 KeV, on July 11, 2003 a 1267 +/-2 KeV line was observed. Although the statistics of this event were poor, the appearance of this line with an exponential decay of 50 min half-life suggests the possibility that it may be due to 39Cl (1267 MeV; half-life = 55.5 min) via the 40Ar(gamma,p)39Cl, 40Ar(p,2p)39Cl and/or 40Ar(n,d)39Cl reactions. Observations of > 10 MeV gamma rays observed in NaI detectors within 10s of meters from and coincident with rocket-triggered lightning at the International Center for Lightning Research and Testing suggest that charged particles accelerated in intense electric fields associated with lightning give rise to photons with sufficient energy to initiate nuclear reactions [2]. Further work to explain the cause of this anomalous activity is underway using natural and triggered lightning. 1. M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-184. 2. J. R. Dwyer et al., Science 299, (2003), pp 694-697 and recent communications

  4. Nuclear-spin-induced cotton-mouton effect in a strong external magnetic field.

    PubMed

    Fu, Li-Juan; Vaara, Juha

    2014-08-01

    Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1)  M(-1)  cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup. PMID:24862946

  5. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  6. Experimental investigation and theoretical calculation for 3He induced nuclear reactions on vanadium

    NASA Astrophysics Data System (ADS)

    Ali, B. M.; Al-Abyad, M.; Seddik, U.; El-Kameesy, S. U.; Ditrói, F.; Takács, S.; Tárkányi, F.

    2016-04-01

    Using stacked-foil activation technique and gamma-ray spectrometry, excitation functions for 3He induced nuclear reactions on natV were measured. Cross-sections for natV(3He, xn)52m,gMn and natV(3He, pxn)51Cr nuclear reactions were measured up to 27 MeV utilizing the MGC-20E cyclotron of ATOMKI. The measurements establish for the first time consistent excitation curves. Comparisons with results for values derived from different theoretical codes were included. Integral yield were calculated.

  7. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins

    PubMed Central

    Klupp, Barbara G.; Granzow, Harald; Fuchs, Walter; Keil, Günther M.; Finke, Stefan; Mettenleiter, Thomas C.

    2007-01-01

    Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment. PMID:17426144

  8. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells.

    PubMed

    Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Okawa, Yutaka; Raje, Noopur; Podar, Klaus; Mitsiades, Constantine; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Ruben D; Anderson, Kenneth C

    2009-07-30

    Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells. PMID:19436050

  9. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  10. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

    PubMed

    Schmitt, Heather M; Schlamp, Cassandra L; Nickells, Robert W

    2016-06-20

    Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage. These early events appear to be principally regulated by epigenetic mechanisms involving histone deacetylation. Class I histone deacetylases HDACs 1, 2, and 3 are known to play important roles in the process of early nuclear atrophy in RGCs, and studies using both inhibitors and genetic ablation of Hdacs also reveal a critical role in the cell death process. Select inhibitors, such as those being developed for cancer therapy, may also provide a viable secondary treatment option for optic neuropathies. PMID:26733303

  11. Molecular mapping of a new induced gene for nuclear male sterility in sunflower (Helianthus annuus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new NMS line, NMS HA89-872, induced by mitomycin C and streptomycin carries a single recessive male-sterile gene ms6. An F2 population of 88 plants was obtained from a cross between nuclear male-sterile mutant NMS HA89-872 (msms) and male-fertile line RHA271 (MsMs). 225 SSR primers and 9 RFLP-deri...

  12. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  13. Jet-induced modifications of the characteristic of the bulk nuclear matter

    NASA Astrophysics Data System (ADS)

    Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.

    2016-01-01

    We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  14. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

    PubMed

    Yumerefendi, Hayretin; Lerner, Andrew Michael; Zimmerman, Seth Parker; Hahn, Klaus; Bear, James E; Strahl, Brian D; Kuhlman, Brian

    2016-06-01

    We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation. PMID:27089030

  15. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  16. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    SciTech Connect

    Pirih, Flavia Q. . E-mail: fqpirih@ucla.edu; Aghaloo, Tara L. . E-mail: taghaloo@ucla.edu; Bezouglaia, Olga . E-mail: obezougl@ucla.edu; Nervina, Jeanne M. . E-mail: jnervina@ucla.edu; Tetradis, Sotirios; E-mail: sotirist@dent.ucla.edu

    2005-07-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.

  17. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  18. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.

    PubMed

    Gomes, Ana P; Price, Nathan L; Ling, Alvin J Y; Moslehi, Javid J; Montgomery, Magdalene K; Rajman, Luis; White, James P; Teodoro, João S; Wrann, Christiane D; Hubbard, Basil P; Mercken, Evi M; Palmeira, Carlos M; de Cabo, Rafael; Rolo, Anabela P; Turner, Nigel; Bell, Eric L; Sinclair, David A

    2013-12-19

    Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible. PMID:24360282

  19. TGF-β induces the expression of SAP30L, a novel nuclear protein

    PubMed Central

    Lindfors, Katri; Viiri, Keijo M; Niittynen, Marjo; Heinonen, Taisto YK; Mäki, Markku; Kainulainen, Heikki

    2003-01-01

    Background We have previously set up an in vitro mesenchymal-epithelial cell co-culture model which mimics the intestinal crypt villus axis biology in terms of epithelial cell differentiation. In this model the fibroblast-induced epithelial cell differentiation from secretory crypt cells to absorptive enterocytes is mediated via transforming growth factor-β (TGF-β), the major inhibitory regulator of epithelial cell proliferation known to induce differentiation in intestinal epithelial cells. The aim of this study was to identify novel genes whose products would play a role in this TGF-β-induced differentiation. Results Differential display analysis resulted in the identification of a novel TGF-β upregulated mRNA species, the Sin3-associated protein 30-like, SAP30L. The mRNA is expressed in several human tissues and codes for a nuclear protein of 183 amino acids 70% identical with Sin3 associated protein 30 (SAP30). The predicted nuclear localization signal of SAP30L is sufficient for nuclear transport of the protein although mutating it does not completely remove SAP30L from the nuclei. In the nuclei SAP30L concentrates in small bodies which were shown by immunohistochemistry to colocalize with PML bodies only partially. Conclusions By reason of its nuclear localization and close homology to SAP30 we believe that SAP30L might have a role in recruiting the Sin3-histone deacetylase complex to specific corepressor complexes in response to TGF-β, leading to the silencing of proliferation-driving genes in the differentiating intestinal epithelial cells. PMID:14680513

  20. EWS represses cofilin 1 expression by inducing nuclear retention of cofilin 1 mRNA.

    PubMed

    Huang, L; Kuwahara, I; Matsumoto, K

    2014-06-01

    In Ewing's sarcoma family tumors (ESFTs), the proto-oncogene EWS that encodes an RNA-binding protein is fused by chromosomal translocation to the gene encoding one of the E-twenty six (ETS) family of transcription factors, most commonly friend leukemia virus integration 1 (FLI-1). Although EWS/FLI-1 chimeric proteins are necessary for carcinogenesis, additional events seem to be required for transformation to occur. We have previously reported that a protein product of an EWS mRNA target, whose expression is negatively regulated by EWS but not by EWS/FLI-1, contributes to ESFT development. However, the mechanism by which EWS represses protein expression remains to be elucidated. Here, we report that overexpression of full-length EWS repressed protein expression and induced nuclear retention of reporter mRNAs in a tethering assay. In contrast, when a mutant lacking the EWS C-terminal nuclear localization signal (classified as a PY-NLS) was expressed, reporter protein expression was upregulated, and the number of cells exporting reporter mRNA to the cytoplasm increased. EWS binds to the 3'-untranslated region in another mRNA target, cofilin 1 (CFL1), and negatively regulates the expression of CFL1. Overexpression of EWS induced nuclear retention of CFL1 mRNA. Furthermore, ESFT cell proliferation and metastatic potential were suppressed by small interfering RNA-mediated CFL1 knockdown. Together, our findings suggest that EWS induces nuclear retention of CFL1 mRNA, thereby suppressing expression of CFL1, and that CFL1 promotes development of ESFT. Targeting CFL1 might therefore provide another novel approach for treatment of this aggressive disease. PMID:23831569

  1. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  2. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  3. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  4. Investigation of the α-particle induced nuclear reactions on natural molybdenum

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Hermanne, A.; Tárkányi, F.; Takács, S.; Ignatyuk, A. V.

    2012-08-01

    Cross-sections of alpha particle induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 93mMo, 99Mo(cum), 90Nb(m+), 94Ru, 95Ru,97Ru, 103Ru and 88Zr were measured up to 40 MeV alpha energy by using a stacked foil technique and activation method. The main goals of this work were to get experimental data for accelerator technology, for monitoring of alpha beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analyzed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE and TALYS codes (TENDL-2011).

  5. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  6. Atomic electric dipole moments of He and Yb induced by nuclear Schiff moments

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Ginges, J. S. M.

    2007-09-15

    We have calculated the atomic electric dipole moments (EDMs) d of {sup 3}He and {sup 171}Yb induced by their respective nuclear Schiff moments S. Our results are d({sup 3}He)=8.3x10{sup -5} and d({sup 171}Yb)=-1.9 in units of 10{sup -17}(S/e fm{sup 3}) e cm. By considering the nuclear Schiff moments induced by the parity- and time-reversal violating nucleon-nucleon interaction, we find d({sup 171}Yb){approx}0.6d({sup 199}Hg). For {sup 3}He the nuclear EDM coupled with the hyperfine interaction gives a larger atomic EDM than the Schiff moment. The result for {sup 3}He is required for a neutron EDM experiment that is under development, where {sup 3}He is used as a comagnetometer. We find that the EDM for {sup 3}He is orders of magnitude smaller than the neutron EDM. The result for {sup 171}Yb is needed for the planning and interpretation of experiments that have been proposed to measure the EDM of this atom.

  7. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  8. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    SciTech Connect

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs.

  9. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P.; Ewing, R.I.; Marlow, K.W.

    1991-12-01

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  10. Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments.

    PubMed

    Flambaum, V V; DeMille, D; Kozlov, M G

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions. PMID:25238355

  11. Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells.

