Science.gov

Sample records for 3he-particle induced nuclear

  1. Excitation function of (3)He-particle induced nuclear reactions on natural palladium.

    PubMed

    Al-Abyad, M; Tárkányi, F; Ditrói, F; Takács, S

    2014-12-01

    Excitation functions of (3)He-particle induced nuclear reactions on natural palladium were measured using the standard stacked foil technique and high resolution γ-ray spectroscopy. From their threshold energies up to 27MeV, cross-sections for (nat)Pd((3)He,x)(103,104,105,106m,110m,111,112)Ag and (nat)Pd((3)He,x)(104,105,107,111m)Cd reactions were measured. The nuclear model codes TALYS-1.4, and EMPIRE-3.1 were used to describe the formation of these products. The present data were compared to theoretical results and to the available experimental data. Integral yields for some important radioisotopes were determined. PMID:25218461

  2. Calculation of induced reactions of 3He-particles on natSb in 10-34MeV energy range.

    PubMed

    Gul, K

    2009-01-01

    Calculations for the excitation functions of the (121)Sb((3)He, xn) (121,122,123)I, and (123)Sb((3)He xn) (122,123,124,125)I reactions have been carried out using statistical and pre-equilibrium nuclear reaction models in 10-34MeV energy range. These excitation functions have been used to derive the excitation functions of the (nat)Sb((3)He, xn)(121,123,124)I reactions and compared with reported measurements. For studying the improvement with measurements two values of the diffuseness parameter a(w) equal to 0.9 and 0.7fm have been used in the calculations. The dependence of pre-equilibrium calculations on the initial exciton numbers has also been considered. PMID:18951811

  3. Cross sections for the formation of {sup 195}Hg{sup m,g}, {sup 197}Hg{sup m,g}, and {sup 196}Au{sup m,g} in {alpha} and {sup 3}He-particle induced reactions on Pt: Effect of level density parameters on the calculated isomeric cross-section ratio

    SciTech Connect

    Sudar, S.; Qaim, S.M.

    2006-03-15

    Excitation functions were measured for the reactions {sup nat}Pt({sup 3}He,xn){sup 195}Hg{sup m,g},{sup nat}Pt({sup 3}He,xn){sup 197}Hg{sup m,g},{sup nat}Pt({sup 3}He,= x){sup 196}Au{sup m,g}, and {sup nat}Pt({alpha},xn){sup 197}Hg{sup m,g} over the energy range of 18-35 MeV for {sup 3}He particles and 17-26 MeV for {alpha} particles. The reactions {sup 197}Au(p,n){sup 197}Hg{sup m,g} were also investigated over the proton energy range of 6-20 MeV. The three projectiles were produced at the Juelich variable-energy compact cyclotron (CV 28). Use was made of the activation technique in combination with conventional high-resolution as well as low-energy HPGe-detector {gamma}-ray spectroscopy. For most of the reactions, the present measurements provide the first consistent sets of data. From the available experimental data, isomeric cross-section ratios were determined for the above-mentioned reactions. Nuclear model calculations using the code STAPRE, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of both the isomeric and the ground states of the products. The calculations were compared with the results of the EMPIRE-II code. The excitation functions of the ({sup 3}He,xn) and ({alpha},xn) processes are described well by the theory. In the case of ({sup 3}He,pxn) reactions, however, considerable deviations were observed between the experiment and the theory, presumably due to strong contributions from direct interactions. A description of the isomeric cross-section ratio by the model was possible only with a very low value of {eta}, i.e., the {theta}{sub eff}/{theta}{sub rig} ratio. A mass dependence of {eta} is proposed.

  4. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  5. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  6. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  7. Neutrino-induced nuclear excitations

    NASA Astrophysics Data System (ADS)

    Belusevic, R.

    1995-04-01

    We present an improved, compared to that of Belusevic and Rein, theoretical value of the cross section for the neutrino-induced nuclear excitation of iron. This result is based on a measurement of the photoabsorption cross section on the same nucleus, which can be related to the transverse part of the neutrino cross section via the conserved vector current hypothesis. The longitudinal part is related to the pion absorption cross section through the partial conservation of the axial-vector current, and thus reflects the spontaneous breaking of chiral symmetry. A general formula for the excitation cross section is derived, which is valid for both low and high incident neutrino energies. When caused by a weak neutral current, this process may play an important role in core-collapse supernovae. It can also be detected using low-temperature techniques with the purpose of cosmological and weak-interaction studies. A new estimate of the cross sections for neutrino-induced nonscaling processes described by Belusevic and Rein is discussed in the context of two experiments using iron targets, but at very different beam energies.

  8. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  9. Nuclear reactions induced by a pyroelectric accelerator.

    PubMed

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)]. PMID:16486940

  10. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  11. High-Frequency Gravitational Wave Induced Nuclear Fusion

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2007-01-30

    Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

  12. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  13. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (ESTSC)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  14. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    SciTech Connect

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions.

  15. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  16. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  17. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  18. Polarized nuclear target based on parahydrogen induced polarization

    NASA Astrophysics Data System (ADS)

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (˜100 Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  19. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release.

    PubMed

    Lindenboim, Liora; Sasson, Tiki; Worman, Howard J; Borner, Christoph; Stein, Reuven

    2014-01-01

    Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE. PMID:25482068

  20. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  1. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  2. Microbial-induced corrosion in nuclear power plant materials

    NASA Astrophysics Data System (ADS)

    Licina, George J.; Cubicciotti, Daniel

    1989-12-01

    The long construction times associated with nuclear plants and the large number of redundant or standby systems where water is allowed to remain stagnant for long periods of time produce conditions under which microbial-induced corrosion (MIC) can occur. Carbon and low-alloy steels, stainless steels and copper alloys are all susceptible to MIC in raw-water applications. Visual examination is particularly useful in performing preliminary assessments of MIC. If properly diagnosed, MIC can be effectively treated during plant construction, operation and temporary shutdowns.

  3. Induced starburst and nuclear activity: Faith, facts, and theory

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac

    1990-01-01

    The problem of the origin of starburst and nuclear (nonstellar) activity in galaxies is reviewed. A physical understanding of the mechanism(s) that induce both types of activity requires one to address the following issues: (1) what is the source of fuel that powers starbursts and active galactic nuclei; and (2) how is it channeled towards the central regions of host galaxies? As a possible clue, the author examines the role of non-axisymmetric perturbations of galactic disks and analyzes their potential triggers. Global gravitational instabilities in the gas on scales approx. 100 pc appear to be crucial for fueling the active galactic nuclei.

  4. Irradiation-induced changes in nuclear shape and cell cycle

    SciTech Connect

    Iwata, M.; Sasaki, H.; Kishino, Y.; Tsuboi, T.; Sugishita, T.; Hosokawa, T.

    1982-03-01

    Using human uterine cervical carcinoma cells transplanted in nude mice and mice leukemia L5178Y cells, changes in the cell cycle following irradiation were observed by flow cytometry (FCM), and changes in the cell nuclei during the course of irradiation were measured by FCM. Experiments in vivo as well as in vitro caused accumulation of cells in the G2 to M populations, resulting in the so-called G2 block phenomenon as revealed by FCM analysis of DNA distributions. The radiation-induced changes of nuclear shapes were dependent on abnormal mitoses, which occurred more frequently in the G2 to M phases. Therefore it is suggested that the G2 block phenomenon plays an important role in radiation-induced cell death because the process of cell death by irradiation has been shown to proceed via these abnormal mitoses.

  5. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  6. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  7. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    PubMed

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells. PMID:22038300

  8. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation.

    PubMed

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui; Ren, Huan

    2016-02-01

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. PMID:26742423

  9. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  11. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  12. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-01

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. PMID:26996543

  13. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    SciTech Connect

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  14. COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor.

    PubMed

    Yin, Ruohe; Skvortsova, Mariya Y; Loubéry, Sylvain; Ulm, Roman

    2016-07-26

    The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B-induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B-induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B-activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8(W285A) accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B-activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B-induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling. PMID:27407149

  15. Phosphorothioate Antisense Oligonucleotides Induce the Formation of Nuclear Bodies

    PubMed Central

    Lorenz, Peter; Baker, Brenda F.; Bennett, C. Frank; Spector, David L.

    1998-01-01

    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides. PMID:9571236

  16. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  17. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-02-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  18. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  19. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report.

  20. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    SciTech Connect

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-08-12

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the {sup 18}F+p{yields}{sup 15}O+{alpha} process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  1. Status of the Nuclear-Induced Conductivity Experiment (NICE) Project

    NASA Technical Reports Server (NTRS)

    Bitteker, Leo; Bragg-Sitton, Shannon M.; Litchford, Ron J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear-based magnetohydrodynamic (MHD) energy conversion has been pursued in various forms since the 1950's. The majority of this work was motivated by the compatibility of MHD generators with the high temperature achievable with a nuclear reactor and the associated potential for very high cycle efficiency. As a result of this perspective, methods for enhancing the electrical conductivity of the MHD flow have primarily focused on traditional thermal ionization processes, especially those utilizing alkali metal seeds. However, electrical conductivity enhancement via thermal interactions imposes significant limitations on the flow expansion through the generator, and hence on the ultimate power density. Furthermore, the introduction of an alkali metal seed into the flow significantly complicates the engineering design and increases the potential for system failures due to plating of the evaporated metal on cold surfaces.

  2. Nuclear fusion induced by x rays in a crystal

    NASA Astrophysics Data System (ADS)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  3. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  4. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  5. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  6. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  7. Voltage-induced conversion of helical to uniform nuclear spin polarization in a quantum wire

    NASA Astrophysics Data System (ADS)

    Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel

    2015-05-01

    We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on nonequilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.

  8. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGESBeta

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  9. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  10. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  11. A Theory of Laser Induced Nuclear Reaction in Single Atoms

    SciTech Connect

    Faisal, F. H. M.; Donner, C.

    2010-02-02

    An 'electron-bridge' mechanism of nuclear reaction in an atom or ion by ultra-intense laser fields is presented. A preliminary estimate of the intensity dependence of the rate of disintegration reaction of deuteron nucleus in deuterium atom is made for 800 nm laser fields. For intensities below 5x10{sup 21} W/cm{sup 2}, the rate of disintegration by the 'electron-bridge' mechanism is found to be small, but it rises sharply and becomes large already for {approx_equal}10{sup 22} W/cm{sup 2}.

  12. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  13. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    SciTech Connect

    Arai, Roberto J.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P. . E-mail: hpmonte@uol.com.br

    2006-10-06

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21{sup RasC118S}). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway.

  14. Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways.

    PubMed

    Meyer, Thomas; Begitt, Andreas; Lödige, Inga; van Rossum, Marleen; Vinkemeier, Uwe

    2002-02-01

    STAT1 functions as both a constitutive transcriptional regulator and, in response to cytokine stimulation of cells, as an inducible tyrosine-phosphorylated transcription factor. Here, we identify and characterize a non-transferable nuclear targeting sequence in the STAT1 DNA-binding domain. This conserved signal is critical for the interferon-gamma (IFN-gamma)-induced nuclear import of phosphorylated STAT1 dimers and requires adjacent positively charged and hydrophobic residues for functioning. Additionally, the constitutive nucleocytoplasmic shuttling of STAT1 in the absence of IFN-gamma stimulation is revealed. Nuclear import and export of unphosphorylated STAT1 are demonstrated to be sensitive towards wheat germ agglutinin and to occur independently of the import receptor p97. Loss-of-function mutations of the dimer-specific import signal block nuclear entry of tyrosine-phosphorylated STAT1, which in turn also prevents induction of cytokine-inducible target genes. Nevertheless, nuclear import of unphosphorylated STAT1 continues and the STAT1-dependent constitutive expression of caspases and the tumor necrosis factor-alpha-mediated induction of apoptosis proceed unaltered. Thus, tyrosine-phosphorylated and unphosphorylated STAT1 molecules shuttle via independent pathways to distinct sets of target genes. PMID:11823427

  15. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).

    PubMed

    Wehler, Pierre; Niopek, Dominik; Eils, Roland; Di Ventura, Barbara

    2016-01-01

    Many biological processes are regulated by the timely import of specific proteins into the nucleus. The ability to spatiotemporally control the nuclear import of proteins of interest therefore allows study of their role in a given biological process as well as controlling this process in space and time. The light-inducible nuclear localization signal (LINuS) was developed based on a natural plant photoreceptor that reversibly triggers the import of proteins of interest into the nucleus with blue light. Each LINuS is a small, genetically encoded domain that is fused to the protein of interest at the N or C terminus. These protocols describe how to carry out initial microscopy-based screening to assess which LINuS variant works best with a protein of interest. © 2016 by John Wiley & Sons, Inc. PMID:27258691

  16. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies.

    PubMed

    Geoffroy, Marie-Claude; Jaffray, Ellis G; Walker, Katherine J; Hay, Ronald T

    2010-12-01

    In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML. PMID:20943951

  17. Nuclear reactions induced by. pi. /sup -/ at rest

    SciTech Connect

    Gadioli, E.; Gadioli Erba, E.

    1987-08-01

    The experimental information on reactions induced by stopped ..pi../sup -/ absorbed in nuclei is critically reviewed. Evidence for the presence of ..cap alpha..-cluster absorptions is presented and arguments are given to show that approx. =25% of ..pi../sup -/ absorptions are of this kind. In the case of two-nucleon absorption, the existing experimental information concerning the ratio of n-p to p-p absorbing pairs is discussed. Calculations of particle spectra and residue spallation yield distributions that, in addition to two-nucleon absorption, include ..cap alpha..-cluster absorption are presented, and it is shown that a satisfactory reproduction of the data is achieved.

  18. Immobilization induces nuclear accumulation of HDAC4 in rat skeletal muscle.

    PubMed

    Yoshihara, Toshinori; Machida, Shuichi; Kurosaka, Yuka; Kakigi, Ryo; Sugiura, Takao; Naito, Hisashi

    2016-07-01

    The study described herein aimed to examine changes in HDAC4 and its downstream targets in immobilization-induced rat skeletal muscle atrophy. Eleven male Wistar rats were used, and one hindlimb was immobilized in the plantar flexion position using a plaster cast. The contralateral, non-immobilized leg served as an internal control. After 10 days, the gastrocnemius muscles were removed from both hindlimbs. Ten days of immobilization resulted in a significant reduction (-27.3 %) in gastrocnemius muscle weight. A significant decrease in AMPK phosphorylation was also observed in nuclear fractions from immobilized legs relative to the controls. HDAC4 expression was significantly increased in immobilized legs in both the cytoplasmic and nuclear fractions. Moreover, Myogenin and MyoD mRNA levels were upregulated in immobilized legs, resulting in increased Atrogin-1 mRNA expression. Our data suggest that nuclear HDAC4 accumulation is partly related to immobilization-induced muscle atrophy. PMID:26759025

  19. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway.

    PubMed

    Schulz, Katharina S; Klupp, Barbara G; Granzow, Harald; Passvogel, Lars; Mettenleiter, Thomas C

    2015-11-01

    Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. PMID:25678269

  20. Investigation of ultrafast nuclear spin polarization induced by short laser pulses.

    PubMed

    Nakajima, Takashi

    2007-07-13

    We theoretically investigate the dynamics of nuclear spin induced by short laser pulses and show that ultrafast nuclear spin polarization can take place. Combined use of the hyperfine interaction together with the static electric field is the key for that. Specifically we apply the idea to unstable isotopes, (27)Mg and (37)Ca, with nuclear spin of 1/2 and 3/2, respectively, and show that 88% and 62% of nuclear spin polarization can be achieved within a few to tens of ns, which is 2-3 orders of magnitude shorter than the time needed for any known optical methods. Because of its ultrafast nature, our scheme would be very effective not only for stable nuclei but also unstable nuclei with a lifetime as short as mus. PMID:17678226

  1. Imaging special nuclear material with muon-induced neutron emission.

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2015-10-01

    Cosmic ray muons are a ubiquitous source of energetic charged particles that can be used to image high-Z material through significant amounts of shielding. Negative muons which come to rest inside fissile material can be captured into atomic orbitals and induce fission, which may lead to detectable neutron emission. Muon tracks that are correlated with neutron emission can therefore serve as a signal for the presence of fissile material, and laminography with the tagged muon tracks can be performed to produce an image of the neutron emission source. In this presentation, we will discuss results of imaging tests using this technique at Los Alamos National Laboratory, and possible applications in treaty verification.

  2. Reactions Induced by Real Photons for Nuclear Structure and Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Enders, J.

    This contribution presents examples for recent experimental studies with real photons. Topics include the electric dipole response below the particle separation energy (pygmy resonance), the magnetic scissors mode in deformed nu, an analysis of low-lying electric quadrupole strength and astrophysical applications. Results of reactions induced by real photons are compared to those obtained from virtual photons (electron scattering, Coulomb excitation).

  3. Delayed gamma radiation from lightning induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Greenfield, M. B.; Sakuma, K.; Ikeda, Y.; Kubo, K.

    2004-03-01

    An increase in atmospheric gamma radiation observed with NaI and Ge detectors positioned about 15 m above ground was observed following natural lightning near Tokyo, Japan [1]. Background subtracted gamma ray rates GRR following numerous lightning strokes observed since 2001 persisted for a few hours and subsequently decayed with a half-life of about 50 minutes. Using a 3x3 Ge detector, with 2 KeV resolution, positioned about 2 m from one of the NaI detectors increases in GRR were observed minutes after the onset of lightning with a delayed 50 min exponential decay. Although most of the increase in activity occured at less than a few 100 KeV, on July 11, 2003 a 1267 +/-2 KeV line was observed. Although the statistics of this event were poor, the appearance of this line with an exponential decay of 50 min half-life suggests the possibility that it may be due to 39Cl (1267 MeV; half-life = 55.5 min) via the 40Ar(gamma,p)39Cl, 40Ar(p,2p)39Cl and/or 40Ar(n,d)39Cl reactions. Observations of > 10 MeV gamma rays observed in NaI detectors within 10s of meters from and coincident with rocket-triggered lightning at the International Center for Lightning Research and Testing suggest that charged particles accelerated in intense electric fields associated with lightning give rise to photons with sufficient energy to initiate nuclear reactions [2]. Further work to explain the cause of this anomalous activity is underway using natural and triggered lightning. 1. M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-184. 2. J. R. Dwyer et al., Science 299, (2003), pp 694-697 and recent communications

  4. Nuclear-spin-induced cotton-mouton effect in a strong external magnetic field.

    PubMed

    Fu, Li-Juan; Vaara, Juha

    2014-08-01

    Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1)  M(-1)  cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup. PMID:24862946

  5. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  6. Experimental investigation and theoretical calculation for 3He induced nuclear reactions on vanadium

    NASA Astrophysics Data System (ADS)

    Ali, B. M.; Al-Abyad, M.; Seddik, U.; El-Kameesy, S. U.; Ditrói, F.; Takács, S.; Tárkányi, F.

    2016-04-01

    Using stacked-foil activation technique and gamma-ray spectrometry, excitation functions for 3He induced nuclear reactions on natV were measured. Cross-sections for natV(3He, xn)52m,gMn and natV(3He, pxn)51Cr nuclear reactions were measured up to 27 MeV utilizing the MGC-20E cyclotron of ATOMKI. The measurements establish for the first time consistent excitation curves. Comparisons with results for values derived from different theoretical codes were included. Integral yield were calculated.

  7. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins

    PubMed Central

    Klupp, Barbara G.; Granzow, Harald; Fuchs, Walter; Keil, Günther M.; Finke, Stefan; Mettenleiter, Thomas C.

    2007-01-01

    Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment. PMID:17426144

  8. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells.

    PubMed

    Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Okawa, Yutaka; Raje, Noopur; Podar, Klaus; Mitsiades, Constantine; Munshi, Nikhil C; Richardson, Paul G; Carrasco, Ruben D; Anderson, Kenneth C

    2009-07-30

    Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells. PMID:19436050

  9. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  10. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

    PubMed

    Schmitt, Heather M; Schlamp, Cassandra L; Nickells, Robert W

    2016-06-20

    Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage. These early events appear to be principally regulated by epigenetic mechanisms involving histone deacetylation. Class I histone deacetylases HDACs 1, 2, and 3 are known to play important roles in the process of early nuclear atrophy in RGCs, and studies using both inhibitors and genetic ablation of Hdacs also reveal a critical role in the cell death process. Select inhibitors, such as those being developed for cancer therapy, may also provide a viable secondary treatment option for optic neuropathies. PMID:26733303

  11. Molecular mapping of a new induced gene for nuclear male sterility in sunflower (Helianthus annuus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new NMS line, NMS HA89-872, induced by mitomycin C and streptomycin carries a single recessive male-sterile gene ms6. An F2 population of 88 plants was obtained from a cross between nuclear male-sterile mutant NMS HA89-872 (msms) and male-fertile line RHA271 (MsMs). 225 SSR primers and 9 RFLP-deri...

  12. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  13. Jet-induced modifications of the characteristic of the bulk nuclear matter

    NASA Astrophysics Data System (ADS)

    Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.

    2016-01-01

    We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.

  14. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

    PubMed

    Yumerefendi, Hayretin; Lerner, Andrew Michael; Zimmerman, Seth Parker; Hahn, Klaus; Bear, James E; Strahl, Brian D; Kuhlman, Brian

    2016-06-01

    We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation. PMID:27089030

  15. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  16. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    SciTech Connect

    Pirih, Flavia Q. . E-mail: fqpirih@ucla.edu; Aghaloo, Tara L. . E-mail: taghaloo@ucla.edu; Bezouglaia, Olga . E-mail: obezougl@ucla.edu; Nervina, Jeanne M. . E-mail: jnervina@ucla.edu; Tetradis, Sotirios; E-mail: sotirist@dent.ucla.edu

    2005-07-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.

  17. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.

    PubMed

    Gomes, Ana P; Price, Nathan L; Ling, Alvin J Y; Moslehi, Javid J; Montgomery, Magdalene K; Rajman, Luis; White, James P; Teodoro, João S; Wrann, Christiane D; Hubbard, Basil P; Mercken, Evi M; Palmeira, Carlos M; de Cabo, Rafael; Rolo, Anabela P; Turner, Nigel; Bell, Eric L; Sinclair, David A

    2013-12-19

    Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible. PMID:24360282

  18. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  19. TGF-β induces the expression of SAP30L, a novel nuclear protein

    PubMed Central

    Lindfors, Katri; Viiri, Keijo M; Niittynen, Marjo; Heinonen, Taisto YK; Mäki, Markku; Kainulainen, Heikki

    2003-01-01

    Background We have previously set up an in vitro mesenchymal-epithelial cell co-culture model which mimics the intestinal crypt villus axis biology in terms of epithelial cell differentiation. In this model the fibroblast-induced epithelial cell differentiation from secretory crypt cells to absorptive enterocytes is mediated via transforming growth factor-β (TGF-β), the major inhibitory regulator of epithelial cell proliferation known to induce differentiation in intestinal epithelial cells. The aim of this study was to identify novel genes whose products would play a role in this TGF-β-induced differentiation. Results Differential display analysis resulted in the identification of a novel TGF-β upregulated mRNA species, the Sin3-associated protein 30-like, SAP30L. The mRNA is expressed in several human tissues and codes for a nuclear protein of 183 amino acids 70% identical with Sin3 associated protein 30 (SAP30). The predicted nuclear localization signal of SAP30L is sufficient for nuclear transport of the protein although mutating it does not completely remove SAP30L from the nuclei. In the nuclei SAP30L concentrates in small bodies which were shown by immunohistochemistry to colocalize with PML bodies only partially. Conclusions By reason of its nuclear localization and close homology to SAP30 we believe that SAP30L might have a role in recruiting the Sin3-histone deacetylase complex to specific corepressor complexes in response to TGF-β, leading to the silencing of proliferation-driving genes in the differentiating intestinal epithelial cells. PMID:14680513

  20. EWS represses cofilin 1 expression by inducing nuclear retention of cofilin 1 mRNA.

    PubMed

    Huang, L; Kuwahara, I; Matsumoto, K

    2014-06-01

    In Ewing's sarcoma family tumors (ESFTs), the proto-oncogene EWS that encodes an RNA-binding protein is fused by chromosomal translocation to the gene encoding one of the E-twenty six (ETS) family of transcription factors, most commonly friend leukemia virus integration 1 (FLI-1). Although EWS/FLI-1 chimeric proteins are necessary for carcinogenesis, additional events seem to be required for transformation to occur. We have previously reported that a protein product of an EWS mRNA target, whose expression is negatively regulated by EWS but not by EWS/FLI-1, contributes to ESFT development. However, the mechanism by which EWS represses protein expression remains to be elucidated. Here, we report that overexpression of full-length EWS repressed protein expression and induced nuclear retention of reporter mRNAs in a tethering assay. In contrast, when a mutant lacking the EWS C-terminal nuclear localization signal (classified as a PY-NLS) was expressed, reporter protein expression was upregulated, and the number of cells exporting reporter mRNA to the cytoplasm increased. EWS binds to the 3'-untranslated region in another mRNA target, cofilin 1 (CFL1), and negatively regulates the expression of CFL1. Overexpression of EWS induced nuclear retention of CFL1 mRNA. Furthermore, ESFT cell proliferation and metastatic potential were suppressed by small interfering RNA-mediated CFL1 knockdown. Together, our findings suggest that EWS induces nuclear retention of CFL1 mRNA, thereby suppressing expression of CFL1, and that CFL1 promotes development of ESFT. Targeting CFL1 might therefore provide another novel approach for treatment of this aggressive disease. PMID:23831569

  1. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  2. Investigation of the α-particle induced nuclear reactions on natural molybdenum

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Hermanne, A.; Tárkányi, F.; Takács, S.; Ignatyuk, A. V.

    2012-08-01

    Cross-sections of alpha particle induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 93mMo, 99Mo(cum), 90Nb(m+), 94Ru, 95Ru,97Ru, 103Ru and 88Zr were measured up to 40 MeV alpha energy by using a stacked foil technique and activation method. The main goals of this work were to get experimental data for accelerator technology, for monitoring of alpha beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analyzed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE and TALYS codes (TENDL-2011).

  3. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  4. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  5. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  6. Atomic electric dipole moments of He and Yb induced by nuclear Schiff moments

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Ginges, J. S. M.

    2007-09-15

    We have calculated the atomic electric dipole moments (EDMs) d of {sup 3}He and {sup 171}Yb induced by their respective nuclear Schiff moments S. Our results are d({sup 3}He)=8.3x10{sup -5} and d({sup 171}Yb)=-1.9 in units of 10{sup -17}(S/e fm{sup 3}) e cm. By considering the nuclear Schiff moments induced by the parity- and time-reversal violating nucleon-nucleon interaction, we find d({sup 171}Yb){approx}0.6d({sup 199}Hg). For {sup 3}He the nuclear EDM coupled with the hyperfine interaction gives a larger atomic EDM than the Schiff moment. The result for {sup 3}He is required for a neutron EDM experiment that is under development, where {sup 3}He is used as a comagnetometer. We find that the EDM for {sup 3}He is orders of magnitude smaller than the neutron EDM. The result for {sup 171}Yb is needed for the planning and interpretation of experiments that have been proposed to measure the EDM of this atom.

  7. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  8. Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments.

    PubMed

    Flambaum, V V; DeMille, D; Kozlov, M G

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions. PMID:25238355

  9. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P.; Ewing, R.I.; Marlow, K.W.

    1991-12-01

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  10. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    SciTech Connect

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs.

  11. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    SciTech Connect

    Chiolo, Irene; Georgescu, Walter; Tang, Jonathan; Costes, Sylvain V.

    2013-09-03

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  12. Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells.

    PubMed

    Tokunaga, Kazuaki; Saitoh, Noriko; Goldberg, Ilya G; Sakamoto, Chiyomi; Yasuda, Yoko; Yoshida, Yoshinori; Yamanaka, Shinya; Nakao, Mitsuyoshi

    2014-01-01

    Non-invasive evaluation of cell reprogramming by advanced image analysis is required to maintain the quality of cells intended for regenerative medicine. Here, we constructed living and unlabelled colony image libraries of various human induced pluripotent stem cell (iPSC) lines for supervised machine learning pattern recognition to accurately distinguish bona fide iPSCs from improperly reprogrammed cells. Furthermore, we found that image features for efficient discrimination reside in cellular components. In fact, extensive analysis of nuclear morphologies revealed dynamic and characteristic signatures, including the linear form of the promyelocytic leukaemia (PML)-defined structure in iPSCs, which was reversed to a regular sphere upon differentiation. Our data revealed that iPSCs have a markedly different overall nuclear architecture that may contribute to highly accurate discrimination based on the cell reprogramming status. PMID:25385348

  13. Lamin A precursor induces barrier-to-autointegration factor nuclear localization.

    PubMed

    Capanni, Cristina; Cenni, Vittoria; Haraguchi, Tokuko; Squarzoni, Stefano; Schüchner, Stefan; Ogris, Egon; Novelli, Giuseppe; Maraldi, Nadir; Lattanzi, Giovanna

    2010-07-01

    Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation. In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects. PMID:20581439

  14. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation.

    PubMed

    Ramasamy, Vijay Sankar; Islam, Md Imamul; Haque, Md Aminul; Shin, Song Yub; Park, Il-Seon

    2016-06-01

    β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6h (4+6h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD. PMID:26876308

  15. Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke.

    PubMed

    Yuan, Hui; Denton, Kyle; Liu, Lin; Li, Xue-Jun; Benashski, Sharon; McCullough, Louise; Li, Jun

    2016-07-01

    Mounting evidence suggests that epigenetic modifications play critical roles in the survival/death of stressed neurons. Chief among these modifications is the deacetylation of histones within the chromatin by histone deacetylases (HDACs). HDAC4 is highly expressed in neurons and is usually trapped in cytosol. However, tightly regulated signal-dependent shuttling of this molecule between cytosol and nucleus occurs. Here, we studied the intracellular trafficking of HDAC4 and regulatory mechanisms during stroke. HDAC4 translocated from the cytosol into the nucleus of neurons in response to stroke induced by middle cerebral artery occlusion (MCAO) in mice. Similar translocation was seen after oxygen-glucose deprivation (OGD) in cultured mouse neurons. Expression of nuclear-restricted HDAC4 increased neuronal death after OGD and worsened infarcts and functional deficits in mice following MCAO; however, expression of cytosolic-restricted HDAC4 did not affect outcome after ischemia. In contrast, HDAC4 knockdown with siRNA improved neuronal survival after OGD. Furthermore, expression of nuclear-restricted HDAC4 reduced the acetylation of histones 3 and 4 as well as the levels of pro-survival downstream molecules after OGD. Finally, genetic deletion of calcium/calmodulin-dependent protein kinase IV (CaMKIV) increased the nuclear accumulation of HDAC4 in MCAO model, while overexpression of CaMKIV reduced the levels of nuclear HDAC4 following OGD. When HDAC4 was inhibited, the neuroprotection provided by CaMKIV overexpression was absent during OGD. Our data demonstrate a detrimental role of the nuclear accumulation of HDAC4 following stroke and identify CaMKIV as a key regulator of neuronal intracellular HDAC4 trafficking during stroke. PMID:26969532

  16. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  17. Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells

    PubMed Central

    Shrestha, R; Tatsukawa, H; Shrestha, R; Ishibashi, N; Matsuura, T; Kagechika, H; Kose, S; Hitomi, K; Imamoto, N; Kojima, S

    2015-01-01

    Nuclear accumulation of transglutaminase 2 (TG2) is an important step in TG2-dependent cell death. However, the underlying molecular mechanisms for nuclear translocation of TG2 are still poorly understood. In this study, we demonstrated that acyclic retinoid (ACR) induced nuclear accumulation of TG2 in JHH-7 cells, a hepatocellular carcinoma (HCC) leading to their apoptosis. We further demonstrated molecular mechanism in nuclear-cytoplasmic trafficking of TG2 and an effect of ACR on it. We identified a novel 14-amino acid nuclear localization signal (NLS) 466AEKEETGMAMRIRV479 in the ‘C' domain and a leucine-rich nuclear export signal (NES) 657LHMGLHKL664 in the ‘D' domain that allowed TG2 to shuttle between the nuclear and cytosolic milieu. Increased nuclear import of GAPDH myc-HIS fused with the identified NLS was observed, confirming its nuclear import ability. Leptomycin B, an inhibitor of exportin-1 as well as point mutation of all leucine residues to glutamine residues in the NES of TG2 demolished its nuclear export. TG2 formed a trimeric complex with importin-α and importin-β independently from transamidase activity which strongly suggested the involvement of a NLS-based translocation of TG2 to the nucleus. ACR accelerated the formation of the trimeric complex and that may be at least in part responsible for enhanced nuclear localization of TG2 in HCC cells treated with ACR. PMID:26633708

  18. NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

    PubMed Central

    Zheng, Sika; Eacker, Stephen M.; Hong, Suk Jin; Gronostajski, Richard M.; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A was provided by the observations that Nfia–/– neurons were highly sensitive to NMDA-induced excitotoxicity and were more susceptible to developmental cell death than wild-type neurons and that Nfia+/– mice were more sensitive to NMDA-induced intrastriatal lesions than were wild-type animals. These results identify NFI-A as what we believe to be a novel neuroprotective transcription factor with implications in neuroprotection and neuronal plasticity following NMDA receptor activation. PMID:20516644

  19. H 2 inhibition of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Roth, Olivia; Jonsson, Mats

    2009-01-01

    In order to elucidate the effect of noble metal clusters in spent nuclear fuel on the kinetics of radiation induced spent fuel dissolution we have used Pd particle doped UO 2 pellets. The catalytic effect of Pd particles on the kinetics of radiation induced dissolution of UO 2 during γ-irradiation in HCO3- containing solutions purged with N 2 and H 2 was studied in this work. Four pellets with Pd concentrations of 0%, 0.1%, 1% and 3% were produced to mimic spent nuclear fuel. The pellets were placed in 10 mM HCO3- aqueous solutions and γ-irradiated, and the dissolution of UO22+ was measured spectrophotometrically as a function of time. Under N 2 atmosphere, 3% Pd prevent the dissolution of uranium by reduction with the radiolytically produced H 2, while the other pellets show a rate of dissolution of around 1.6 × 10 -9 mol m -2 s -1. Under H 2 atmosphere already 0.1% Pd effectively prevents the dissolution of uranium, while the rate of dissolution for the pellet without Pd is 1.4 × 10 -9 mol m -2 s -1. It is also shown in experiments without radiation in aqueous solutions containing H 2O 2 and O 2 that ɛ-particles catalyze the oxidation of the UO 2 matrix by these molecular oxidants, and that the kinetics of the catalyzed reactions is close to diffusion controlled.