    PubMed

    Tokunaga, Kazuaki; Saitoh, Noriko; Goldberg, Ilya G; Sakamoto, Chiyomi; Yasuda, Yoko; Yoshida, Yoshinori; Yamanaka, Shinya; Nakao, Mitsuyoshi

    2014-01-01

    Non-invasive evaluation of cell reprogramming by advanced image analysis is required to maintain the quality of cells intended for regenerative medicine. Here, we constructed living and unlabelled colony image libraries of various human induced pluripotent stem cell (iPSC) lines for supervised machine learning pattern recognition to accurately distinguish bona fide iPSCs from improperly reprogrammed cells. Furthermore, we found that image features for efficient discrimination reside in cellular components. In fact, extensive analysis of nuclear morphologies revealed dynamic and characteristic signatures, including the linear form of the promyelocytic leukaemia (PML)-defined structure in iPSCs, which was reversed to a regular sphere upon differentiation. Our data revealed that iPSCs have a markedly different overall nuclear architecture that may contribute to highly accurate discrimination based on the cell reprogramming status. PMID:25385348

  12. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    SciTech Connect

    Chiolo, Irene; Georgescu, Walter; Tang, Jonathan; Costes, Sylvain V.

    2013-09-03

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  13. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation.

    PubMed

    Ramasamy, Vijay Sankar; Islam, Md Imamul; Haque, Md Aminul; Shin, Song Yub; Park, Il-Seon

    2016-06-01

    β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6h (4+6h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD. PMID:26876308

  14. Lamin A precursor induces barrier-to-autointegration factor nuclear localization.

    PubMed

    Capanni, Cristina; Cenni, Vittoria; Haraguchi, Tokuko; Squarzoni, Stefano; Schüchner, Stefan; Ogris, Egon; Novelli, Giuseppe; Maraldi, Nadir; Lattanzi, Giovanna

    2010-07-01

    Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation. In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects. PMID:20581439

  15. Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke.

    PubMed

    Yuan, Hui; Denton, Kyle; Liu, Lin; Li, Xue-Jun; Benashski, Sharon; McCullough, Louise; Li, Jun

    2016-07-01

    Mounting evidence suggests that epigenetic modifications play critical roles in the survival/death of stressed neurons. Chief among these modifications is the deacetylation of histones within the chromatin by histone deacetylases (HDACs). HDAC4 is highly expressed in neurons and is usually trapped in cytosol. However, tightly regulated signal-dependent shuttling of this molecule between cytosol and nucleus occurs. Here, we studied the intracellular trafficking of HDAC4 and regulatory mechanisms during stroke. HDAC4 translocated from the cytosol into the nucleus of neurons in response to stroke induced by middle cerebral artery occlusion (MCAO) in mice. Similar translocation was seen after oxygen-glucose deprivation (OGD) in cultured mouse neurons. Expression of nuclear-restricted HDAC4 increased neuronal death after OGD and worsened infarcts and functional deficits in mice following MCAO; however, expression of cytosolic-restricted HDAC4 did not affect outcome after ischemia. In contrast, HDAC4 knockdown with siRNA improved neuronal survival after OGD. Furthermore, expression of nuclear-restricted HDAC4 reduced the acetylation of histones 3 and 4 as well as the levels of pro-survival downstream molecules after OGD. Finally, genetic deletion of calcium/calmodulin-dependent protein kinase IV (CaMKIV) increased the nuclear accumulation of HDAC4 in MCAO model, while overexpression of CaMKIV reduced the levels of nuclear HDAC4 following OGD. When HDAC4 was inhibited, the neuroprotection provided by CaMKIV overexpression was absent during OGD. Our data demonstrate a detrimental role of the nuclear accumulation of HDAC4 following stroke and identify CaMKIV as a key regulator of neuronal intracellular HDAC4 trafficking during stroke. PMID:26969532

  16. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  17. Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells

    PubMed Central

    Shrestha, R; Tatsukawa, H; Shrestha, R; Ishibashi, N; Matsuura, T; Kagechika, H; Kose, S; Hitomi, K; Imamoto, N; Kojima, S

    2015-01-01

    Nuclear accumulation of transglutaminase 2 (TG2) is an important step in TG2-dependent cell death. However, the underlying molecular mechanisms for nuclear translocation of TG2 are still poorly understood. In this study, we demonstrated that acyclic retinoid (ACR) induced nuclear accumulation of TG2 in JHH-7 cells, a hepatocellular carcinoma (HCC) leading to their apoptosis. We further demonstrated molecular mechanism in nuclear-cytoplasmic trafficking of TG2 and an effect of ACR on it. We identified a novel 14-amino acid nuclear localization signal (NLS) 466AEKEETGMAMRIRV479 in the ‘C' domain and a leucine-rich nuclear export signal (NES) 657LHMGLHKL664 in the ‘D' domain that allowed TG2 to shuttle between the nuclear and cytosolic milieu. Increased nuclear import of GAPDH myc-HIS fused with the identified NLS was observed, confirming its nuclear import ability. Leptomycin B, an inhibitor of exportin-1 as well as point mutation of all leucine residues to glutamine residues in the NES of TG2 demolished its nuclear export. TG2 formed a trimeric complex with importin-α and importin-β independently from transamidase activity which strongly suggested the involvement of a NLS-based translocation of TG2 to the nucleus. ACR accelerated the formation of the trimeric complex and that may be at least in part responsible for enhanced nuclear localization of TG2 in HCC cells treated with ACR. PMID:26633708

  18. NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

    PubMed Central

    Zheng, Sika; Eacker, Stephen M.; Hong, Suk Jin; Gronostajski, Richard M.; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A was provided by the observations that Nfia–/– neurons were highly sensitive to NMDA-induced excitotoxicity and were more susceptible to developmental cell death than wild-type neurons and that Nfia+/– mice were more sensitive to NMDA-induced intrastriatal lesions than were wild-type animals. These results identify NFI-A as what we believe to be a novel neuroprotective transcription factor with implications in neuroprotection and neuronal plasticity following NMDA receptor activation. PMID:20516644

  19. H 2 inhibition of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Roth, Olivia; Jonsson, Mats

    2009-01-01

    In order to elucidate the effect of noble metal clusters in spent nuclear fuel on the kinetics of radiation induced spent fuel dissolution we have used Pd particle doped UO 2 pellets. The catalytic effect of Pd particles on the kinetics of radiation induced dissolution of UO 2 during γ-irradiation in HCO3- containing solutions purged with N 2 and H 2 was studied in this work. Four pellets with Pd concentrations of 0%, 0.1%, 1% and 3% were produced to mimic spent nuclear fuel. The pellets were placed in 10 mM HCO3- aqueous solutions and γ-irradiated, and the dissolution of UO22+ was measured spectrophotometrically as a function of time. Under N 2 atmosphere, 3% Pd prevent the dissolution of uranium by reduction with the radiolytically produced H 2, while the other pellets show a rate of dissolution of around 1.6 × 10 -9 mol m -2 s -1. Under H 2 atmosphere already 0.1% Pd effectively prevents the dissolution of uranium, while the rate of dissolution for the pellet without Pd is 1.4 × 10 -9 mol m -2 s -1. It is also shown in experiments without radiation in aqueous solutions containing H 2O 2 and O 2 that ɛ-particles catalyze the oxidation of the UO 2 matrix by these molecular oxidants, and that the kinetics of the catalyzed reactions is close to diffusion controlled.

  20. Pion-induced production of the Zc(3900 ) off a nuclear target

    NASA Astrophysics Data System (ADS)

    Huang, Yin; He, Jun; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2016-02-01

    We investigate the possibility to study the charmoniumlike state Zc(3900 ) through the pion-induced production off a nuclear target. By using a high-energy pion beam, the Zc(3900 ) can be produced off a proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the p (π-,Zc-(3900 )) and p (π-,Zc-(3900 )→J /ψ π-) reactions are calculated, and their order of magnitude is about 0.1 and 0.01 nb, respectively, with an assumption of branch ratio 10% for the Zc(3900 ) decay in J /ψ π channel. If the proton target is replaced by a nuclear target, the production of the Zc(3900 ) enhances obviously. The predicted total cross sections for the A (π-,Zc-(3900 )) and A (π-,Zc-(3900 )→J /ψ π-) reactions with A =12C or 208Pb are on the order of magnitude of 100 and 10 nb, respectively, which is about one thousand times larger than the cross sections off a proton target. Based on these results, we suggest the experimental study of the Zc(3900 ) by using high-energy pion beams with a nuclear target at facilities such as COMPASS and J-PARC.

  1. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  2. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  3. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    SciTech Connect

    Martin, Madhavi Z; Allman, Steve L; Brice, Deanne Jane; Martin, Rodger Carl; Andre, Nicolas O

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  4. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  5. Comparison of Cell and Nuclear Size Difference between Diploid and Induced Triploid in Marine Medaka, Oryzias dancena

    PubMed Central

    Goo, In Bon; Im, Jae Hyun; Gil, Hyun Woo; Lim, Sang Gu; Park, In-Seok

    2015-01-01

    The influence of triploidization on cell and nucleus size characteristics of the same tissues of erythrocyte, retina, kidney, hepatocyte and midgut epithelium in marine medaka, Oryzias dancena has been determined histologically. Induced triploid fish are produced by cold shock treatments. Likewise, the size of horizontal cell nucleus in inner nuclear layer of retina, ganglion cell nucleus in ganglion cell layer of retina, proximal tubule cell of kidney, hepatocytes and nuclear height of midgut epithelium all appear to be significantly larger than diploid (p<0.05). On the other hand, retina thickness is larger in diploid than induced triploid (p<0.05). Induced triploid shows low density of cell number. Results of this study suggest that same characteristics in the induced triploid exhibiting larger cells and nucleus sizes with fewer number of cells than the diploid can be useful criteria for the distinction between diploid and induced triploid, and also the ploidy level in marine medaka. PMID:27004269

  6. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-01

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard

  7. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  8. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA. PMID:15528046

  9. Dynamics of nuclear spin polarization induced and detected by coherently precessing electron spins in fluorine-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Kirstein, E.; Greilich, A.; Zhukov, E. A.; Kazimierczuk, T.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2016-02-01

    We study the dynamics of optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer via time-resolved Kerr rotation. The nuclear polarization in the vicinity of a fluorine donor is induced by interaction with coherently precessing electron spins in a magnetic field applied in the Voigt geometry. It is detected by nuclei-induced changes in the electron spin coherence signal. This all-optical technique allows us to measure the longitudinal spin relaxation time T1 of the 77Se isotope in a magnetic field range from 10 to 130 mT under illumination. We combine the optical technique with radio frequency methods to address the coherent spin dynamics of the nuclei and measure Rabi oscillations, Ramsey fringes, and the nuclear spin echo. The inhomogeneous spin dephasing time T2* and the spin coherence time T2 of the 77Se isotope are measured. While the T1 time is on the order of several milliseconds, the T2 time is several hundred microseconds. The experimentally determined condition T1≫T2 verifies the validity of the classical model of nuclear spin cooling for describing the optically induced nuclear spin polarization.

  10. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  11. Comparison and characterization of α-amylase inducers in Aspergillus nidulans based on nuclear localization of AmyR.

    PubMed

    Murakoshi, Yuriko; Makita, Tomohiro; Kato, Masashi; Kobayashi, Tetsuo

    2012-06-01

    AmyR, a fungal transcriptional activator responsible for induction of amylolytic genes in Aspergillus nidulans, localizes to the nucleus in response to the physiological inducer isomaltose. Maltose, kojibiose, and D: -glucose were also found to trigger the nuclear localization of GFP-AmyR. Isomaltose- and kojibiose-triggered nuclear localization was not inhibited by the glucosidase inhibitor, castanospermine, while maltose-triggered localization was inhibited. Thus, maltose itself does not appear to be an direct inducer, but its degraded or transglycosylated product does. Non-metabolizable D: -glucose analogues were also able to trigger the nuclear localization, implying that these sugars, except maltose, directly function as the inducers of AmyR nuclear entry. The inducing activity of D: -glucose was 4 orders-of-magnitude weaker compared with isomaltose. Although D: -glucose has the ability to induce α-amylase production, this activity would generally be masked by CreA-dependent carbon catabolite repression. Significant induction of α-amylase by D: -glucose was observed in creA-defective A. nidulans. PMID:22252265

  12. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway

    PubMed Central

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases. PMID:25829782

  13. Analysis of the Nuclear Structure of 186 Re Using Neutron-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Matters, David; McClory, John; Carroll, James; Chiara, Chris; Fotiades, Nikolaos; Devlin, Matt; Nelson, Ron O.

    2015-04-01

    Evaluated nuclear structure data for 186 Re identifies the majority of spin-parity assignments as tentative, with approximate values associated with the energies of several levels and transitions. In particular, the absence of known transitions that feed the Jπ =8+ isomer motivates their discovery, which would have astrophysical implications and a potential application in the development of an isomer power source. Using the GErmanium Array for Neutron Induced Excitations (GEANIE) spectrometer at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility, the (n,2n γ) and (n,n' γ) reactions in a 99.52% enriched 187 Re target were used to measure γ-ray excitation functions in 186 Re and 187 Re, respectively. A preliminary analysis of the data obtained from the experiment reveals several new transitions in 186 Re and 187 Re.

  14. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    NASA Astrophysics Data System (ADS)

    Chechenin, N. G.; Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-01

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  15. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    SciTech Connect

    Chechenin, N. G. Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  16. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  17. Nuclear Reaction Models Responsible for Simulation of Neutron-induced Soft Errors in Microelectronics

    SciTech Connect

    Watanabe, Y. Abe, S.

    2014-06-15

    Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.

  18. Early auxin-induced genes encode short-lived nuclear proteins.

    PubMed Central

    Abel, S; Oeller, P W; Theologis, A

    1994-01-01

    The plant growth hormone indoleacetic acid (IAA) transcriptionally activates gene expression in plants. Some of the genes whose expression is induced by IAA encode a family of proteins in pea (PS-IAA4 and PS-IAA6) and Arabidopsis (IAA1 and IAA2) that contain putative nuclear localization signals that direct a beta-glucuronidase reporter protein into the nucleus. Pulse-chase and immunoprecipitation experiments have defined the t1/2 of the PS-IAA4 and PS-IAA6 proteins to be 8 and 6 min, respectively. Their most prominent feature is the presence of a beta alpha alpha motif similar to the beta-sheet DNA-binding domain found in prokaryotic repressors of the Arc family. Based on these data, we suggest that plant tissues express short-lived nuclear proteins as a primary response to IAA. We propose that these proteins act as activators or repressors of genes responsible for mediating the various auxin responses. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278386

  19. From nuclear power to coal power: Aerosol-induced health and radiative effects

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  20. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  1. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  2. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  3. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Lee, Manwoo; Kim, Guinyun

    2014-08-01

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on natCd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the 110,113g,117mSn, 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117gIn, and 111m,115gCd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  4. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    PubMed

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  5. Nuclear transfer procedures in the ovine can induce early embryo fragmentation and compromise cloned embryo development.

    PubMed

    Xue, Lian; Cheng, Lei; Su, Guanghua; Kang, Feng; Wu, Xia; Bai, Chunling; Zhang, Li; Li, Guang-Peng

    2011-07-01

    Cytoplasmic fragmentations are frequently observed in early mammalian embryos, and especially in the human. In our research we have observed subtle clues that the occurrence of fragmentation was most likely a result of somatic cell nuclear transfer (NT) protocols, and in particular, the in vitro culture system. In this study we examined various putative factors that might induce early embryo fragmentation in the ovine. The results indicate that nuclear transfer protocols such as the fusion parameter, activation treatment, and especially the choice of culture medium affected embryo cleavage rates and resulted in a higher incidence of fragmented embryos. Upon using the same fusion parameter, activation parameters that were based upon amino acids containing synthetic oviduct fluids (SOFaa) culture system resulted in significantly lower fragmentation rates than when utilizing a Charles Rosenkrans 1 (CR1aa) culture system. Fragmented embryos typically exhibited irregular numbers of blastomeres with the majority of blastomeres devoid of chromatin. Factors such as fusion DC pulse, activation treatment and culture system led to higher fragmentation and also affected in vitro and in vivo embryo development. The SOFaa based culture system produced a higher number of quality NT embryos resulting in higher pregnancy rates and the birth of live lambs as compared to the CR1aa based system (P<0.05). We conclude that early embryo fragmentation in the ovine is caused by suboptimal cloning protocols, and NT embryo development is especially affected by the culture system used. PMID:21700405

  6. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    PubMed Central

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  7. First measurement of proton-induced low-momentum dielectron radiation off cold nuclear matter

    NASA Astrophysics Data System (ADS)

    HADES Collaboration; Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2012-09-01

    We present data on dielectron emission in proton induced reactions on a Nb target at 3.5 GeV kinetic beam energy measured with HADES installed at GSI. The data represent the first high statistics measurement of proton-induced dielectron radiation from cold nuclear matter in a kinematic regime, where strong medium effects are expected. Combined with the good mass resolution of 2%, it is the first measurement sensitive to changes of the spectral functions of vector mesons, as predicted by models for hadrons at rest or small relative momenta. Comparing the e+e- invariant mass spectra to elementary p + p data, we observe for e+e- momenta Pee<0.8 GeV/c a strong modification of the shape of the spectrum, which we attribute to an additional ρ-like contribution and a decrease of ω yield. These opposite trends are tentatively interpreted as a strong coupling of the ρ meson to baryonic resonances and an absorption of the ω meson, which are two aspects of in-medium modification of vector mesons.

  8. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    SciTech Connect

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  9. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    PubMed Central

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  10. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    PubMed

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  11. p52-independent nuclear translocation of RelB promotes LPS-induced attachment

    SciTech Connect

    Saito, T.; Sasaki, C.Y.; Rezanka, L.J.; Ghosh, P.; Longo, D.L.

    2010-01-01

    The NF-{kappa}B signaling pathways have a critical role in the development and progression of various cancers. In this study, we demonstrated that the small cell lung cancer cell line (SCLC) H69 expressed a unique NF-{kappa}B profile as compared to other cancer cell lines. The p105/p50, p100/p52, c-Rel, and RelB protein and mRNA transcripts were absent in H69 cells but these cells expressed RelA/p65. The activation of H69 cells by lipopolysaccharide (LPS) resulted in the induction of RelB and p100 expression. The treatment also induced the nuclear translocation of RelB without the processing of p100 to p52. Furthermore, LPS-induced {beta}1 integrin expression and cellular attachment through an NF-{kappa}B-dependent mechanism. Blocking RelB expression prevented the increase in the expression of {beta}1 integrin and the attachment of H69. Taken together, the results suggest that RelB was responsible for the LPS-mediated attachment and may play an important role in the progression of some cancers.

  12. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS

    PubMed Central

    Perillo, Bruno; Di Santi, Annalisa; Cernera, Gustavo; Ombra, Maria Neve; Castoria, Gabriella; Migliaccio, Antimo

    2014-01-01

    Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.   We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells. PMID:25482200

  13. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

    PubMed Central

    Volle, David H.; Decourteix, Mélanie; Garo, Erwan; McNeilly, Judy; Fenichel, Patrick; Auwerx, Johan; McNeilly, Alan S.; Schoonjans, Kristina; Benahmed, Mohamed

    2009-01-01

    Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis. PMID:19884658

  14. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites

    SciTech Connect

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Windes, William E.; Ubic, Rick

    2015-05-01

    This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 °C and 678 °C respectively. IG-110 samples were irradiated to 1.91 dpa and 6.70 dpa at 451 °C and 674 °C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice.

  15. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis.

    PubMed

    Shahbazi, Jeyran; Lock, Richard; Liu, Tao

    2013-01-01

    Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a stress-induced p53-target gene whose expression is modulated by transcription factors such as p53, p73, and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. In association with homeodomain-interacting protein kinase-2 (HIPK2), TP53INP1 phosphorylates p53 protein at Serine-46. This enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53-target genes such as p21 and PIG3, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis, whereas TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment. PMID:23717325

  16. Resolving the H 2 effect on radiation induced dissolution of UO 2-based spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Jonsson, Mats

    2010-01-01

    In recent years, the impact of H2 on α-radiation induced dissolution of UO2-based spent nuclear fuel has been studied and debated extensively. Experimental results on the effect of H2 on the concentration of H2O2 during α-radiolysis have been shown to disagree with numerical simulations. For this reason, the reaction scheme used in simulations of aqueous radiation chemistry has sometimes been questioned. In this work, we have studied the impact of H2 on the H2O2 concentration in α-irradiated aqueous solution using numerical simulations. The effects of H2 pressure, α-dose rate and HCO3- concentration were investigated by performing systematic variations in these parameters. The simulations show that the discrepancy between the previously published experimental result and numerical simulations is due to the use of a homogeneous dose rate (the energy is assumed to be equally distributed in the whole volume). Taking the actual dose rate of the α-irradiated volume into account, the simulation is in perfect agreement with the experimental results. This shows that the H2 effect is strongly α-dose rate dependent, and proves the reliability of the reaction scheme used in the simulations. The simulations also show that H2 influences the H2O2 concentration under α-radiolysis. The magnitude of the effect depends on the dose rate and the H2 pressure as well as on the concentration of HCO 3-. The impact of the radiolytic H2 effect on the rate of α-radiation induced dissolution of spent nuclear fuel is discussed along with other (α- and γ-) radiation induced processes capable of reducing the concentration of uranium in solution. The radiolytic H2 effect is quantitatively compared to the previously presented noble metal catalyzed H2 effect. This comparison shows that the noble metal catalyzed H2 effect is far more efficient than the radiolytic H2 effect. Reduction of U(VI) in solution due to low dose rate γ-radiolysis in the presence of H2 is proposed to be the cause of

  17. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    PubMed

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  18. The Nuclear Receptor, Nor-1, Induces the Physiological Responses Associated With Exercise.