  20. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    SciTech Connect

    Martin, Madhavi Z; Allman, Steve L; Brice, Deanne Jane; Martin, Rodger Carl; Andre, Nicolas O

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  1. Pion-induced production of the Zc(3900 ) off a nuclear target

    NASA Astrophysics Data System (ADS)

    Huang, Yin; He, Jun; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2016-02-01

    We investigate the possibility to study the charmoniumlike state Zc(3900 ) through the pion-induced production off a nuclear target. By using a high-energy pion beam, the Zc(3900 ) can be produced off a proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the p (π-,Zc-(3900 )) and p (π-,Zc-(3900 )→J /ψ π-) reactions are calculated, and their order of magnitude is about 0.1 and 0.01 nb, respectively, with an assumption of branch ratio 10% for the Zc(3900 ) decay in J /ψ π channel. If the proton target is replaced by a nuclear target, the production of the Zc(3900 ) enhances obviously. The predicted total cross sections for the A (π-,Zc-(3900 )) and A (π-,Zc-(3900 )→J /ψ π-) reactions with A =12C or 208Pb are on the order of magnitude of 100 and 10 nb, respectively, which is about one thousand times larger than the cross sections off a proton target. Based on these results, we suggest the experimental study of the Zc(3900 ) by using high-energy pion beams with a nuclear target at facilities such as COMPASS and J-PARC.

  2. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  3. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  4. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  5. Comparison of Cell and Nuclear Size Difference between Diploid and Induced Triploid in Marine Medaka, Oryzias dancena

    PubMed Central

    Goo, In Bon; Im, Jae Hyun; Gil, Hyun Woo; Lim, Sang Gu; Park, In-Seok

    2015-01-01

    The influence of triploidization on cell and nucleus size characteristics of the same tissues of erythrocyte, retina, kidney, hepatocyte and midgut epithelium in marine medaka, Oryzias dancena has been determined histologically. Induced triploid fish are produced by cold shock treatments. Likewise, the size of horizontal cell nucleus in inner nuclear layer of retina, ganglion cell nucleus in ganglion cell layer of retina, proximal tubule cell of kidney, hepatocytes and nuclear height of midgut epithelium all appear to be significantly larger than diploid (p<0.05). On the other hand, retina thickness is larger in diploid than induced triploid (p<0.05). Induced triploid shows low density of cell number. Results of this study suggest that same characteristics in the induced triploid exhibiting larger cells and nucleus sizes with fewer number of cells than the diploid can be useful criteria for the distinction between diploid and induced triploid, and also the ploidy level in marine medaka. PMID:27004269

  6. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-01

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard

  7. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  8. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA. PMID:15528046

  9. Dynamics of nuclear spin polarization induced and detected by coherently precessing electron spins in fluorine-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Kirstein, E.; Greilich, A.; Zhukov, E. A.; Kazimierczuk, T.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2016-02-01

    We study the dynamics of optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer via time-resolved Kerr rotation. The nuclear polarization in the vicinity of a fluorine donor is induced by interaction with coherently precessing electron spins in a magnetic field applied in the Voigt geometry. It is detected by nuclei-induced changes in the electron spin coherence signal. This all-optical technique allows us to measure the longitudinal spin relaxation time T1 of the 77Se isotope in a magnetic field range from 10 to 130 mT under illumination. We combine the optical technique with radio frequency methods to address the coherent spin dynamics of the nuclei and measure Rabi oscillations, Ramsey fringes, and the nuclear spin echo. The inhomogeneous spin dephasing time T2* and the spin coherence time T2 of the 77Se isotope are measured. While the T1 time is on the order of several milliseconds, the T2 time is several hundred microseconds. The experimentally determined condition T1≫T2 verifies the validity of the classical model of nuclear spin cooling for describing the optically induced nuclear spin polarization.

  10. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  11. Comparison and characterization of α-amylase inducers in Aspergillus nidulans based on nuclear localization of AmyR.

    PubMed

    Murakoshi, Yuriko; Makita, Tomohiro; Kato, Masashi; Kobayashi, Tetsuo

    2012-06-01

    AmyR, a fungal transcriptional activator responsible for induction of amylolytic genes in Aspergillus nidulans, localizes to the nucleus in response to the physiological inducer isomaltose. Maltose, kojibiose, and D: -glucose were also found to trigger the nuclear localization of GFP-AmyR. Isomaltose- and kojibiose-triggered nuclear localization was not inhibited by the glucosidase inhibitor, castanospermine, while maltose-triggered localization was inhibited. Thus, maltose itself does not appear to be an direct inducer, but its degraded or transglycosylated product does. Non-metabolizable D: -glucose analogues were also able to trigger the nuclear localization, implying that these sugars, except maltose, directly function as the inducers of AmyR nuclear entry. The inducing activity of D: -glucose was 4 orders-of-magnitude weaker compared with isomaltose. Although D: -glucose has the ability to induce α-amylase production, this activity would generally be masked by CreA-dependent carbon catabolite repression. Significant induction of α-amylase by D: -glucose was observed in creA-defective A. nidulans. PMID:22252265

  12. Nuclear Reaction Models Responsible for Simulation of Neutron-induced Soft Errors in Microelectronics

    SciTech Connect

    Watanabe, Y. Abe, S.

    2014-06-15

    Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.

  13. Analysis of the Nuclear Structure of 186 Re Using Neutron-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Matters, David; McClory, John; Carroll, James; Chiara, Chris; Fotiades, Nikolaos; Devlin, Matt; Nelson, Ron O.

    2015-04-01

    Evaluated nuclear structure data for 186 Re identifies the majority of spin-parity assignments as tentative, with approximate values associated with the energies of several levels and transitions. In particular, the absence of known transitions that feed the Jπ =8+ isomer motivates their discovery, which would have astrophysical implications and a potential application in the development of an isomer power source. Using the GErmanium Array for Neutron Induced Excitations (GEANIE) spectrometer at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility, the (n,2n γ) and (n,n' γ) reactions in a 99.52% enriched 187 Re target were used to measure γ-ray excitation functions in 186 Re and 187 Re, respectively. A preliminary analysis of the data obtained from the experiment reveals several new transitions in 186 Re and 187 Re.

  14. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    NASA Astrophysics Data System (ADS)

    Chechenin, N. G.; Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-01

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  15. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    SciTech Connect

    Chechenin, N. G. Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  16. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  17. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway

    PubMed Central

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases. PMID:25829782

  18. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  19. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  20. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Kim, Kwangsoo; Lee, Manwoo; Kim, Guinyun

    2014-08-01

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on natCd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the 110,113g,117mSn, 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117gIn, and 111m,115gCd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  1. Early auxin-induced genes encode short-lived nuclear proteins.

    PubMed Central

    Abel, S; Oeller, P W; Theologis, A

    1994-01-01

    The plant growth hormone indoleacetic acid (IAA) transcriptionally activates gene expression in plants. Some of the genes whose expression is induced by IAA encode a family of proteins in pea (PS-IAA4 and PS-IAA6) and Arabidopsis (IAA1 and IAA2) that contain putative nuclear localization signals that direct a beta-glucuronidase reporter protein into the nucleus. Pulse-chase and immunoprecipitation experiments have defined the t1/2 of the PS-IAA4 and PS-IAA6 proteins to be 8 and 6 min, respectively. Their most prominent feature is the presence of a beta alpha alpha motif similar to the beta-sheet DNA-binding domain found in prokaryotic repressors of the Arc family. Based on these data, we suggest that plant tissues express short-lived nuclear proteins as a primary response to IAA. We propose that these proteins act as activators or repressors of genes responsible for mediating the various auxin responses. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278386

  2. From nuclear power to coal power: Aerosol-induced health and radiative effects

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  3. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  4. Nuclear transfer procedures in the ovine can induce early embryo fragmentation and compromise cloned embryo development.

    PubMed

    Xue, Lian; Cheng, Lei; Su, Guanghua; Kang, Feng; Wu, Xia; Bai, Chunling; Zhang, Li; Li, Guang-Peng

    2011-07-01

    Cytoplasmic fragmentations are frequently observed in early mammalian embryos, and especially in the human. In our research we have observed subtle clues that the occurrence of fragmentation was most likely a result of somatic cell nuclear transfer (NT) protocols, and in particular, the in vitro culture system. In this study we examined various putative factors that might induce early embryo fragmentation in the ovine. The results indicate that nuclear transfer protocols such as the fusion parameter, activation treatment, and especially the choice of culture medium affected embryo cleavage rates and resulted in a higher incidence of fragmented embryos. Upon using the same fusion parameter, activation parameters that were based upon amino acids containing synthetic oviduct fluids (SOFaa) culture system resulted in significantly lower fragmentation rates than when utilizing a Charles Rosenkrans 1 (CR1aa) culture system. Fragmented embryos typically exhibited irregular numbers of blastomeres with the majority of blastomeres devoid of chromatin. Factors such as fusion DC pulse, activation treatment and culture system led to higher fragmentation and also affected in vitro and in vivo embryo development. The SOFaa based culture system produced a higher number of quality NT embryos resulting in higher pregnancy rates and the birth of live lambs as compared to the CR1aa based system (P<0.05). We conclude that early embryo fragmentation in the ovine is caused by suboptimal cloning protocols, and NT embryo development is especially affected by the culture system used. PMID:21700405

  5. Chromosomal and Nuclear Alterations in Root Tip Cells of Allium Cepa L. Induced by Alprazolam

    PubMed Central

    Nefic, Hilada; Musanovic, Jasmin; Metovic, Azra; Kurteshi, Kemajl

    2013-01-01

    ABSTRACT Introduction: Alprazolam is a triazolobenzodiazepine used in panic disorders and other anxiety states. Target organ of Alprazolam is CNS, causing depression of respiration and consciousness. Aim: This study aimed to estimate the genotoxic potential of Alprazolam using Allium cepa test. Methods: Allium cepa is one of the most suitable plants for detecting different types of xenobiotics. The test enables the assessment of different genetic endpoints making possible damage to the DNA of humans to be predicted. Results: Alprazolam induced chromosomal (anaphase bridges, breaks, lagging and stickiness, abnormal spiralisation, multipolarity and polyploidy) and cytological aberrations, especially nuclear alterations (nuclear buds, fragmented nucleus and apoptotic bodies, cells without nucleus, binucleated and micronucleated cells), morphological alterations in shape and size of cells, spindle disturbance and polar deviation in root tip meristem cells of Allium cepa at all tested concentrations. Alprazolam also caused significant inhibition of mitotic index in these cells. Conclusion: These changes in cells are indicators of genotoxic potential of Alprazolam suggesting a need for further in vitro studies on animal and human lymphocytes as well as in vivo studies. PMID:25568504

  6. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    PubMed

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  7. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites

    SciTech Connect

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Windes, William E.; Ubic, Rick

    2015-05-01

    This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 °C and 678 °C respectively. IG-110 samples were irradiated to 1.91 dpa and 6.70 dpa at 451 °C and 674 °C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice.

  8. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis.

    PubMed

    Shahbazi, Jeyran; Lock, Richard; Liu, Tao

    2013-01-01

    Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a stress-induced p53-target gene whose expression is modulated by transcription factors such as p53, p73, and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. In association with homeodomain-interacting protein kinase-2 (HIPK2), TP53INP1 phosphorylates p53 protein at Serine-46. This enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53-target genes such as p21 and PIG3, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis, whereas TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment. PMID:23717325

  9. First measurement of proton-induced low-momentum dielectron radiation off cold nuclear matter

    NASA Astrophysics Data System (ADS)

    HADES Collaboration; Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2012-09-01

    We present data on dielectron emission in proton induced reactions on a Nb target at 3.5 GeV kinetic beam energy measured with HADES installed at GSI. The data represent the first high statistics measurement of proton-induced dielectron radiation from cold nuclear matter in a kinematic regime, where strong medium effects are expected. Combined with the good mass resolution of 2%, it is the first measurement sensitive to changes of the spectral functions of vector mesons, as predicted by models for hadrons at rest or small relative momenta. Comparing the e+e- invariant mass spectra to elementary p + p data, we observe for e+e- momenta Pee<0.8 GeV/c a strong modification of the shape of the spectrum, which we attribute to an additional ρ-like contribution and a decrease of ω yield. These opposite trends are tentatively interpreted as a strong coupling of the ρ meson to baryonic resonances and an absorption of the ω meson, which are two aspects of in-medium modification of vector mesons.

  10. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    SciTech Connect

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  11. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    PubMed Central

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  12. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    PubMed

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  13. p52-independent nuclear translocation of RelB promotes LPS-induced attachment

    SciTech Connect

    Saito, T.; Sasaki, C.Y.; Rezanka, L.J.; Ghosh, P.; Longo, D.L.

    2010-01-01

    The NF-{kappa}B signaling pathways have a critical role in the development and progression of various cancers. In this study, we demonstrated that the small cell lung cancer cell line (SCLC) H69 expressed a unique NF-{kappa}B profile as compared to other cancer cell lines. The p105/p50, p100/p52, c-Rel, and RelB protein and mRNA transcripts were absent in H69 cells but these cells expressed RelA/p65. The activation of H69 cells by lipopolysaccharide (LPS) resulted in the induction of RelB and p100 expression. The treatment also induced the nuclear translocation of RelB without the processing of p100 to p52. Furthermore, LPS-induced {beta}1 integrin expression and cellular attachment through an NF-{kappa}B-dependent mechanism. Blocking RelB expression prevented the increase in the expression of {beta}1 integrin and the attachment of H69. Taken together, the results suggest that RelB was responsible for the LPS-mediated attachment and may play an important role in the progression of some cancers.

  14. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS

    PubMed Central

    Perillo, Bruno; Di Santi, Annalisa; Cernera, Gustavo; Ombra, Maria Neve; Castoria, Gabriella; Migliaccio, Antimo

    2014-01-01

    Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.   We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells. PMID:25482200

  15. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

    PubMed Central

    Volle, David H.; Decourteix, Mélanie; Garo, Erwan; McNeilly, Judy; Fenichel, Patrick; Auwerx, Johan; McNeilly, Alan S.; Schoonjans, Kristina; Benahmed, Mohamed

    2009-01-01

    Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis. PMID:19884658

  16. Resolving the H 2 effect on radiation induced dissolution of UO 2-based spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Jonsson, Mats

    2010-01-01

    In recent years, the impact of H2 on α-radiation induced dissolution of UO2-based spent nuclear fuel has been studied and debated extensively. Experimental results on the effect of H2 on the concentration of H2O2 during α-radiolysis have been shown to disagree with numerical simulations. For this reason, the reaction scheme used in simulations of aqueous radiation chemistry has sometimes been questioned. In this work, we have studied the impact of H2 on the H2O2 concentration in α-irradiated aqueous solution using numerical simulations. The effects of H2 pressure, α-dose rate and HCO3- concentration were investigated by performing systematic variations in these parameters. The simulations show that the discrepancy between the previously published experimental result and numerical simulations is due to the use of a homogeneous dose rate (the energy is assumed to be equally distributed in the whole volume). Taking the actual dose rate of the α-irradiated volume into account, the simulation is in perfect agreement with the experimental results. This shows that the H2 effect is strongly α-dose rate dependent, and proves the reliability of the reaction scheme used in the simulations. The simulations also show that H2 influences the H2O2 concentration under α-radiolysis. The magnitude of the effect depends on the dose rate and the H2 pressure as well as on the concentration of HCO 3-. The impact of the radiolytic H2 effect on the rate of α-radiation induced dissolution of spent nuclear fuel is discussed along with other (α- and γ-) radiation induced processes capable of reducing the concentration of uranium in solution. The radiolytic H2 effect is quantitatively compared to the previously presented noble metal catalyzed H2 effect. This comparison shows that the noble metal catalyzed H2 effect is far more efficient than the radiolytic H2 effect. Reduction of U(VI) in solution due to low dose rate γ-radiolysis in the presence of H2 is proposed to be the cause of

  17. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    PubMed

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  18. The Nuclear Receptor, Nor-1, Induces the Physiological Responses Associated With Exercise.

    PubMed

    Goode, Joel M; Pearen, Michael A; Tuong, Zewen K; Wang, Shu-Ching M; Oh, Tae Gyu; Shao, Emily X; Muscat, George E O

    2016-06-01

    Skeletal muscle remodels metabolic capacity, contractile and exercise phenotype in response to physiological demands. This adaptive remodeling response to physical activity can ameliorate/prevent diseases associated with poor diet and lifestyle. Our previous work demonstrated that skeletal muscle-specific transgenic expression of the neuron-derived orphan nuclear receptor, Nor-1 drives muscle reprogramming, improves exercise endurance, and oxidative metabolism. The current manuscript investigates the association between exercise, Nor-1 expression and the role of Nor-1 in adaptive remodeling. We demonstrate that Nor-1 expression is induced by exercise and is dependent on calcium/calcineurin signaling (in vitro and in vivo). Analysis of fatigue-resistant transgenic mice that express Nor-1 in skeletal muscle revealed increased hypertrophy and vascularization of muscle tissue. Moreover, we demonstrate that transgenic Nor-1 expression is associated with increased intracellular recycling, ie, autophagy, involving 1) increased expression of light chain 3A or LC3A-II, autophagy protein 5, and autophagy protein 12 in quadriceps femoris muscle extracts from Tg-Nor-1 (relative to Wild-type (WT) littermates); 2) decreased p62 expression indicative of increased autophagolysosome assembly; and 3) decreased mammalian target of rapamycin complex 1 activity. Transfection of LC3A-GFP-RFP chimeric plasmid demonstrated that autophagolysosome formation was significantly increased by Nor-1 expression. Furthermore, we demonstrated a single bout of exercise induced LC3A-II expression in skeletal muscle from C57BL/6 WT mice. This study, when combined with our previous studies, demonstrates that Nor-1 expression drives multiple physiological changes/pathways that are critical to the beneficial responses of muscle to exercise and provides insights into potential pharmacological manipulation of muscle reprogramming for the treatment of lifestyle induced chronic diseases. PMID:27144290

  19. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells

    PubMed Central

    Omata, Mitsugu; Doke, Yukiko; Yamada, Chikaomi; Kawashima, Kayoko; Sho, Rumiko; Enomoto, Kei; Furuya, Mayumi; Inomata, Norio

    2016-01-01

    Tubular epithelial cells (TECs) can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization). However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β) was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis. PMID:27196561

  20. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene.

    PubMed Central

    Semenza, G L; Nejfelt, M K; Chi, S M; Antonarakis, S E

    1991-01-01

    Human erythropoietin gene expression in liver and kidney is inducible by anemia or hypoxia. DNase I-hypersensitive sites were identified 3' to the human erythropoietin gene in liver nuclei. A 256-base-pair region of 3' flanking sequence was shown by DNase I protection and electrophoretic mobility-shift assays to bind four or more different nuclear factors, at least two of which are induced by anemia in both liver and kidney, and the region functioned as a hypoxia-inducible enhancer in transient expression assays. These results provide insight into the molecular basis for the regulation of gene expression by a fundamental physiologic stimulus, hypoxia. Images PMID:2062846

  1. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells

    PubMed Central

    Niopek, Dominik; Benzinger, Dirk; Roensch, Julia; Draebing, Thomas; Wehler, Pierre; Eils, Roland; Di Ventura, Barbara

    2014-01-01

    The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light. PMID:25019686

  2. Caspase-3-mediated Cleavage of Cdc6 Induces Nuclear Localization of p49-truncated Cdc6 and Apoptosis

    PubMed Central

    Yim, Hyungshin; Jin, Ying Hua; Park, Byoung Duck; Choi, Hye Jin; Lee, Seung Ki

    2003-01-01

    We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3–mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or tumor necrosis factor-related apoptosis-inducing ligand. The cleavage occurs at the SEVD442/G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence. Cdc6 is known to be phosphorylated by cyclin A-cyclin dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. In contrast, p49-tCdc6 translocation to the cytoplasm is markedly reduced under the up-regulated conditions of Cdk2 activity, which is possibly due to the loss of nuclear export sequence. Thus, truncation of Cdc6 results in an increased nuclear retention of p49-tCdc6 that could act as a dominant negative inhibitor of DNA replication and its accumulation in the nucleus could promote apoptosis. Supporting this is that the ectopic expression of p49-tCdc6 not only promotes apoptosis of etoposide-induced HeLa cells but also induces apoptosis in untreated cells. Thus, the caspase-mediated cleavage of Cdc6 creates a truncated Cdc6 fragment that is retained in the nucleus and induces apoptosis. PMID:14517333

  3. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  4. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    PubMed

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  5. Abnormal mitosis in hypertetraploid cells causes aberrant nuclear morphology in association with H2O2-induced premature senescence.

    PubMed

    Ohshima, Susumu

    2008-09-01

    Aberrant nuclear morphology, such as nuclei with irregular shapes or fragmented nuclei, is often observed in senescent cells, but its biological significance is not fully understood. My previous study showed that aberrant nuclear morphology in senescent human fibroblasts is attributable to abnormal mitosis in later passages. In this study, the production of abnormal nuclei in association with premature senescence was investigated. Premature senescence was induced by brief exposure of human fibroblasts to hydrogen peroxide (H(2)O(2)), and mitosis was observed by time-lapse microscopy. In addition, cell cycle and nuclear morphology after exposure to H(2)O(2) were also analyzed using a laser scanning cytometer. Time-lapse analysis revealed that the induction of premature senescence caused abnormal mitoses, such as mitotic slippage or incomplete mitosis, especially in later days after H(2)O(2) exposure and often resulted in abnormal nuclear morphology. Analysis by laser scanning cytometer showed significantly higher frequency of abnormal cells with deformed nuclei and abnormal mitotic cells with misaligned chromosomes in a hypertetraploid subpopulation. These results suggest that unstable hypertetraploid cells, formed in association with H(2)O(2)-induced premature senescence, cause abnormal mitosis that leads to aberrant nuclear morphology. PMID:18618767

  6. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-06-01

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass-polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  7. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation.

    PubMed

    Chen, Xiaowei; Arciero, Cletus A; Wang, Chunrong; Broccoli, Dominique; Godwin, Andrew K

    2006-05-15

    We have previously reported the identification and characterization of a novel BRCA1/2 interacting protein complex, BRCC (BRCA1/2-containing complex). BRCC36, one of the proteins in BRCC, directly interacts with BRCA1, and regulates the ubiquitin E3 ligase activity of BRCC. Importantly, BRCC36 is aberrantly expressed in the vast majority of breast tumors, indicating a potential role in the pathogenesis of this disease. To further elucidate the functional consequence of abnormal BRCC36 expression in breast cancer, we have done in vivo silencing studies using small interfering RNAs targeting BRCC36 in breast cancer cell lines, i.e., MCF-7, ZR-75-1, and T47D. Knock-down of BRCC36 alone does not affect cell growth, but when combined with ionizing radiation (IR) exposure, it leads to an increase in the percentage of cells undergoing apoptosis when compared with the small interfering RNA control group in breast cancer cells. Immunoblot analysis shows that inhibition of BRCC36 has no effect on the activation of ATM, expression of p21 and p53, or BRCA1-BARD1 interaction following IR exposure. Importantly, BRCC36 depletion disrupts IR-induced phosphorylation of BRCA1. Immunofluorescent staining of BRCA1 and gamma-H2AX indicates that BRCC36 depletion prevents the formation of BRCA1 nuclear foci in response to DNA damage in breast cancer cells. These results show that down-regulation of BRCC36 expression impairs the DNA repair pathway activated in response to IR by inhibiting BRCA1 activation, thereby sensitizing breast cancer cells to IR-induced apoptosis. PMID:16707425

  8. Limited Role of Nuclear Receptor Nur77 in Escherichia coli-Induced Peritonitis

    PubMed Central

    Hamers, Anouk A. J.; Uleman, Sven; van Tiel, Claudia M.; Kruijswijk, Daniëlle; van Stalborch, Anne-Marieke; Huveneers, Stephan; de Vries, Carlie J. M.

    2014-01-01

    Nuclear receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to play an anti-inflammatory role in macrophages, which have a crucial function in defense against peritonitis. The function of Nur77 in Escherichia coli-induced peritoneal sepsis has not yet been investigated. Wild-type and Nur77-knockout mice were inoculated with E. coli, and bacterial outgrowth, cell recruitment, cytokine profiles, and tissue damage were investigated. We found only a minor transient decrease in bacterial loads in lung and liver of Nur77-knockout compared to wild-type mice at 14 h postinfection, yet no changes were found in the peritoneal lavage fluid or blood. No differences in inflammatory cytokine levels or neutrophil/macrophage numbers were observed, and bacterial loads were equal in wild-type and Nur77-knockout mice at 20 h postinfection in all body compartments tested. Also, isolated peritoneal macrophages did not show any differences in cytokine expression patterns in response to E. coli. In endothelial cells, Nur77 strongly downregulated both protein and mRNA expression of claudin-5, VE-cadherin, occludin, ZO-1, and β-catenin, and accordingly, these genes were upregulated in lungs of Nur77-deficient mice. Functional permeability tests pointed toward a strong role for Nur77 in endothelial barrier function. Indeed, tissue damage in E. coli-induced peritonitis was notably modulated by Nur77; liver necrosis and plasma aspartate aminotransferase (ASAT)/alanine aminotransferase (ALAT) levels were lower in Nur77-knockout mice. These data suggest that Nur77 does not play a role in the host response to E. coli in the peritoneal and blood compartments. However, Nur77 does modulate bacterial influx into the organs via increased vascular permeability, thereby aggravating distant organ damage. PMID:24166953

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    SciTech Connect

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  11. Regulation of Stress-Inducible Phosphoprotein 1 Nuclear Retention by Protein Inhibitor of Activated STAT PIAS1

    PubMed Central

    Soares, Iaci N.; Caetano, Fabiana A.; Pinder, Jordan; Rodrigues, Bruna Roz; Beraldo, Flavio H.; Ostapchenko, Valeriy G.; Durette, Chantal; Pereira, Grace Schenatto; Lopes, Marilene H.; Queiroz-Hazarbassanov, Nicolle; Cunha, Isabela W.; Sanematsu, Paulo I.; Suzuki, Sergio; Bleggi-Torres, Luiz F.; Schild-Poulter, Caroline; Thibault, Pierre; Dellaire, Graham; Martins, Vilma R.; Prado, Vania F.; Prado, Marco A. M.

    2013-01-01

    Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450–480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity. PMID:23938469

  12. Activation of nuclear PTEN by inhibition of Notch signaling induces G2/M cell cycle arrest in gastric cancer.

    PubMed

    Kim, S-J; Lee, H-W; Baek, J-H; Cho, Y-H; Kang, H G; Jeong, J S; Song, J; Park, H-S; Chun, K-H

    2016-01-14

    Mutation in PTEN has not yet been detected, but its function as a tumor suppressor is inactivated in many cancers. In this study we determined that, activated Notch signaling disables PTEN by phosphorylation and thereby contributes to gastric tumorigenesis. Notch inhibition by small interfering RNA or γ-secretase inhibitor (GSI) induced mitotic arrest and apoptosis in gastric cancer cells. Notch inhibition induced dephosphorylation in the C-terminal domain of PTEN, which led to PTEN nuclear localization. Overexpression of activated Notch1-induced phosphorylation of PTEN and reversed GSI-induced mitotic arrest. Dephosphorylated nuclear PTEN caused prometaphase arrest by interaction with the cyclin B1-CDK1 complex, resulting in their accumulation in the nucleus and subsequent apoptosis. We found a correlation between high expression levels of Notch1 and low survival rates and, similarly, between reduced nuclear PTEN expression and increasing the TNM classification of malignant tumours stages in malignant tissues from gastric cancer patients. The growth of Notch1-depleted gastric tumors was significantly retarded in xenografted mice, and in addition, PTEN deletion restored growth similar to control tumors. We also demonstrated that combination treatment with GSI and chemotherapeutic agents significantly reduced the orthotopically transplanted gastric tumors in mice without noticeable toxicity. Overall, our findings suggest that inhibition of Notch signaling can be employed as a PTEN activator, making it a potential target for gastric cancer therapy. PMID:25823029

  13. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    PubMed

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  14. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-01-01

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients. PMID:26469385

  15. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ.

    PubMed

    Lee, Ja Hee; Kim, Eun-Jin; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia-mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  16. Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRγ

    PubMed Central

    Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A.; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  17. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain

    PubMed Central

    Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  18. Phenobarbital-induced hepatocellular proliferation: anti-bromodeoxyuridine and anti-proliferating cell nuclear antigen immunocytochemistry.

    PubMed

    Jones, H B; Clarke, N A; Barrass, N C

    1993-01-01

    We report modifications to immunocytochemical detection procedures for proliferating cell nuclear antigen (PCNA) which permit its identification in liver samples previously fixed for BrdU immunocytochemistry. Both methods have been used for the assessment of phenobarbital-induced cell proliferation in rat liver. The difficulties associated with the hitherto unsuccessful application of PCNA immunocytochemical methods to tissues fixed in formalin for BrdU visualization were overcome by epitope unmasking with acid hydrolysis, extension of primary antiserum (PC10) incubation, and employment of streptavidin-ABC-HRP. BrdU delivery via osmotic minipumps for 48 hr before euthanasia, followed by fixation in cold formalin for 14 days, yielded reliable and reproducible hepatocellular labeling and a peak of cell proliferation in all lobes on Day 3 (i.e., labeling during Days 1-3) of dosing with 80 mg/kg/day phenobarbital. Labeling indices (LI) of both control and phenobarbital-treated liver were lower in the left and right median lobes as compared with the lateral lobes. In sections of the left lateral lobe from the same liver, PCNA immunocytochemistry revealed a peak of proliferative activity (about one third of the maximum LI generated by BrdU incorporation) on Day 1. These findings, together with the advantages and disadvantages of both techniques, are discussed in the context of their applications to different investigative requirements. PMID:8093255

  19. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain.

    PubMed

    Song, Jie; Mu, Yabing; Li, Chunyan; Bergh, Anders; Miaczynska, Marta; Heldin, Carl-Henrik; Landström, Marene

    2016-01-01

    The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL-TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker. PMID:26583432

  20. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    NASA Astrophysics Data System (ADS)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  1. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Giuffrida, L.; Cutroneo, M.; Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J.; Kravarik, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  2. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  3. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  4. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  5. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  6. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    SciTech Connect

    Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per

    2009-07-15

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  7. Uranium and nitrate remote sensing in the nuclear fuel cycle by time-resolved laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Moulin, Christophe; Couston, Laurent; Decambox, Pierre; Mauchien, Patrick; Pouyat, Dominique

    1994-12-01

    Time-Resolved Laser-Induced Fluorescence has been used for uranium and nitrate remote sensing in the nuclear fuel cycle. Advantages of this technique are aside sensitivity and selectivity, its ability to perform remote measurements via fiber optics and optode. Uranium is usually determined by the standard addition method but by applying a fluorescence model taking into account complexation and absorption phenomena, it is possible to directly determine uranium concentration. Nitrate concentration is determined after spectral deconvolution of the uranium fluorescence spectrum.

  8. On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Nilsson, Sara; Jonsson, Mats

    2008-08-01

    Radiation induced oxidative dissolution of UO 2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO 2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H 2O 2 was used as a model for radiolytical oxidants (previous studies have shown that H 2O 2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H 2O 2 and HCO3- and the consumption of H 2O 2 and the dissolution of uranium were analyzed as a function of H 2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO 2 as well as reduction of surface bound oxidized UO 2 by H 2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H 2 observed in several studies on spent nuclear fuel dissolution.