    PubMed

    Goode, Joel M; Pearen, Michael A; Tuong, Zewen K; Wang, Shu-Ching M; Oh, Tae Gyu; Shao, Emily X; Muscat, George E O

    2016-06-01

    Skeletal muscle remodels metabolic capacity, contractile and exercise phenotype in response to physiological demands. This adaptive remodeling response to physical activity can ameliorate/prevent diseases associated with poor diet and lifestyle. Our previous work demonstrated that skeletal muscle-specific transgenic expression of the neuron-derived orphan nuclear receptor, Nor-1 drives muscle reprogramming, improves exercise endurance, and oxidative metabolism. The current manuscript investigates the association between exercise, Nor-1 expression and the role of Nor-1 in adaptive remodeling. We demonstrate that Nor-1 expression is induced by exercise and is dependent on calcium/calcineurin signaling (in vitro and in vivo). Analysis of fatigue-resistant transgenic mice that express Nor-1 in skeletal muscle revealed increased hypertrophy and vascularization of muscle tissue. Moreover, we demonstrate that transgenic Nor-1 expression is associated with increased intracellular recycling, ie, autophagy, involving 1) increased expression of light chain 3A or LC3A-II, autophagy protein 5, and autophagy protein 12 in quadriceps femoris muscle extracts from Tg-Nor-1 (relative to Wild-type (WT) littermates); 2) decreased p62 expression indicative of increased autophagolysosome assembly; and 3) decreased mammalian target of rapamycin complex 1 activity. Transfection of LC3A-GFP-RFP chimeric plasmid demonstrated that autophagolysosome formation was significantly increased by Nor-1 expression. Furthermore, we demonstrated a single bout of exercise induced LC3A-II expression in skeletal muscle from C57BL/6 WT mice. This study, when combined with our previous studies, demonstrates that Nor-1 expression drives multiple physiological changes/pathways that are critical to the beneficial responses of muscle to exercise and provides insights into potential pharmacological manipulation of muscle reprogramming for the treatment of lifestyle induced chronic diseases. PMID:27144290

  19. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells

    PubMed Central

    Omata, Mitsugu; Doke, Yukiko; Yamada, Chikaomi; Kawashima, Kayoko; Sho, Rumiko; Enomoto, Kei; Furuya, Mayumi; Inomata, Norio

    2016-01-01

    Tubular epithelial cells (TECs) can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization). However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β) was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis. PMID:27196561

  20. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene.

    PubMed Central

    Semenza, G L; Nejfelt, M K; Chi, S M; Antonarakis, S E

    1991-01-01

    Human erythropoietin gene expression in liver and kidney is inducible by anemia or hypoxia. DNase I-hypersensitive sites were identified 3' to the human erythropoietin gene in liver nuclei. A 256-base-pair region of 3' flanking sequence was shown by DNase I protection and electrophoretic mobility-shift assays to bind four or more different nuclear factors, at least two of which are induced by anemia in both liver and kidney, and the region functioned as a hypoxia-inducible enhancer in transient expression assays. These results provide insight into the molecular basis for the regulation of gene expression by a fundamental physiologic stimulus, hypoxia. Images PMID:2062846

  1. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells

    PubMed Central

    Niopek, Dominik; Benzinger, Dirk; Roensch, Julia; Draebing, Thomas; Wehler, Pierre; Eils, Roland; Di Ventura, Barbara

    2014-01-01

    The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light. PMID:25019686

  2. Caspase-3-mediated Cleavage of Cdc6 Induces Nuclear Localization of p49-truncated Cdc6 and Apoptosis

    PubMed Central

    Yim, Hyungshin; Jin, Ying Hua; Park, Byoung Duck; Choi, Hye Jin; Lee, Seung Ki

    2003-01-01

    We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3–mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or tumor necrosis factor-related apoptosis-inducing ligand. The cleavage occurs at the SEVD442/G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence. Cdc6 is known to be phosphorylated by cyclin A-cyclin dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. In contrast, p49-tCdc6 translocation to the cytoplasm is markedly reduced under the up-regulated conditions of Cdk2 activity, which is possibly due to the loss of nuclear export sequence. Thus, truncation of Cdc6 results in an increased nuclear retention of p49-tCdc6 that could act as a dominant negative inhibitor of DNA replication and its accumulation in the nucleus could promote apoptosis. Supporting this is that the ectopic expression of p49-tCdc6 not only promotes apoptosis of etoposide-induced HeLa cells but also induces apoptosis in untreated cells. Thus, the caspase-mediated cleavage of Cdc6 creates a truncated Cdc6 fragment that is retained in the nucleus and induces apoptosis. PMID:14517333

  3. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  4. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    PubMed

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  5. Abnormal mitosis in hypertetraploid cells causes aberrant nuclear morphology in association with H2O2-induced premature senescence.

    PubMed

    Ohshima, Susumu

    2008-09-01

    Aberrant nuclear morphology, such as nuclei with irregular shapes or fragmented nuclei, is often observed in senescent cells, but its biological significance is not fully understood. My previous study showed that aberrant nuclear morphology in senescent human fibroblasts is attributable to abnormal mitosis in later passages. In this study, the production of abnormal nuclei in association with premature senescence was investigated. Premature senescence was induced by brief exposure of human fibroblasts to hydrogen peroxide (H(2)O(2)), and mitosis was observed by time-lapse microscopy. In addition, cell cycle and nuclear morphology after exposure to H(2)O(2) were also analyzed using a laser scanning cytometer. Time-lapse analysis revealed that the induction of premature senescence caused abnormal mitoses, such as mitotic slippage or incomplete mitosis, especially in later days after H(2)O(2) exposure and often resulted in abnormal nuclear morphology. Analysis by laser scanning cytometer showed significantly higher frequency of abnormal cells with deformed nuclei and abnormal mitotic cells with misaligned chromosomes in a hypertetraploid subpopulation. These results suggest that unstable hypertetraploid cells, formed in association with H(2)O(2)-induced premature senescence, cause abnormal mitosis that leads to aberrant nuclear morphology. PMID:18618767

  6. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-06-01

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass-polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  7. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation.

    PubMed

    Chen, Xiaowei; Arciero, Cletus A; Wang, Chunrong; Broccoli, Dominique; Godwin, Andrew K

    2006-05-15

    We have previously reported the identification and characterization of a novel BRCA1/2 interacting protein complex, BRCC (BRCA1/2-containing complex). BRCC36, one of the proteins in BRCC, directly interacts with BRCA1, and regulates the ubiquitin E3 ligase activity of BRCC. Importantly, BRCC36 is aberrantly expressed in the vast majority of breast tumors, indicating a potential role in the pathogenesis of this disease. To further elucidate the functional consequence of abnormal BRCC36 expression in breast cancer, we have done in vivo silencing studies using small interfering RNAs targeting BRCC36 in breast cancer cell lines, i.e., MCF-7, ZR-75-1, and T47D. Knock-down of BRCC36 alone does not affect cell growth, but when combined with ionizing radiation (IR) exposure, it leads to an increase in the percentage of cells undergoing apoptosis when compared with the small interfering RNA control group in breast cancer cells. Immunoblot analysis shows that inhibition of BRCC36 has no effect on the activation of ATM, expression of p21 and p53, or BRCA1-BARD1 interaction following IR exposure. Importantly, BRCC36 depletion disrupts IR-induced phosphorylation of BRCA1. Immunofluorescent staining of BRCA1 and gamma-H2AX indicates that BRCC36 depletion prevents the formation of BRCA1 nuclear foci in response to DNA damage in breast cancer cells. These results show that down-regulation of BRCC36 expression impairs the DNA repair pathway activated in response to IR by inhibiting BRCA1 activation, thereby sensitizing breast cancer cells to IR-induced apoptosis. PMID:16707425

  8. Limited Role of Nuclear Receptor Nur77 in Escherichia coli-Induced Peritonitis

    PubMed Central

    Hamers, Anouk A. J.; Uleman, Sven; van Tiel, Claudia M.; Kruijswijk, Daniëlle; van Stalborch, Anne-Marieke; Huveneers, Stephan; de Vries, Carlie J. M.

    2014-01-01

    Nuclear receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to play an anti-inflammatory role in macrophages, which have a crucial function in defense against peritonitis. The function of Nur77 in Escherichia coli-induced peritoneal sepsis has not yet been investigated. Wild-type and Nur77-knockout mice were inoculated with E. coli, and bacterial outgrowth, cell recruitment, cytokine profiles, and tissue damage were investigated. We found only a minor transient decrease in bacterial loads in lung and liver of Nur77-knockout compared to wild-type mice at 14 h postinfection, yet no changes were found in the peritoneal lavage fluid or blood. No differences in inflammatory cytokine levels or neutrophil/macrophage numbers were observed, and bacterial loads were equal in wild-type and Nur77-knockout mice at 20 h postinfection in all body compartments tested. Also, isolated peritoneal macrophages did not show any differences in cytokine expression patterns in response to E. coli. In endothelial cells, Nur77 strongly downregulated both protein and mRNA expression of claudin-5, VE-cadherin, occludin, ZO-1, and β-catenin, and accordingly, these genes were upregulated in lungs of Nur77-deficient mice. Functional permeability tests pointed toward a strong role for Nur77 in endothelial barrier function. Indeed, tissue damage in E. coli-induced peritonitis was notably modulated by Nur77; liver necrosis and plasma aspartate aminotransferase (ASAT)/alanine aminotransferase (ALAT) levels were lower in Nur77-knockout mice. These data suggest that Nur77 does not play a role in the host response to E. coli in the peritoneal and blood compartments. However, Nur77 does modulate bacterial influx into the organs via increased vascular permeability, thereby aggravating distant organ damage. PMID:24166953

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    SciTech Connect

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  11. Regulation of Stress-Inducible Phosphoprotein 1 Nuclear Retention by Protein Inhibitor of Activated STAT PIAS1

    PubMed Central

    Soares, Iaci N.; Caetano, Fabiana A.; Pinder, Jordan; Rodrigues, Bruna Roz; Beraldo, Flavio H.; Ostapchenko, Valeriy G.; Durette, Chantal; Pereira, Grace Schenatto; Lopes, Marilene H.; Queiroz-Hazarbassanov, Nicolle; Cunha, Isabela W.; Sanematsu, Paulo I.; Suzuki, Sergio; Bleggi-Torres, Luiz F.; Schild-Poulter, Caroline; Thibault, Pierre; Dellaire, Graham; Martins, Vilma R.; Prado, Vania F.; Prado, Marco A. M.