  9. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    PubMed Central

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2014-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1 mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  10. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes.

    PubMed

    Anavi, Sarit; Ni, Zhixu; Tirosh, Oren; Fedorova, Maria

    2015-01-01

    Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA) complex (1mM, 2:1 oleic and palmitic acids). In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS) was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2). Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation) with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP). 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment. PMID:25560244

  11. Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin)

    SciTech Connect

    Liang, Yi; Feng, Lei; Tong, Xin; Wang, Kun; Li, De Feng; Lin, Jia Cheng; Tang, Zi Jian; Liu, Hong Hong; Jiang, Shuai; Guo, Lin; Wang, Da Cheng; Sun, Hui

    2009-08-28

    Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter the nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.

  12. Neuropeptide-inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen-independent prostate cancer cells

    PubMed Central

    2012-01-01

    Background Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. Methods We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. Results Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. Conclusions Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state. PMID:22715899

  13. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  14. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  15. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.

    PubMed

    German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro

    2015-02-01

    Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs. PMID:25513856

  16. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

    PubMed

    Hu, Yi; Ericsson, Ida; Torseth, Kathrin; Methot, Stephen P; Sundheim, Ottar; Liabakk, Nina B; Slupphaug, Geir; Di Noia, Javier M; Krokan, Hans E; Kavli, Bodil

    2013-01-23

    Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants. PMID:23183374

  17. Nuclear vasohibin-2 promotes cell proliferation by inducing G0/G1 to S phase progression.

    PubMed

    Ge, Qianqian; Zhou, Jia; Tu, Min; Xue, Xiaofeng; Li, Zhanjun; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Miao, Yi; Gao, Wentao

    2015-09-01

    As a member of the vasohibin (VASH2) family, VASH2 is localized intracellularly as a nuclear and cytoplasmic type. Cytoplasmic VASH2 is associated with carcinoma angiogenesis and malignant transformation and promotes cancer growth. However, the function of nuclear VASH2 has yet to be investigated. The aim of the present study was to detect the nuclear VASH2 expression profile in human organs and tissues by protein microarray technique. To examine the function of nuclear VASH2, we analyzed the relationship between nuclear VASH2 and Ki-67, and stably constructed VASH2 overexpression and knockdown in LO2 and HepG2 cell lines, based on a previous study in hepatic cells. The study was conducted using bromodeoxyuridine, immunofluorescent staining, western blot analysis and flow cytometry. Nuclear VASH2 was highly expressed in actively dividing cells in normal and cancer tissues. There was a significant positive correlation between nuclear VASH2 and Ki-67, indicating that nuclear VASH2 positively correlated with cell proliferation in normal and cancer tissues. The bromodeoxyuridine (BrdU) proliferation test showed that nuclear VASH2 increased the S-phase population and promoted cell proliferation, while VASH2 knockdown reduced BrdU absorbance. Cell cycle analysis revealed that nuclear VASH2 overexpression increased the S-phase population in LO2 and HepG2 cells, while nuclear VASH2 knockdown reduced the S-phase population and increased the G0/G1 population. The findings of this study challenge the classic view of VASH2, which was previously reported as an angiogenesis factor. Furthermore, to the best of our knowledge, these results are the first clinical data indicating that nuclear VASH2, but not cytoplasmic VASH2, promotes cell proliferation by driving the cell cycle from the G0/G1 to S phase. PMID:26177649

  18. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells

    PubMed Central

    Okoh, V O; Garba, N A; Penney, R B; Das, J; Deoraj, A; Singh, K P; Sarkar, S; Felty, Q; Yoo, C; Jackson, R M; Roy, D

    2015-01-01

    Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer. PMID:25965299

  19. Calcium-induced cleavage of DNA topoisomerase I involves the cytoplasmic-nuclear shuttling of calpain 2.

    PubMed

    Chou, Shang-Min; Huang, Ting-Hsiang; Chen, Hsiang-Chin; Li, Tsai-Kun

    2011-08-01

    Important to the function of calpains is temporal and spatial regulation of their proteolytic activity. Here, we demonstrate that cytoplasm-resident calpain 2 cleaves human nuclear topoisomerase I (hTOP1) via Ca(2+)-activated proteolysis and nucleoplasmic shuttling of proteases. This proteolysis of hTOP1 was induced by either ionomycin-caused Ca(2+) influx or addition of Ca(2+) in cellular extracts. Ca(2+) failed to induce hTOP1 proteolysis in calpain 2-knockdown cells. Moreover, calpain 2 cleaved hTOP1 in vitro. Furthermore, calpain 2 entered the nucleus upon Ca(2+) influx, and calpastatin interfered with this process. Calpain 2 cleavage sites were mapped at K(158) and K(183) of hTOP1. Calpain 2-truncated hTOP1 exhibited greater relaxation activity but remained able to interact with nucleolin and to form cleavable complexes. Interestingly, calpain 2 appears to be involved in ionomycin-induced protection from camptothecin-induced cytotoxicity. Thus, our data suggest that nucleocytoplasmic shuttling may serve as a novel type of regulation for calpain 2-mediated nuclear proteolysis. PMID:21086148

  20. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  1. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato.

    PubMed Central

    Palm, C J; Costa, M A; An, G; Ryan, C A

    1990-01-01

    Deletion analysis from the 3' to the 5' end of the promoter region of the wound-inducible potato proteinase inhibitor IIK gene has identified a 421-base sequence at -136 to -557 that is necessary for expression. Utilizing DNA band-shift assays, a 10-base sequence within the 421-base region was found to bind a nuclear protein from wounded tomato leaves. This 10-base sequence is adjacent to an 8-base consensus sequence at -147 to -155 that is present in the promoter region of several elicitor-inducible genes from various other plants. The evidence suggests that a complex set of cis- and trans-acting elements within the -136 to -165 region of the potato IIK gene may be involved with the signaling mechanisms that regulate the inducibility of this gene in response to pest and pathogen attacks. Images PMID:2405385

  2. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  3. Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms.

    PubMed

    Maroui, Mohamed Ali; Kheddache-Atmane, Sabrina; El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As₂O₃) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As₂O₃ enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As₂O₃-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As₂O₃-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As₂O₃-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As₂O₃. PMID:23028697

  4. Transient Expression of WNT2 Promotes Somatic Cell Reprogramming by Inducing β-Catenin Nuclear Accumulation.

    PubMed

    Kimura, Mizuki; Nakajima-Koyama, May; Lee, Joonseong; Nishida, Eisuke

    2016-06-14

    Treatment with several Wnt/β-catenin signaling pathway regulators can change the cellular reprogramming efficiency; however, the dynamics and role of endogenous Wnt/β-catenin signaling in reprogramming remain largely unanswered. Here we identify the upregulation of WNT2 and subsequent β-catenin nuclear accumulation as key events in reprogramming. Transient nuclear accumulation of β-catenin occurs early in MEF reprogramming. Wnt2 is strongly expressed in the early stage of reprogramming. Wnt2 knockdown suppresses the nuclear accumulation of β-catenin and reduces the reprogramming efficiency. WNT2 overexpression promotes β-catenin nuclear accumulation and enhances the reprogramming efficiency. WNT2 contributes to the promotion of cell proliferation. Experiments with several drugs that control the Wnt pathway also indicate the importance of β-catenin nuclear accumulation in reprogramming. Our findings reveal the role of WNT2/β-catenin signaling in reprogramming. PMID:27211212

  5. Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons

    PubMed Central

    Wang, Liangli; Ma, Qing; Yang, Wei; Mackensen, G. Burkhard; Paschen, Wulf

    2012-01-01

    Deep hypothermia protects the brain from ischemic damage and is therefore used during major cardiovascular surgeries requiring cardiopulmonary bypass and a period of circulatory arrest. Here, we demonstrated that small ubiquitin-like modifier (SUMO1-3) conjugation is markedly activated in the brain during deep to moderate hypothermia. Animals were subjected to normothermic (37°C) or deep to moderate (18°C, 24°C, 30°C) hypothermic cardiopulmonary bypass, and the effects of hypothermia on SUMO conjugation were evaluated by Western blot and immunohistochemistry. Exposure to moderate 30°C hypothermia was sufficient to markedly increased levels and nuclear accumulation of SUMO2/3-conjugated proteins in these cells. Deep hypothermia induced nuclear translocation of the SUMO conjugating enzyme Ubc9, suggesting that the increase in nuclear levels of SUMO2/3-conjugated proteins observed in brains of hypothermic animals is an active process. Exposure of primary neuronal cultures to deep hypothermia induced only a moderate rise in levels of SUMO2/3-conjugated proteins. This suggests that neurons in vivo have a higher capacity than neurons in vitro to activate this endogenous potentially neuroprotective pathway upon exposure to hypothermia. Identifying proteins that are SUMO2/3 conjugated during hypothermia could help to design new strategies for preventive and therapeutic interventions to make neurons more resistant to a transient interruption of blood supply. PMID:22891650

  6. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  7. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  8. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    PubMed

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  9. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress.

    PubMed

    Lymberopoulos, Maria H; Bourget, Amélie; Ben Abdeljelil, Nawel; Pearson, Angela

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli. PMID:21316727

  10. [RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli].

    PubMed

    Coló, Georgina P; Rubio, María F; Alvarado, Cecilia V; Costas, Mónica A

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappaB coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected coactivator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF-kappaB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. PMID:18051230

  11. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress

    SciTech Connect

    Lymberopoulos, Maria H.; Bourget, Amelie; Abdeljelil, Nawel Ben; Pearson, Angela

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.

  12. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    SciTech Connect

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  13. Lentivirus-induced knockdown of LRP1 induces osteoarthritic-like effects and increases susceptibility to apoptosis in chondrocytes via the nuclear factor-κB pathway

    PubMed Central

    YANG, ERPING; ZHENG, HUIFENG; PENG, HAO; DING, YINYUAN

    2015-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is known to regulate cell survival and inflammation. The present study investigated the involvement of LRP1 in the regulation of tumor necrosis factor (TNF)-α-induced expression of matrix metalloproteinase (MMP)-13. Furthermore, the study aimed to elucidate the mechanisms underlying the effects of LRP1 on TNF-α-induced inflammation and apoptosis of chondrocytes. Lentivirus-mediated RNA interference techniques were used to knockdown the LRP1 gene. Subsequently, the effects of LRP1 on TNF-α-induced MMP-13 expression were determined using quantitative polymerase chain reaction, western blot analysis and ELISA. Furthermore, the TNF-α-induced intracellular pathway was investigated using a nuclear factor (NF)-κB inhibitor (Bay 11–7082). In addition, the effect of LRP1 regulation on growth and apoptosis in chondrocytes was investigated using western blot analysis and a TUNEL assay. LRP1 knockdown was shown to increase TNF-α-induced MMP-13 expression via the activation of the NF-κB (p65) pathway, which reduced the expression of collagen type II and cell viability. In addition, LRP1 inhibited cell apoptosis by increasing the expression of phospho-Akt and B-cell lymphoma 2 (Bcl-2), while suppressing the expression of caspase-3 and Bcl-2-associated X protein. The results of the present study indicated that LRP1 was able to inhibit TNF-α-induced apoptosis and inflammation in chondrocytes. Therefore, LRP1 may be an effective osteoarthritis inhibitor, potentially providing a novel approach for antiarthritic therapeutics. PMID:26170918

  14. Application of Dipole-dipole, Induced Polarization, and CSAMT Electrical Methods to Detect Evidence of an Underground Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Sweeney, J. J.; Felske, D.

    2013-12-01

    There is little experience with application of electrical methods that can be applied during the continuation period of an on-site inspection (OSI), one of the verification methods of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order add to such experience, we conducted controlled source audiomagnetotelluric (CSAMT), dipole-dipole resistivity, and induced polarization electrical measurements along three survey lines over and near to ground zero of an historic nuclear explosion. The presentation will provide details and results of the surveys, an assessment of application of the method toward the purposes of an OSI, and an assessment of the manpower and time requirements for data collection and processing that will impact OSI inspection team operations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    PubMed

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-01-01

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA. PMID:25501195

  16. Assessment of nuclear-reaction codes for proton-induced reactions on light nuclei below 250 MeV

    NASA Astrophysics Data System (ADS)

    Braunn, Benjamin; Boudard, Alain; David, Jean-Christophe; Koning, Arjan J.; Leprince, Anne; Leray, Sylvie; Mancusi, Davide

    2015-07-01

    We assess the suitability of nuclear-reaction codes for the generation of accurate cross-section libraries targeted at the simulation of the transport of high-energy protons (up to 250 MeV) in the human body, or in any material containing light nuclides. To this end we present an extensive study of elastic, reaction and fragmentation cross sections for proton-induced reactions on several nuclides. We compare TALYS evaluations against experimental data and, wherever applicable, against the predictions of the INCL/ABLA07 nuclear-reaction model. The TALYS evaluations have been cast in the form of a new cross-section library, which also includes evaluated proton-proton cross sections based on the NN-OnLine tool.

  17. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    SciTech Connect

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji; Sayama, Koji

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  18. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  19. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  20. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    PubMed Central

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  1. Nuclear Effects in Neutrino Induced Coherent Pion Production at K2K and MiniBooNE

    SciTech Connect

    Singh, S.K.; Athar, M. Sajjad; Ahmad, Shakeb

    2006-06-23

    The coherent pion production induced by neutrinos in nuclei is studied using a delta hole model in the local density approximation taking into account the renormalization of {delta} properties in a nuclear medium. The pion absorption effects are included in an eikonal approximation. These effects give a large reduction in the total cross section. The numerical results for the total cross section are found to be consistent with recent experimental results from the K2K and MiniBooNE Collaborations and other older experiments in the intermediate energy region.

  2. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  3. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    PubMed

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  4. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress

    PubMed Central

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Kaufer, Benedikt B.; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-01-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  5. Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression

    PubMed Central

    Rosanò, Laura; Caprara, Valentina; Sestito, Rosanna; Di Castro, Valeriana; Bagnato, Anna

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ETA receptor (ETAR)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ETAR axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ETAR by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ETAR/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ETAR signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression. PMID:26909598

  6. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H. Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.

  7. Magnetic-field-induced quadrupole coupling in the nuclear magnetic resonance of noble-gas atoms and molecules

    SciTech Connect

    Manninen, Pekka; Vaara, Juha; Pyykkoe, Pekka

    2004-10-01

    An analytic response theory formulation for the leading-order magnetic field-induced and field-dependent quadrupole splitting in nuclear magnetic resonance spectra is presented and demonstrated with first-principles calculations for {sup 21}Ne, {sup 36}Ar, and {sup 83}Kr in noble gas atoms. The case of molecules was studied for {sup 33}S in the sulphur hexafluoride molecule, as well as for {sup 47/49}Ti, {sup 91}Zr, and {sup 177,179}Hf in group(IV) tetrahalides. According to our calculations, the hitherto experimentally unknown field-induced quadrupole splitting in molecules rises to 10{sup 2} Hz for {sup 177,179}Hf nuclei in HfF{sub 4} and 10{sup 1} Hz for {sup 47/49}Ti in TiCl{sub 4}, and is hence of observable magnitude.

  8. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines. PMID:26860316

  9. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice

    PubMed Central

    YU, YING; CAI, ZHAOHUA; CUI, MINGLI; NIE, PENG; SUN, ZHE; SUN, SHIQUN; CHU, SHICHUN; WANG, XIAOLEI; HU, LIUHUA; YI, JING; SHEN, LINGHONG; HE, BEN

    2015-01-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77-deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  10. Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming

    PubMed Central

    Dey, Dilip; Evans, Gregory R. D.

    2011-01-01

    During embryonic development pluripotency is progressively lost irreversibly by cell division, differentiation, migration and organ formation. Terminally differentiated cells do not generate other kinds of cells. Pluripotent stem cells are a great source of varying cell types that are used for tissue regeneration or repair of damaged tissue. The pluripotent stem cells can be derived from inner cell mass of blastocyte but its application is limited due to ethical concerns. The recent discovery of iPS with defined reprogramming factors has initiated a flurry of works on stem cell in various laboratories. The pluripotent cells can be derived from various differentiated adult cells as well as from adult stem cells by nuclear reprogramming, somatic cell nuclear transfer etc. In this review article, different aspects of nuclear reprogramming are discussed. PMID:22007240

  11. Substrate-induced Nuclear Export and Peripheral Compartmentalization of Hepatic Glucokinase Correlates with Glycogen Deposition

    PubMed Central

    Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.

    2001-01-01

    Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705

  12. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  13. Pycnogenol Induces Nuclear Translocation of Apoptosis-inducing Factor and Caspase-independent Apoptosis in MC-3 Human Mucoepidermoid Carcinoma Cell Line

    PubMed Central

    Yang, In-Hyoung; Shin, Ji-Ae; Cho, Sung-Dae

    2014-01-01

    Background: Pycnogenol is extracted from the pine bark of a tree known as Pinus pinaster that has variety biological effects. However, its anticancer activity has not yet been completely studied. The aim of this study is to investigate anticancer effect of pycnogenol in MC-3 human mucoepidermoid carcinoma (MEC) cell line. Methods: We describe the effect of anti-cancer of pycnogenol in MC-3 human oral MEC cells using trypan blue exclusion assay, 3-(4,5-dimethylthiazol-2-yl)-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay, Western blot, preparation of cytosolic and nuclear fractions, immunocytochemistry and reverse transcriptase polymerase chain reaction. Results: Pycnogenol significantly decreased cell viability and also induced caspase-independent apoptosis. We confirmed that pycnogenol induced the translocation of apoptosis-inducing factor into nucleus and regulated apoptosis. Also, Bak protein stability was partly enhanced by pycnogenol to elevate the expression level of Bak protein. Conclusions: Overall, pycnogenol may be a fascinating therapeutic drug candidate for the treatment of MEC. PMID:25574461

  14. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  15. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    PubMed

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  16. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction.

    PubMed

    Beggs, Kevin M; McGreal, Steven R; McCarthy, Alex; Gunewardena, Sumedha; Lampe, Jed N; Lau, Christoper; Apte, Udayan

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. PMID:27153767

  17. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  18. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  19. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  20. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats.

    PubMed

    Tamura, Atsushi; Matsunobu, Takeshi; Tamura, Risa; Kawauchi, Satoko; Sato, Shunichi; Shiotani, Akihiro

    2016-09-01

    Photobiomodulation (PBM) is a noninvasive treatment that can be neuroprotective, although the underlying mechanisms remain unclear. In the present study, we assessed the mechanism of PBM as a novel treatment for noise-induced hearing loss, focusing on the nuclear factor (NF)-κB signaling pathway. Sprague-Dawley rats were exposed to 1-octave band noise centered at 4kHz for 5h (121dB). After noise exposure, their right ears were irradiated with an 808nm diode laser beam at an output power density of 165mW/cm(2) for 30min a day for 5 consecutive days. Measurement of the auditory brainstem response revealed an accelerated recovery of auditory function in the groups treated with PBM compared with the non-treatment group at 4, 7, and 14 days after noise exposure. Immunofluorescent image analysis for inducible nitric oxide synthase and cleaved caspase-3 showed lesser immunoreactivities in outer hair cells in the PBM group compared with the non-treatment group. However, immunofluorescent image analysis for NF-κB, an upstream protein of inducible nitric oxide synthase, revealed greater activation in the PBM group compared with the naïve and non-treatment groups. Western blot analysis for NF-κB also showed stronger activation in the cochlear tissues in the PBM group compared with the naïve and non-treatment groups (p<0.01, each). These data suggest that PBM activates NF-κB to induce protection against inducible nitric oxide synthase-triggered oxidative stress and caspase-3-mediated apoptosis that occur following noise-induced hearing loss. PMID:27342816

  1. Tyrosine kinase inhibitor, methyl 2,5-dihydromethylcinnimate, induces PML nuclear body formation and apoptosis in tumor cells

    SciTech Connect

    Komura, Naoyuki; Asakawa, Mayako; Umezawa, Kazuo . E-mail: umezawa@applc.keio.ac.jp; Segawa, Kaoru

    2007-08-01

    Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.

  2. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells.

    PubMed

    Baltanás, Fernando C; Casafont, Iñigo; Weruaga, Eduardo; Alonso, José R; Berciano, María T; Lafarga, Miguel

    2011-07-01

    The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration. PMID:21054627

  3. Requirement of PML SUMO Interacting Motif for RNF4- or Arsenic Trioxide-Induced Degradation of Nuclear PML Isoforms

    PubMed Central

    El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K.

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As2O3) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As2O3 enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As2O3-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As2O3-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As2O3-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As2O3. PMID:23028697

  4. Analytic model for surface ground motion with spall induced by underground nuclear tests

    SciTech Connect

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented.

  5. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  6. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  7. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  8. Radiation-Induced Survivin Nuclear Accumulation is Linked to DNA Damage Repair

    SciTech Connect

    Capalbo, Gianni; Weiss, Christian; Reichert, Sebastian; Roedel, Claus

    2010-05-01

    Purpose: Increased expression of survivin has been identified as a negative prognostic marker in a variety of human cancers. We have previously shown that survivin is a radiation-resistance factor and that the therapeutic effect of survivin knock-down might result from an impaired DNA repair capacity. In this study, we aimed to elucidate an interrelationship between survivin's cellular localization and DNA double-strand break repair. Methods and Materials: Survivin's cellular distribution and nuclear complex formation were assayed by Western blotting of subcellular fractions, by immunofluorescence staining, and co-immunoprecipitation in SW480 colorectal cancer cells. DNA repair capacity was analyzed by kinetics of gamma-H2AX foci formation, and by DNA-dependent protein kinase (DNA-PKcs) assays in the presence of survivin-specific or nonspecific control siRNA. Results: Following irradiation, we observed a rapid nuclear accumulation of survivin and subsequent phosphorylation of the protein in the nucleus. Co-immunoprecipitation analyses from nuclear extracts revealed an interaction among survivin, Ku70, gamma-H2AX, MDC1, and DNA-PKcs that was confirmed by immunofluorescence co-localization in nuclear foci. Survivin knock down by siRNA resulted in an impaired DNA double strand break repair, as demonstrated by an increased detection of gamma-H2AX foci/nucleus at 60 min and a higher amount of residual gamma-H2AX foci at 24 hr postirradiation. Furthermore, we detected in survivin-depleted cells a hampered S2056 autophosphorylation of DNA-PKcs and a significantly decreased DNA-PKcs kinase activity. Conclusion: These data indicate that nuclear survivin is linked to DNA double-strand break repair by interaction with members of the DNA double-strand breaks repair machinery, thus regulating DNA-PKcs activity.

  9. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    PubMed

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  10. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  11. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    SciTech Connect

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  12. Orphan Nuclear Receptor Nur77 Inhibits Angiotensin II-Induced Vascular Remodeling via Downregulation of β-Catenin.

    PubMed

    Cui, Mingli; Cai, Zhaohua; Chu, Shichun; Sun, Zhe; Wang, Xiaolei; Hu, Liuhua; Yi, Jing; Shen, Linghong; He, Ben

    2016-01-01

    Angiotensin II (Ang II) is the predominant effector peptide of the renin-angiotensin system. Ang II contributes to vascular remodeling in many cardiovascular diseases (eg, hypertension, atherosclerosis, restenosis, and aneurysm). Orphan nuclear receptor Nur77 has a crucial role in the functional regulation of vascular cells. The objective of this study was to define the specific role of Nur77 in Ang II-induced vascular remodeling. Nur77 expression was initially found to be elevated in medial vascular smooth muscle cells (VSMCs) of thoracic aortas from mice continuously infused with Ang II for 2 weeks using a subcutaneous osmotic minipump. Cellular studies revealed that Nur77 expression was upregulated by Ang II via the MAPK/PKA-CREB signaling pathway. Ang II-induced proliferation, migration, and phenotypic switching were significantly enhanced in VSMCs isolated from Nur77(-/-) mice compared with wild-type VSMCs. Consistent with the role in VSMCs, we found that compared with wild-type mice, Nur77(-/-) mice had elevated aortic medial areas and luminal diameters, more severe elastin disruption and collagen deposition, increased VSMC proliferation and matrix metalloproteinase production, and decreased VSMC-specific genes SM-22α and α-actin expression, after 2 weeks of exogenous Ang II administration. The results of additional experiments suggested that Nur77 suppressed Ang II-induced β-catenin signaling pathway activation by promoting β-catenin degradation and inhibiting its transcriptional activity. Our findings indicated that Nur77 is a critical negative regulator of Ang II-induced VSMC proliferation, migration, and phenotypic switching via the downregulation of β-catenin activity. Nur77 may reduce Ang II-induced vascular remodeling involved in many cardiovascular diseases. PMID:26597820

  13. The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells.

    PubMed

    Liu, Kaiyu; Shu, Duanyang; Song, Na; Gai, Zhongchao; Yuan, Yuan; Li, Juan; Li, Min; Guo, Shuying; Peng, Jianxin; Hong, Huazhu

    2012-01-01

    There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells. PMID:22952575

  14. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  15. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    PubMed Central

    Snider, Natasha T.; Portney, Daniel A.; Willcockson, Helen H.; Maitra, Dhiman; Martin, Hope C.; Greenson, Joel K.; Omary, M. Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  16. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals.

    PubMed

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products. PMID:26547016

  17. Leader-Induced Phosphorylation of Nucleoporins Correlates with Nuclear Trafficking Inhibition by Cardioviruses▿

    PubMed Central

    Porter, Frederick W.; Palmenberg, Ann C.

    2009-01-01

    Picornaviruses disrupt nucleocytoplasmic trafficking pathways during infection. Poliovirus and rhinovirus inhibit nuclear protein import/export through a series of 2A protease-dependent cleavages within nuclear pore proteins (nucleoporins [Nups]), including Nup62, Nup98, and Nup153. Cardioviruses lack the same protease and instead affect trafficking inhibition through an activity mapped to their leader (L) protein, a 67- to 76-amino acid (aa) polypeptide with no known enzymatic activity. We have shown that L from encephalomyocarditis virus (EMCV) binds and inhibits the activity of Ran-GTPase, a key regulator of nucleocytoplasmic transport. We now report that recombinant EMCV L triggers the unregulated efflux of protein cargo from preloaded HeLa cell nuclei in cell-free reactions dependent upon Xenopus egg cytosol or HeLa cell-derived cytosol. Recombinant L was the only viral protein necessary for this activity or for nuclear protein import inhibition. Mutational disruption of the L protein zinc finger domain (C19A) abrogated the inhibitory activity for both import and efflux in cell extracts, but mutations in the C-terminal acidic domain of L (aa 37 to 61) did not. Notably, HeLa cell nuclei treated with L, or those from EMCV-infected cells, showed reproducibly altered patterns of nucleoporin phosphorylation. Nup62, Nup153, and Nup214 each became hyperphosphorylated in an L-dependent manner. Staurosporine, a broad-spectrum kinase inhibitor, blocked this phosphorylation and rescued nuclear import/export activity from L-dependent inhibition. Therefore, cardioviruses target the same group of nucleoporins as enteroviruses, but the effector mechanism triggered by L (or L-Ran complexes) involves a unique cytosol-dependent phosphorylation cascade rather than proteolysis. PMID:19073724

  18. Extracellular ATP-induced nuclear Ca{sup 2+} transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic {beta}-cells

    SciTech Connect

    Chen, Zheng; Li, Zhengzheng; Peng, Gong; Chen, Xiaoli; Yin, Wenxuan; Kotlikoff, Michael I.; Yuan, Zeng-qiang; Ji, Guangju

    2009-05-01

    Extracellular ATP (eATP) induces an intracellular Ca{sup 2+} transient by activating phospholipase C (PLC)-associated P2X4 purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent Ca{sup 2+} release from intracellular stores in mouse pancreatic {beta}-cells. Using laser scanning confocal microscopy, Ca{sup 2+} indicator fluo-4 AM, and the cell permeable nuclear indicator Hoechst 33342, we examined the properties of eATP-induced Ca{sup 2+} release in pancreatic {beta}-cell nuclei. eATP induced a higher nuclear Ca{sup 2+} transient in pancreatic {beta}-cell nuclei than in the cytosol. After pretreatment with thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps, the amplitude of eATP-induced Ca{sup 2+} transients in the nucleus was still much higher than those in the cytosol. This effect of eATP was not altered by inhibition of either the plasma membrane Ca{sup 2+}-ATPase (PMCA) or the plasma membrane Na{sup +}/Ca{sup 2+} exchanger (NCX) by LaCl{sub 3} or by replacement of Na{sup +} with N-Methyl-Glucosamine. eATP-induced nuclear Ca{sup 2+} transients were abolished by a cell-permeable IP3R inhibitor, 2-aminoethoxydiphenyl borate (2-APB), but were not blocked by the ryanodine receptor (RyR) antagonist ryanodine. Immunofluorescence studies showed that IP3Rs are expressed on the nuclear envelope of pancreatic {beta}-cells. These results indicate that eATP triggers nuclear Ca{sup 2+} transients by mobilizing a nuclear Ca{sup 2+} store via nuclear IP3Rs.

  19. Nuclear glutaredoxin 3 is critical for protection against oxidative stress-induced cell death

    PubMed Central

    Pham, Khanh; Pal, Rituraj; Qu, Ying; Liu, Xi; Yu, Han; Shiao, Stephen L.; Wang, Xinquan; Smith, E. O’Brian; Cui, Xiaojiang; Rodney, George G.; Cheng, Ninghui

    2016-01-01

    Mammalian glutaredoxin 3 (Grx3) has been shown to be critical in maintaining redox homeostasis and regulating cell survival pathways in cancer cells. However, the regulation of Grx3 is not fully understood. In the present study, we investigate the subcellular localization of Grx3 under normal growth and oxidative stress conditions. Both fluorescence imaging of Grx3–RFP fusion and Western blot analysis of cellular fractionation indicate that Grx3 is predominantly localized in the cytoplasm under normal growth conditions, whereas under oxidizing conditions, Grx3 is translocated into and accumulated in the nucleus. Grx3 nuclear accumulation was reversible in a redox-dependent fashion. Further analysis indicates that neither the N-terminal Trx-like domain nor the two catalytic cysteine residues in the active CGFS motif of Grx3 are involved in its nuclear translocation. Decreased levels of Grx3 render cells susceptible to cellular oxidative stress, whereas overexpression of nuclear-targeted Grx3 is sufficient to suppress cells’ sensitivity to oxidant treatments and reduce reactive oxygen species production. These findings provide novel insights into the regulation of Grx3, which is crucial for cell survival against environmental insults. PMID:25975981

  20. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition

    SciTech Connect

    Wang, I-F.; Chang, H.-Y.; James Shen, C.-K. . E-mail: ckshen@ccvax.sinica.edu.tw

    2006-11-15

    During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.

  1. Pulsed, Photonuclear-induced, Neutron Measurements of Nuclear Materials with Composite Shielding

    SciTech Connect

    James Jones; Kevin Haskell; Rich Waston; William Geist; Jonathan Thron; Corey Freeman; Martyn Swinhoe; Seth McConchie; Eric Sword; Lee Montierth; John Zabriskie

    2011-07-01

    Active measurements were performed using a 10-MeV electron accelerator with inspection objects containing various nuclear and nonnuclear materials available at the Idaho National Laboratory’s Zero Power Physics Reactor (ZPPR) facility. The inspection objects were assembled from ZPPR reactor plate materials to evaluate the measurement technologies for the characterization of plutonium, depleted uranium or highly enriched uranium shielded by both nuclear and non-nuclear materials. A series of pulsed photonuclear, time-correlated measurements were performed with unshielded calibration materials and then compared with the more complex composite shield configurations. The measurements used multiple 3He detectors that are designed to detect fission neutrons between pulses of an electron linear accelerator. The accelerator produced 10-MeV bremsstrahlung X-rays at a repetition rate of 125 Hz (8 ms between pulses) with a 4-us pulse width. All inspected objects were positioned on beam centerline and 100 cm from the X-ray source. The time-correlated data was collected in parallel using both a Los Alamos National Laboratory-designed list-mode acquisition system and a commercial multichannel scaler analyzer. A combination of different measurement configurations and data analysis methods enabled the identification of each object. This paper describes the experimental configuration, the ZPPR inspection objects used, and the various measurement and analysis results for each inspected object.

  2. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  3. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  4. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase

    PubMed Central

    Ye, Risheng; Wang, Qiong A.; Tao, Caroline; Vishvanath, Lavanya; Shao, Mengle; McDonald, Jeffery G.; Gupta, Rana K.; Scherer, Philipp E.

    2015-01-01

    Background The selective estrogen receptor modulator tamoxifen, in combination with the Cre-ERT2 fusion protein, has been one of the mainstream methods to induce genetic recombination and has found widespread application in lineage tracing studies. Methods & results Here, we report that tamoxifen exposure at widely used concentrations remains detectable by mass-spectrometric analysis in adipose tissue after a washout period of 10 days. Surprisingly, its ability to maintain nuclear translocation of the Cre-ERT2 protein is preserved beyond 2 months of washout. Tamoxifen treatment acutely leads to transient lipoatrophy, followed by de novo adipogenesis that reconstitutes the original fat mass. In addition, we find a “synthetically lethal” phenotype for adipocytes when tamoxifen treatment is combined with adipocyte-specific loss-of-function mutants, such as an adipocyte-specific PPARγ knockout. This is observed to a lesser extent when alternative inducible approaches are employed. Conclusions These findings highlight the potential for tamoxifen-induced adipogenesis, and the associated drawbacks of the use of tamoxifen in lineage tracing studies, explaining the discrepancy in lineage tracing results from different systems with temporal control of gene targeting. PMID:26629402

  5. Thyroid hormone-induced cytosol-to-nuclear translocation of rat liver Nrf2 is dependent on Kupffer cell functioning.

    PubMed

    Videla, Luis A; Cornejo, Pamela; Romanque, Pamela; Santibáñez, Catherine; Castillo, Iván; Vargas, Romina

    2012-01-01

    L-3,3',5-triiodothyronine (T(3)) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl(3); 10 mg/kg i.v. 72 h before T(3) [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T(3)), and determinations were performed 2 h after T(3). T(3) increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl(3) treatment prior to T(3), an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T(3)-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl(3) administration. Similar to GdCl(3), apocynin given before T(3) significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T(3). This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl(3) or apocynin given prior to T(3), thus hindering Nrf2 activation. PMID:22649286

  6. Theory of Bose-Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particles.

    PubMed

    Kim, Yeong E

    2009-07-01

    Recently, there have been many reports of experimental results which indicate occurrences of anomalous deuteron-induced nuclear reactions in metals at low energies. A consistent conventional theoretical description is presented for anomalous low-energy deuteron-induced nuclear reactions in metal. The theory is based on the Bose-Einstein condensate (BEC) state occupied by deuterons trapped in a micro/nano-scale metal grain or particle. The theory is capable of explaining most of the experimentally observed results and also provides theoretical predictions, which can be tested experimentally. Scalabilities of the observed effects are discussed based on theoretical predictions. PMID:19440686

  7. Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through pd Complexes:. Correlation Between Deuterium Flux and Nuclear Products

    NASA Astrophysics Data System (ADS)

    Iwamura, Y.; Itoh, T.; Sakano, M.; Sakai, S.; Kuribayashi, S.

    2005-12-01

    Observations of low energy nuclear reactions induced by D2 gas permeation through Pd complexes (Pd/CaO/Pd) were presented at ICCF-91 and in a paper2 published in the Japanese Journal of Applied Physics. When Cs was added on the surface of a Pd complex, Pr emerged on the surface while Cs decreased after the Pd complex was subjected to D2 gas permeation. When Sr was added to the surface, Mo emerged while the Sr decreased after D2 gas permeation. The isotopic composition of the detected Mo was different from the natural abundance. In this paper, recent progress of our research is described. The detected Pr was confirmed by various methods such as TOF-SIMS, XANES, X-ray Fluorescence Spectrometry and ICP-MS. Analysis of the depth profile of Pr indicated that a very thin surface region up to 100 Å was the active transmutation zone. Many experimental results showed that the quantity of Pr was proportional to the deuterium flux through Pd complex. The cross-section of transmutation of Cs into Pr can be roughly estimated at 1 barn if we consider the deuterium flux as an ultra low energy deuteron beam.

  8. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  9. Experimental cross-sections for proton-induced nuclear reactions on natMo

    NASA Astrophysics Data System (ADS)

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-08-01

    In the framework of the Co-ordinated Research Project of the IAEA, we measured in detail cross-sections of the nuclear reactions natMo(p,x)93gTc, 93mTc, 93m+gTc, 94gTc, 94mTc, 95gTc, 95mTc, 96m+gTc, 97mTc, 99mTc, 90Mo, 93mMo, 99Mo, 88gNb, 88mNb, 89gNb, 89mNb, 90m+gNb, 90m+gNbcum, 91mNb, 92mNb, 95gNb, 95mNb, 95m+gNb, 96Nb, 97m+gNb, 88m+gZrcum and 89m+gZrcum in the energy range of 6.9-35.8 MeV. The data for formation of 97mTc, 88gNb, 88mNb and 89mNb are reported for the first time. The obtained results were compared to the prediction of the nuclear reaction model code TALYS adopted from the TENDL-2015 library and to the previously published cross-sections. The thick target yields for all the radionuclides were calculated from the measured data. We suggest recommended cross-sections and thick target yields for the 100Mo(p,2n)99mTc, 100Mo(p,x)99Mo and natMo(p,x)96m+gTc nuclear reactions deduced from the selected experimental data.

  10. Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle

    PubMed Central

    Tachtsis, Bill; Smiles, William J.; Lane, Steven C.; Hawley, John A.; Camera, Donny M.

    2016-01-01

    Purpose: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise. Methods: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON). Results: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group. Conclusions: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals. PMID:27199762

  11. Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells.

    PubMed

    Paria, Biman C; Malik, Asrar B; Kwiatek, Angela M; Rahman, Arshad; May, Michael J; Ghosh, Sankar; Tiruppathi, Chinnaswamy

    2003-09-26

    We investigated the role of tumor necrosis factor-alpha (TNF-alpha) in activating the store-operated Ca2+ channels in endothelial cells via the expression of transient receptor potential channel (TRPC) isoforms. We observed that TNF-alpha exposure of human umbilical vein endothelial cells resulted in TRPC1 mRNA and protein expression, whereas it had no effect on TRPC3, TRPC4, or TRPC5 expression. The TRPC1 expression was associated with increased Ca2+ influx after intracellular Ca2+ store depletion with either thrombin or thapsigargin. We cloned the 5'-regulatory region of the human TRPC1 (hTRPC1) gene which contained a TATA box and CCAAT sequence close to the transcription initiation site. We also identified four nuclear factor-kappaB (NF-kappaB)-binding sites in the 5'-regulatory region. To address the contribution of NF-kappaB in the mechanism of TRPC1 expression, we determined the effects of TNF-alpha on expression of the reporter luciferase after transfection of hTRPC1 promoter-luciferase (hTRPC1-Pro-Luc) construct in the human dermal microvascular endothelial cell line. Reporter activity increased >4-fold at 4 h after TNF-alpha challenge. TNF-alpha-induced increase in reporter activity was markedly reduced by co-expression of either kinase-defective IKKbeta kinase mutant or non-phosphorylatable IkappaB mutant. Treatment with NEMO-binding domain peptide, which prevents NF-kappaB activation by selectively inhibiting IKKgamma interaction with IKK complex, also blocked the TNF-alpha-induced TRPC1 expression. Thus, TNF-alpha induces TRPC1 expression through an NF-kappaB-dependent pathway in endothelial cells, which can trigger augmented Ca2+ entry following Ca2+ store depletion. The augmented Ca2+ entry secondary to TRPC1 expression may be an important mechanism of endothelial injury induced by TNF-alpha. PMID:12855710

  12. TORAC User's Manual. A computer code for analyzing tornado-induced flow and material transport in nuclear facilities

    SciTech Connect

    Andrae, R.W.; Tang, P.K.; Martin, R.A.; Gregory, W.S.

    1985-05-01

    This manual describes the TORAC computer code, which can model tornado-induced flows, pressures, and material transport within structures. Future versions of this code will have improved analysis capabilities. In addition, it is part of a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. TORAC is directed toward the analysis of facility ventilation systems, including interconnected rooms and corridors. TORAC is an improved version of the TVENT computer code. In TORAC, blowers can be turned on and off and dampers can be controlled with an arbitrary time function. The material transport capability is very basic and includes convection, depletion, entrainment, and filtration of material. The input specifications for the code and a variety of sample problems are provided. 53 refs., 62 figs.

  13. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  14. Gamma irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: The ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Debré, O.; Nsouli, B.; Thomas, J.-P.; Stevenson, I.; Colombini, D.; Romero, M.-A.

    1997-08-01

    Ion exchange resins (IERs) saturated in cesium and borate ions are well representative of low and medium activity nuclear waste to be embedded in an epoxy resin/amine hardener, such a conditioning procedure being under qualification. In order to test these materials in realistic conditions they are externally irradiated (air and water), in mixed beds saturated in fixed ions (cesium and borate) and water. Irradiation effects are evidenced with the HSF-SIMS technique by the variation of the emission characteristic of both the fixed ions, the chemical structure of the IERs and their interrelationship, both from the analysis of the solid material and of the residual or rinsing water. It appears that the fixed ions can be released in surrounding water as a consequence of radiation-induced resin fragments solubility.

  15. Dominant male sterility in sorghum: effect of nuclear background on inheritance of tissue-culture-induced mutation.

    PubMed

    Elkonin, Lev A

    2005-11-01

    Occurrence of genetic instability and formation of stable mutations are basic genetic processes. This study demonstrates that nuclear background may influence the formation of stable dominant nuclear gene of male sterility (MS) on the basis of unstable mutation, which was induced in tissue culture of the sorghum haploid (cv. Milo-145). The mutants with complete or partial MS segregated in variable ratios in the progenies of diploid regenerants were obtained from different experiments on cultivation of haploid tissues. In the Milo-145 genetic background the mutation demonstrated somatic instability and was gradually eliminated by self-pollination of partially sterile plants. Hybridization of the MS-plants with the sorghum line SK-723, a fertility-restorer of the cytoplasmic MS A1 (milo) type, maintained the induced mutation. By repeated backcrossing of MS-plants with SK-723, the male-sterile versions of this line (SK-723- Ms(tc)) have been created. In BC-generations, fertile, partially and completely sterile plants were observed. The MS-plants from BC-generations are proposed to contain a dominant gene Ms(tc) while fertile plants were ms(tc)/ms(tc) homozygotes. Crossing the original MS-plants with SK-723 was a key factor in stabilization of the Ms(tc) gene. Dominant expression of the Ms(tc) was observed in male-sterile versions of other sorghum lines created by backcrossing to SK-723- Ms(tc). The lines fertility-restorers for this mutation have been revealed. In the crosses of restored F1 hybrids with emasculated plants of the non-restoring line, the Ms(tc) has been transferred through the pollen and manifested in the F1 generation. The possibility of the Ms(tc) originating as a result of interaction of an unstable allele of the Milo-145 with the SK-723 genome is discussed. PMID:16205908

  16. Non-thermal processes in standard big bang nucleosynthesis: I. In-flight nuclear reactions induced by energetic protons

    NASA Astrophysics Data System (ADS)

    Voronchev, V. T.; Nakao, Y.; Nakamura, M.

    2008-05-01

    The standard model of big bang nucleosynthesis (BBN) relies on a nuclear reaction network operating with thermal reactivities for Maxwellian plasma. In the primordial plasma, however, a number of non-thermal processes triggered by energetic particles of various origins can take place. In the present work we examine in-flight nuclear reactions induced in the plasma by MeV protons generated in D(d, p)T and 3He(d, p)4He fusions. We particularly focus on several low threshold endoergic processes. These are reactions omitted in the standard network—proton-induced break-ups of loosely bound D, 7Li, 7Be nuclei—and the 3H(p, n)3He charge-exchange reaction important for the interconversion of A = 3 nuclei in the early universe. It is found that the break-up processes in the plasma take the form of Maxwellian processes at temperatures T>70 keV, while in the lower temperature range they proceed as non-thermal reactions. It is shown that at T<70 keV the in-flight reaction channels can enhance the break-up reactivities by several orders of magnitude. The levels of these reactivities however remain insufficiently high to affect BBN kinetics and change the standard prediction of light element abundances. The abundances are found to be: Yp = 0.2457, D/H = 2.542 × 10-5, 3He/H = 1.004 × 10-5, 7Li/H = 4.444 × 10-10. Future steps in the study of non-thermal processes in the primordial plasma are briefly discussed.

  17. Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: a new mechanism.

    PubMed

    Lan, Shaowei; Liu, Feilin; Zhao, Guifang; Zhou, Tong; Wu, Chunling; Kou, Junna; Fan, Ruirui; Qi, Xiaojuan; Li, Yahui; Jiang, Yixu; Bai, Tingting; Li, Pengdong; Liu, Li; Hao, Deshun; Zhang, Lihong; Li, Yulin; Liu, Jin Yu

    2015-04-01

    Cyclosporine A (CsA) enhances hair growth through caspase-dependent pathways by retarding anagen-to-catagen phase transition in the hair follicle growth cycle. Whether apoptosis-inducing factor (AIF), a protein that induces caspase-independent apoptosis, can regulate the hair follicle cycle in response to CsA is currently unclear. Here, we show that the pro-hair growth properties of CsA are in part due to blockage of AIF nuclear translocation. We first isolate hair follicles from murine dorsal skin. We then used Western blot, immunohistochemistry and immunofluorescence to evaluate the expression and localization of AIF in hair follicles. We also determined whether modulation of AIF was responsible for the effects of CsA at the anagen-to-catagen transition. AIF was expressed in hair follicles during the anagen, catagen and telogen phases. There was significant nuclear translocation of AIF as hair follicles transitioned from anagen to late catagen phase; this was inhibited by CsA, likely due to reduced cyclophilin A expression and attenuated AIF release from mitochondria. However, we note that AIF translocation was not completely eliminated, which likely explains why the transition to catagen phase was severely retarded by CsA, rather than being completely inhibited. We speculate that blockade of the AIF signalling pathway is a critical event required for CsA-dependent promotion of hair growth in mice. The study of AIF-related signalling pathways may provide insight into hair diseases and suggest potential novel therapeutic strategies. PMID:25619112

  18. Understanding microstructure-induced limitations of hydrogen transport in high temperature proton conductors: can nuclear microanalysis give an answer?

    NASA Astrophysics Data System (ADS)

    Berger, Pascal

    2007-03-01

    High temperature protonic conductors (HTPC) are envisioned as electrolytes for fuel cells working at intermediate temperature (400 C -- 600 C) to complement Y:ZrO2 electrolytes operating at 800 C -- 1000 C. The most mature HTPC are doped perovskites (ABO3) where tetravalent cation B is partially substituted by a trivalent one. Protons can be introduced in the lattice as point defects corresponding to hydroxyl groups on oxygen ion sites. In the temperature region of interest for technological applications, lattice vibrations allow the diffusion of protons by jumping and reorientation of O-H bonds (hoping mechanism). BaCeO3 or SrCeO3-based perovskites doped with a rare earth are the most widely studied compounds. However the proton conductance of these ceramics and their chemical stability are lower than the calculated values on single crystals and not sufficient to fulfill technological requirements. In most cases, the reasons for these discrepancies lie in uncontrolled microstructures with inter- and intra-granular defects that act as barriers for hydrogen diffusion but are preferential paths for chemical degradation by hydrolysis or carbonatation. Despite this crucial point, very few efforts are devoted to the optimization of microstructure of HTPC. Microstructure induced limitations are usually evidenced via impedance measurements which enable determination of respective contributions of bulk and grain boundaries to overall conductivity. Further information on hydrogen transport relevant for improvement of microstructure design requires local methods for hydrogen concentration measurement. Nuclear microanalysis, based on the use of MeV light ions microbeam, meets this demand. According to the chosen technique, nuclear reaction, elastic recoil or forward coincident scattering, the nuclear microprobe gives 2D-3D quantitative information on hydrogen distribution and diffusion within microstructure and enables to identify barriers and short-circuits.

  19. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  20. Mitochondrial Physiology and Gene Expression Analyses Reveal Metabolic and Translational Dysregulation in Oocyte-Induced Somatic Nuclear Reprogramming

    PubMed Central

    Esteves, Telma C.; Psathaki, Olympia E.; Pfeiffer, Martin J.; Balbach, Sebastian T.; Zeuschner, Dagmar; Shitara, Hiroshi; Yonekawa, Hiromichi; Siatkowski, Marcin; Fuellen, Georg; Boiani, Michele

    2012-01-01

    While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism. PMID:22693623

  1. Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump-x-ray-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Lehmann, C. S.; Picón, A.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Moonshiram, D.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.

    2016-07-01

    The capability of generating two intense, femtosecond x-ray pulses with a controlled time delay opens the possibility of performing time-resolved experiments for x-ray-induced phenomena. We have applied this capability to study the photoinduced dynamics in diatomic molecules. In molecules composed of low-Z elements, K -shell ionization creates a core-hole state in which the main decay mode is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wave packets of the transient two-valence-hole states continue evolving on the femtosecond time scale, leading either to separated atomic ions or long-lived quasibound states. By using an x-ray pump and an x-ray probe pulse tuned above the K -shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K -shell ionization, Auger decay, and the time evolution of the nuclear wave packets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasibound states.

  2. Nuclear Dependence of Proton-Induced Drell-Yan Dimuon Production at 120 GeV at Seaquest

    SciTech Connect

    Dannowitz, Bryan P.

    2016-01-01

    A measurement of the atomic mass (A) dependence of p + A → µ+µ- + X Drell-Yan dimuons produced by 120 GeV protons is presented here. The data was taken by the SeaQuest experiment at Fermilab using a proton beam extracted from its Main Injector. Over 61,000 dimuon pairs were recorded with invariant mass 4.2 < Mγ* < 10 GeV and target parton momentum fraction 0.1 ≤ x2 ≤ 0.5 for nuclear targets 1H, 2H, C, Fe, and W . The ratio of dimuon yields per nucleon (Y ) for heavy nuclei versus 2H, RDY = 2 2 Y (A)/Y ( H) ≈ u¯(A)(x)/u¯( H)(x), is sensitive to modifications in the anti-quark sea distributions in nuclei for the case of proton-induced Drell-Yan. The data analyzed here and in the future of SeaQuest will provide tighter constraints on various models that attempt to define the anomalous behavior of nuclear modification as seen in deep inelastic lepton scattering, a phenomenon generally known as the EMC effect.

  3. Nuclear Phosphoproteomic Screen Uncovers ACLY as Mediator of IL-2-induced Proliferation of CD4+ T lymphocytes.

    PubMed

    Osinalde, Nerea; Mitxelena, Jone; Sánchez-Quiles, Virginia; Akimov, Vyacheslav; Aloria, Kerman; Arizmendi, Jesus M; Zubiaga, Ana M; Blagoev, Blagoy; Kratchmarova, Irina

    2016-06-01

    Anti-cancer immunotherapies commonly rely on the use of interleukin-2 (IL-2) to promote the expansion of T lymphocytes. IL-2- dependent proliferation is the culmination of a complex network of phosphorylation-driven signaling events that impact on gene transcription through mechanisms that are not clearly understood. To study the role of IL-2 in the regulation of nuclear protein function we have performed an unbiased mass spectrometry-based study of the nuclear phosphoproteome of resting and IL-2-treated CD4(+) T lymphocytes. We detected 8521distinct phosphosites including many that are not yet reported in curated phosphorylation databases. Although most phosphorylation sites remained unaffected upon IL-2 treatment, 391 sites corresponding to 288 gene products showed robust IL-2-dependent regulation. Importantly, we show that ATP-citrate lyase (ACLY) is a key phosphoprotein effector of IL-2-mediated T-cell responses. ACLY becomes phosphorylated on serine 455 in T lymphocytes upon IL-2-driven activation of AKT, and depletion or inactivation of ACLY compromises IL-2-promoted T-cell growth. Mechanistically, we demonstrate that ACLY is required for enhancing histone acetylation levels and inducing the expression of cell cycle regulating genes in response to IL-2. Thus, the metabolic enzyme ACLY emerges as a bridge between cytokine signaling and proliferation of T lymphocytes, and may be an attractive candidate target for the development of more efficient anti-cancer immunotherapies. PMID:27067055

  4. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects.

    PubMed

    Chen, Y; Jiang, B; Chen, Y; Ding, X; Liu, X; Chen, C; Guo, X; Yin, G

    1998-07-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1x10(12)ions/cm2. The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. PMID:9728742

  5. Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming

    PubMed Central

    Fort, Alexandre; Yamada, Daisuke; Hashimoto, Kosuke; Koseki, Haruhiko; Carninci, Piero

    2015-01-01

    Identification of functionally relevant differences between induced pluripotent stem cells (iPSC) and reference embryonic stem cells (ESC) remains a central question for therapeutic applications. Differences in gene expression between iPSC and ESC have been examined by microarray and more recently with RNA-SEQ technologies. We here report an in depth analyses of nuclear and cytoplasmic transcriptomes, using the CAGE (cap analysis of gene expression) technology, for 5 iPSC clones derived from mouse lymphocytes B and 3 ESC lines. This approach reveals nuclear transcriptomes significantly more complex in ESC than in iPSC. Hundreds of yet not annotated putative non-coding RNAs and enhancer-associated transcripts specifically transcribed in ESC have been detected and supported with epigenetic and chromatin-chromatin interactions data. We identified super-enhancers transcriptionally active specifically in ESC and associated with genes implicated in the maintenance of pluripotency. Similarly, we detected non-coding transcripts of yet unknown function being regulated by ESC specific super-enhancers. Taken together, these results demonstrate that current protocols of iPSC reprogramming do not trigger activation of numerous cis-regulatory regions. It thus reinforces the need for already suggested deeper monitoring of the non-coding transcriptome when characterizing iPSC clones. Such differences in regulatory transcript expression may indeed impact their potential for clinical applications. PMID:25664506

  6. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7.

    PubMed

    Savarese, Emina; Chae, Ohk-wha; Trowitzsch, Simon; Weber, Gert; Kastner, Berthold; Akira, Shizuo; Wagner, Hermann; Schmid, Roland M; Bauer, Stefan; Krug, Anne

    2006-04-15

    Plasmacytoid dendritic cells (PDCs), which produce IFN-alpha in response to autoimmune complexes containing nuclear antigens, are thought to be critically involved in the pathogenesis of systemic lupus erythematosus (SLE). One of the immunostimulatory components of SLE immune complexes (SLE-ICs) is self DNA, which is recognized through Tlr9 in PDCs and B cells. Small nuclear ribonucleoproteins (snRNPs) are another major component of SLE-ICs in 30% to 40% of patients. In this study, we show that murine PDCs are activated by purified U1snRNP/anti-Sm ICs to produce IFN-alpha and proinflammatory cytokines and to up-regulate costimulatory molecules. The induction of IFN-alpha and IL-6 by U1snRNPs in murine bone marrow-derived PDCs required the presence of intact U1RNA and was largely dependent on Tlr7 but independent of Tlr3. Intracellularly delivered isolated U1snRNA and oligoribonucleotides derived from the stem loop regions and the Sm-binding site of U1snRNA efficiently induced IFN-alpha and IL-6 in Flt3L-cultured DCs in a Tlr7-dependent manner. The U1snRNA component of U1snRNP immune complexes, found in patients with SLE, acts as an endogenous "self" ligand for Tlr7 and triggers IFN-alpha and IL-6 production in PDCs. PMID:16368889

  7. Field-induced spin reorientation in [Fe/Cr ] n multilayers studied by nuclear resonance reflectivity

    NASA Astrophysics Data System (ADS)

    Andreeva, M.; Gupta, A.; Sharma, G.; Kamali, S.; Okada, K.; Yoda, Y.

    2015-10-01

    We present depth-resolved nuclear resonance reflectivity studies of the magnetization evolution in [57Fe(3nm ) /Cr (1.2 nm ) ] 10 multilayer under applied external field. The measurements have been performed at the station BL09XU of SPring-8 at different values of the external field (0-1500 Oe). We apply the joint fit of the delayed reflectivity curves and the time spectra of the nuclear resonance reflectivity measured at different grazing angles for enhancement of the depth resolution and reliability of results. We show that the azimuth angle, which is used in all papers devoted to the magnetization profile determination, has a more complicated physical sense due to the partially coherent averaging of the scattering amplitudes from magnetic lateral domains. We describe how to select the true azimuth angle from the determined "effective azimuth angle." Finally we obtain the noncollinear twisted magnetization depth profiles where the spin-flop state appears sequentially in different 57Fe layers at increasing applied field.

  8. Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum.

    PubMed

    Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H

    2013-08-01

    XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694

  9. Hepatocyte nuclear factor 1 beta induces transformation and epithelial-to-mesenchymal transition.

    PubMed

    Matsui, Atsuka; Fujimoto, Jiro; Ishikawa, Kosuke; Ito, Emi; Goshima, Naoki; Watanabe, Shinya; Semba, Kentaro

    2016-04-01

    Gene amplification can be a cause of cancer, and driver oncogenes have been often identified in amplified regions. However, comprehensive analysis of other genes coamplified with an oncogene is rarely performed. We focused on the 17q12-21 amplicon, which contains ERBB2. We established a screening system for oncogenic activity with the NMuMG epithelial cell line. We identified a homeobox gene, HNF1B, as a novel cooperative transforming gene. HNF1B induced cancerous phenotypes, which were enhanced by the coexpression of ERBB2, and induced epithelial-to-mesenchymal transition and invasive phenotypes. These results suggest that HNF1B is a novel oncogene that can work cooperatively with ERBB2. PMID:27001343

  10. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1.

    PubMed

    Janjanam, Jagadeesh; Rao, Gadiparthi N

    2016-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation. PMID:27363897

  11. Novel role of cortactin in G protein-coupled receptor agonist-induced nuclear export and degradation of p21Cip1

    PubMed Central

    Janjanam, Jagadeesh; Rao, Gadiparthi N.

    2016-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates phosphorylation of cortactin on Y421 and Y446 residues in a time-dependent manner and phosphorylation at Y446 but not Y421 residue is required for MCP1-induced CDK-interacting protein 1 (p21Cip1) nuclear export and degradation in facilitating human aortic smooth muscle cell (HASMC) proliferation. In addition, MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation are dependent on Fyn activation. Upstream to Fyn, MCP1 stimulated C-C chemokine receptor type 2 (CCR2) and Gi/o and inhibition of either one of these molecules using their specific antagonists or inhibitors attenuated MCP1-induced cortactin tyrosine phosphorylation, p21Cip1 degradation and HASMC proliferation. Cortactin phosphorylation at Y446 residue is also required for another G protein-coupled receptor (GPCR) agonist, thrombin-induced p21Cip1 nuclear export and its degradation in promoting HASMC proliferation. Quite interestingly, the receptor tyrosine kinase (RTK) agonist, platelet-derived growth factor-BB (PDGF-BB)-induced p21Cip1 degradation and HASMC proliferation do not require cortactin tyrosine phosphorylation. Together, these findings demonstrate that tyrosine phosphorylation of cortactin at Y446 residue is selective for only GPCR but not RTK agonist-induced nuclear export and proteolytic degradation of p21Cip1 in HASMC proliferation. PMID:27363897

  12. Curcumin Induces Nrf2 Nuclear Translocation and Prevents Glomerular Hypertension, Hyperfiltration, Oxidant Stress, and the Decrease in Antioxidant Enzymes in 5/6 Nephrectomized Rats

    PubMed Central

    Tapia, Edilia; Soto, Virgilia; Ortiz-Vega, Karla Mariana; Zarco-Márquez, Guillermo; Molina-Jijón, Eduardo; Cristóbal-García, Magdalena; Santamaría, José; García-Niño, Wylly Ramsés; Correa, Francisco; Zazueta, Cecilia; Pedraza-Chaverri, José

    2012-01-01

    Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8–10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes. PMID:22919438

  13. Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor-κB Activation

    PubMed Central

    Lin, Tzu-Hung; Yang, Rong-Sen; Wang, Kuan-Chin; Lu, Dai-Hua; Liou, Houng-Chi; Ma, Yun; Chang, Shao-Han; Fu, Wen-Mei

    2013-01-01

    The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((−)-epicatechin) or WL14 (4-hydroxy-3-aminobenzoic acid) could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor-κB (NF-κB) activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of IκB kinase (IKK) and IκBα. In animal model, oral administration of WL1101 (50 or 200 mg/kg/day) effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF-κB activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity. PMID:24191169

  14. Hepatic microtubule acetylation and stability induced by chronic alcohol exposure impair nuclear translocation of STAT3 and STAT5B, but not Smad2/3.

    PubMed

    Fernandez, David J; Tuma, Dean J; Tuma, Pamela L

    2012-12-15

    Although alcoholic liver disease is clinically well described, the molecular basis for alcohol-induced hepatotoxicity is not well understood. Previously, we found that alcohol exposure led to increased microtubule acetylation and stability in polarized, hepatic WIF-B cells and in livers from ethanol-fed rats. Because microtubules are known to regulate transcription factor nuclear translocation and dynamic microtubules are required for translocation of at least a subset of these factors, we examined whether alcohol-induced microtubule acetylation and stability impair nuclear translocation. We examined nuclear delivery of factors representing the two mechanisms by which microtubules regulate translocation. To represent factors that undergo directed delivery, we examined growth hormone-induced STAT5B translocation and IL-6-induced STAT3 translocation. To represent factors that are sequestered in the cytoplasm by microtubule attachment until ligand activation, we examined transforming growth factor-β-induced Smad2/3 translocation. We found that ethanol exposure selectively impaired translocation of the STATs, but not Smad2/3. STAT5B delivery was decreased to a similar extent by addition of taxol (a microtubule-stabilizing drug) or trichostatin A (a deacetylase inhibitor), agents that promote microtubule acetylation in the absence of alcohol. Thus the alcohol-induced impairment of STAT nuclear translocation can be explained by increased microtubule acetylation and stability. Only ethanol treatment impaired STAT5B activation, indicating that microtubules are not important for its activation by Jak2. Furthermore, nuclear exit was not changed in treated cells, indicating that this process is also independent of microtubule acetylation and stability. Together, these results raise the exciting possibility that deacetylase agonists may be effective therapeutics for the treatment of alcoholic liver disease. PMID:23064763

  15. Effects of Barrier-Induced Nuclear Spin Magnetization Inhomogeneities on Diffusion-Attenuated MR Signal

    PubMed Central

    Sukstanskii, A.L.; Ackerman, J.J.H.; Yablonskiy, D.A.

    2007-01-01

    The spatial distribution of the transverse nuclear spin magnetization, appearing in a single compartment with impermeable boundaries in a Stejskal-Tanner gradient pulse MR experiment, is analyzed in detail. At short diffusion times the presence of diffusion-restrictive barriers (membranes) reduces effective diffusivity near the membranes and leads to an inhomogeneous spin magnetization distribution (the edge-enhancement effect). In this case, the signal reveals a quasi-two-compartment behavior and can be empirically modeled remarkably well by a biexponential function. The current results provide a framework for interpreting experimental MR data on various phenoma, including water diffusion in giant axons, metabolite diffusion in the brain, and hyperpolarized gas diffusion in lung airways. PMID:14523959

  16. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    SciTech Connect

    Martin, S; Carrillo, C; Horn, J

    2003-11-03

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges.

  17. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-28

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  18. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    SciTech Connect

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.

  19. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    DOE PAGESBeta

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  20. Blast induced subsidence in the craters of nuclear tests over coral

    SciTech Connect

    Burton, D.E.; Swift, R.P.; Glenn, H.D.; Bryan, J.B.

    1985-02-01

    The craters from high-yield nuclear tests at the Pacific Proving Grounds are very broad and shallow in comparison with the bowl-shaped craters formed in continental rock at the Nevada Test Site and elsewhere. Attempts to account for the differences quantitatively have been generally unsatisfactory. We have for the first time successfully modeled the Koa Event, a representative coral-atoll test. On the basis of plausible assumptions about the geology and about the constitutive relations for coral, we have shown that the size and shape of the Koa crater can be accounted for by subsidence and liquefaction phenomena. If future studies confirm these assumptions, it will mean that some scaling formulas based on data from the Pacific will have to be revised to avoid overestimating weapons effects in continental geology. 9 refs., 5 figs.

  1. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  2. Interferon γ-Induced Nuclear Interleukin-33 Potentiates the Release of Esophageal Epithelial Derived Cytokines

    PubMed Central

    Shan, Jing; Oshima, Tadayuki; Wu, Liping; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2016-01-01

    Background Esophageal epithelial cells are an initiating cell type in esophageal inflammation, playing an essential role in the pathogenesis of gastroesophageal reflux disease (GERD). A new tissue-derived cytokine, interleukin-33 (IL-33), has been shown to be upregulated in esophageal epithelial cell nuclei in GERD, taking part in mucosal inflammation. Here, inflammatory cytokines secreted by esophageal epithelial cells, and their regulation by IL-33, were investigated. Methods In an in vitro stratified squamous epithelial model, IL-33 expression was examined using quantitative RT-PCR, western blot, ELISA, and immunofluorescence. Epithelial cell secreted inflammatory cytokines were examined using multiplex flow immunoassay. IL-33 was knocked down with small interfering RNA (siRNA) in normal human esophageal epithelial cells (HEECs). Pharmacological inhibitors and signal transducers and activators of transcription 1 (STAT1) siRNA were used to explore the signaling pathways. Results Interferon (IFN)γ treatment upregulated nuclear IL-33 in HEECs. Furthermore, HEECs can produce various inflammatory cytokines, such as IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), regulated on activation normal T-cell expressed and presumably secreted (RANTES), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in response to IFNγ. Nuclear, but not exogenous IL-33, amplified IFN induction of these cytokines. P38 mitogen-activated protein kinase (MAPK) and janus protein tyrosine kinases (JAK)/STAT1 were the common signaling pathways of IFNγ-mediated induction of IL-33 and other cytokines. Conclusions Esophageal epithelial cells can actively participate in GERD pathogenesis through the production of various cytokines, and epithelial-derived IL-33 might play a central role in the production of these cytokines. PMID:26986625

  3. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction

    PubMed Central

    Dufresne, Sébastien S.; Boulanger-Piette, Antoine; Bossé, Sabrina; Frenette, Jérôme

    2016-01-01

    The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction. PMID:27547781

  4. Induced Radioactivity and Waste Classification of Reactor Zone Components of the Chernobyl Nuclear Power Plant Unit 1 After Final Shutdown

    SciTech Connect

    Bylkin, Boris K.; Davydova, Galina B.; Zverkov, Yuri A.; Krayushkin, Alexander V.; Neretin, Yuri A.; Nosovsky, Anatoly V.; Seyda, Valery A.; Short, Steven M.