    2013-01-01

    Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity. PMID:23938469

  12. Activation of nuclear PTEN by inhibition of Notch signaling induces G2/M cell cycle arrest in gastric cancer.

    PubMed

    Kim, S-J; Lee, H-W; Baek, J-H; Cho, Y-H; Kang, H G; Jeong, J S; Song, J; Park, H-S; Chun, K-H

    2016-01-14

    Mutation in PTEN has not yet been detected, but its function as a tumor suppressor is inactivated in many cancers. In this study we determined that, activated Notch signaling disables PTEN by phosphorylation and thereby contributes to gastric tumorigenesis. Notch inhibition by small interfering RNA or γ-secretase inhibitor (GSI) induced mitotic arrest and apoptosis in gastric cancer cells. Notch inhibition induced dephosphorylation in the C-terminal domain of PTEN, which led to PTEN nuclear localization. Overexpression of activated Notch1-induced phosphorylation of PTEN and reversed GSI-induced mitotic arrest. Dephosphorylated nuclear PTEN caused prometaphase arrest by interaction with the cyclin B1-CDK1 complex, resulting in their accumulation in the nucleus and subsequent apoptosis. We found a correlation between high expression levels of Notch1 and low survival rates and, similarly, between reduced nuclear PTEN expression and increasing the TNM classification of malignant tumours stages in malignant tissues from gastric cancer patients. The growth of Notch1-depleted gastric tumors was significantly retarded in xenografted mice, and in addition, PTEN deletion restored growth similar to control tumors. We also demonstrated that combination treatment with GSI and chemotherapeutic agents significantly reduced the orthotopically transplanted gastric tumors in mice without noticeable toxicity. Overall, our findings suggest that inhibition of Notch signaling can be employed as a PTEN activator, making it a potential target for gastric cancer therapy. PMID:25823029

  13. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain

    PubMed Central

    Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  14. Phenobarbital-induced hepatocellular proliferation: anti-bromodeoxyuridine and anti-proliferating cell nuclear antigen immunocytochemistry.

    PubMed

    Jones, H B; Clarke, N A; Barrass, N C

    1993-01-01

    We report modifications to immunocytochemical detection procedures for proliferating cell nuclear antigen (PCNA) which permit its identification in liver samples previously fixed for BrdU immunocytochemistry. Both methods have been used for the assessment of phenobarbital-induced cell proliferation in rat liver. The difficulties associated with the hitherto unsuccessful application of PCNA immunocytochemical methods to tissues fixed in formalin for BrdU visualization were overcome by epitope unmasking with acid hydrolysis, extension of primary antiserum (PC10) incubation, and employment of streptavidin-ABC-HRP. BrdU delivery via osmotic minipumps for 48 hr before euthanasia, followed by fixation in cold formalin for 14 days, yielded reliable and reproducible hepatocellular labeling and a peak of cell proliferation in all lobes on Day 3 (i.e., labeling during Days 1-3) of dosing with 80 mg/kg/day phenobarbital. Labeling indices (LI) of both control and phenobarbital-treated liver were lower in the left and right median lobes as compared with the lateral lobes. In sections of the left lateral lobe from the same liver, PCNA immunocytochemistry revealed a peak of proliferative activity (about one third of the maximum LI generated by BrdU incorporation) on Day 1. These findings, together with the advantages and disadvantages of both techniques, are discussed in the context of their applications to different investigative requirements. PMID:8093255

  15. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain.

    PubMed

    Song, Jie; Mu, Yabing; Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL-TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  16. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    NASA Astrophysics Data System (ADS)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  17. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    PubMed

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  18. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-01-01

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients. PMID:26469385

  19. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ.

    PubMed

    Lee, Ja Hee; Kim, Eun-Jin; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia-mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  20. Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRγ

    PubMed Central

    Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A.; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  1. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  2. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Giuffrida, L.; Cutroneo, M.; Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J.; Kravarik, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  3. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  4. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  5. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  6. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    SciTech Connect

    Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per

    2009-07-15

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  7. Uranium and nitrate remote sensing in the nuclear fuel cycle by time-resolved laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Moulin, Christophe; Couston, Laurent; Decambox, Pierre; Mauchien, Patrick; Pouyat, Dominique

    1994-12-01

    Time-Resolved Laser-Induced Fluorescence has been used for uranium and nitrate remote sensing in the nuclear fuel cycle. Advantages of this technique are aside sensitivity and selectivity, its ability to perform remote measurements via fiber optics and optode. Uranium is usually determined by the standard addition method but by applying a fluorescence model taking into account complexation and absorption phenomena, it is possible to directly determine uranium concentration. Nitrate concentration is determined after spectral deconvolution of the uranium fluorescence spectrum.

  8. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    PubMed Central

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2014-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  9. On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Nilsson, Sara; Jonsson, Mats

    2008-08-01

    Radiation induced oxidative dissolution of UO 2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO 2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H 2O 2 was used as a model for radiolytical oxidants (previous studies have shown that H 2O 2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H 2O 2 and HCO3- and the consumption of H 2O 2 and the dissolution of uranium were analyzed as a function of H 2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO 2 as well as reduction of surface bound oxidized UO 2 by H 2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H 2 observed in several studies on spent nuclear fuel dissolution.

  10. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.

    PubMed

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2015-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  11. Neuropeptide-inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen-independent prostate cancer cells

    PubMed Central

    2012-01-01

    Background Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. Methods We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. Results Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. Conclusions Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state. PMID:22715899

  12. Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin)

    SciTech Connect

    Liang, Yi; Feng, Lei; Tong, Xin; Wang, Kun; Li, De Feng; Lin, Jia Cheng; Tang, Zi Jian; Liu, Hong Hong; Jiang, Shuai; Guo, Lin; Wang, Da Cheng; Sun, Hui

    2009-08-28

    Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter the nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.

  13. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  14. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.

    PubMed

    German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro

    2015-02-01

    Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs. PMID:25513856

  15. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  16. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

    PubMed

    Hu, Yi; Ericsson, Ida; Torseth, Kathrin; Methot, Stephen P; Sundheim, Ottar; Liabakk, Nina B; Slupphaug, Geir; Di Noia, Javier M; Krokan, Hans E; Kavli, Bodil

    2013-01-23

    Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants. PMID:23183374

  17. Nuclear vasohibin-2 promotes cell proliferation by inducing G0/G1 to S phase progression.

    PubMed

    Ge, Qianqian; Zhou, Jia; Tu, Min; Xue, Xiaofeng; Li, Zhanjun; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Miao, Yi; Gao, Wentao

    2015-09-01

    As a member of the vasohibin (VASH2) family, VASH2 is localized intracellularly as a nuclear and cytoplasmic type. Cytoplasmic VASH2 is associated with carcinoma angiogenesis and malignant transformation and promotes cancer growth. However, the function of nuclear VASH2 has yet to be investigated. The aim of the present study was to detect the nuclear VASH2 expression profile in human organs and tissues by protein microarray technique. To examine the function of nuclear VASH2, we analyzed the relationship between nuclear VASH2 and Ki-67, and stably constructed VASH2 overexpression and knockdown in LO2 and HepG2 cell lines, based on a previous study in hepatic cells. The study was conducted using bromodeoxyuridine, immunofluorescent staining, western blot analysis and flow cytometry. Nuclear VASH2 was highly expressed in actively dividing cells in normal and cancer tissues. There was a significant positive correlation between nuclear VASH2 and Ki-67, indicating that nuclear VASH2 positively correlated with cell proliferation in normal and cancer tissues. The bromodeoxyuridine (BrdU) proliferation test showed that nuclear VASH2 increased the S-phase population and promoted cell proliferation, while VASH2 knockdown reduced BrdU absorbance. Cell cycle analysis revealed that nuclear VASH2 overexpression increased the S-phase population in LO2 and HepG2 cells, while nuclear VASH2 knockdown reduced the S-phase population and increased the G0/G1 population. The findings of this study challenge the classic view of VASH2, which was previously reported as an angiogenesis factor. Furthermore, to the best of our knowledge, these results are the first clinical data indicating that nuclear VASH2, but not cytoplasmic VASH2, promotes cell proliferation by driving the cell cycle from the G0/G1 to S phase. PMID:26177649

  18. Calcium-induced cleavage of DNA topoisomerase I involves the cytoplasmic-nuclear shuttling of calpain 2.

    PubMed

    Chou, Shang-Min; Huang, Ting-Hsiang; Chen, Hsiang-Chin; Li, Tsai-Kun

    2011-08-01

    Important to the function of calpains is temporal and spatial regulation of their proteolytic activity. Here, we demonstrate that cytoplasm-resident calpain 2 cleaves human nuclear topoisomerase I (hTOP1) via Ca(2+)-activated proteolysis and nucleoplasmic shuttling of proteases. This proteolysis of hTOP1 was induced by either ionomycin-caused Ca(2+) influx or addition of Ca(2+) in cellular extracts. Ca(2+) failed to induce hTOP1 proteolysis in calpain 2-knockdown cells. Moreover, calpain 2 cleaved hTOP1 in vitro. Furthermore, calpain 2 entered the nucleus upon Ca(2+) influx, and calpastatin interfered with this process. Calpain 2 cleavage sites were mapped at K(158) and K(183) of hTOP1. Calpain 2-truncated hTOP1 exhibited greater relaxation activity but remained able to interact with nucleolin and to form cleavable complexes. Interestingly, calpain 2 appears to be involved in ionomycin-induced protection from camptothecin-induced cytotoxicity. Thus, our data suggest that nucleocytoplasmic shuttling may serve as a novel type of regulation for calpain 2-mediated nuclear proteolysis. PMID:21086148

  19. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells

    PubMed Central

    Okoh, V O; Garba, N A; Penney, R B; Das, J; Deoraj, A; Singh, K P; Sarkar, S; Felty, Q; Yoo, C; Jackson, R M; Roy, D

    2015-01-01

    Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer. PMID:25965299

  20. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato.

    PubMed Central

    Palm, C J; Costa, M A; An, G; Ryan, C A

    1990-01-01

    Deletion analysis from the 3' to the 5' end of the promoter region of the wound-inducible potato proteinase inhibitor IIK gene has identified a 421-base sequence at -136 to -557 that is necessary for expression. Utilizing DNA band-shift assays, a 10-base sequence within the 421-base region was found to bind a nuclear protein from wounded tomato leaves. This 10-base sequence is adjacent to an 8-base consensus sequence at -147 to -155 that is present in the promoter region of several elicitor-inducible genes from various other plants. The evidence suggests that a complex set of cis- and trans-acting elements within the -136 to -165 region of the potato IIK gene may be involved with the signaling mechanisms that regulate the inducibility of this gene in response to pest and pathogen attacks. Images PMID:2405385

  1. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  2. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  3. Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms.

    PubMed

    Maroui, Mohamed Ali; Kheddache-Atmane, Sabrina; El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As₂O₃) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As₂O₃ enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As₂O₃-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As₂O₃-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As₂O₃-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As₂O₃. PMID:23028697

  4. Transient Expression of WNT2 Promotes Somatic Cell Reprogramming by Inducing β-Catenin Nuclear Accumulation.

    PubMed

    Kimura, Mizuki; Nakajima-Koyama, May; Lee, Joonseong; Nishida, Eisuke

    2016-06-14

    Treatment with several Wnt/β-catenin signaling pathway regulators can change the cellular reprogramming efficiency; however, the dynamics and role of endogenous Wnt/β-catenin signaling in reprogramming remain largely unanswered. Here we identify the upregulation of WNT2 and subsequent β-catenin nuclear accumulation as key events in reprogramming. Transient nuclear accumulation of β-catenin occurs early in MEF reprogramming. Wnt2 is strongly expressed in the early stage of reprogramming. Wnt2 knockdown suppresses the nuclear accumulation of β-catenin and reduces the reprogramming efficiency. WNT2 overexpression promotes β-catenin nuclear accumulation and enhances the reprogramming efficiency. WNT2 contributes to the promotion of cell proliferation. Experiments with several drugs that control the Wnt pathway also indicate the importance of β-catenin nuclear accumulation in reprogramming. Our findings reveal the role of WNT2/β-catenin signaling in reprogramming. PMID:27211212

  5. Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons

    PubMed Central

    Wang, Liangli; Ma, Qing; Yang, Wei; Mackensen, G. Burkhard; Paschen, Wulf

    2012-01-01

    Deep hypothermia protects the brain from ischemic damage and is therefore used during major cardiovascular surgeries requiring cardiopulmonary bypass and a period of circulatory arrest. Here, we demonstrated that small ubiquitin-like modifier (SUMO1-3) conjugation is markedly activated in the brain during deep to moderate hypothermia. Animals were subjected to normothermic (37°C) or deep to moderate (18°C, 24°C, 30°C) hypothermic cardiopulmonary bypass, and the effects of hypothermia on SUMO conjugation were evaluated by Western blot and immunohistochemistry. Exposure to moderate 30°C hypothermia was sufficient to markedly increased levels and nuclear accumulation of SUMO2/3-conjugated proteins in these cells. Deep hypothermia induced nuclear translocation of the SUMO conjugating enzyme Ubc9, suggesting that the increase in nuclear levels of SUMO2/3-conjugated proteins observed in brains of hypothermic animals is an active process. Exposure of primary neuronal cultures to deep hypothermia induced only a moderate rise in levels of SUMO2/3-conjugated proteins. This suggests that neurons in vivo have a higher capacity than neurons in vitro to activate this endogenous potentially neuroprotective pathway upon exposure to hypothermia. Identifying proteins that are SUMO2/3 conjugated during hypothermia could help to design new strategies for preventive and therapeutic interventions to make neurons more resistant to a transient interruption of blood supply. PMID:22891650

  6. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  7. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  8. Lentivirus-induced knockdown of LRP1 induces osteoarthritic-like effects and increases susceptibility to apoptosis in chondrocytes via the nuclear factor-κB pathway

    PubMed Central

    YANG, ERPING; ZHENG, HUIFENG; PENG, HAO; DING, YINYUAN

    2015-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is known to regulate cell survival and inflammation. The present study investigated the involvement of LRP1 in the regulation of tumor necrosis factor (TNF)-α-induced expression of matrix metalloproteinase (MMP)-13. Furthermore, the study aimed to elucidate the mechanisms underlying the effects of LRP1 on TNF-α-induced inflammation and apoptosis of chondrocytes. Lentivirus-mediated RNA interference techniques were used to knockdown the LRP1 gene. Subsequently, the effects of LRP1 on TNF-α-induced MMP-13 expression were determined using quantitative polymerase chain reaction, western blot analysis and ELISA. Furthermore, the TNF-α-induced intracellular pathway was investigated using a nuclear factor (NF)-κB inhibitor (Bay 11–7082). In addition, the effect of LRP1 regulation on growth and apoptosis in chondrocytes was investigated using western blot analysis and a TUNEL assay. LRP1 knockdown was shown to increase TNF-α-induced MMP-13 expression via the activation of the NF-κB (p65) pathway, which reduced the expression of collagen type II and cell viability. In addition, LRP1 inhibited cell apoptosis by increasing the expression of phospho-Akt and B-cell lymphoma 2 (Bcl-2), while suppressing the expression of caspase-3 and Bcl-2-associated X protein. The results of the present study indicated that LRP1 was able to inhibit TNF-α-induced apoptosis and inflammation in chondrocytes. Therefore, LRP1 may be an effective osteoarthritis inhibitor, potentially providing a novel approach for antiarthritic therapeutics. PMID:26170918

  9. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress.

    PubMed

    Lymberopoulos, Maria H; Bourget, Amélie; Ben Abdeljelil, Nawel; Pearson, Angela

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli. PMID:21316727

  10. [RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli].

    PubMed

    Coló, Georgina P; Rubio, María F; Alvarado, Cecilia V; Costas, Mónica A

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappaB coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected coactivator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF-kappaB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. PMID:18051230

  11. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    PubMed

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  12. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    SciTech Connect

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  13. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress

    SciTech Connect

    Lymberopoulos, Maria H.; Bourget, Amelie; Abdeljelil, Nawel Ben; Pearson, Angela

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.

  14. Assessment of nuclear-reaction codes for proton-induced reactions on light nuclei below 250 MeV

    NASA Astrophysics Data System (ADS)

    Braunn, Benjamin; Boudard, Alain; David, Jean-Christophe; Koning, Arjan J.; Leprince, Anne; Leray, Sylvie; Mancusi, Davide

    2015-07-01

    We assess the suitability of nuclear-reaction codes for the generation of accurate cross-section libraries targeted at the simulation of the transport of high-energy protons (up to 250 MeV) in the human body, or in any material containing light nuclides. To this end we present an extensive study of elastic, reaction and fragmentation cross sections for proton-induced reactions on several nuclides. We compare TALYS evaluations against experimental data and, wherever applicable, against the predictions of the INCL/ABLA07 nuclear-reaction model. The TALYS evaluations have been cast in the form of a new cross-section library, which also includes evaluated proton-proton cross sections based on the NN-OnLine tool.

  15. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    PubMed

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-01-01

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA. PMID:25501195

  16. Application of Dipole-dipole, Induced Polarization, and CSAMT Electrical Methods to Detect Evidence of an Underground Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Sweeney, J. J.; Felske, D.

    2013-12-01

    There is little experience with application of electrical methods that can be applied during the continuation period of an on-site inspection (OSI), one of the verification methods of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order add to such experience, we conducted controlled source audiomagnetotelluric (CSAMT), dipole-dipole resistivity, and induced polarization electrical measurements along three survey lines over and near to ground zero of an historic nuclear explosion. The presentation will provide details and results of the surveys, an assessment of application of the method toward the purposes of an OSI, and an assessment of the manpower and time requirements for data collection and processing that will impact OSI inspection team operations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    SciTech Connect

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji; Sayama, Koji

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  18. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  19. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  20. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    PubMed Central

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  1. Nuclear Effects in Neutrino Induced Coherent Pion Production at K2K and MiniBooNE

    SciTech Connect

    Singh, S.K.; Athar, M. Sajjad; Ahmad, Shakeb

    2006-06-23

    The coherent pion production induced by neutrinos in nuclei is studied using a delta hole model in the local density approximation taking into account the renormalization of {delta} properties in a nuclear medium. The pion absorption effects are included in an eikonal approximation. These effects give a large reduction in the total cross section. The numerical results for the total cross section are found to be consistent with recent experimental results from the K2K and MiniBooNE Collaborations and other older experiments in the intermediate energy region.

  2. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  3. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  4. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress

    PubMed Central

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Kaufer, Benedikt B.; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-01-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  5. Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression

    PubMed Central

    Rosanò, Laura; Caprara, Valentina; Sestito, Rosanna; Di Castro, Valeriana; Bagnato, Anna

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ETA receptor (ETAR)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ETAR axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ETAR by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ETAR/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ETAR signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression. PMID:26909598

  6. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H. Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.

  7. Magnetic-field-induced quadrupole coupling in the nuclear magnetic resonance of noble-gas atoms and molecules

    SciTech Connect

    Manninen, Pekka; Vaara, Juha; Pyykkoe, Pekka

    2004-10-01

    An analytic response theory formulation for the leading-order magnetic field-induced and field-dependent quadrupole splitting in nuclear magnetic resonance spectra is presented and demonstrated with first-principles calculations for {sup 21}Ne, {sup 36}Ar, and {sup 83}Kr in noble gas atoms. The case of molecules was studied for {sup 33}S in the sulphur hexafluoride molecule, as well as for {sup 47/49}Ti, {sup 91}Zr, and {sup 177,179}Hf in group(IV) tetrahalides. According to our calculations, the hitherto experimentally unknown field-induced quadrupole splitting in molecules rises to 10{sup 2} Hz for {sup 177,179}Hf nuclei in HfF{sub 4} and 10{sup 1} Hz for {sup 47/49}Ti in TiCl{sub 4}, and is hence of observable magnitude.