    2001-10-15

    The dismantlement of the reactor core materials and surrounding structural components is a major technical concern for those planning closure and decontamination and decommissioning of the Chernobyl Nuclear Power Plant (NPP). Specific issues include when and how dismantlement should be accomplished and what the radwaste classification of the dismantled system would be at the time it is disassembled. Whereas radiation levels and residual radiological characteristics of the majority of the plant systems are directly measured using standard radiation survey and radiochemical analysis techniques, actual measurements of reactor zone materials are not practical due to high radiation levels and inaccessibility. For these reasons, neutron transport analysis was used to estimate induced radioactivity and radiation levels in the Chernobyl NPP Unit 1 reactor core materials and structures.Analysis results suggest that the optimum period of safe storage is 90 to 100 yr for the Unit 1 reactor. For all of the reactor components except the fuel channel pipes (or pressure tubes), this will provide sufficient decay time to allow unlimited worker access during dismantlement, minimize the need for expensive remote dismantlement, and allow for the dismantled reactor components to be classified as low- or medium-level radioactive waste. The fuel channel pipes will remain classified as high-activity waste requiring remote dismantlement for hundreds of years due to the high concentration of induced {sup 63}Ni in the Zircaloy pipes.

  5. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by I{kappa}B{alpha} degradation

    SciTech Connect

    Wei Li; Kwang, Jimmy; Wang Jin; Shi Lei; Yang Bing; Li Yongqing; Liu Jue

    2008-08-15

    The transcription factor NF-{kappa}B is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-{kappa}B in PCV2-infected PK15 cells. In PCV2-infected cells, NF-{kappa}B was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-{kappa}B p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of I{kappa}B{alpha} protein. We further demonstrated PCV2-induced activation of NF-{kappa}B and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-{kappa}B activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-{kappa}B activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.

  6. MiR-155 Knockout in Fibroblasts Improves Cardiac Remodeling by Targeting Tumor Protein p53-Inducible Nuclear Protein 1.

    PubMed

    He, Wangwei; Huang, He; Xie, Qiang; Wang, Zhiqiang; Fan, Yang; Kong, Bin; Huang, Dan; Xiao, Yali

    2016-07-01

    Cardiac remodeling caused by acute myocardial infarction (AMI) represents a major challenge for heart failure research. MiR-155 has been identified as a key mediator of cardiac inflammation and hypertrophy. In this study, we investigate the role of miR-155 in cardiac remodeling induced by AMI. We demonstrate that miR-155 expressed in cardiac fibroblasts is a potent contributor to cardiac remodeling. We reveal that in vivo, miR-155 knockout improves left ventricular function, reduces infarct size, and attenuates collagen deposition, whereas overexpression of miR-155 produces the opposite effects. MiR-155 knockout also inhibits cardiac fibroblast proliferation and differentiation into myofibroblasts. In addition, downregulation of tumor protein p53-inducible nuclear protein 1 (TP53INP1) by small interfering RNA reverses the effects of miR-155 knockout on cardiac fibroblasts. Our data reveal that knockout of miR-155 in cardiac fibroblasts improves cardiac remodeling by targeting TP53INP1, which may be a novel treatment strategy for cardiac remodeling. PMID:26589288

  7. Nuclear factor kappa B-inducing kinase and Ikappa B kinase-alpha signal skeletal muscle cell differentiation.

    PubMed

    Canicio, J; Ruiz-Lozano, P; Carrasco, M; Palacin, M; Chien, K; Zorzano, A; Kaliman, P

    2001-06-01

    Nuclear factor kappaB (NF-kappaB)-inducing kinase (NIK), IkappaB kinase (IKK)-alpha and -beta, and IkappaBalpha are common elements that signal NF-kappaB activation in response to diverse stimuli. In this study, we analyzed the role of this pathway during insulin-like growth factor II (IGF-II)-induced myoblast differentiation. L6E9 myoblasts differentiated with IGF-II showed an induction of NF-kappaB DNA-binding activity that correlated in time with the activation of IKKalpha, IKKbeta, and NIK. Moreover, the activation of IKKalpha, IKKbeta, and NIK by IGF-II was dependent on phosphatidylinositol 3-kinase, a key regulator of myogenesis. Adenoviral transduction with the IkappaBalpha(S32A/S36A) mutant severely impaired both IGF-II-dependent NF-kappaB activation and myoblast differentiation, indicating that phosphorylation of IkappaBalpha at Ser-32 and Ser-36 is an essential myogenic step. Adenoviral transfer of wild-type or kinase-deficient forms of IKKalpha or IKKbeta revealed that IKKalpha is required for IGF-II-dependent myoblast differentiation, whereas IKKbeta is not essential for this process. Finally, overexpression of kinase-proficient wild-type NIK showed that the activation of NIK is sufficient to generate signals that trigger myogenin expression and multinucleated myotube formation in the absence of IGF-II. PMID:11279241

  8. Rosmarinic Acid Attenuates Sodium Taurocholate-Induced Acute Pancreatitis in Rats by Inhibiting Nuclear Factor-κB Activation.

    PubMed

    Fan, Yu-Ting; Yin, Guo-Jian; Xiao, Wen-Qin; Qiu, Lei; Yu, Ge; Hu, Yan-Ling; Xing, Miao; Wu, De-Qing; Cang, Xiao-Feng; Wan, Rong; Wang, Xing-Peng; Hu, Guo-Yong

    2015-01-01

    Rosmarinic Acid (RA), a caffeic acid ester, has been shown to exert anti-inflammation, anti-oxidant and antiallergic effects. Our study aimed to investigate the effect of RA in sodium taurocholate ( NaTC )-induced acute pancreatitis, both in vivo and in vitro. In vivo, RA (50 mg/kg) was administered intraperitoneally 2 h before sodium taurocholate injection. Rats were sacrificed 12 h, 24 h or 48 h after sodium taurocholate injection. Pretreatment with RA significantly ameliorated pancreas histopathological changes, decreased amylase and lipase activities in serum, lowered myeloperoxidase activity in the pancreas, reduced systematic and pancreatic interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and inhibited NF-κB translocation in pancreas. In vitro, pretreating the fresh rat pancreatic acinar cells with 80 μ mol/L RA 2 h before 3750 nmol/L sodium taurocholate or 10 ng/L TNF-α administration significantly attenuated the reduction of isolated pancreatic acinar cell viability and inhibited the nuclear activation and translocation of NF-κB. Based on our findings, RA appears to attenuate damage in sodium taurocholate-induced acute pancreatitis and reduce the release of inflammatory cytokines by inhibiting the activation of NF-κB. These findings might provide a basis for investigating the therapeutic role of RA in managing acute pancreatits. PMID:26364660

  9. Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study.

    PubMed

    Lusczek, Elizabeth R; Lexcen, Daniel R; Witowski, Nancy E; Determan, Charles; Mulier, Kristine E; Beilman, Greg

    2014-01-01

    Hemorrhagic shock is a leading cause of trauma-related death in war and is associated with significant alterations in metabolism. Using archived serum samples from a previous study, the purpose of this work was to identify metabolic changes associated with induced hypothermia in a porcine model of hemorrhagic shock. Twelve Yorkshire pigs underwent a standardized hemorrhagic shock and resuscitation protocol to simulate battlefield injury with prolonged evacuation to definitive care in cold environments. Animals were randomized to receive either hypothermic (33°C) or normothermic (39°C) limited resuscitation for 8 h, followed by standard resuscitation. Proton nuclear magnetic resonance spectroscopy was used to evaluate serum metabolites from these animals at intervals throughout the hypothermic resuscitation period. Animals in the hypothermic group had a significantly higher survival rate (P = 0.02) than normothermic animals. Using random forest analysis, a difference in metabolic response between hypothermic and normothermic animals was identified. Hypothermic resuscitation was characterized by decreased concentrations of several muscle-related metabolites including taurine, creatine, creatinine, and amino acids. This study suggests that a decrease in muscle metabolism as a result of induced hypothermia is associated with improved survival. PMID:24052038

  10. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB

    PubMed Central

    Li, Yuan; Hu, Yanhui; Dong, Congcong; Lu, Hongchao; Zhang, Chang; Hu, Qi; Li, Shifeng; Qin, Heng; Li, Zhong; Wang, Yubang

    2016-01-01

    Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters. PMID:26745512

  11. Sulfasalazine prevents the increase in TGF-β, COX-2, nuclear NFκB translocation and fibrosis in CCl4-induced liver cirrhosis in the rat.

    PubMed

    Chávez, E; Castro-Sánchez, L; Shibayama, M; Tsutsumi, V; Moreno, M G; Muriel, P

    2012-09-01

    It has been demonstrated that this sulfasalazine (SF) inhibits the nuclear factor κB (NFκB) pathway, which regulates important genes during inflammation and immune answer. The aim of this work was to evaluate the effects of SF on carbon tetrachloride (CCl(4))-induced liver fibrosis. We formed the following experimental groups of rats: controls, damage induced by chronic CCl(4) (0.4 g/kg, intraperitoneally, three times a week for 8 weeks) administration and CCl(4) + SF (100 mg/kg/day, postoperatively for 8 weeks) administration. We determined the activities of alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GTP), cyclooxygenase (COX)-1 and COX-2, lipid peroxidation, glutathione levels, collagen content, expression of transforming growth factor-β (TGF-β) and nuclear translocation of NFκB. SF was capable to inhibit the ALT and γ-GTP elevated levels induced with the CCl(4) administration. SF had antioxidant properties, prevented the lipid peroxidation and the imbalance of reduced and oxidized glutathione produced by CCl(4). Importantly, SF blocked the accumulation of collagen in the liver, the expression of TGF-β, the nuclear translocation of NFκB and the activity of COX-2, all induced with the administration of CCl(4) in the rat. These results show that SF has strong antifibrotic properties because of its antioxidant properties and its ability to prevent nuclear translocation of NFκB and consequently the expression of TGF-β and the activity of COX-2. PMID:22381741

  12. Reaction mechanism studies of heavy ion induced nuclear reactions. Annual progress report

    SciTech Connect

    Mignerey, A.C.

    1981-07-01

    The research summarized in this report was performed during the period August 1, 1980 to June 30, 1981. The experimental emphasis in the heavy-ion-induced reaction studies continues to be discrete charge and mass resolution of all projectile-like fragments measured. In an experiment performed at the Argonne National Laboratory Superconducting LINAC, the /sup 37/Cl beam was used to bombard targets of /sup 40/Ca and /sup 209/Bi. This experiment is compared to results of our previous /sup 56/Fe-induced experiments. Attempts were made to extend the /sup 56/Fe reactions to lower energies at the Lawrence Berkeley Laboratory SuperHILAC. In a desire to improve the mass and charge resolution of previous experiments we tried a time-of-flight telescope employing both a channel-plate start and stop signal. This was backed by an ion chamber ..delta..E and silicon E detector. The operational difficulties encountered are being corrected and we hope to have a reliable system ready this fall. Studies of target fragmentation in /sup 4/He-induced reactions are continuing via experiments and model calculations. The program which began at the University of Maryland Cyclotron has been continued at the Indiana University Cyclotron with 120 and 200 MeV /sup 4/He incident on /sup 12/C and /sup 27/Al targets. While the Indiana data are currently being analyzed and no results are yet available, a summary of the Maryland work is given. Also presented in this section are the model calculations used to describe the data. 28 refs.

  13. Nuclear Factor-Kappa B Inhibition Can Enhance Apoptosis of Differentiated Thyroid Cancer Cells Induced by 131I

    PubMed Central

    Tan, Jian; Xu, Ke; Jia, Qiang; Zheng, Wei

    2012-01-01

    Objective To evaluate changes of nuclear factor-kappa B (NF-κB) during radioiodine 131 (131I) therapy and whether NF-κB inhibition could enhance 131I-induced apoptosis in differentiated thyroid cancer (DTC) cells in a synergistic manner. Methods Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082) or by p65 siRNA transfection. Methyl-thiazolyl-tetrazolium assay was performed for cell viability assessment. DNA-binding assay, luciferase reporter assay, and Western blot were adopted to determine function and expression changes of NF-κB. Then NF-κB regulated anti-apoptotic factors XIAP, cIAP1, and Bcl-xL were measured. Apoptosis was analyzed by Western blot for caspase 3 and PARP, and by flow cytometry as well. An iodide uptake assay was performed to determine whether NF-κB inhibition could influence radioactive iodide uptake. Results The methyl-thiazolyl-tetrazolium assay showed significant decrease of viable cells by combination therapy than by mono-therapies. The DNA-binding assay and luciferase reporter assay showed enhanced NF-κB function and reporter gene activities due to 131I, yet significant suppression was achieved by NF-κB inhibition. Western blot proved 131I could increase nuclear NF-κB concentration, while NF-κB inhibition reduced NF-κB concentration. Western blot also demonstrated significant up-regulation of XIAP, cIAP1, and Bcl-xL after 131I therapy. And inhibition of NF-κB could significantly down-regulate these factors. Finally, synergism induced by combined therapy was displayed by significant enhancements of cleaved caspase 3 and PARP from Western blot, and of Annexin V positively staining from flow cytometry. The iodine uptake assay did not show significant changes when NF-κB was inhibited. Conclusion We demonstrated that 131I could induce NF-κB activation, which would attenuate 131I efficacy in DTC cells. NF-κB inhibition by Bay 11-7082 or by p65 siRNA transfection was

  14. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  15. [Reaction mechanism studies of heavy ion induced nuclear reactions]. Annual progress report, [January 1992--February 1993

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  16. Oxidative stress induces nuclear translocation of C-terminus of {alpha}-synuclein in dopaminergic cells

    SciTech Connect

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu . E-mail: pbchan@bjsap.org

    2006-03-31

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of {alpha}-synuclein. However, the role of {alpha}-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the {alpha}-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 {mu}M H{sub 2}O{sub 2} treatment induced the translocation of {alpha}-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of {alpha}-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of {alpha}-synuclein, while full-length {alpha}-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no {beta}-sheet structures. Our present results indicated that 200 {mu}M H{sub 2}O{sub 2} treatment induces the intranuclear accumulation of the C-terminal fragment of {alpha}-synuclein in dopaminergic neurons, whose role remains to be investigated.

  17. Experimental study to explore the 8Be-induced nuclear reaction via the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Wen, Qun-Gang; Li, Cheng-Bo; Zhou, Shu-Hua; Irgaziev, Bakhadir; Fu, Yuan-Yong; Spitaleri, Claudio; La Cognata, Marco; Zhou, Jing; Meng, Qiu-Ying; Lamia, Livio; Lattuada, Marcello

    2016-03-01

    To explore a possible indirect method for 8Be induced astrophysical reactions, the 8Be=(8Be+n ) cluster structure has been studied via the Trojan horse method. For the first time a 8Be nucleus having an ultrashort lifetime is studied by the Trojan horse method and a 9Be nucleus in the ground state is used for this purpose. The 9Be nucleus is assumed to have a (8Be+n ) cluster structure and used as a Trojan horse nucleus. The 8Be nucleus acts as a participant, while the neutron is a spectator to the virtual 8Be+d →α +6Li reaction via the 3-body reaction 8Be+d →α +6Li+n . The experimental neutron momentum distribution inside 9Be has been reconstructed. The agreement between the experimental momentum distribution and the theoretical one indicates that a (8Be+n ) cluster structure inside 9Be is very likely. Therefore, the experimental study of 8Be induced reactions, for example, the measurement of the 8Be+α →12C reaction proceeding through the Hoyle state, is possible.

  18. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    SciTech Connect

    Cicala, Claudia . E-mail: ccicala@nih.gov; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-02-05

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs.

  19. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    SciTech Connect

    Hoover, Andrew S; Rudy, Cliff R; Tobin, Steve J; Charlton, William S; Stafford, A; Strohmeyer, D; Saavadra, S

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  20. Influence of nuclear structure on the formation of radiation-induced lethal lesions.

    PubMed

    Friedman, Daniel A; Tait, Lauren; Vaughan, Andrew T M

    2016-05-01

    Purpose The rejoining of fragmented nuclear DNA caused by ionizing radiation may lead to lethal chromosome rearrangements, such as rings or dicentrics. The clinically useful linear quadratic relationship between dose and cell survival has been interpreted as the generation of lethal lesions secondary to damage occurring in two separate chromosomes simultaneously (α component), or as potentially repairable separate events (β component). Here, the generation of such lesions is discussed, synthesizing existing knowledge with new insights gleaned from spatial proximity data made possible by high-throughput sequencing of chromosome conformation capture experiments. Over a range of several Mbp, the linear DNA strand is organized as a fractal globule generating multiple sites of contact that may facilitate deletions or inversions if the points of contact are damaged. On a larger scale, transcriptionally active euchromatin occupies a physically identifiable space separate from inactive areas and is preferentially susceptible to free radical attack after irradiation. Specific transcriptional programs link genomic locations within that space, potentially enhancing their interaction if subject to simultaneous fragmentation by a single radiation event. Conclusions High throughput spatial analysis of the factors that control chromosome proximity has the potential to better describe the formation of the lethal chromosome aberrations that kill irradiated cells. PMID:26917327

  1. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Kadmensky, S. S.

    2008-11-01

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a nonevaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  2. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  3. Passivity degradation of nuclear steam generator tubing alloy induced by Pb contamination at high temperature

    NASA Astrophysics Data System (ADS)

    Lu, B. T.; Luo, J. L.; Lu, Y. C.

    2012-10-01

    Effects of Pb contamination on the passivity of a Ni-based alloy (UNS N06690) in a simulated crevice chemistry of steam generator with near-neutral pH at 300 °C are elucidated using electrochemical measurements and surface analysis techniques. The experimental observations reveal that Pb impurity can enter anodic film, which results in substantial changes in the films structure via hindering the dehydration during the passivation and retarding the formation of spinel oxides. The presence of Pb-contamination can also increase hydrogen content in anodic film. Finally, the mechanism of passivity degradation induced by Pb contamination is described on the basis of the experimental data and established theory.

  4. Activation cross sections of proton induced nuclear reactions on gold up to 65MeV.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A

    2016-07-01

    Activation cross sections of proton induced reactions on gold for production of (197m,197g,195m,195g, 193m,193g,192)Hg, (196m,196g(cum),195g(cum),194,191(cum))Au, (191(cum))Pt and (192)Ir were measured up to 65MeV proton energy, some of them for the first time. The new data are in acceptably good agreement with the recently published earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the TALYS 1.6 (results in TENDL-2015 on-line library) and EMPIRE 3.2 code. PMID:27156194

  5. The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2

    PubMed Central

    Blackwell, Ernest; Kim, Hye-Jin N; Stone, David E

    2007-01-01

    Background Like mammalian MAP kinases, the mating-specific Fus3 MAPK of yeast accumulates in the nuclei of stimulated cells. Because Fus3 does not appear to be subjected to active nucleo-cytoplasmic transport, it is not clear how its activation by mating pheromone effects the observed change in its localization. One possibility is that the activation of Fus3 changes its affinity for nuclear and cytoplasmic tethers. Results Dig1, Dig2, and Ste12 are nuclear proteins that interact with Fus3. We found that the pheromone-induced nuclear accumulation of a Fus3-GFP reporter is reduced in cells lacking Dig1 or Dig2, whereas Fus3T180AY182A-GFP localization was unaffected by the absence of these proteins. This suggests that Dig1 and Dig2 contribute to the retention of phosphorylated Fus3 in the nucleus. Moreover, overexpression of Ste12 caused the hyper-accumulation of Fus3-GFP (but not Fus3T180AY182A-GFP) in the nuclei of pheromone-treated cells, suggesting that Ste12 also plays a role in the nuclear retention of phosphorylated Fus3, either by directly interacting with it or by transcribing genes whose protein products are Fus3 tethers. We have previously reported that overexpression of the Msg5 phosphatase inhibits the nuclear localization of Fus3. Here we show that this effect depends on the phosphatase activity of Msg5, and provide evidence that both nuclear and cytoplasmic Msg5 can affect the localization of Fus3. Conclusion Our data are consistent with a model in which the pheromone-induced phosphorylation of Fus3 increases its affinity for nuclear tethers, which contributes to its nuclear accumulation and is antagonized by Msg5. PMID:17963515

  6. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  7. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  8. Kinetic evidence for the formation of discrete 1,4-dehydrobenzene intermediates. Trapping by inter- and intramolecular hydrogen atom transfer and observation of high-temperature CIDNP (chemically induced dynamic nuclear polarization). [Chemically induced dynamic nuclear polarization

    SciTech Connect

    Lockhart, T.P.; Comita, P.B.; Bergman, R.G.

    1981-07-15

    Upon being heated, alkyl-substituted cis-1,2-diethynyl olefins undergo cyclization to yield reactive 1,4-dehydrobenzenes; the products isolated may be derived from either unimolecular or bimolecular reactions of the intermediate. (Z)-4,5-Diethynyl-4-octene (4) undergoes rearrangement to yield 2,3-di-n-propyl-1,4-dehydrobenzene (17). Solution pyrolysis of 4 in inert aromatic solvents produces three unimolecular products, (Z)-dodeca-4,8-diyn-6-ene (7), benzocycloctene (9), and o-allyl-n-propylbenzene (10), in high yield. When 1,4-cyclohexadiene is added to the pyrolysis solution as a trapping agent high yields of the reduced product o-di-n-propylbenzene (12) are obtained. The kinetics of solution pyrolysis of 4 in the presence and absence of trapping agent pyl-1,4-dehydrobenzene is a discrete intermediate on the pathway leading to products. When the reaction was run in the heated probe of an NMR spectrometer, chemically induced dynamic nuclear polarization was observed in 10. This observation, along with kinetic and chemical trapping evidence, indicates the presence of two additional intermediates, formed from 17 by sequential intramolecular (1,5) hydrogen transfer, on the pathway to products. The observation of CIDNP, coupled with the reactivity exhibited by 17 and the other two intermediates, implicates a biradical description of these molecules.

  9. The chemokine-like factor 1 induces asthmatic pathological change by activating nuclear factor-κB signaling pathway.

    PubMed

    Li, Gang; Li, Guang-yan; Wang, Zhen-zhen; Ji, Hai-jie; Wang, Dong-mei; Hu, Jin-feng; Yuan, Yu-he; Liu, Gang; Chen, Nai-hong

    2014-05-01

    CKLF1, which exhibits chemotactic activities on a wide spectrum of leukocytes, is up-regulated during the progress of asthma. It plays a vital role in the pathogenesis of pulmonary disease. Here, we report that CKLF1 has the capability to activate the NF-κB signaling pathway leading to the pathological change in the lung. The HEK293-CCR4 cell line, which expressed CCR4 stably, was established and screened. Western blot analysis was performed to determine the expression of NF-κB in HEK293-CCR4 and A549 cells following the C27 (10μg/ml) added in each well at different times. These results showed that C27 (10μg/ml) time-dependently induced the accumulation of NF-κB in the nucleus of HEK293-CCR4 and A549 cells. In addition, CKLF1 plasmid (100μg) injection and electroporation led to the asthmatic change in the lung in mice as shown by HE and PAS staining. Furthermore, it was confirmed that CKLF1 significantly up-regulated the p-IκB expression, decreased the IκB expression, and suppressed the NF-κB expression in the cytoplasm of pulmonary tissue in vivo study. Intriguingly, an enhanced nuclear accumulation of NF-κB was observed in the lung of pCDI-CKLF1 electroporated mice, compared to that in the sham group. Therefore, the NF-κB signaling pathway was involved in the asthmatic change induced by CKLF1, among which CCR4 might play a crucial role. PMID:24583145

  10. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network.

    PubMed

    Adachi, Tetsuo; Tanaka, Hiromasa; Nonomura, Saho; Hara, Hirokazu; Kondo, Shin-ichi; Hori, Masaru

    2015-02-01

    Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Nonthermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by indirect treatment with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare the PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, downregulated the expression of the antiapoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells. PMID:25433364

  11. Protective role of nuclear factor erythroid 2-related factor 2 in the hemorrhagic shock-induced inflammatory response

    PubMed Central

    ZHAO, HAIGE; HAO, SIJING; XU, HONGFEI; MA, LIANG; ZHANG, ZHENG; NI, YIMING; YU, LUYANG

    2016-01-01

    Hemorrhagic shock (HS) following trauma or major surgery significantly contributes to mortality. However, the mechanisms through which HS activates the inflammatory response are not yet fully understood. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2), a bZIP transcription factor, is a master regulator of robust cytoprotective defenses. The present study investigated the role of Nrf2 in the pathophysiology of HS. Nrf2 expression in peripheral leukocytes obtained from patients with surgery-associated hemorrhage subjected to resuscitation treatment (termed HS patients) or healthy donors was examined by RT-qPCR. A marked increase in Nrf2 expression was detected in the leukocytes obtained from the HS patients, which indicates a correlation between Nrf2 expression and the development of HS. Wild-type (WT; Nrf2+/+) and Nrf2-deficient [Nrf2−/− or Nrf2-knockout (KO)] mice were subjected to surgery to induce HS. Systemic inflammation was significantly elevated in the Nrf2-KO mice compared with the WT mice following HS, as assessed by an increase in serum cytokine levels [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], as well as high-mobility group box 1 protein (HMGB1) expression. The Nrf2-KO mice exhibited more severe lung and liver injury following HS as evidenced by increased tissue damage, increased myeloperoxidase (MPO) activity and the increased production of pro-inflammatory cytokines. Additionally, Nrf2 deficiency augmented cytokine production induced by the exposure of peritoneal mouse macrophages to lipopolysaccha-ride (LPS) following HS. Taken together, these results suggest that Nrf2 is a critical host factor which limits immune dysregulation and organ injury following HS. PMID:26935388

  12. Protective role of nuclear factor erythroid 2-related factor 2 in the hemorrhagic shock-induced inflammatory response.

    PubMed

    Zhao, Haige; Hao, Sijing; Xu, Hongfei; Ma, Liang; Zhang, Zheng; Ni, Yiming; Yu, Luyang

    2016-04-01

    Hemorrhagic shock (HS) following trauma or major surgery significantly contributes to mortality. However, the mechanisms through which HS activates the inflammatory response are not yet fully understood. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2), a bZIP transcription factor, is a master regulator of robust cytoprotective defenses. The present study investigated the role of Nrf2 in the pathophysiology of HS. Nrf2 expression in peripheral leukocytes obtained from patients with surgery-associated hemorrhage subjected to resuscitation treatment (termed HS patients) or healthy donors was examined by RT-qPCR. A marked increase in Nrf2 expression was detected in the leukocytes obtained from the HS patients, which indicates a correlation between Nrf2 expression and the development of HS. Wild-type (WT; Nrf2+/+) and Nrf2-deficient [Nrf2-/- or Nrf2‑knockout (KO)] mice were subjected to surgery to induce HS. Systemic inflammation was significantly elevated in the Nrf2-KO mice compared with the WT mice following HS, as assessed by an increase in serum cytokine levels [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], as well as high-mobility group box 1 protein (HMGB1) expression. The Nrf2-KO mice exhibited more severe lung and liver injury following HS as evidenced by increased tissue damage, increased myeloperoxidase (MPO) activity and the increased production of pro-inflammatory cytokines. Additionally, Nrf2 deficiency augmented cytokine production induced by the exposure of peritoneal mouse macrophages to lipopolysaccharide (LPS) following HS. Taken together, these results suggest that Nrf2 is a critical host factor which limits immune dysregulation and organ injury following HS. PMID:26935388

  13. Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments.

    PubMed Central

    Ryerson, DE; Heath, MC

    1996-01-01

    It is often claimed that programmed cell death (pcd) exists in plants and that a form of pcd known as the hypersensitive response is triggered as a defense mechanism by microbial pathogens. However, in contrast to animals, no feature in plants universally identifies or defines pcd. We have looked for a hallmark of pcd in animal cells, namely, DNA cleavage, in plant cells killed by infection with incompatible fungi or by abiotic means. We found that cell death triggered in intact leaves of two resistant cowpea cultivars by the cowpea rust fungus is accompanied by the cleavage of nuclear DNA into oligonucleosomal fragments (DNA laddering). Terminal deoxynucleotidyl transferase-mediated dUTP nick end in situ labeling of leaf sections showed that fungus-induced DNA cleavage occurred only in haustorium-containing cells and was detectable early in the degeneration process. Such cytologically detectable DNA cleavage was also observed in vascular tissue of infected and uninfected plants, but no DNA laddering was detected in the latter. DNA laddering was triggered by [greater than or equal to]100 mM KCN, regardless of cowpea cultivar, but not by physical cell disruption or by concentrations of H2O2, NaN3, CuSO4, or ZnCl2 that killed cowpea cells at a rate similar to that of ladder-inducing KCN concentrations. These and other results suggest that the hypersensitive response to microbial pathogens may involve a pcd with some of the characteristics of animal apoptosis and that DNA cleavage is a potential indicator of pcd in plants. PMID:12239388

  14. Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation.

    PubMed

    Yu, Wanfeng; He, Xin; Ni, Ying; Ngeow, Joanne; Eng, Charis

    2015-01-01

    Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias. PMID:25149476

  15. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    PubMed Central

    Li, Ying-Hua; Yan, Zhong-Qun; Brauner, Annelie; Tullus, Kjell

    2002-01-01

    Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10-4–10-10 M) and dexamethasone (10-4–10-6 M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD. PMID:12323081

  16. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induction by hypoxia and hypoxia-inducible factors.

    PubMed

    Veeranna, Ravindra P; Haque, Muzammel; Davis, David A; Yang, Min; Yarchoan, Robert

    2012-01-01

    Hypoxia and hypoxia-inducible factors (HIFs) play an important role in the Kaposi's sarcoma-associated herpesvirus (KSHV) life cycle. In particular, hypoxia can activate lytic replication of KSHV and specific lytic genes, including the replication and transcription activator (RTA), while KSHV infection in turn can increase the levels and activity of HIFs. In the present study, we show that hypoxia increases the levels of mRNAs encoding KSHV latency-associated nuclear antigen (LANA) in primary effusion lymphoma (PEL) cell lines and also increases the levels of LANA protein. Luciferase reporter assays in Hep3B cells revealed a moderate activation of the LANA promoter region by hypoxia as well as by cotransfection with degradation-resistant HIF-1α or HIF-2α expression plasmids. Computer analysis of a 1.2-kb sequence upstream of the LANA translational start site identified six potential hypoxia-responsive elements (HRE). Sequential deletion studies revealed that much of this activity was mediated by one of these HREs (HRE 4R) oriented in the 3' to 5' direction and located between the constitutive (LTc) and RTA-inducible (LTi) mRNA start sites. Site-directed mutation of this HRE substantially reduced the response to both HIF-1α and HIF-2α in a luciferase reporter assay. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated binding of both HIF-1α and HIF-2α to this region. Also, HIF-1α was found to associate with RTA, and HIFs enhanced the activation of LTi by RTA. These results provide evidence that hypoxia and HIFs upregulate both latent and lytic KSHV replication and play a central role in the life cycle of this virus. PMID:22090111

  17. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration. PMID:27130522

  18. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    SciTech Connect

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  19. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  20. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

    PubMed Central

    Semenza, G L; Wang, G L

    1992-01-01

    We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis. Images PMID:1448077

  1. Nuclear extrusion precedes discharge of genomic DNA fibers during tunicamycin-induced neutrophil extracellular trap-osis (NETosis)-like cell death in cultured human leukemia cells.

    PubMed

    Nakayama, Tomofumi; Saitoh, Noriko; Morotomi-Yano, Keiko; Yano, Ken-Ichi; Nakao, Mitsuyoshi; Saitoh, Hisato

    2016-05-01

    We previously reported that the nucleoside antibiotic tunicamycin (TN), a protein glycosylation inhibitor triggering unfolded protein response (UPR), induced neutrophil extracellular trap-osis (NETosis)-like cellular suicide and, thus, discharged genomic DNA fibers to extracellular spaces in a range of human myeloid cell lines under serum-free conditions. In this study, we further evaluated the effect of TN on human promyelocytic leukemia HL-60 cells using time-lapse microscopy. Our assay revealed a previously unappreciated early event induced by TN-exposure, in which, at 30-60 min after TN addition, the cells extruded their nuclei into the extracellular space, followed by discharge of DNA fibers to form NET-like structures. Intriguingly, neither nuclear extrusion nor DNA discharge was observed when cells were exposed to inducers of UPR, such as brefeldin A, thapsigargin, or dithiothreitol. Our findings revealed novel nuclear dynamics during TN-induced NETosis-like cellular suicide in HL-60 cells and suggested that the toxicological effect of TN on nuclear extrusion and DNA discharge was not a simple UPR. PMID:26888435

  2. Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish.

    PubMed

    Botelho, R G; Monteiro, S H; Christofoletti, C A; Moura-Andrade, G C R; Tornisielo, V L

    2015-11-01

    A rapid and sensitive method using liquid chromatography coupled with mass spectrometry triple quadrupole direct aqueous injection for analysis of atrazine and ametrine herbicides in surface waters was developed. According to the validation method, water samples from six different locations in the Piracicaba River were collected monthly from February 2011 to January 2012 and injected into a liquid chromatographer/dual mass spectrometer without the need for sample extraction. The method was validated and shown to be precise and accurate; limits of detection and quantification were 0.07 and 0.10 µg L(-1) for atrazine and 0.09 and 0.14 µg L(-1) for ametrine. During the sampling period, concentrations of atrazine ranged from 0.11 to 1.92 µg L(-1) and ametrine from 0.25 to 1.44 µg L(-1). After analysis of the herbicides, Danio rerio were exposed a range of concentrations found in the river water to check the induction of micronuclei and nuclear abnormalities (NAs) in erythrocytes. Concentrations of atrazine and ametrine >1.0 and 1.5 µg L(-1), respectively, induced MN formation in D. rerio. Ametrine was shown to be more genotoxic to D. rerio because a greater incidence of NAs was observed compared with atrazine. Therefore, environmentally relevant concentrations of atrazine and ametrine found in the Piracicaba River are dangerous to the aquatic biota. PMID:26081367

  3. Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients.

    PubMed

    Saadi, Houda; Seillier, Marion; Sandi, Maria José; Peuget, Sylvain; Kellenberger, Christine; Gravis, Gwenaëlle; Dusetti, Nelson J; Iovanna, Juan L; Rocchi, Palma; Amri, Mohamed; Carrier, Alice

    2013-01-01

    Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) plays an important role during cell stress response in synergy with the potent "genome-keeper" p53. In human, the gene encoding TP53INP1 is expressed at very high level in some pathological situations, such as inflammation and prostate cancer (PC). TP53INP1 overexpression in PC seems to be a worse prognostic factor, particularly predictive of biological cancer relapse, making TP53INP1 a relevant specific target for molecular therapy of Castration Resistant (CR) PC. In that context, detection of TP53INP1 in patient biological fluids is a promising diagnostic avenue. We report here successful development of a new Enzyme-Linked Immunosorbent Assay (ELISA) detecting TP53INP1, taking advantage of molecular tools (monoclonal antibodies (mAbs) and recombinant proteins) generated in the laboratory during the course of basic functional investigations devoted to TP53INP1. The ELISA principle is based on a sandwich immunoenzymatic system, TP53INP1 protein being trapped by a first specific mAb coated on microplate then recognized by a second specific mAb. This new assay allows specific detection of TP53INP1 in serum of several PC patients. This breakthrough paves the way towards investigation of a large cohort of patients and assessment of clinical applications of TP53INP1 dosage. PMID:24600558

  4. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    PubMed

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  5. Studies of a nuclear matrix protein restricted to normal brain cells and lead-induced intranuclear inclusion bodies of kidney

    SciTech Connect

    Shelton, K.; Egle, P.; Redford, K.; Bigbee, J.

    1986-05-01

    A nuclear matrix protein, p32/6.3, with an unusual tissue distribution, has been identified. Protein from 21 tissues was surveyed by immunoprobing Western blots. In normal adult rats p32/6.3 is found only in grey matter from the cerebrum and the cerebellum, occurring in both neurons and astrocytes. Other brain cell types have not been examined. The protein appears to be developmentally regulated. It is detectable in the brain within a few days after birth and reaches adult levels within one to two weeks. Brain p32/6.3 has been found in all animals tested including rat, mouse, dog, cow, pig, chicken and human. This conservation indicates a fundamental role for p32/6.3 in the nucleus of brain cells. Possible functions for p32/6.3 may be indicated by a second novel occurrence. Chronic lead poisoning characteristically induces intranuclear inclusion bodies in the cells lining kidney proximal tubules. p32/6.3 is a major constituent of these inclusion bodies. They are also rich in lead and other metals including calcium, iron, zinc, copper and cadmium. These diverse observations suggest that p32/6.3 may have a role in metal homeostasis in the brain of normal animals.

  6. MicroRNA-205 promotes the tumorigenesis of nasopharyngeal carcinoma through targeting tumor protein p53-inducible nuclear protein 1

    PubMed Central

    NIE, GUOHUI; DUAN, HONGFANG; LI, XIAOQING; YU, ZHENDONG; LUO, LIANG; LU, RUIJING; JI, ZILIANG; ZHANG, WEI

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a common type of cancer in southern China, miRNAs have been shown to be involved in the tumorigenesis of multiple cancer types. The present study aimed to explore the potential role of miR-205 in NPC. Reverse transcription quantitative polymerase chain reaction was used to determine the expression levels of miR-205 in 20 fresh NPC specimens and 20 normal nasopharyngeal tissues. The function of miR-205 in the proliferation, migration, invasion and apoptosis of NPC-derived cells was detected by MTT assay, colony formation assay, wound healing assay, Transwell assay and flow cytometry. Furthermore, a target gene of miR-205 was identified using the luciferase reporter assay. The expression of miR-205 was increased in NPC tissues compared with that in normal tissues. Overexpression of miR-205 was found to promote the proliferation, migration and invasion of NPC-derived cells, while apoptosis was suppressed. Tumor protein p53-inducible nuclear protein 1 was identified as a target gene of miR-205. Overall, the present study demonstrated that miR-205 may function as an oncogene in NPC tumorigenesis. PMID:26252115

  7. Epigenetic re-programming of the Germ Cell Nuclear Factor gene is required for proper differentiation of induced pluripotent cells

    PubMed Central

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Zwaka, Thomas P.; Cooney, Austin J.

    2013-01-01

    Somatic cells have been reprogrammed into induced pluripotent stem (iPS) cells that recapitulate the pluripotent nature of embryonic stem (ES) cells. Reduced pluripotency and variable differentiation capacities have hampered progress with this technology for applications in regeneration medicine. We have previously shown that Germ Cell Nuclear Factor (Gcnf) is required for the repression of pluripotency genes during ES cell differentiation and embryonic development. Here we report that iPS cell lines, in which the Gcnf gene was properly re-programmed, allowing expression of Gcnf, repress pluripotency genes during subsequent differentiation. In contrast, iPS clones in which the Gcnf gene was not re-programmed maintained pluripotency gene expression during differentiation and did not differentiate properly either in vivo or in vitro. These mal-reprogrammed cells re-capitulated the phenotype of Gcnf knock out (Gcnf−/−) ES cells. Re-introduction of Gcnf into either the Gcnf negative iPS cells or the Gcnf−/− ES cells, rescued repression of Oct4 during differentiation. Our findings establish a key role for Gcnf as a regulator of iPS cell pluripotency gene expression. It also demonstrates that reactivation of the Gcnf gene may serve as a marker to distinguish completely re-programmed iPS cells from incompletely pluripotent cells, which would make therapeutic use of iPS cells safer and more practical as it would reduce the oncogenic potential of iPS cells. PMID:23495137

  8. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    PubMed Central

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  9. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells.

    PubMed

    Kalchschmidt, Jens S; Bashford-Rogers, Rachael; Paschos, Kostas; Gillman, Adam C T; Styles, Christine T; Kellam, Paul; Allday, Martin J

    2016-05-30

    Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma. PMID:27217538

  10. Red wine extract decreases pro-inflammatory markers, nuclear factor-κB and inducible NOS, in experimental metabolic syndrome.

    PubMed

    Janega, Pavol; Klimentová, Jana; Barta, Andrej; Kovácsová, Mária; Vranková, Stanislava; Cebová, Martina; Čierna, Zuzana; Matúsková, Zuzana; Jakovljevic, Vladimir; Pechánová, Olga

    2014-09-01

    We aimed to analyse the effects of alcohol-free Alibernet red wine extract (AWE) on nitric oxide synthase (NOS) activity and pro-inflammatory markers such as nuclear factor-κB (NFκB) and inducible NOS (iNOS) protein expression in experimental metabolic syndrome. Young 6 week-old male Wistar Kyoto (WKY) and obese, spontaneously hypertensive rats (SHR/N-cp) were divided into control groups and groups treated with AWE (24.2 mg per kg per day) for 3 weeks (n = 6 in each group). Total NOS activity and endothelial NOS (eNOS), iNOS and NFκB (p65) protein expressions were determined in the heart left ventricle and aorta by Western blot and immunohistochemical analysis. All parameters investigated significantly increased in the aorta of SHR/N-cp rats. Pro-inflammatory markers such as NFκB and iNOS were increased in the left ventricle as well. AWE treatment did not affect total NOS activity and eNOS expression in the aorta; however, it was able to decrease NFκB and iNOS protein expression in both the left ventricle and aorta. In conclusion, in the cardiovascular system, Alibernet red wine extract decreased NFκB and iNOS protein expressions elevated as a consequence of developed metabolic syndrome. This effect may represent one of the protective, anti-inflammatory properties of Alibernet red wine polyphenols on cardiovascular risk factors related to metabolic syndrome. PMID:25051230

  11. Nuclear-translocated endostatin downregulates hypoxia inducible factor-1α activation through interfering with Zn(II) homeostasis.

    PubMed

    Guo, Lifang; Chen, Yang; He, Ting; Qi, Feifei; Liu, Guanghua; Fu, Yan; Rao, Chunming; Wang, Junzhi; Luo, Yongzhang

    2015-05-01

    Hypoxia‑inducible factor‑1α (HIF‑1α) is key in tumor progression and aggressiveness as it regulates a series of genes involved in angiogenesis and anaerobic metabolism. Previous studies have shown that the transcriptional levels of HIF‑1α may be downregulated by endostatin. However, the molecular mechanism by which endostatin represses HIF‑1α expression remains unknown. The current study investigated the mechanism by which nuclear‑translocated endostatin suppresses HIF‑1α activation by disrupting Zn(II) homeostasis. Endostatin was observed to downregulate HIF‑1α expression at mRNA and protein levels. Blockage of endostatin nuclear translocation by RNA interference of importin α1/β1 or ectopic expression of NLS‑deficient mutant nucleolin in human umbilical vein endothelial cells co‑transfected with small interfering (si)‑nucleolin siRNA compromises endostatin‑reduced HIF‑1α expression. Nuclear‑translocated apo‑endostatin, but not holo‑endostatin, significantly disrupts the interaction between CBP/p300 and HIF‑1α by disturbing Zn(II) homeostasis, which leads to the transcriptional inactivation of HIF‑1α. The results reveal mechanistic insights into the method by which nuclear‑translocated endostatin downregulates HIF‑1α activation and provides a novel way to investigate the function of endostatin in endothelial cells. PMID:25607980

  12. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed. PMID:23770718

  13. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2.

    PubMed

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L Vienna; Coy, David H

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  14. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    PubMed Central

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  15. EFFECTS OF NUCLEAR INDUCED BREAKUP ON THE FUSION OF 6Li+12C AND 6He+12C SYSTEMS AROUND BARRIER ENERGIES

    NASA Astrophysics Data System (ADS)

    Duhan, Sukhvinder S.; Singh, Manjeet; Kharab, Rajesh

    2012-06-01

    We have studied the effects of nuclear induced breakup channel coupling on the fusion cross-section for 6Li+12C and 6He+12C systems in the near barrier energy regime using the dynamic polarization potential (DPP) approach. It has been found that there is enhancement in the fusion cross-section with respect to standard one-dimensional barrier penetration model in the below barrier energy regime while at energies above the barrier there is suppression of fusion cross-section with respect to simple barrier penetration model is observed. The agreement between data and predictions for 6Li+12C system improves significantly as a result of the inclusion of nuclear induced DPP.

  16. Zoledronate inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation via suppression of expression of nuclear factor of activated T-cell c1 and carbonic anhydrase 2.

    PubMed

    Nakagawa, Takayuki; Ohta, Kouji; Kubozono, Kazumi; Ishida, Yoko; Naruse, Takako; Takechi, Masaaki; Kamata, Nobuyuki

    2015-04-01

    Bisphosphonates (BPs) are widely used in the prevention of skeletal-related events (SRE), including osteoporosis, skeletal metastases of malignant tumours, and multiple myeloma. Osteonecrosis of the jaw (ONJ) is frequently reported as a major adverse effect induced by BP treatment. The receptor activator of the nuclear factor kappa-B ligand (RANKL) inhibitor, denosumab, has recently been used to prevent SRE, but the frequency of ONJ induced by denosumab is similar to that by BPs. This finding suggests that the inhibition of RANKL-mediated osteoclastogenesis may have a close relationship with the occurrence of ONJ. We therefore investigated the expression status of RANKL-inducible genes in zoledronate-treated mouse osteoclast precursor cells. The molecular targets of zoledronate in the RANKL signal pathway and additional factors associated with osteoclastogenesis were analysed by genome-wide screening. Microarray analysis identified that among 31 genes on 44 entities of RANKL-inducible genes, the mRNA expression level of two genes, i.e., nuclear factor of activated T-cells c1 (NFATc1) and carbonic anhydrase 2 (CAII), was decreased in zoledronate-treated cells. Subsequent analyses verified that these two genes were significantly silenced by zoledronate treatment and that their expression was restored following inhibition of zoledronate action by geranylgeraniol. Zoledronate inhibited RANKL-induced osteoclast differentiation by suppression of NFATc1 and CAII gene expression. Our results suggest that these genes might be common targets for zoledronate and denosumab in the mechanism underlying RANKL-induced osteoclast differentiation. A clear understanding of the common molecular mechanisms of bone-remodelling agents is thus essential for prevention of ONJ. PMID:25601046

  17. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.

    PubMed

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  18. Protective Role of Nuclear Factor E2-Related Factor 2 against Acute Oxidative Stress-Induced Pancreatic β -Cell Damage.

    PubMed

    Fu, Jingqi; Zheng, Hongzhi; Wang, Huihui; Yang, Bei; Zhao, Rui; Lu, Chunwei; Liu, Zhiyuan; Hou, Yongyong; Xu, Yuanyuan; Zhang, Qiang; Qu, Weidong; Pi, Jingbo

    2015-01-01

    Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2) is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD) and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2) and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF), and tert-butylhydroquinone (tBHQ), protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS) are involved in regulating glucose-stimulated insulin secretion (GSIS) and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes. PMID:25949772

  19. Depth Profiling of N and C in Ion Implanted ZnO and Si Using Deuterium Induced Nuclear Reaction Analysis

    SciTech Connect

    Kennedy, John; Murmu, Peter; Markwitz, Andreas

    2008-11-03

    Nuclear Reaction Analysis (NRA) with deuteron ion beams has been used to probe for ion implanted nitrogen and carbon with high sensitivity in zinc oxide and silicon single crystals. The ion implanted N was measured using 1.4 MeV deuteron ion beams and was found to be in agreement with calculated values. The limit of detection for N in ZnO is 8x10{sup 14} ions cm{sup -2}. Raman measurements of the ion implanted samples showed three additional modes at 275, 504, and 644 cm{sup -1} compared to the un-implanted ZnO crystals. The NRA and Raman results provided information on the N concentration, depth distribution, and structural changes that occur in dependence on the nitrogen ion fluences. The deuterium induced {sup 12}C(d,p){sup 13}C reaction was used to measure the carbon impurity/dose in ion implanted silicon. It was found that the use of a large cold shield (liquid nitrogen trap) in the ion implanter chamber greatly reduces the amount of carbon impurity on the surface of ion implanted silicon. Various implantations with N{sub 2}, O{sub 2}, NO, NO{sub 2} and Pb ions were performed with and without cooling of the liquid nitrogen trap. Simultaneous detection of ppm-level concentrations of {sup 12}C, {sup 16}O and {sup 14}N enables highly sensitive measurement of impurities that may be incorporated during the fabrication process, transport of the samples and/or storage of the samples in air.

  20. Evaluation of the effects of radiation-induced conductivity on charge separation in nuclear weapons during radiographic inspection

    SciTech Connect

    Farnum, E.H.; Holder, M.D.

    1997-11-04

    Radiography is routinely used for non-destructive inspection of nuclear weapons at Pantex. For example, X radiography can be used to observe the positions of valves, to verify that a stronglink is in the safe position, or to inspect internal mechanical assembly details. Because of the presence of heavy metals in warheads, such operations are carried out with high energy x-rays produced by linear accelerators (Linacs), and substantial doses can be accumulated, especially if images from more than one direction are required. In December 1996, the basis for safety assurance of Linac operations at Pantex was called into question. Questions concerned the level of electrical charge separation in the high explosive (HE) dielectric and possible consequences of high electrical fields. Linac operations, which affect other critical missions at Pantex, were suspended and the Weapons Labs were asked to perform a critical analysis to determine what controls were required to assure safety. The postulated mechanism by which fields could build-up involved creation of charge (primarily Compton Electrons) by incident X-ray photons, and their accumulation in the high explosive. Building on a model originally developed by Mike George at Los Alamos for somewhat different conditions, Livermore developed a model which predicted the voltages which would occur in the vicinity of the detonator cables, and showed how these voltages depend on bulk resistivity of the HE and on the dose and dose rate. The authors proposed that the effects of radiation induced conductivity (RIC) would dominate, and showed that at steady state, neither dose nor dose rate would affect the voltage. They also proposed a series of experiments on HE assemblies to measure the RIC and to confirm the level of voltages attained. The experiments were conducted in March and April. These efforts were successful and showed that voltages were insignificant, and did not depend on dose or dose rate.

  1. Osteonecrosis of the jaw induced by receptor activator of nuclear factor-kappa B ligand (Denosumab) - Review

    PubMed Central

    Brizeno, Luiz-André-Cavalcante; de Sousa, Fabrício-Bitu; Mota, Mário-Rogério-Lima; Alves, Ana-Paula-Negreiros-Nunes

    2016-01-01

    Background Denosumab, an anti-resorptive agent, IgG2 monoclonal antibody for human Receptor activator of nuclear factor-kappa B ligand (RANKL), has been related to the occurrence of osteonecrosis of the jaws. Thus, the aim of this study was to review the literature from clinical case reports, regarding the type of patient and the therapeutic approach used for osteonecrosis of the jaws induced by chronic use of Denosumab. Material and Methods For this, a literature review was performed on PubMed, Medline and Cochrane databases, using the keywords “Denosumab” “anti-RANK ligand” and “Osteonecrosis of jaw”. To be included, articles should be a report or a serie of clinical cases, describing patients aged 18 years or over who used denosumab therapy and have received any therapy for ONJ. Results Thirteen complete articles were selected for this review, totaling 17 clinical cases. The majority of ONJ cases, patients receiving Denosumab as treatment for osteoporosis and prostate cancer therapy. In most cases, patients affected by ONJ were women aged 60 or over and posterior mandible area was the main site of involvement. Diabetes pre-treatment with bisphosphonates and exodontia were the most often risk factors related to the occurrence of this condition. It is concluded that the highest number of ONJ cases caused by the use of anti-RANKL agents occurred in female patients, aged 60 years or older, under treatment for osteoporosis and cancer metastasis, and the most affected region was the mandible posterior. Conclusions The results presented in this article are valid tool supporting the non-invasive mapping of facial vascularization. Key words:Denosumab, osteonecrosis, adverse effects, osteoporosis, antineoplastic protocols. PMID:26827069

  2. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  3. Silica-induced apoptosis in murine macrophage: involvement of tumor necrosis factor-alpha and nuclear factor-kappaB activation.

    PubMed

    Gozal, Evelyne; Ortiz, Luis A; Zou, Xiaoyan; Burow, Matthew E; Lasky, Joseph A; Friedman, Mitchell

    2002-07-01

    Alveolar macrophages play a critical role in silica-induced lung fibrosis. Silica exposure induces tumor necrosis factor (TNF)-alpha release and nuclear factor (NF)-kappaB activation, and apoptotic mechanisms have been implicated in silica-induced pathogenesis. To characterize potential relationships between these signaling events, we studied their induction in two murine macrophage cell lines. The RAW 264.7 macrophage cell line was more sensitive, and the IC-21 macrophage cell line more tolerant to silica exposure (0.2 or 1 mg/ml for 6 h) as evidenced by significantly higher apoptotic responses in RAW 264.7 (P < 0.05). RAW 264.7 macrophages exhibited enhanced TNF-alpha production and NF-kappaB activation in response to silica, whereas IC-21 macrophages did not produce TNF-alpha in response to silica and did not induce NF-kappaB nuclear binding. Inhibition of NF-kappaB in RAW 264.7 cells with BAY11-7082 significantly increased apoptosis while inhibiting TNF-alpha release. In addition, TNF-alpha and NF-kappaB activation, but not apoptosis, were induced by lipopolysaccharide (LPS) in both cell lines, and NF-kappaB inhibition reduced LPS-induced TNF-alpha release. These data suggest that TNF-alpha induction is dependent on NF-kappaB activation in both cell lines. However, silica can induce apoptosis in murine macrophages, independently of TNF-alpha stimulation, as in IC-21 macrophages. Furthermore, NF-kappaB activation in macrophages may play dual roles, both pro- and antiapoptotic during silica injury. PMID:12091251

  4. Involvement of nuclear receptor RZR/RORγ in melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells.

    PubMed

    Wang, Ri-Xiong; Liu, Hui; Xu, Li; Zhang, Hui; Zhou, Rui-Xiang

    2015-11-01

    The melatonin nuclear receptor is an orphan member of the nuclear receptor superfamily RZR/ROR, which consists of three subtypes (α, β and γ), suggesting that immunomodulatory and antitumor effects through the intracellular action of melatonin depend on nuclear signaling. In the present study, the biological mechanisms of melatonin were elucidated in association with the RZR/RORγ pathway in SGC-7901 human gastric cancer cells under hypoxia. Melatonin suppressed the activity of RZR/RORγ and SUMO-specific protease 1 (SENP1) signaling pathway, which is essential for stabilization of hypoxia‑inducible factor-1α (HIF‑1α) during hypoxia. Furthermore, melatonin inhibited the stability of HIF-1α in a time- and conce-ntration-dependent manner in SGC-7901 human gastric cancer cells during hypoxia. Consistently, siRNA-RZR/RORγ effectively blocked the expression of SENP1, HIF-1α and vascular endothelial growth factor (VEGF) production in SGC-7901 cells under hypoxia, suggesting the role of nuclear receptor RZR/RORγ in melatonin-inhibited HIF-1α and VEGF accumulation. Moreover, siRNA RZR/RORγ obviously antagonized to inhibit the action of the gastric cancer cell proliferation by melatonin. Our findings suggest that melatonin suppresses HIF-1α accumulation and VEGF generation via inhibition of melatonin nuclear receptor RZR/RORγ in SGC-7901 cells under hypoxia. PMID:26330273

  5. Human Immunodeficiency Virus Type 1 (HIV-1) Induces the Cytoplasmic Retention of Heterogeneous Nuclear Ribonucleoprotein A1 by Disrupting Nuclear Import

    PubMed Central

    Monette, Anne; Ajamian, Lara; López-Lastra, Marcelo; Mouland, Andrew J.

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1. PMID:19737937

  6. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    SciTech Connect

    Yu, Yun; Shen, Shao-Ming; Zhang, Fei-Fei; Wu, Zhao-Xia; Han, Bin; Wang, Li-Shun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer ANP32B inhibited ATRA activated transcriptional activity of RAR{alpha}. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RAR{alpha}). These data will shed new insights into understanding the biological functions of ANP32B protein.

  7. Nuclear factor-κB is involved in oxyhemoglobin-induced endothelin-1 expression in cerebrovascular muscle cells of the rabbit basilar artery.

    PubMed

    Cheng, Gao; Yu, Wei H; Yan, Cong; Liu, Yao; Li, Wei J; Zhang, Dong D; Liu, Nan

    2016-08-17

    The present research was designed to investigate whether endothelin-1 (ET-1) secretion can be induced by oxyhemoglobin and whether nuclear factor κB (NF-κB) is involved in the regulation of ET-1 transcription in cerebrovascular muscle cells. Cerebrovascular muscle cells isolated from a rabbit basilar artery were stimulated by oxyhemoglobin (OxyHb) and ET-1 production was increased significantly in the supernatant. Inhibition of NF-κB with pyrrolidine dithiocarbamate and small interfering RNA decreased the expression of ET-1. Nuclear translocation of NF-κB and the degradation of IkB-α was observed with the stimulation of OxyHb. The supernatant obtained from cerebrovascular muscle cells stimulated by OxyHb produced contractions in arterial rings and was blocked by the ET-1 receptor antagonist (BQ-123). The time course of the OxyHb-induced contractions of the basilar artery rings correlated with the time course of the OxyHb-induced ET-1 secretion. The contraction of the basilar artery rings induced by OxyHb was attenuated when the artery rings were preincubated with pyrrolidine dithiocarbamate and SN50 (20 and 10 µM, respectively). These results indicate that cerebrovascular muscle cells may be an important source of ET-1 production after subarachnoid hemorrhage. NF-κB was involved in the expression of ET-1 and the inhibition of the NF-κB pathway may be beneficial for the treatment of cerebral vasospasm. PMID:27391329

  8. MicroRNA-1301-Mediated RanGAP1 Downregulation Induces BCR-ABL Nuclear Entrapment to Enhance Imatinib Efficacy in Chronic Myeloid Leukemia Cells

    PubMed Central

    Lin, Tsung-Yao; Chen, Ku-Chung; Liu, Hsing-Jin Eugene; Liu, Ann-Jeng; Wang, Kun-Li; Shih, Chwen-Ming

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease. Imatinib (IM), the first line treatment for CML, is excessively expensive and induces various side effects in CML patients. Therefore, it is essential to investigate a new strategy for improving CML therapy. Our immunoblot data revealed that RanGTPase activating protein 1 (RanGAP1) protein levels increased by approximately 30-fold in K562 cells compared with those in normal cells. RanGAP1 is one of the important components of RanGTPase system, which regulates the export of nuclear protein. However, whether RanGAP1 level variation influences BCR-ABL nuclear export is still unknown. In this report, using shRNA to downregulate RanGAP1 expression level augmented K562 cell apoptosis by approximately 40% after treatment with 250 nM IM. Immunofluorescence assay also indicated that three-fold of nuclear BCR-ABL was detected. These data suggest that BCR-ABL nuclear entrapment induced by RanGAP1 downregulation can be used to improve IM efficacy. Moreover, our qRT-PCR data indicated a trend of inverse correlation between the RanGAP1 and microRNA (miR)-1301 levels in CML patients. MiR-1301, targeting the RanGAP1 3′ untranslated region, decreased by approximately 100-fold in K562 cells compared with that in normal cells. RanGAP1 downregulation by miR-1301 transfection impairs BCR-ABL nuclear export to increase approximately 60% of cell death after treatment of 250 nM IM. This result was almost the same as treatment with 1000 nM IM alone. Furthermore, immunofluorescence assay demonstrated that Tyr-99 of nuclear P73 was phosphorylated accompanied with nuclear entrapment of BCR-ABL after transfection with RanGAP1 shRNA or miR-1301 in IM-treated K562 cells. Altogether, we demonstrated that RanGAP1 downregulation can mediate BCR-ABL nuclear entrapment to activate P73-dependent apoptosis pathway which is a novel strategy for improving current IM treatment for CML. PMID:27228340

  9. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  10. Increased nuclear stiffness via FAK-ERK1/2 signaling is necessary for synthetic mechano-growth factor E peptide-induced tenocyte migration

    PubMed Central

    Zhang, Bingyu; Luo, Qing; Chen, Zhen; Shi, Yisong; Ju, Yang; Yang, Li; Song, Guanbin

    2016-01-01

    We have previously reported that a synthetic mechano-growth factor (MGF) C-terminal E-domain with 25 amino acids (MGF-C25E) promotes rat tenocyte migration through the FAK-ERK1/2 signaling pathway. However, the role of the nucleus in MGF-C25E-promoted tenocyte migration and the molecular mechanisms involved remain unclear. In this study, we demonstrate that MGF-C25E increases the Young’s modulus of tenocytes through the FAK-ERK1/2 signaling pathway. This increase is not accompanied by an obvious change in the expression of Lamin A/C but is accompanied by significant chromatin condensation, indicating that MGF-C25E-induced chromatin condensation may contribute to the increased nuclear stiffness. Moreover, DNA methylation is observed in MGF-C25E-treated tenocytes. Inhibition of DNA methylation suppresses the elevation in chromatin condensation, in nuclear stiffness, and in tenocyte migration induced by MGF-C25E. The inhibition of the focal adhesion kinase (FAK) or extracellular signal regulated kinase 1/2 (ERK1/2) signals represses MGF-C25E-promoted DNA methylation. It also abolishes chromatin condensation, nuclear stiffness, and cell migration. Taken together, our results suggest that MGF-C25E promotes tenocyte migration by increasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This provides strong evidence for the role of nuclear mechanics in tenocyte migration and new insight into the molecular mechanisms of MGF-promoted tenocyte migration. PMID:26742689

  11. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    SciTech Connect

    Noda, Taichi; Takahashi, Akihisa; Kondo, Natsuko; Mori, Eiichiro; Okamoto, Noritomo; Nakagawa, Yosuke; Ohnishi, Ken; Zdzienicka, Malgorzata Z.; Thompson, Larry H.; Helleday, Thomas; Asada, Hideo; and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  12. Small interfering RNA targeting of Recepteur d'Origine Nantais induces apoptosis via modulation of nuclear factor-kappaB and Bcl-2 family in gastric cancer cells.

    PubMed

    Park, Jung Sun; Park, Ji Hye; Lee, Soong; Joo, Young Eun; Jung, Young Do

    2010-09-01

    The abnormal accumulation and activation of the receptor tyrosine kinase, Recepteur d'Origine Nantais (RON), has been implicated in tumorigenesis and metastasis in epithelial tumors including gastric cancer. This study examined whether the sequence-specific small interfering RNA (siRNA) suppression of the RON expression could induce apoptotic cell death, and investigated the involved molecular mechanisms. Sequence-specific siRNA effectively suppressed the RON expression at both the mRNA and protein levels. Silencing of the RON expression significantly inhibited gastric cancer cell proliferation and induced apoptosis in a time-dependent manner. The induction of apoptosis was confirmed by the ladder-patterned DNA fragmentation, the presence of cleaved and condensed nuclear chromatin and the increased number of annexin V-positive cells. RON-targeted siRNA effectively inhibited the constitutive nuclear factor-kappaB (NF-kappaB) activation as revealed by an altered electrophoretic mobility shift. In agreement with this, silencing of the RON expression resulted in a decrease in the nuclear level of the p65 subunit of NF-kappaB. The transfection of siRNA, which blocked the RON expression, also caused a change in the ratio of Bax/Bcl-2 in a manner that favored apoptosis. The siRNA silencing of RON induced cytochrome c release and the activation of caspase-8 and caspase-9. These results indicate that RON-targeted siRNA could be therapeutically efficacious by inducing cell apoptosis through the modulation of the NF-kappaB and Bcl-2 family in gastric cancer cells. PMID:20664977

  13. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report for the period September 1, 1992--August 31, 1993

    SciTech Connect

    Sarantites, D.G.

    1993-09-06

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in {sup 82}Sr; structure of and identical bands in {sup 182}Hg and {sup 178}Pt; a highly deformed band in {sup 136}Pm; particle decay of the {sup 164}Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of {sup 12}O; modeling and theoretical studies; excited {sup 16}O disassembly into four alpha particles; {sup 209}Bi + {sup 136}Xe collisions at 28.2 MeV/amu; and development work on 4{pi} solid angle gamma detectors, and x-ray detectors.

  14. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses.

    PubMed

    Ansari, Mairaj Ahmed; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan; Iqbal, Jawed; Kumar, Binod; Roy, Arunava; Chikoti, Leela; Singh, Vivek Vikram; Chandran, Bala

    2015-07-01

    The IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear

  15. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses

    PubMed Central

    Ansari, Mairaj Ahmed; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan; Iqbal, Jawed; Kumar, Binod; Roy, Arunava; Chikoti, Leela; Singh, Vivek Vikram; Chandran, Bala

    2015-01-01

    The IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear

  16. Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: New data and evaluation

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Ditrói, F.; Hermanne, A.; Takács, S.; Ignatyuk, A. V.

    2012-06-01

    Cross-sections of proton induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 90Mo(cum), 93mMo, 99Mo(cum), 90Nb(cum), 92mNb, 95mNb, 95gNb, 96Nb and 88Zr(cum), 89Zr(cum) were measured up to 40 MeV proton energy by a using stacked foil technique and activation method. The main goals of this work were to study the production possibility of the medically important 99mTc and its 99Mo parent nucleus, to get experimental data for accelerator technology, for monitoring of proton beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analysed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE-II and TALYS codes.