  8. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice

    PubMed Central

    YU, YING; CAI, ZHAOHUA; CUI, MINGLI; NIE, PENG; SUN, ZHE; SUN, SHIQUN; CHU, SHICHUN; WANG, XIAOLEI; HU, LIUHUA; YI, JING; SHEN, LINGHONG; HE, BEN

    2015-01-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77-deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  9. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines. PMID:26860316

  10. Pycnogenol Induces Nuclear Translocation of Apoptosis-inducing Factor and Caspase-independent Apoptosis in MC-3 Human Mucoepidermoid Carcinoma Cell Line

    PubMed Central

    Yang, In-Hyoung; Shin, Ji-Ae; Cho, Sung-Dae

    2014-01-01

    Background: Pycnogenol is extracted from the pine bark of a tree known as Pinus pinaster that has variety biological effects. However, its anticancer activity has not yet been completely studied. The aim of this study is to investigate anticancer effect of pycnogenol in MC-3 human mucoepidermoid carcinoma (MEC) cell line. Methods: We describe the effect of anti-cancer of pycnogenol in MC-3 human oral MEC cells using trypan blue exclusion assay, 3-(4,5-dimethylthiazol-2-yl)-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay, Western blot, preparation of cytosolic and nuclear fractions, immunocytochemistry and reverse transcriptase polymerase chain reaction. Results: Pycnogenol significantly decreased cell viability and also induced caspase-independent apoptosis. We confirmed that pycnogenol induced the translocation of apoptosis-inducing factor into nucleus and regulated apoptosis. Also, Bak protein stability was partly enhanced by pycnogenol to elevate the expression level of Bak protein. Conclusions: Overall, pycnogenol may be a fascinating therapeutic drug candidate for the treatment of MEC. PMID:25574461

  11. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  12. Substrate-induced Nuclear Export and Peripheral Compartmentalization of Hepatic Glucokinase Correlates with Glycogen Deposition

    PubMed Central

    Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.

    2001-01-01

    Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705

  13. Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming

    PubMed Central

    Dey, Dilip; Evans, Gregory R. D.

    2011-01-01

    During embryonic development pluripotency is progressively lost irreversibly by cell division, differentiation, migration and organ formation. Terminally differentiated cells do not generate other kinds of cells. Pluripotent stem cells are a great source of varying cell types that are used for tissue regeneration or repair of damaged tissue. The pluripotent stem cells can be derived from inner cell mass of blastocyte but its application is limited due to ethical concerns. The recent discovery of iPS with defined reprogramming factors has initiated a flurry of works on stem cell in various laboratories. The pluripotent cells can be derived from various differentiated adult cells as well as from adult stem cells by nuclear reprogramming, somatic cell nuclear transfer etc. In this review article, different aspects of nuclear reprogramming are discussed. PMID:22007240

  14. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    PubMed

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  15. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  16. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction.

    PubMed

    Beggs, Kevin M; McGreal, Steven R; McCarthy, Alex; Gunewardena, Sumedha; Lampe, Jed N; Lau, Christoper; Apte, Udayan

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. PMID:27153767

  17. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  18. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  19. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  20. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats.

    PubMed

    Tamura, Atsushi; Matsunobu, Takeshi; Tamura, Risa; Kawauchi, Satoko; Sato, Shunichi; Shiotani, Akihiro

    2016-09-01

    Photobiomodulation (PBM) is a noninvasive treatment that can be neuroprotective, although the underlying mechanisms remain unclear. In the present study, we assessed the mechanism of PBM as a novel treatment for noise-induced hearing loss, focusing on the nuclear factor (NF)-κB signaling pathway. Sprague-Dawley rats were exposed to 1-octave band noise centered at 4kHz for 5h (121dB). After noise exposure, their right ears were irradiated with an 808nm diode laser beam at an output power density of 165mW/cm(2) for 30min a day for 5 consecutive days. Measurement of the auditory brainstem response revealed an accelerated recovery of auditory function in the groups treated with PBM compared with the non-treatment group at 4, 7, and 14 days after noise exposure. Immunofluorescent image analysis for inducible nitric oxide synthase and cleaved caspase-3 showed lesser immunoreactivities in outer hair cells in the PBM group compared with the non-treatment group. However, immunofluorescent image analysis for NF-κB, an upstream protein of inducible nitric oxide synthase, revealed greater activation in the PBM group compared with the naïve and non-treatment groups. Western blot analysis for NF-κB also showed stronger activation in the cochlear tissues in the PBM group compared with the naïve and non-treatment groups (p<0.01, each). These data suggest that PBM activates NF-κB to induce protection against inducible nitric oxide synthase-triggered oxidative stress and caspase-3-mediated apoptosis that occur following noise-induced hearing loss. PMID:27342816

  1. Tyrosine kinase inhibitor, methyl 2,5-dihydromethylcinnimate, induces PML nuclear body formation and apoptosis in tumor cells

    SciTech Connect

    Komura, Naoyuki; Asakawa, Mayako; Umezawa, Kazuo . E-mail: umezawa@applc.keio.ac.jp; Segawa, Kaoru

    2007-08-01

    Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.

  2. Requirement of PML SUMO Interacting Motif for RNF4- or Arsenic Trioxide-Induced Degradation of Nuclear PML Isoforms

    PubMed Central

    El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K.

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As2O3) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As2O3 enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As2O3-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As2O3-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As2O3-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As2O3. PMID:23028697

  3. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells.

    PubMed

    Baltanás, Fernando C; Casafont, Iñigo; Weruaga, Eduardo; Alonso, José R; Berciano, María T; Lafarga, Miguel

    2011-07-01

    The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration. PMID:21054627

  4. Analytic model for surface ground motion with spall induced by underground nuclear tests

    SciTech Connect

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented.

  5. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  6. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  7. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  8. Radiation-Induced Survivin Nuclear Accumulation is Linked to DNA Damage Repair

    SciTech Connect

    Capalbo, Gianni; Weiss, Christian; Reichert, Sebastian; Roedel, Claus

    2010-05-01

    Purpose: Increased expression of survivin has been identified as a negative prognostic marker in a variety of human cancers. We have previously shown that survivin is a radiation-resistance factor and that the therapeutic effect of survivin knock-down might result from an impaired DNA repair capacity. In this study, we aimed to elucidate an interrelationship between survivin's cellular localization and DNA double-strand break repair. Methods and Materials: Survivin's cellular distribution and nuclear complex formation were assayed by Western blotting of subcellular fractions, by immunofluorescence staining, and co-immunoprecipitation in SW480 colorectal cancer cells. DNA repair capacity was analyzed by kinetics of gamma-H2AX foci formation, and by DNA-dependent protein kinase (DNA-PKcs) assays in the presence of survivin-specific or nonspecific control siRNA. Results: Following irradiation, we observed a rapid nuclear accumulation of survivin and subsequent phosphorylation of the protein in the nucleus. Co-immunoprecipitation analyses from nuclear extracts revealed an interaction among survivin, Ku70, gamma-H2AX, MDC1, and DNA-PKcs that was confirmed by immunofluorescence co-localization in nuclear foci. Survivin knock down by siRNA resulted in an impaired DNA double strand break repair, as demonstrated by an increased detection of gamma-H2AX foci/nucleus at 60 min and a higher amount of residual gamma-H2AX foci at 24 hr postirradiation. Furthermore, we detected in survivin-depleted cells a hampered S2056 autophosphorylation of DNA-PKcs and a significantly decreased DNA-PKcs kinase activity. Conclusion: These data indicate that nuclear survivin is linked to DNA double-strand break repair by interaction with members of the DNA double-strand breaks repair machinery, thus regulating DNA-PKcs activity.

  9. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    PubMed

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  10. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  11. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    SciTech Connect

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  12. Orphan Nuclear Receptor Nur77 Inhibits Angiotensin II-Induced Vascular Remodeling via Downregulation of β-Catenin.

    PubMed

    Cui, Mingli; Cai, Zhaohua; Chu, Shichun; Sun, Zhe; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2016-01-01

    Angiotensin II (Ang II) is the predominant effector peptide of the renin-angiotensin system. Ang II contributes to vascular remodeling in many cardiovascular diseases (eg, hypertension, atherosclerosis, restenosis, and aneurysm). Orphan nuclear receptor Nur77 has a crucial role in the functional regulation of vascular cells. The objective of this study was to define the specific role of Nur77 in Ang II-induced vascular remodeling. Nur77 expression was initially found to be elevated in medial vascular smooth muscle cells (VSMCs) of thoracic aortas from mice continuously infused with Ang II for 2 weeks using a subcutaneous osmotic minipump. Cellular studies revealed that Nur77 expression was upregulated by Ang II via the MAPK/PKA-CREB signaling pathway. Ang II-induced proliferation, migration, and phenotypic switching were significantly enhanced in VSMCs isolated from Nur77(-/-) mice compared with wild-type VSMCs. Consistent with the role in VSMCs, we found that compared with wild-type mice, Nur77(-/-) mice had elevated aortic medial areas and luminal diameters, more severe elastin disruption and collagen deposition, increased VSMC proliferation and matrix metalloproteinase production, and decreased VSMC-specific genes SM-22α and α-actin expression, after 2 weeks of exogenous Ang II administration. The results of additional experiments suggested that Nur77 suppressed Ang II-induced β-catenin signaling pathway activation by promoting β-catenin degradation and inhibiting its transcriptional activity. Our findings indicated that Nur77 is a critical negative regulator of Ang II-induced VSMC proliferation, migration, and phenotypic switching via the downregulation of β-catenin activity. Nur77 may reduce Ang II-induced vascular remodeling involved in many cardiovascular diseases. PMID:26597820

  13. The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells.

    PubMed

    Liu, Kaiyu; Shu, Duanyang; Song, Na; Gai, Zhongchao; Yuan, Yuan; Li, Juan; Li, Min; Guo, Shuying; Peng, Jianxin; Hong, Huazhu

    2012-01-01

    There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells. PMID:22952575

  14. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  15. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    PubMed Central

    Snider, Natasha T.; Portney, Daniel A.; Willcockson, Helen H.; Maitra, Dhiman; Martin, Hope C.; Greenson, Joel K.; Omary, M. Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  16. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals.

    PubMed

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products. PMID:26547016

  17. Leader-Induced Phosphorylation of Nucleoporins Correlates with Nuclear Trafficking Inhibition by Cardioviruses▿

    PubMed Central

    Porter, Frederick W.; Palmenberg, Ann C.