  17. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease

    PubMed Central

    Besbes, Anissa; Le Goff, Salomé; Antunes, Ana; Terrade, Aude; Hong, Eva; Giorgini, Dario; Taha, Muhamed-Kheir; Deghmane, Ala-Eddine

    2015-01-01

    Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells. PMID:26241037

  18. Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding.

    PubMed

    Li, Xing; Zhao, Yin; Xia, Qian; Zheng, Lu; Liu, Lu; Zhao, Baoming; Shi, Jing

    2016-01-01

    Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R. PMID:27584794

  19. The HIV Matrix Protein p17 Subverts Nuclear Receptors Expression and Induces a STAT1-Dependent Proinflammatory Phenotype in Monocytes

    PubMed Central

    Renga, Barbara; Francisci, Daniela; D'Amore, Claudio; Schiaroli, Elisabetta; Mencarelli, Andrea; Cipriani, Sabrina

    2012-01-01

    Background Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART. Aim While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined. Results Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17. Conclusions The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV

  20. Unloading-induced slow-to-fast myosin shift in soleus muscle: nuclear MuRFs and calsarcin expression

    NASA Astrophysics Data System (ADS)

    Shenkman, Boris; Lomonosova, Yulia

    Exposure to actual and simulated microgravity is known to induce decrease in slow MyHC mRNA expression and increase in fast MyHC mRNAs expression. We supposed that altered expression of the calsarcin (CS) I and II (specific for type I and type II fibers respectively) may provide the control over myosin phenotype during unloading. We found that after 3 days of hindlimb unloading (HU) the content of CSII mRNA increased two-fold in rat soleus as compared to the cage controls. This level was maintained till the 7th day of the exposure and increased by more than 5-fold (as compared to controls) after two weeks of HU. In contrast to CSII, CSI mRNA expression didn’t change after 3 days of HU, but decreased more than 2-fold by the 7th and 14th day of HU. The increase of CSII RNA (in type II fibers) may be explained as the mechanism of stabilization of fast phenotype in all, but more important, in newly transformed type II fibers. At the same time, the decrease of CSI mRNA (in type I fibers) may be understood as counteracting the slow-to-fast transformation. Morriscot et al, (2010) demonstrated that calsarcin II expression decreased only in the double knockouts MuRF1-/MuRF2-. So, we hypothesized that CSII expression in unloaded soleus muscle might be associated with the cytoplasm-nucleus translocation of MuRF1 and MuRF2. We observed significant accumulation of MuRF1 and MuRF2 in the nuclear fraction after 3 days of HU. Thus the accumulation of MuRFs in myonuclei may promote the expression of CSII, necessary for stabilization of fast phenotype in the course of slow-to-fast shift in unloaded soleus muscle. We express our gratitude to Prof. S. Labeit (Mannheim) for kind presenting us the best antibodies against MuRF1 and MuRF2.

  1. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway.

    PubMed

    Kaliman, P; Canicio, J; Testar, X; Palacín, M; Zorzano, A

    1999-06-18

    Insulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production. IGF-II-induced iNOS expression and NO production were blocked by NF-kappaB inhibition. Both NF-kappaB and NOS activities were essential for IGF-II-induced terminal differentiation (myotube formation and expression of skeletal muscle proteins: myosin heavy chain, GLUT 4, and caveolin 3), which was totally blocked by NF-kappaB or NOS inhibitors in rat and human myoblasts. Moreover, the NOS substrate L-Arg induced myogenesis in the absence of IGFs in both rat and human myoblasts, and this effect was blocked by NOS inhibition. Regarding the mechanisms involved in IGF-II activation of NF-kappaB, PI 3-kinase inhibition prevented NF-kappaB activation, iNOS expression, and NO production. Moreover, IGF-II induced, through a PI 3-kinase-dependent pathway, a decrease in IkappaB-alpha protein content that correlated with a decrease in the amount of IkappaB-alpha associated with p65 NF-kappaB. PMID:10364173

  2. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  3. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998

  4. A small molecule induces integrin β4 nuclear translocation and apoptosis selectively in cancer cells with high expression of integrin β4

    PubMed Central

    Liu, ShuYan; Ge, Di; Chen, LiNa; Zhao, Jing; Su, Le; Zhang, ShangLi; Miao, JunYing; Zhao, BaoXiang

    2016-01-01

    Increased integrin β4 (ITGB4) level is accompanied by malignant progression of multiple carcinomas. However, selective therapeutic strategies against cancer cells expressing a high level of ITGB4 have not been reported. Here, for the first time, we report that a chiral small molecule, SEC, selectively promotes apoptosis in cancer cells expressing a high level of ITGB4 by inducing ITGB4 nuclear translocation. Nuclear ITGB4 can bind to the ATF3 promoter region and activate the expression of ATF3, then upregulate the downstream pro-apoptosis genes. Furthermore, SEC promoted the binding of annexin A7 (ANXA7) to ITGB4 and increased ANXA7 GTPase activity. Activated ANXA7 promoted ITGB4 nuclear translocation by triggering ITGB4 phosphorylation at Y1494. SEC also inhibited the growth of xenograft tumors in the avian embryo model. We identified a small molecule, SEC, with selective pro-apoptosis effects on cancer cells with high expression of ITGB4, both in vitro and in vivo, by triggering the binding of ITGB4 and ANXA7, ITGB4 nuclear trafficking, and pro-apoptosis gene expression. PMID:26918348

  5. Characterization of quinolone antibacterial-induced convulsions and increases in nuclear AP-1 DNA- and CRE-binding activities in mouse brain.

    PubMed

    Ito, Y; Ishige, K; Aizawa, M; Fukuda, H

    1999-05-01

    The quinolone antibacterials enoxacin and norfloxacin (2.5 mg/kg, i.v.) provoked clonic convulsions in mice treated concomitantly with biphenylacetic acid (BPAA, 100 mg/kg, i.p.), a major metabolite of the nonsteroidal anti-inflammatory drug fenbufen. Gel-shift assays showed that enoxacin-induced convulsions resulted in increases in nuclear activator protein 1 (AP-1) DNA- and cyclic AMP responsive element (CRE)-binding activities in the cerebral cortex and hippocampus, but not in other regions, such as the cerebellum and thalamus. In contrast, ofloxacin and levofloxacin, at the same doses, in the presence of BPAA did not evoke convulsions or increase these DNA-binding activities. Administration of these quinolones and BPAA alone elicited neither convulsions nor increases in these DNA-binding activities. These results suggest that the increased nuclear AP-1 DNA- and CRE-binding activities in the cerebral cortex and hippocampus induced by quinolones with BPAA correlated with seizure activities and that these brain regions play pivotal roles in quinolone-induced convulsions. PMID:10340309

  6. Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

    PubMed Central

    Lee, Jae-Won; Kim, Nam Ho; Kim, Ji-Young; Park, Jun-Ho; Shin, Seung-Yeon; Kwon, Yong-Soo; Lee, Hee Jae; Kim, Sung-Soo; Chun, Wanjoo

    2013-01-01

    Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2. In accordance, aromadendrin attenuated LPSinduced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of IκB, which sequesters NF-κB in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF- κB. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-κB and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells. PMID:24265867

  7. Dimethyl fumarate induces apoptosis of hematopoietic tumor cells via inhibition of NF-κB nuclear translocation and down-regulation of Bcl-xL and XIAP.

    PubMed

    Tsubaki, Masanobu; Ogawa, Naoki; Takeda, Tomoya; Sakamoto, Kotaro; Shimaoka, Hirotaka; Fujita, Arisa; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2014-10-01

    Dimethyl fumarate (DMF) is a fumaric acid ester that is used to treat psoriasis and multiple sclerosis. Recently, DMF was found to exhibit anti-tumor effects. However, the molecular mechanisms underlying these effects have not been elucidated. In this study, we investigated the mechanism of DMF-induced apoptosis in different human hematopoietic tumor cell lines. We found that DMF induced apoptosis in different human hematopoietic tumor cell lines but it did not affect the normal human B lymphocyte cell line RPMI 1788. We also observed a concurrent increase in caspase-3 activity and in the number of Annexin-V-positive cells. Furthermore, an examination of the survival signals, which are activated by apoptotic stimuli, revealed that DMF significantly inhibited nuclear factor-κB (NF-κB) p65 nuclear translocation. In addition, DMF suppressed B-cell lymphoma extra-large (Bcl-xL) and X-linked inhibitor of apoptosis (XIAP) expression whereas Bcl-2, survivin, Bcl-2-associated X protein (Bax), and Bim levels did not change. These results indicated that DMF induced apoptosis by suppressing NF-κB activation, and Bcl-xL and XIAP expression. These findings suggested that DMF might have potential as an anticancer agent that could be used in combination therapy with other anticancer drugs for the treatment of human hematopoietic tumors. PMID:25443417

  8. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    PubMed

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  9. N-Acetyl Cysteine Mediates Protection from 2-Hydroxyethyl Methacrylate Induced Apoptosis via Nuclear Factor Kappa B–Dependent and Independent Pathways: Potential Involvement of JNK

    PubMed Central

    Paranjpe, Avina; Cacalano, Nicholas A.; Hume, Wyatt R.; Jewett, Anahid

    2009-01-01

    The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-κB in the cells, since HEMA mediated inhibition of nuclear NF-κB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-κB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-κB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-κB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-κB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-κB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-κB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection. PMID:19176594

  10. Model for alpha particle induced nuclear reactions: /sup 93/Nb(. cap alpha. ,x. cap alpha. ypzn) from 40--140 MeV

    SciTech Connect

    Gadioli, E.; Gadioli-Erba, E.; Hogan, J.J.; Jacak, B.V.

    1984-01-01

    A comprehensive model is introduced for alpha particle induced nuclear reactions. Five different mechanisms are examined and discussed. These include inelastic scattering of the incident alpha particle, nucleon pickup, binary fragmentation, dissolution of the alpha in the nuclear field, and preequilibrium processes initiated by alpha-nucleon collisions. A series of experiments was performed to measure the excitation functions of many nuclides produced from the irradiation of /sup 93/Nb by 40--140 MeV alpha particles. Together with alpha particle and proton spectra measured by other authors, these data form the basis of a test of the model introduced. A detailed analysis of the comparison between the calculated and experimental results, with particular emphasis on the interpretation of breakup processes, leads to the conclusion that breakup to four nucleons is preferred to the more commonly assumed binary fragmentation in that a much broader range of experimental data may be reproduced.

  11. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB

    PubMed Central

    Yu, Ge; Wan, Rong; Yin, Guojian; Xiong, Jie; Hu, Yanling; Xing, Miao; Cang, Xiaofeng; Fan, Yuting; Xiao, Wenqin; Qiu, Lei; Wang, Xingpeng; Hu, Guoyong

    2014-01-01

    Diosmetin (3’, 5, 7-trihydroxy-4’-methoxyflavone), the aglycone part of the flavonoid glycosides diosmin occurs naturally in citrus fruit, was considered to exhibit anti-inflammatory and antioxidant properties. Our study aimed to investigate the effect of diosmetin in a murine model of cerulein-induced acute pancreatitis (AP). Experimental AP was induced in mice by seven intraperitoneal injection of cerulein (50 ug/kg) at hourly intervals. Diosmetin (100 mg/kg) or vehicle was pretreated 2 h before the first cerulein injection. After 6 h, 9 h, 12 h of the first cerulein injection, the severity of acute pancreatitis was evaluated biochemically and morphologically. Pretreatment with diosmetin significantly reduced serum levels of amylase and lipase; the histological injury; the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6; myeloperoxidase (MPO) activity, trypsinogen activation peptide (TAP) level, the expression of inducible nitric oxide synthase (iNOS); and the nuclear factor (NF)-κB activation in cerulein-induced AP. This study showed that administration of diosmetin demonstrated a beneficial effect on the course of cerulein-induced AP in mice. Therefore, diosmetin may become a new therapeutic agent in future clinical trials for treatment of AP. PMID:24966921

  12. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB.

    PubMed

    Yu, Ge; Wan, Rong; Yin, Guojian; Xiong, Jie; Hu, Yanling; Xing, Miao; Cang, Xiaofeng; Fan, Yuting; Xiao, Wenqin; Qiu, Lei; Wang, Xingpeng; Hu, Guoyong

    2014-01-01

    Diosmetin (3', 5, 7-trihydroxy-4'-methoxyflavone), the aglycone part of the flavonoid glycosides diosmin occurs naturally in citrus fruit, was considered to exhibit anti-inflammatory and antioxidant properties. Our study aimed to investigate the effect of diosmetin in a murine model of cerulein-induced acute pancreatitis (AP). Experimental AP was induced in mice by seven intraperitoneal injection of cerulein (50 ug/kg) at hourly intervals. Diosmetin (100 mg/kg) or vehicle was pretreated 2 h before the first cerulein injection. After 6 h, 9 h, 12 h of the first cerulein injection, the severity of acute pancreatitis was evaluated biochemically and morphologically. Pretreatment with diosmetin significantly reduced serum levels of amylase and lipase; the histological injury; the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6; myeloperoxidase (MPO) activity, trypsinogen activation peptide (TAP) level, the expression of inducible nitric oxide synthase (iNOS); and the nuclear factor (NF)-κB activation in cerulein-induced AP. This study showed that administration of diosmetin demonstrated a beneficial effect on the course of cerulein-induced AP in mice. Therefore, diosmetin may become a new therapeutic agent in future clinical trials for treatment of AP. PMID:24966921

  13. Influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV) in insect Spodoptera litura cells.

    PubMed

    Liu, Lijun; Peng, Jianxin; Liu, Kaiyu; Yang, Hong; Li, Yi; Hong, Huazhu

    2007-09-01

    We investigated the influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV). Microscopic observation revealed that infection of SL-1 cells with AfMNPV resulted in apoptosis, displaying apoptotic bodies in fluorescent-stained nuclei of AfMNPV-infected SL-1cells. Western blot analysis demonstrated that AfMNPV-induced apoptosis in insect SL-1 cells was significantly inhibited by cyclosporin A which blocked a translocation of cytochrome c from the mitochondria to the cytosol. As determined by using AC-DEVD-AFC as substrate, the activity of caspase-3 in AfMNPV-induced cells was detected as early as 4h post infection, gradually increased with time extension, and reached a highest level after 16h of infection. However, activity of caspase-3 in apoptotic cells decreased in the presence of cyclosporin A (30microM), indicating that activation of caspase-3 in SfaMNPV-induced cells was dependent on the release of cytochrome c from the mitochondria. In addition, cyclosporin A could markedly inhibit mitochondrial transmembrane potential (DeltaPsim) disruption in undergoing apoptotic cells. These data indicate that cytochrome c plays a key role in AfMNPV-induced apoptosis in S. litura cells and may be required for caspase activation during the induction of apoptosis. PMID:17478109

  14. Phorbol ester treatment to mice inhibits DNA binding of the TCDD inducible nuclear dioxin-receptor to Cyp1A1 enhancer elements

    SciTech Connect

    Okino, S.T.; Tukey, R.H. )

    1991-03-15

    The treatment of C57BL/6 mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in transcriptional activation of the Cyp1A1 and Cyp1A2 genes. Quantitation of mRNA levels and transcription rates demonstrate that post-transcriptional mechanisms are not involved in TCDD induction of the Cyp1A genes. The induction of the Cyp1A genes by TCDD occurs following ligand binding to the dioxin-receptor and accumulation of the ligand-receptor complex in the nucleus. The administration of the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) before or in combination with the administration of TCDD inhibits transcriptional activation of the Cyp1A genes. To analyze the mechanism of this inhibition, methods were developed to determine if the DNA binding potential of the nuclear dioxin-receptor was impaired. Using an oligonucleotide covering the Cyp1A1 xenobiotic responsive element (XRE), gel retardation assays demonstrated that within 1 hour, TCDD induces a nuclear DNA binding protein. This bonding is completely inhibited when incubated with excess XRE. Transcriptional increases in the Cyp1A1 and Cyp1A2 gene follow the appearance of the nuclear dioxin-receptor. When TPA is administered together with TCDD, the ligand dependent accumulation of the nuclear dioxin-receptor is abolished. Similar results are observed if TPA is administered prior to treatment with TCDD. These results indicate that TPA inhibits TCDD induced activation of the Cyp1A genes through a receptor mediated mechanism.

  15. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling

    PubMed Central

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650–661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  16. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling.

    PubMed

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650-661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  17. Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes.

    PubMed

    Vollgraf, U; Wegner, M; Richter-Landsberg, C

    1999-12-01

    H2O2-induced onset and execution of programmed cell death in mature rat brain oligodendrocytes in culture is accompanied by the induction and nuclear translocation of the transcription factors AP-1 and nuclear factor-kappaB (NF-kappaB), both of which have been discussed as regulators of cell death and survival. Supershift analysis of nuclear extracts indicated that the AP-1 complex consists of c-Jun, c-Fos, JunD, and possibly JunB proteins, and that the NF-kappaB complex contains p50, p65, and c-Rel proteins. The first signs of DNA fragmentation were seen already during the first hour after the treatment. DNA fragmentation could be prevented by the antioxidants pyrrolidine dithiocarbamate and vitamin E, by the nuclease inhibitor aurintricarboxylic acid, and by preincubation with the iron chelator deferoxamine (DFO). Additionally, DFO protected oligodendrocytes from H2O2-induced cytotoxic effects as assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and suppressed the formation of free radicals. DFO alone led to a slight increase and in combination with H2O2 synergistically induced DNA-binding activities of AP-1 and NF-kappaB in oligodendrocytes. Our data suggest that although low levels of H2O2 directly activate AP-1 and NF-kappaB and might contribute to signal transduction pathways promoting cell survival, the formation and action of hydroxyl radicals promote cell death mechanisms that can be attenuated by the iron chelator DFO. PMID:10582611

  18. Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils

    PubMed Central

    WONG, C K; ZHANG, J P; IP, W K; LAM, C W K

    2002-01-01

    The CC chemokine eotaxin is a potent eosinophil-specific chemoattractant that is crucial for allergic inflammation. Allergen-induced tumour necrosis factor (TNF) has been shown to induce eotaxin synthesis in eosinophils. Nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) have been found to play an essential role for the eotaxin-mediated eosinophilia. We investigated the modulation of NF-κB and MAPK activation in TNF-induced eotaxin release of human eosinophils. Human blood eosinophils were purified from fresh buffy coat using magnetic cell sorting. NF-κB pathway-related genes were evaluated by cDNA expression array system. Degradation of IκBα and phosphorylation of MAPK were detected by Western blot. Activation of NF-κB was determined by electrophoretic mobility shift assay. Eotaxin released into the eosinophil culture medium was measured by ELISA. TNF was found to up-regulate the gene expression of NF-κB and IκBα in eosinophils. TNF-induced IκBα degradation was inhibited by the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132) and a non-steroidal anti-inflammatory drug sodium salicylate (NaSal). Using EMSA, both MG-132 and NaSal were found to suppress the TNF-induced NF-κB activation in eosinophils. Furthermore, TNF was shown to induce phosphorylation of p38 MAPK time-dependently but not extracellular signal-regulated kinases (ERK). Inhibition of NF-κB activation and p38 MAPK activity decreased the TNF-induced release of eotaxin from eosinophils. These results indicate that NF-κB and p38 MAPK play an important role in TNF-activated signalling pathway regulating eotaxin release by eosinophils. They have also provided a biochemical basis for the potential of using specific inhibitors of NF-κB and p38 MAPK for treating allergic inflammation. PMID:12067303

  19. Journal of Nuclear Materials - Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    SciTech Connect

    Jiao, Zhijie; Busby, Jeremy T; Was, Gary S; Jiao, Zhijie

    2010-01-01

    Radiation-induced segregation in ferritic martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni Si Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures. 2010 Elsevier B.V. All rights reserved

  20. Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range.

    PubMed

    Tárkányi, F; Hermanne, A; Takács, S; Ditrói, F; Spahn, I; Ignatyuk, A V

    2012-01-01

    Cross-sections of proton induced nuclear reactions on (169)Tm were measured in the 20-45MeV energy range using the standard stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the production of (169,167,166)Yb and (168,167,166)Tm radioisotopes. The experimental data are analysed and compared to results of the earlier measurements and the theoretical model codes ALICE-IPPE, EMPIRE and TALYS. Application of the new cross-sections to the production of the (167)Tm medical radioisotope is discussed. PMID:21920768

  1. Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation

    DOEpatents

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

    1982-05-13

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  2. On-line molecular iodine isotopologue detection in gaseous media during spent nuclear fuel reprocessing using a laser-induced fluorescence method

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.

    2015-06-01

    The paper reports on on-line measurement of the {}129{{\\text{I}}2}, 127I129I, and {}127{{\\text{I}}2} concentrations during spent nuclear fuel (SNF) reprocessing using a laser-induced fluorescence method. A He-Ne laser (632.8 nm) was used as a fluorescence excitation source. The detection limits obtained for molecular iodine isotopologue concentrations demonstrate the possibility of using this method for iodine control both in gaseous technological media generated during SNF reprocessing and after passing through the gas purification system (in atmosphere emission).

  3. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2004-03-01

    Irradiation-induced recrystallization appears to be a general phenomenon in that it is observed to occur in a variety of nuclear fuel types, e.g. U-xMo, UO2, and U3O8. For temperatures below that where significant thermal annealing of defects occurs, an expression is derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, and the triggering event for recrystallization. The calculated dislocation density, fission gas bubble-size distribution, and fission density at which recrystallization first appears are compared to measured quantities.

  4. Downregulation of the DNA-Binding Activity of Nuclear Factor-κB p65 Subunit in Porphyromonas gingivalis Fimbria-Induced Tolerance

    PubMed Central

    Hajishengallis, George; Genco, Robert J.

    2004-01-01

    Porphyromonas gingivalis fimbriae induce high levels of nuclear factor-κB (NF-κB)-dependent cytokine release upon primary but not secondary stimulation of monocytic cells (FimA tolerance). In this study, fimbriae induced Toll-like receptor-mediated activation of both p50 and p65 subunits of NF-κB upon primary cellular activation. However, activation of the transactivating p65 subunit (but not of the transcriptionally inactive p50 subunit) was significantly inhibited in fimbria-restimulated cells. Moreover, expression of a NF-κB-dependent reporter gene was inhibited upon secondary stimulation with fimbriae. NF-κB p65 downregulation may thus contribute to induction of FimA tolerance. PMID:14742573

  5. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies.

    PubMed

    Chen, Zi-Jie; Wang, Wan-Ping; Chen, Yu-Ching; Wang, Jing-Ya; Lin, Wen-Hsin; Tai, Lin-Ai; Liou, Gan-Guang; Yang, Chung-Shi; Chi, Ya-Hui

    2014-04-15

    Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS. PMID:24522183

  6. Nuclear γ-ray line emission induced by energetic ions in solar flares and by galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Kiener, J.; Tatischeff, V.; Benhabiles-Mezhoud, H.; de Séréville, N.; Belhout, A.

    2012-05-01

    The γ-ray spectra ol the strongest solar flares often show a broad and complex structure in the 0.1-10 MeV region sitting on a bremsstrahlung continuum. This structure is composed of several outstanding narrow lines and of thousands of unresolved narrow and broad lines forming a quasi-continuum. The major part of this emission is due to prompt deexcitation lines following nuclear interactions of accelerated light and heavy ions with the atomic nuclei composing the solar atmosphere. A similar emission is expected from interactions of galactic cosmic rays with the interstellar gas and dust. Experimental nuclear reaction studies coupled with extensive calculations have been done in the last one and a half decade at Orsay for the modelisation of this γ-ray emission. After a description of the nuclear reaction studies the analysis of one solar flare spectrum and predictions for the emission from the inner Galaxy will be presented.

  7. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury

    PubMed Central

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-01-01

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury. PMID:27075303

  8. Nuclear accumulation of Yes-Associated Protein (YAP) maintains the survival of doxorubicin-induced senescent cells by promoting survivin expression.

    PubMed

    Ma, Kai; Xu, Qing; Wang, Shuren; Zhang, Weina; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-05-28

    Although chemotherapeutic drugs can induce senescence to prohibit further division of tumor cells, senescence could also promote tumorigenesis mainly through a senescence-associated secretory phenotype. Therefore, senescent tumor cells should be eliminated immediately to prevent drug resistance and recurrence. Here, we used a doxorubicin-induced senescence model to explore the mechanism underlying the survival of therapy-induced senescent cells. After low-dose doxorubicin treatment, tumor cells turned on a senescence program and became large and flattened, increasing their contact area with the extracellular matrix (ECM). Furthermore, Yes-associated protein (YAP) accumulated in the nucleus and YAP activity was increased in doxorubicin-induced senescent cells. Knockdown of YAP increased the sensitivity of cells to low-dose doxorubicin treatment, causing apoptosis rather than senescence. Moreover, the anti-apoptotic gene survivin, a YAP target gene, was overexpressed in senescent cells. Inhibition of survivin could lead to selective elimination of senescent cells through apoptosis. Our study indicates that nuclear accumulation of YAP could promote the survival of senescent cells by increasing survivin expression. Therefore, targeting YAP or survivin might be a new strategy for clearing senescent cancer cells during drug treatment. PMID:26944315

  9. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

    PubMed

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-01-01

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury. PMID:27075303

  10. Keratinocyte sensitization to tumour necrosis factor-induced nuclear factor kappa B activation by the E2 regulatory protein of human papillomaviruses.

    PubMed

    Boulabiar, Manel; Boubaker, Samir; Favre, Michel; Demeret, Caroline

    2011-10-01

    Human papillomavirus (HPV) life cycle requires extensive manipulation of cell signalling to provide conditions adequate for viral replication within the stratified epithelia. In this regard, we show that the E2 regulatory protein of α, β and μ-HPV genotypes enhances tumour necrosis factor (TNF)-induced activation of nuclear factor kappa B (NF-κB). This activation is mediated by the N-terminal domain of E2, but does not rely on its transcriptional properties. It is independent of the NF-κB regulator Tax1BP1, which nevertheless interacts with all the E2 proteins. E2 specifically activates NF-κB pathways induced by TNF, while interleukin-1-induced pathways are not affected. E2 stimulates the activating K63-linked ubiquitination of TRAF5, and interacts with both TRAF5 and TRAF6. Our data suggest that E2 potentiates TNF-induced NF-κB signalling mediated by TRAF5 activation through direct binding. Since NF-κB controls epithelial differentiation, this activity may be involved in the commitment of infected keratinocytes to proliferation arrest and differentiation, both required for the implementation of the productive viral cycle. PMID:21715600

  11. Photochemically Induced Dynamic Nuclear Polarization Observed by Solid-State NMR in a Uniformly (13)C-Isotope-Labeled Photosynthetic Reaction Center.

    PubMed

    Paul, Shubhajit; Bode, Bela E; Matysik, Jörg; Alia, A

    2015-10-29

    A sample of solubilized and quinone-depleted reaction centers from the purple bacterium Rhodobacter (R.) sphaeroides wild type has been prepared entirely (13)C and (15)N isotope labeled at all positions of the protein as well as of the cofactors. In this sample, the occurrence of the solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect has been probed by (13)C solid-state magic-angle spinning NMR under illumination. Under continuous illumination, signal intensities are modified by the three-spin mixing (TSM) mechanism. Time-resolved illumination experiments reveal the occurrence of light-induced nuclear polarization on the time scale of hundreds of microseconds, initially dominated by the transient polarization of the singlet branch of the radical-pair mechanism. A first kinetic analysis shows that the lifetime of the polarization from the singlet branch, indicated by the enhanced absorptive intensities of the signals from aliphatic carbons, is significantly extended. Upon arrival of the polarization from the triplet decay branch, emissive polarization caused by the TSM mechanism is observed. Also, this arrival is significantly delayed. The decay of TSM polarization occurs in two steps, assigned to intra- and intermolecular spin diffusion. PMID:26110356

  12. Water-soluble coenzyme q10 inhibits nuclear translocation of apoptosis inducing factor and cell death caused by mitochondrial complex I inhibition.

    PubMed

    Li, Haining; Chen, Guisheng; Ma, Wanrui; Li, Ping-An Andy

    2014-01-01

    The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death. PMID:25089873

  13. Role of mitogen-activated protein kinases and nuclear factor-kappa B in 1,3-dichloro-2-propanol-induced hepatic injury

    PubMed Central

    Lee, In-Chul; Lee, Sang-Min; Ko, Je-Won; Park, Sung-Hyeuk; Shin, In-Sik; Moon, Changjong; Kim, Sung-Ho

    2016-01-01

    In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response. PMID:27051440

  14. 3D Analysis of HCMV Induced-Nuclear Membrane Structures by FIB/SEM Tomography: Insight into an Unprecedented Membrane Morphology

    PubMed Central

    Villinger, Clarissa; Neusser, Gregor; Kranz, Christine; Walther, Paul; Mertens, Thomas

    2015-01-01

    We show that focused ion beam/scanning electron microscopy (FIB/SEM) tomography is an excellent method to analyze the three-dimensional structure of a fibroblast nucleus infected with human cytomegalovirus (HCMV). We found that the previously described infoldings of the inner nuclear membrane, which are unique among its kind, form an extremely complex network of membrane structures not predictable by previous two-dimensional studies. In all cases they contained further invaginations (2nd and 3rd order infoldings). Quantification revealed 5498 HCMV capsids within two nuclear segments, allowing an estimate of 15,000 to 30,000 capsids in the entire nucleus five days post infection. Only 0.8% proved to be enveloped capsids which were exclusively detected in 1st order infoldings (perinuclear space). Distribution of the capsids between 1st, 2nd and 3rd order infoldings is in complete agreement with the envelopment/de-envelopment model for egress of HCMV capsids from the nucleus and we confirm that capsid budding does occur at the large infoldings. Based on our results we propose the pushing membrane model: HCMV infection induces local disruption of the nuclear lamina and synthesis of new membrane material which is pushed into the nucleoplasm, forming complex membrane infoldings in a highly abundant manner, which then may be also used by nucleocapsids for budding. PMID:26556360

  15. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. PMID:26226220

  16. 3D Analysis of HCMV Induced-Nuclear Membrane Structures by FIB/SEM Tomography: Insight into an Unprecedented Membrane Morphology.

    PubMed

    Villinger, Clarissa; Neusser, Gregor; Kranz, Christine; Walther, Paul; Mertens, Thomas

    2015-11-01

    We show that focused ion beam/scanning electron microscopy (FIB/SEM) tomography is an excellent method to analyze the three-dimensional structure of a fibroblast nucleus infected with human cytomegalovirus (HCMV). We found that the previously described infoldings of the inner nuclear membrane, which are unique among its kind, form an extremely complex network of membrane structures not predictable by previous two-dimensional studies. In all cases they contained further invaginations (2nd and 3rd order infoldings). Quantification revealed 5498HCMV capsids within two nuclear segments, allowing an estimate of 15,000 to 30,000 capsids in the entire nucleus five days post infection. Only 0.8% proved to be enveloped capsids which were exclusively detected in 1st order infoldings (perinuclear space). Distribution of the capsids between 1st, 2nd and 3rd order infoldings is in complete agreement with the envelopment/de-envelopment model for egress of HCMV capsids from the nucleus and we confirm that capsid budding does occur at the large infoldings. Based on our results we propose the pushing membrane model: HCMV infection induces local disruption of the nuclear lamina and synthesis of new membrane material which is pushed into the nucleoplasm, forming complex membrane infoldings in a highly abundant manner, which then may be also used by nucleocapsids for budding. PMID:26556360

  17. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  18. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    SciTech Connect

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-05-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, {pi}{sup +}, {pi}{sup 0}, and {pi}{sup {minus}} for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model.

  19. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  20. Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob

    PubMed Central

    Melgarejo da Rosa, Michelle; Yuanxiang, PingAn; Brambilla, Riccardo; Kreutz, Michael R.; Karpova, Anna

    2016-01-01

    A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR)-signaling to the activation of extracellular signal-regulated kinases (ERKs) cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signaling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca2+-signaling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP) in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK. PMID:27559307

  1. Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob.

    PubMed

    Melgarejo da Rosa, Michelle; Yuanxiang, PingAn; Brambilla, Riccardo; Kreutz, Michael R; Karpova, Anna

    2016-01-01

    A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR)-signaling to the activation of extracellular signal-regulated kinases (ERKs) cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signaling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca(2+)-signaling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP) in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK. PMID:27559307

  2. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    PubMed Central

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  3. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    SciTech Connect

    Morrison, Thomas E.; Kenney, Shannon C. . E-mail: shann@med.unc.edu

    2004-10-25

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.

  4. Role of Peroxiredoxin 1 and Peroxiredoxin 4 in Protection of Respiratory Syncytial Virus-Induced Cysteinyl Oxidation of Nuclear Cytoskeletal Proteins ▿

    PubMed Central

    Jamaluddin, Mohammad; Wiktorowicz, John E.; Soman, Kizhake V.; Boldogh, Istvan; Forbus, Jeffrey D.; Spratt, Heidi; Garofalo, Roberto P.; Brasier, Allan R.