    2009-01-01

    Picornaviruses disrupt nucleocytoplasmic trafficking pathways during infection. Poliovirus and rhinovirus inhibit nuclear protein import/export through a series of 2A protease-dependent cleavages within nuclear pore proteins (nucleoporins [Nups]), including Nup62, Nup98, and Nup153. Cardioviruses lack the same protease and instead affect trafficking inhibition through an activity mapped to their leader (L) protein, a 67- to 76-amino acid (aa) polypeptide with no known enzymatic activity. We have shown that L from encephalomyocarditis virus (EMCV) binds and inhibits the activity of Ran-GTPase, a key regulator of nucleocytoplasmic transport. We now report that recombinant EMCV L triggers the unregulated efflux of protein cargo from preloaded HeLa cell nuclei in cell-free reactions dependent upon Xenopus egg cytosol or HeLa cell-derived cytosol. Recombinant L was the only viral protein necessary for this activity or for nuclear protein import inhibition. Mutational disruption of the L protein zinc finger domain (C19A) abrogated the inhibitory activity for both import and efflux in cell extracts, but mutations in the C-terminal acidic domain of L (aa 37 to 61) did not. Notably, HeLa cell nuclei treated with L, or those from EMCV-infected cells, showed reproducibly altered patterns of nucleoporin phosphorylation. Nup62, Nup153, and Nup214 each became hyperphosphorylated in an L-dependent manner. Staurosporine, a broad-spectrum kinase inhibitor, blocked this phosphorylation and rescued nuclear import/export activity from L-dependent inhibition. Therefore, cardioviruses target the same group of nucleoporins as enteroviruses, but the effector mechanism triggered by L (or L-Ran complexes) involves a unique cytosol-dependent phosphorylation cascade rather than proteolysis. PMID:19073724

  18. Extracellular ATP-induced nuclear Ca{sup 2+} transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic {beta}-cells

    SciTech Connect

    Chen, Zheng; Li, Zhengzheng; Peng, Gong; Chen, Xiaoli; Yin, Wenxuan; Kotlikoff, Michael I.; Yuan, Zeng-qiang; Ji, Guangju

    2009-05-01

    Extracellular ATP (eATP) induces an intracellular Ca{sup 2+} transient by activating phospholipase C (PLC)-associated P2X4 purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent Ca{sup 2+} release from intracellular stores in mouse pancreatic {beta}-cells. Using laser scanning confocal microscopy, Ca{sup 2+} indicator fluo-4 AM, and the cell permeable nuclear indicator Hoechst 33342, we examined the properties of eATP-induced Ca{sup 2+} release in pancreatic {beta}-cell nuclei. eATP induced a higher nuclear Ca{sup 2+} transient in pancreatic {beta}-cell nuclei than in the cytosol. After pretreatment with thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps, the amplitude of eATP-induced Ca{sup 2+} transients in the nucleus was still much higher than those in the cytosol. This effect of eATP was not altered by inhibition of either the plasma membrane Ca{sup 2+}-ATPase (PMCA) or the plasma membrane Na{sup +}/Ca{sup 2+} exchanger (NCX) by LaCl{sub 3} or by replacement of Na{sup +} with N-Methyl-Glucosamine. eATP-induced nuclear Ca{sup 2+} transients were abolished by a cell-permeable IP3R inhibitor, 2-aminoethoxydiphenyl borate (2-APB), but were not blocked by the ryanodine receptor (RyR) antagonist ryanodine. Immunofluorescence studies showed that IP3Rs are expressed on the nuclear envelope of pancreatic {beta}-cells. These results indicate that eATP triggers nuclear Ca{sup 2+} transients by mobilizing a nuclear Ca{sup 2+} store via nuclear IP3Rs.

  19. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition

    SciTech Connect

    Wang, I-F.; Chang, H.-Y.; James Shen, C.-K. . E-mail: ckshen@ccvax.sinica.edu.tw

    2006-11-15

    During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.

  20. Nuclear glutaredoxin 3 is critical for protection against oxidative stress-induced cell death

    PubMed Central

    Pham, Khanh; Pal, Rituraj; Qu, Ying; Liu, Xi; Yu, Han; Shiao, Stephen L.; Wang, Xinquan; Smith, E. O’Brian; Cui, Xiaojiang; Rodney, George G.; Cheng, Ninghui

    2016-01-01

    Mammalian glutaredoxin 3 (Grx3) has been shown to be critical in maintaining redox homeostasis and regulating cell survival pathways in cancer cells. However, the regulation of Grx3 is not fully understood. In the present study, we investigate the subcellular localization of Grx3 under normal growth and oxidative stress conditions. Both fluorescence imaging of Grx3–RFP fusion and Western blot analysis of cellular fractionation indicate that Grx3 is predominantly localized in the cytoplasm under normal growth conditions, whereas under oxidizing conditions, Grx3 is translocated into and accumulated in the nucleus. Grx3 nuclear accumulation was reversible in a redox-dependent fashion. Further analysis indicates that neither the N-terminal Trx-like domain nor the two catalytic cysteine residues in the active CGFS motif of Grx3 are involved in its nuclear translocation. Decreased levels of Grx3 render cells susceptible to cellular oxidative stress, whereas overexpression of nuclear-targeted Grx3 is sufficient to suppress cells’ sensitivity to oxidant treatments and reduce reactive oxygen species production. These findings provide novel insights into the regulation of Grx3, which is crucial for cell survival against environmental insults. PMID:25975981

  1. Pulsed, Photonuclear-induced, Neutron Measurements of Nuclear Materials with Composite Shielding

    SciTech Connect

    James Jones; Kevin Haskell; Rich Waston; William Geist; Jonathan Thron; Corey Freeman; Martyn Swinhoe; Seth McConchie; Eric Sword; Lee Montierth; John Zabriskie

    2011-07-01

    Active measurements were performed using a 10-MeV electron accelerator with inspection objects containing various nuclear and nonnuclear materials available at the Idaho National Laboratory’s Zero Power Physics Reactor (ZPPR) facility. The inspection objects were assembled from ZPPR reactor plate materials to evaluate the measurement technologies for the characterization of plutonium, depleted uranium or highly enriched uranium shielded by both nuclear and non-nuclear materials. A series of pulsed photonuclear, time-correlated measurements were performed with unshielded calibration materials and then compared with the more complex composite shield configurations. The measurements used multiple 3He detectors that are designed to detect fission neutrons between pulses of an electron linear accelerator. The accelerator produced 10-MeV bremsstrahlung X-rays at a repetition rate of 125 Hz (8 ms between pulses) with a 4-us pulse width. All inspected objects were positioned on beam centerline and 100 cm from the X-ray source. The time-correlated data was collected in parallel using both a Los Alamos National Laboratory-designed list-mode acquisition system and a commercial multichannel scaler analyzer. A combination of different measurement configurations and data analysis methods enabled the identification of each object. This paper describes the experimental configuration, the ZPPR inspection objects used, and the various measurement and analysis results for each inspected object.

  2. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  3. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  4. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase

    PubMed Central

    Ye, Risheng; Wang, Qiong A.; Tao, Caroline; Vishvanath, Lavanya; Shao, Mengle; McDonald, Jeffery G.; Gupta, Rana K.; Scherer, Philipp E.

    2015-01-01

    Background The selective estrogen receptor modulator tamoxifen, in combination with the Cre-ERT2 fusion protein, has been one of the mainstream methods to induce genetic recombination and has found widespread application in lineage tracing studies. Methods & results Here, we report that tamoxifen exposure at widely used concentrations remains detectable by mass-spectrometric analysis in adipose tissue after a washout period of 10 days. Surprisingly, its ability to maintain nuclear translocation of the Cre-ERT2 protein is preserved beyond 2 months of washout. Tamoxifen treatment acutely leads to transient lipoatrophy, followed by de novo adipogenesis that reconstitutes the original fat mass. In addition, we find a “synthetically lethal” phenotype for adipocytes when tamoxifen treatment is combined with adipocyte-specific loss-of-function mutants, such as an adipocyte-specific PPARγ knockout. This is observed to a lesser extent when alternative inducible approaches are employed. Conclusions These findings highlight the potential for tamoxifen-induced adipogenesis, and the associated drawbacks of the use of tamoxifen in lineage tracing studies, explaining the discrepancy in lineage tracing results from different systems with temporal control of gene targeting. PMID:26629402

  5. Thyroid hormone-induced cytosol-to-nuclear translocation of rat liver Nrf2 is dependent on Kupffer cell functioning.

    PubMed

    Videla, Luis A; Cornejo, Pamela; Romanque, Pamela; Santibáñez, Catherine; Castillo, Iván; Vargas, Romina

    2012-01-01

    L-3,3',5-triiodothyronine (T(3)) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl(3); 10 mg/kg i.v. 72 h before T(3) [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T(3)), and determinations were performed 2 h after T(3). T(3) increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl(3) treatment prior to T(3), an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T(3)-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl(3) administration. Similar to GdCl(3), apocynin given before T(3) significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T(3). This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl(3) or apocynin given prior to T(3), thus hindering Nrf2 activation. PMID:22649286

  6. Theory of Bose-Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particles.

    PubMed

    Kim, Yeong E

    2009-07-01

    Recently, there have been many reports of experimental results which indicate occurrences of anomalous deuteron-induced nuclear reactions in metals at low energies. A consistent conventional theoretical description is presented for anomalous low-energy deuteron-induced nuclear reactions in metal. The theory is based on the Bose-Einstein condensate (BEC) state occupied by deuterons trapped in a micro/nano-scale metal grain or particle. The theory is capable of explaining most of the experimentally observed results and also provides theoretical predictions, which can be tested experimentally. Scalabilities of the observed effects are discussed based on theoretical predictions. PMID:19440686

  7. Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through pd Complexes:. Correlation Between Deuterium Flux and Nuclear Products

    NASA Astrophysics Data System (ADS)

    Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.

    2005-12-01

    Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.

  8. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  9. Experimental cross-sections for proton-induced nuclear reactions on natMo

    NASA Astrophysics Data System (ADS)

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-08-01

    In the framework of the Co-ordinated Research Project of the IAEA, we measured in detail cross-sections of the nuclear reactions natMo(p,x)93gTc, 93mTc, 93m+gTc, 94gTc, 94mTc, 95gTc, 95mTc, 96m+gTc, 97mTc, 99mTc, 90Mo, 93mMo, 99Mo, 88gNb, 88mNb, 89gNb, 89mNb, 90m+gNb, 90m+gNbcum, 91mNb, 92mNb, 95gNb, 95mNb, 95m+gNb, 96Nb, 97m+gNb, 88m+gZrcum and 89m+gZrcum in the energy range of 6.9-35.8 MeV. The data for formation of 97mTc, 88gNb, 88mNb and 89mNb are reported for the first time. The obtained results were compared to the prediction of the nuclear reaction model code TALYS adopted from the TENDL-2015 library and to the previously published cross-sections. The thick target yields for all the radionuclides were calculated from the measured data. We suggest recommended cross-sections and thick target yields for the 100Mo(p,2n)99mTc, 100Mo(p,x)99Mo and natMo(p,x)96m+gTc nuclear reactions deduced from the selected experimental data.

  10. Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle

    PubMed Central

    Tachtsis, Bill; Smiles, William J.; Lane, Steven C.; Hawley, John A.; Camera, Donny M.

    2016-01-01

    Purpose: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise. Methods: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON). Results: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group. Conclusions: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals. PMID:27199762