    2010-01-01

    The respiratory epithelium plays a central role in innate immunity by secreting networks of inflammatory mediators in response to respiratory syncytial virus (RSV) infection. Previous proteomic studies focusing on the host cellular response to RSV indicated the existence of a nuclear heat shock response and cytoplasmic depletion of antioxidant proteins in model type II-like airway epithelial cells. Here, we increased the depth of nuclear proteomic interrogation by using fluorescence difference labeling followed by liquid isoelectric focusing prefractionation/two-dimensional gel electrophoresis (2-DE) to identify an additional 41 proteins affected by RSV infection. Surprisingly, we found inducible oligomers and shifts in isoelectric points for peroxiredoxin 1 (Prdx-1), Prdx-3, and Prdx-4 isoforms without changes in their total abundance, indicating that Prdxs were being oxidized in response to RSV. To address the role of Prdx-1 and Prdx-4 in RSV infection, isoforms were selectively knocked down by small interfering RNA (siRNA) transfection. Cells lacking Prdx-1, Prdx-4, or both showed increased levels of reactive oxygen species formation and a higher level of protein carbonylation in response to RSV infection. Using a novel saturation fluorescence labeling 2-DE analysis, we showed that 15 unique proteins had enhanced oxidative modifications of at least >1.2-fold in the Prdx knockdowns in response to RSV, including annexin A2 and desmoplakin. Our results suggest that Prdx-1 and Prdx-4 are essential for preventing RSV-induced oxidative damage in a subset of nuclear intermediate filament and actin binding proteins in epithelial cells. PMID:20610706

  5. Role of peroxiredoxin 1 and peroxiredoxin 4 in protection of respiratory syncytial virus-induced cysteinyl oxidation of nuclear cytoskeletal proteins.

    PubMed

    Jamaluddin, Mohammad; Wiktorowicz, John E; Soman, Kizhake V; Boldogh, Istvan; Forbus, Jeffrey D; Spratt, Heidi; Garofalo, Roberto P; Brasier, Allan R

    2010-09-01

    The respiratory epithelium plays a central role in innate immunity by secreting networks of inflammatory mediators in response to respiratory syncytial virus (RSV) infection. Previous proteomic studies focusing on the host cellular response to RSV indicated the existence of a nuclear heat shock response and cytoplasmic depletion of antioxidant proteins in model type II-like airway epithelial cells. Here, we increased the depth of nuclear proteomic interrogation by using fluorescence difference labeling followed by liquid isoelectric focusing prefractionation/two-dimensional gel electrophoresis (2-DE) to identify an additional 41 proteins affected by RSV infection. Surprisingly, we found inducible oligomers and shifts in isoelectric points for peroxiredoxin 1 (Prdx-1), Prdx-3, and Prdx-4 isoforms without changes in their total abundance, indicating that Prdxs were being oxidized in response to RSV. To address the role of Prdx-1 and Prdx-4 in RSV infection, isoforms were selectively knocked down by small interfering RNA (siRNA) transfection. Cells lacking Prdx-1, Prdx-4, or both showed increased levels of reactive oxygen species formation and a higher level of protein carbonylation in response to RSV infection. Using a novel saturation fluorescence labeling 2-DE analysis, we showed that 15 unique proteins had enhanced oxidative modifications of at least >1.2-fold in the Prdx knockdowns in response to RSV, including annexin A2 and desmoplakin. Our results suggest that Prdx-1 and Prdx-4 are essential for preventing RSV-induced oxidative damage in a subset of nuclear intermediate filament and actin binding proteins in epithelial cells. PMID:20610706

  6. Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma

    PubMed Central

    2011-01-01

    Background GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319. Results MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-xL, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-xL and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-xL, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis. Conclusions Our data demonstrate a

  7. Nuclear β-Catenin Induces an Early Liver Progenitor Phenotype in Hepatocellular Carcinoma and Promotes Tumor Recurrence

    PubMed Central

    Zulehner, Gudrun; Mikula, Mario; Schneller, Doris; van Zijl, Franziska; Huber, Heidemarie; Sieghart, Wolfgang; Grasl-Kraupp, Bettina; Waldhör, Thomas; Peck-Radosavljevic, Markus; Beug, Hartmut; Mikulits, Wolfgang

    2010-01-01

    Transforming growth factor-β cooperates with oncogenic Ras to activate nuclear β-catenin during the epithelial to mesenchymal transition of hepatocytes, a process relevant in the progression of hepatocellular carcinoma (HCC). In this study we investigated the role of β-catenin in the differentiation of murine, oncogene-targeted hepatocytes and in 133 human HCC patients scheduled for orthotopic liver transplantation. Transforming growth factor-β caused dissociation of plasma membrane E-cadherin/β-catenin complexes and accumulation of nuclear β-catenin in Ras-transformed, but otherwise normal hepatocytes in p19ARF−/− mice. Both processes were inhibited by Smad7-mediated disruption of transforming growth factor-β signaling. Overexpression of constitutively active β-catenin resulted in high levels of CK19 and M2-PK, whereas ablation of β-catenin by axin overexpression caused strong expression of CK8 and CK18. Therefore, nuclear β-catenin resulted in dedifferentiation of neoplastic hepatocytes to immature progenitor cells, whereas loss of nuclear β-catenin led to a differentiated HCC phenotype. Poorly differentiated human HCC showed cytoplasmic redistribution or even loss of E-cadherin, suggesting epithelial to mesenchymal transition. Analysis of 133 HCC patient samples revealed that 58.6% of human HCC exhibited strong nuclear β-catenin accumulation, which correlated with clinical features such as vascular invasion and recurrence of disease after orthotopic liver transplantation. These data suggest that activation of β-catenin signaling causes dedifferentiation to malignant, immature hepatocyte progenitors and facilitates recurrence of human HCC after orthotopic liver transplantation. PMID:20008139

  8. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  9. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  10. Leishmania donovani amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5.

    PubMed

    Matte, Christine; Descoteaux, Albert

    2010-09-01

    The protozoan parasite Leishmania donovani, the etiological agent of visceral leishmaniasis, is renowned for its capacity to sabotage macrophage functions and signaling pathways stimulated by activators such as gamma interferon (IFN-gamma). Our knowledge of the strategies utilized by L. donovani to impair macrophage responsiveness to IFN-gamma remains fragmentary. In the present study, we investigated the impact of an infection by the amastigote stage of L. donovani on IFN-gamma responses and signaling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in mouse bone marrow-derived macrophages. The levels of IFN-gamma-induced expression of major histocompatibility complex class II and inducible nitric oxide synthase (iNOS) were strongly reduced in L. donovani amastigote-infected macrophages. As the expression of those genes is mediated by the transcription factors STAT1alpha and IFN regulatory factor 1 (IRF-1), we investigated their activation in amastigote-infected macrophages treated with IFN-gamma. We found that whereas STAT1alpha protein levels and the levels of phosphorylation on Tyr701 and Ser727 were normal, IRF-1 expression was inhibited in infected macrophages. This inhibition of IRF-1 expression correlated with a defective nuclear translocation of STAT1alpha, and further analyses revealed that the IFN-gamma-induced STAT1alpha association with the nuclear transport adaptor importin-alpha5 was compromised in L. donovani amastigote-infected macrophages. Taken together, our results provide evidence for a novel mechanism used by L. donovani amastigotes to interfere with IFN-gamma-activated macrophage functions and provide a better understanding of the strategies deployed by this parasite to ensure its intracellular survival. PMID:20566692

  11. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation

    PubMed Central

    Ghantous, Crystal M.; Kobeissy, Firas H.; Soudani, Nadia; Rahman, Farah A.; Al-Hariri, Mustafa; Itani, Hana A.; Sabra, Ramzi; Zeidan, Asad

    2015-01-01

    Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC

  12. Zinc protects against diabetes-induced pathogenic changes in the aorta: roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2

    PubMed Central

    2013-01-01

    Background Cardiovascular diseases remain a leading cause of the mortality world-wide, which is related to several risks, including the life style change and the increased diabetes prevalence. The present study was to explore the preventive effect of zinc on the pathogenic changes in the aorta. Methods A genetic type 1 diabetic OVE26 mouse model was used with/without zinc supplementation for 3 months. To determine gender difference either for pathogenic changes in the aorta of diabetic mice or for zinc protective effects on diabetes-induced pathogenic changes, both males and females were investigated in parallel by histopathological and immunohistochemical examinations, in combination of real-time PCR assay. Results Diabetes induced significant increases in aortic oxidative damage, inflammation, and remodeling (increased fibrosis and wall thickness) without significant difference between genders. Zinc treatment of these diabetic mice for three months completely prevented the above pathogenic changes in the aorta, and also significantly up-regulated the expression and function of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a pivotal regulator of anti-oxidative mechanism, and the expression of metallothionein (MT), a potent antioxidant. There was gender difference for the protective effect of zinc against diabetes-induced pathogenic changes and the up-regulated levels of Nrf2 and MT in the aorta. Conclusions These results suggest that zinc supplementation provides a significant protection against diabetes-induced pathogenic changes in the aorta without gender difference in the type 1 diabetic mouse model. The aortic protection by zinc against diabetes-induced pathogenic changes is associated with the up-regulation of both MT and Nrf2 expression. PMID:23536959

  13. Mechanistic understanding of irradiation-induced corrosion of zirconium alloys in nuclear power plants: Stimuli, status, and outlook

    SciTech Connect

    Johnson, A.B. Jr.; Ishigure, K.; Nechaev, A.F.; Reznichenko, E.A.; Cox, B.; Lemaignan, C.; Petrik, N.G.

    1990-05-01

    Failures in the basic materials used in nuclear power plants continue to be costly and insidious, despite increasing industry vigilance to catch failures before they degrade safety. For instance, the overall costs to the US industry from materials problems could amount to as much as $10 billion annually. Moreover, estimates indicate that the cost of a pipe failure in a nuclear plant is one hundred times greater than the cost of a similar failure in a coal-fired plant. There are important practical stimuli and much scope for further understanding of the effects of irradiation on Zr-alloys (and other materials used in nuclear installations) by careful experimentation. Moreover, these studies need to address the effect of irradiation on all components of heterogeneous systems: the metal, the oxide and the environment, and especially those processes recurring at the interphases between these components. The present paper is aimed at providing specialists with some systematic information on the subject and with important considerations on the key items for further experimentation.

  14. Dataset of UV induced changes in nuclear proteome obtained by GeLC-Orbitrap/MS in Pinus radiata needles.

    PubMed

    Alegre, Sara; Pascual, Jesús; Nagler, Matthias; Weckwerth, Wolfram; Cañal, María Jesús; Valledor, Luis

    2016-06-01

    Although responses to UV stress have been characterised at system and cellular levels, the dynamics of the nuclear proteome triggered in this situation are still unknown, despite its essential role in regulating gene expression and in last term plant physiology. To fill this gap, we characterised the variations in the nuclear proteome after 2 h and 16 h (8 h/day) of UV irradiation by using state-of-the-art mass spectrometry-based shotgun proteomics methods combined with novel bioinformatics workflows that were employed in the manuscript entitled "The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata" (Pascual et al., 2016) [1]. We employed in-gel digestion followed by a 120 min gradient prior to MS analysis. Data was processed following two approaches: a database dependent employing the SEQUEST algorithm and custom databases, and a database independent by mass accuracy precursor alignment (MAPA). 388 proteins were identified by SEQUEST search and 9094 m/z were quantified by MAPA. Significant m/z were de novo sequenced using the Novor algorithm. We present here the complete datasets and the analysis workflow. PMID:27182543

  15. Dataset of UV induced changes in nuclear proteome obtained by GeLC-Orbitrap/MS in Pinus radiata needles

    PubMed Central

    Alegre, Sara; Pascual, Jesús; Nagler, Matthias; Weckwerth, Wolfram; Cañal, María Jesús; Valledor, Luis

    2016-01-01

    Although responses to UV stress have been characterised at system and cellular levels, the dynamics of the nuclear proteome triggered in this situation are still unknown, despite its essential role in regulating gene expression and in last term plant physiology. To fill this gap, we characterised the variations in the nuclear proteome after 2 h and 16 h (8 h/day) of UV irradiation by using state-of-the-art mass spectrometry-based shotgun proteomics methods combined with novel bioinformatics workflows that were employed in the manuscript entitled “The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata” (Pascual et al., 2016) [1]. We employed in-gel digestion followed by a 120 min gradient prior to MS analysis. Data was processed following two approaches: a database dependent employing the SEQUEST algorithm and custom databases, and a database independent by mass accuracy precursor alignment (MAPA). 388 proteins were identified by SEQUEST search and 9094 m/z were quantified by MAPA. Significant m/z were de novo sequenced using the Novor algorithm. We present here the complete datasets and the analysis workflow. PMID:27182543

  16. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  17. Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells.

    PubMed

    Lim, Juhee; Kim, Hyo-In; Bang, Yeojin; Seol, Wongi; Choi, Hueng-Sik; Choi, Hyun Jin

    2015-04-15

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor relevant to the development of many mammalian organs including the brain. However, the molecular mechanisms by which signaling events mediate neuronal differentiation have not been fully elucidated. In the present study, we show for the first time that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated by HIF-1α and plays essential roles in HIF-1α-induced upregulation of dopaminergic marker molecules such as tyrosine hydroxylase and dopamine transporter. We found that deferoxamine upregulated HIF-1α and enhanced the dopaminergic phenotype and neurite outgrowth of SH-SY5Y cells. Deferoxamine activated transcription and protein expression of ERRγ, and deferoxamine-induced upregulation of tyrosine hydroxylase and dopamine transporter was attenuated by using the ERRγ inverse agonist or silencing ERRγ. Altogether, these results suggest that HIF-1α can positively regulate the dopaminergic phenotype through ERRγ. This study could provide new perspectives for understanding the mechanisms underlying the promotion of dopaminergic neuronal differentiation by hypoxia. PMID:25807177

  18. Propofol induces apoptosis and increases gemcitabine sensitivity in pancreatic cancer cells in vitro by inhibition of nuclear factor-κB activity

    PubMed Central

    Du, Qi-Hang; Xu, Yan-Bing; Zhang, Meng-Yuan; Yun, Peng; He, Chang-Yao

    2013-01-01

    AIM: To investigate the effect of propofol on human pancreatic cells and the molecular mechanism of propofol action. METHODS: We used the human pancreatic cancer cell line MIAPaCa-2 for in vitro studies measuring growth inhibition and degree of apoptotic cell death induced by propofol alone, gemcitabine alone, or propofol followed by gemcitabine. All experiments were conducted in triplicate and carried out on three or more separate occasions. Data were means of the three or more independent experiments ± SE. Statistically significant differences were determined by two-tailed unpaired Student’s t test and defined as P < 0.05. RESULTS: Pretreatment of cells with propofol for 24 h followed by gemcitabine resulted in 24%-75% growth inhibition compared with 6%-18% when gemcitabine was used alone. Overall growth inhibition was directly correlated with apoptotic cell death. We also showed that propofol potentiated gemcitabine-induced killing by downregulation of nuclear factor-κB (NF-κB). In contrast, NF-κB was upregulated when pancreatic cancer cells were exposed to gemcitabine alone, suggesting a potential mechanism of acquired chemoresistance. CONCLUSION: Inactivation of the NF-κB signaling pathway by propofol might abrogate gemcitabine-induced activation of NF-κB, resulting in chemosensitization of pancreatic tumors to gemcitabine. PMID:24023491

  19. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells.

    PubMed

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-12-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  20. Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells

    PubMed Central

    Lee, Sun Kyoung; Park, Kwang-Kyun; Kim, Ki Rim; Kim, Hyun-Jeong; Chung, Won-Yoon

    2015-01-01

    Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction. PMID:26734591

  1. Activation cross sections of α-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of ¹⁷⁸W/(178m)Ta generator.

    PubMed

    Tárkányi, F; Takács, S; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-09-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of (178m)Ta through (nat)Hf(α,xn)(178)W-(178m)Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions (nat)Hf(α,x)(179,177,176,175)W, (183,182,178g,177,176,175)Ta, (179m,177m,175)Hf were also assessed. Stacked foil irradiation technique and γ-ray spectrometry were used. New experimental cross section data for the (nat)Ta(d,xn)(178)W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ((3)He,x)) production routes for (178)W. PMID:24926946

  2. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation.

    PubMed

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer's disease (AD) and Parkinson's disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  3. PTEN enhances TNF-induced apoptosis through modulation of nuclear factor-{kappa}B signaling pathway in human glioma cells

    SciTech Connect

    Koul, Dimpy . E-mail: Dkoul@mdnderson.org; Takada, Yasunari; Shen, Ruijun; Aggarwal, Bharat B.; Yung, W.K. Alfred

    2006-11-17

    The PTEN tumor suppressor gene modulates cell growth and survival known to be regulated by the activation of the transcription factor NF{kappa}B, suggesting PTEN might affect the NF{kappa}B activation pathway. We found that PTEN inhibited NF{kappa}B activation induced by TNF. The suppression of NF{kappa}B activation correlated with sequential inhibition of the tumor necrosis factor-induced expression of NF{kappa}B-regulated anti-apoptotic (IAP1, IAP2, Bcl-2, Bcl-xL, cFLIP, Bfl-1/A1, and survivin) gene products. Downregulation of the antiapoptotic genes by PTEN increased TNF-induced apoptosis, as indicated by caspase activation, TUNEL, annexin staining, and esterase assay. We conclude that the ectopic expression of PTEN enhances TNF-induced apoptosis and downregulates the proliferation of glioma cells through the suppression of various molecules including NF{kappa}B, and various mediators of cellular survival and proliferation, and that this targets might be essential for its central role in the growth and survival of glioma cancer cells.

  4. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation

    PubMed Central

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  5. Transposon-induced nuclear mutations that alter chloroplast gene expression. Annual report, September 1, 1992--April 15, 1993

    SciTech Connect

    Barkan, A.

    1993-04-20

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that control the timing and cell-type specificity of chloroplast gene expression. Studies are being conducted with nuclear mutants of maize that are defective in the biogenesis or translation of chloroplast mRNAs. Currently studies are focused on two nuclear mutants with specific and unique lesions in chloroplast RNA processing (crp mutants). Crp1 mutants (formerly called hcf136) fail to accumulate the cytochrome f/b6 complex. The protein loss is due to a defect in the metabolism of transcripts encoding the petB and petD gene products, two subunits of the missing complex. Mutant seedlings lack the monocistronic petB and petD MRNAS, which both arise in nominal plants by endonucleolytic cleavage of the polycistronic primary transcript of the psbB gene cluster. Precursor mRNAs accumulate normally in crp1, indicating that its defect is due either to a failure to cleave the precursors, or a failure to stabilize the fully processed mRNAs. We are interested in both the biochemistry of this site-specific RNA processing and in the role of the processing in generating translatable mRNAs. To address the latter, we are quantifying the rates of synthesis of the petB and petD gene products with the goal of determining whether the missing transcripts are more efficiently translated than their precursors. To address the biochemistry of the defect in RNA metabolism, the crp1 gene is being cloned via the transposon tag. crp2 (formerly called hcf142) lacks the predominant mRNA encoding petA, but appears to be otherwise unimpaired in chloroplast RNA metabolism. The precise role of crp2 in synthesizing or stabilizing the petA mRNA is being investigated through biochemical studies.

  6. Association of nuclear and mitochondrial genes with audiological examinations in Iranian patients with nonaminoglycoside antibiotics-induced hearing loss

    PubMed Central

    Balali, Maryam; Kamalidehghan, Behnam; Farhadi, Mohammad; Ahmadipour, Fatemeh; Ashkezari, Mahmoud Dehghani; Hemami, Mohsen Rezaei; Arabzadeh, Hossein; Falah, Masoumeh; Meng, Goh Yong; Houshmand, Massoud

    2016-01-01

    Mitochondrial DNA mutations play an important role in causing sensorineural hearing loss. The purpose of this study was to determine the association of the mitochondrial genes RNR1, MT-TL1, and ND1 as well as the nuclear genes GJB2 and GJB6 with audiological examinations in nonfamilial Iranians with cochlear implants, using polymerase chain reaction, DNA sequencing, and RNA secondary structure analysis. We found that there were no novel mutations in the mitochondrial gene 12S rRNA (MT-RNR1) in patients with and without GJB2 mutation (GJB2+ and GJB2−, respectively), but a total of six polymorphisms were found. No mutations were observed in tRNALeu(UUR) (MT-TL1). Furthermore, eight polymorphisms were found in the mitochondrial ND1 gene. Additionally, no mutations were observed in the nuclear GJB6 gene in patients in the GJB2− and GJB2+ groups. The speech intelligibility rating and category of auditory perception tests were statistically assessed in patients in the GJB2− and GJB2+ groups. The results indicated that there was a significant difference (P<0.05) between the categories of auditory perception score in the GJB2− group compared to that in the GJB2+ group. Successful cochlear implantation was observed among individuals with GJB2 mutations (GJB2+) and mitochondrial polymorphisms compared to those without GJB2 mutations (GJB2−). In conclusion, the outcome of this study suggests that variation in the mitochondrial and nuclear genes may influence the penetrance of deafness. Therefore, further genetic and functional studies are required to help patients in making the best choice for cochlear implants. PMID:26889084

  7. MODELING OF FLOW AND TRANSPORT INDUCED BY PRODUCTION OF HYDROFRACTURE-STIMULATED GAS WELLS NEAR THE RULISON NUCLEAR TEST

    SciTech Connect

    Hodges, Rex A.; Cooper, Clay; Falta, Ronald

    2012-09-17

    The Piceance Basin in western Colorado contains significant reserves of natural gas in poorly connected, low-permeability (tight) sandstone lenses of the Mesaverde Group. The ability to enhance the production of natural gas in this area has long been a goal of the oil and gas industry. The U.S. Atomic Energy Commission, a predecessor agency to the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission, participated in three tests using nuclear detonations to fracture tight formations in an effort to enhance gas production. The tests were conducted under Project Plowshare, a program designed to identify peaceful, beneficial uses for nuclear devices. The first, Project Gasbuggy, was conducted in 1967 in the San Juan Basin of New Mexico. The two subsequent tests, Project Rulison in 1969 and Project Rio Blanco in 1973, were in the Piceance Basin. The ability to enhance natural gas production from tight sands has become practical through advances in hydraulic fracturing technology (hydrofracturing). This technology has led to an increase in drilling activity near the Rulison site, raising concerns that contamination currently contained in the subsurface could be released through a gas well drilled too close to the site. As wells are drilled nearer the site, the DOE Office of Legacy Management has taken the approach outlined in the June 2010 Rulison Path Forward document (DOE 2010), which recommends a conservative, staged approach to gas development. Drillers are encouraged to drill wells in areas with a low likelihood of encountering contamination (both distance and direction from the detonation zone are factors) and to collect data from these wells prior to drilling nearer the site’s 40 acre institutional control boundary (Lot 11). Previous modeling results indicate that contamination has been contained within Lot 11 (Figure 1). The Path Forward document couples the model predictions with the monitoring of gas and produced water from the gas wells

  8. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.

    PubMed

    Kandel, Benjamin A; Thomas, Maria; Winter, Stefan; Damm, Georg; Seehofer, Daniel; Burk, Oliver; Schwab, Matthias; Zanger, Ulrich M

    2016-09-01

    The ligand-activated nuclear receptor pregnane X receptor (PXR, NR1I2) and the constitutive androstane receptor (CAR, NR1I3) are two master transcriptional regulators of many important drug metabolizing enzymes and transporter genes (DMET) in response to xenobiotics including many drugs. The peroxisome proliferator-activated receptor alpha (PPARα, NR1C1), the target of lipid lowering fibrate drugs, primarily regulates fatty acid catabolism and energy-homeostasis. Recent research has shown that there are substantial overlaps in the regulated genes of these receptors. For example, both CAR and PXR also modulate the transcription of key enzymes involved in lipid and glucose metabolism and PPARα also functions as a direct transcriptional regulator of important DMET genes including cytochrome P450s CYP3A4 and CYP2C8. Despite their important and widespread influence on liver metabolism, comparative data are scarce, particularly at a global level and in humans. The major objective of this study was to directly compare the genome-wide transcriptional changes elucidated by the activation of these three nuclear receptors in primary human hepatocytes. Cultures from six individual donors were treated with the prototypical ligands for CAR (CITCO), PXR (rifampicin) and PPARα (WY14,643) or DMSO as vehicle control. Genomewide mRNA profiles determined with Affymetrix microarrays were analyzed for differentially expressed genes and metabolic functions. The results confirmed known prototype target genes and revealed strongly overlapping sets of coregulated but also distinctly regulated and novel responsive genes and pathways. The results further specify the role of PPARα as a regulator of drug metabolism and the role of the xenosensors PXR and CAR in lipid metabolism and energy homeostasis. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26994748

  9. Association of nuclear and mitochondrial genes with audiological examinations in Iranian patients with nonaminoglycoside antibiotics-induced hearing loss.

    PubMed

    Balali, Maryam; Kamalidehghan, Behnam; Farhadi, Mohammad; Ahmadipour, Fatemeh; Ashkezari, Mahmoud Dehghani; Hemami, Mohsen Rezaei; Arabzadeh, Hossein; Falah, Masoumeh; Meng, Goh Yong; Houshmand, Massoud

    2016-01-01

    Mitochondrial DNA mutations play an important role in causing sensorineural hearing loss. The purpose of this study was to determine the association of the mitochondrial genes RNR1, MT-TL1, and ND1 as well as the nuclear genes GJB2 and GJB6 with audiological examinations in nonfamilial Iranians with cochlear implants, using polymerase chain reaction, DNA sequencing, and RNA secondary structure analysis. We found that there were no novel mutations in the mitochondrial gene 12S rRNA (MT-RNR1) in patients with and without GJB2 mutation (GJB2(+) and GJB2(-), respectively), but a total of six polymorphisms were found. No mutations were observed in tRNA(Leu) (() (UUR) ()) (MT-TL1). Furthermore, eight polymorphisms were found in the mitochondrial ND1 gene. Additionally, no mutations were observed in the nuclear GJB6 gene in patients in the GJB2(-) and GJB2(+) groups. The speech intelligibility rating and category of auditory perception tests were statistically assessed in patients in the GJB2(-) and GJB2(+) groups. The results indicated that there was a significant difference (P<0.05) between the categories of auditory perception score in the GJB2(-) group compared to that in the GJB2(+) group. Successful cochlear implantation was observed among individuals with GJB2 mutations (GJB2(+)) and mitochondrial polymorphisms compared to those without GJB2 mutations (GJB2(-)). In conclusion, the outcome of this study suggests that variation in the mitochondrial and nuclear genes may influence the penetrance of deafness. Therefore, further genetic and functional studies are required to help patients in making the best choice for cochlear implants. PMID:26889084

  10. DNA strand breaks induced by nuclear hijacking of neuronal NOS as an anti-cancer effect of 2-methoxyestradiol

    PubMed Central

    Gorska, Magdalena; Kuban-Jankowska, Alicja; Zmijewski, Michal; Gammazza, Antonella Marino; Cappello, Francesco; Wnuk, Maciej; Gorzynik, Monika; Rzeszutek, Iwona; Daca, Agnieszka; Lewinska, Anna; Wozniak, Michal

    2015-01-01

    2-Methoxyestradiol (2-ME) is a physiological metabolite of 17β-estradiol. At pharmacological concentrations, 2-ME inhibits colon, breast and lung cancer in tumor models. Here we investigated the effect of physiologically relevant concentrations of 2-ME in osteosarcoma cell model. We demonstrated that 2-ME increased nuclear localization of neuronal nitric oxide synthase, resulting in nitro-oxidative DNA damage. This in turn caused cell cycle arrest and apoptosis in osteosarcoma cells. We suggest that 2-ME is a naturally occurring hormone with potential anti-cancer properties. PMID:25972363

  11. Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl{sub 2})-induced nephrotoxicity using proton nuclear magnetic resonance ({sup 1}H NMR) in rats

    SciTech Connect

    Kim, Kyu-Bong; Um, So Young; Chung, Myeon Woo; Jung, Seung Chul; Oh, Ji Seon; Kim, Seon Hwa; Na, Han Sung; Lee, Byung Mu; Choi, Ki Hwan

    2010-12-01

    The primary objective of this study was to determine and characterize surrogate biomarkers that can predict nephrotoxicity induced by mercuric chloride (HgCl{sub 2}) using urinary proton nuclear magnetic resonance ({sup 1}H NMR) spectral data. A procedure for {sup 1}H NMR urinalysis using pattern recognition was proposed to evaluate nephrotoxicity induced by HgCl{sub 2} in Sprague-Dawley rats. HgCl{sub 2} at 0.1 or 0.75 mg/kg was administered intraperitoneally (i.p.), and urine was collected every 24 h for 6 days. Animals (n = 6 per group) were sacrificed 3 or 6 days post-dosing in order to perform clinical blood chemistry tests and histopathologic examinations. Urinary {sup 1}H NMR spectroscopy revealed apparent differential clustering between the control and HgCl{sub 2} treatment groups as evidenced by principal component analysis (PCA) and partial least square (PLS)-discriminant analysis (DA). Time- and dose-dependent separation of HgCl{sub 2}-treated animals from controls was observed by PCA of {sup 1}H NMR spectral data. In HgCl{sub 2}-treated rats, the concentrations of endogenous urinary metabolites of glucose, acetate, alanine, lactate, succinate, and ethanol were significantly increased, whereas the concentrations of 2-oxoglutarate, allantoin, citrate, formate, taurine, and hippurate were significantly decreased. These endogenous metabolites were selected as putative biomarkers for HgCl{sub 2}-induced nephrotoxicity. A dose response was observed in concentrations of lactate, acetate, succinate, and ethanol, where severe disruption of the concentrations of 2-oxoglutarate, citrate, formate, glucose, and taurine was observed at the higher dose (0.75 mg/kg) of HgCl{sub 2}. Correlation of urinary {sup 1}H NMR PLS-DA data with renal histopathologic changes suggests that {sup 1}H NMR urinalysis can be used to predict or screen for HgCl{sub 2}-induced nephrotoxicity{sub .}

  12. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  13. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    PubMed

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-01

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice. PMID:26073629

  14. BaeR protein acts as an activator of nuclear factor-kappa B and Janus kinase 2 to induce inflammation in murine cell lines.

    PubMed

    Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Awji, Elias Gebru; Kim, Myung Hee; Park, Ji-Yong; Suh, Joo-Won; Park, Seung-Chun

    2016-09-01

    BaeR, a response regulator protein, takes part in multidrug efflux, bacterial virulence activity, and other biological functions. Recently, BaeR was shown to induce inflammatory responses by activating the mitogen-activated protein kinases (MAPKs). In this study, we investigated additional pathways used by BaeR to induce an inflammatory response. BaeR protein was purified from Salmonella enterica Paratyphi A and subcloned into a pPosKJ expression vector. RAW 264.7 cells were treated with BaeR, and RNA was extracted by TRIzol reagent for RT-PCR. Cytokine gene expression was analyzed by using the comparative cycle threshold method, while western blotting and ELISA were used to assess protein expression. We confirmed that BaeR activates nuclear factor-kappa B (NF-κB), thereby inducing an inflammatory response and increases the production of interleukins (IL-)1β and IL-6. During this process, the Janus kinase 2 (JAK2)-STAT1 signaling pathway was activated, resulting in an increase in the release of interferons I and II. Additionally, COX-2 was activated and its expression increased with time. In conclusion, BaeR induced an inflammatory response through activation of NF-κB in addition to the MAPKs. Furthermore, activation of the JAK2-STAT1 pathway and COX-2 facilitated the cytokine binding activity, suggesting an additional role for BaeR in the modulation of the immune system of the host and the virulence activity of the pathogen. PMID:27374640

  15. Resveratrol Inhibits Paraquat-Induced Oxidative Stress and Fibrogenic Response by Activating the Nuclear Factor Erythroid 2-Related Factor 2 Pathway

    PubMed Central

    He, Xiaoqing; Wang, Liping; Szklarz, Grazyna; Bi, Yongyi; Ma, Qiang

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant-activated transcription factor that recently emerged as a critical regulator of cellular defense against oxidative and inflammatory lesions. Resveratrol (Res) is a natural phytoalexin that exhibits multiple therapeutic potentials, including antioxidative and anti-inflammatory effects in animals. Paraquat (PQ) is the second most widely used herbicide worldwide, but it selectively accumulates in human lungs to cause oxidative injury and fibrosis with high mortality. Here, we analyzed the molecular mechanism of the fibrogenic response to PQ and its inhibition by Res and Nrf2. PQ dose-dependently caused toxicity in normal human bronchial epithelial cells (BEAS-2B), resulting in mitochondrial damage, oxidative stress, and cell death. Res at 10 µM markedly inhibited PQ toxicity. PQ at 10 µM stimulated production of inflammatory and profibrogenic factors (tumor necrosis factor α, interleukin 6, and transforming growth factor β1) and induced the transformation of normal human lung fibroblasts (WI38-VA13) to myofibroblasts; both effects were inhibited by Res. Res strongly activated the Nrf2 signaling pathway and induced antioxidant response elementdependent cytoprotective genes. On the other hand, knockout or knockdown of Nrf2 markedly increased PQ-induced cytotoxicity, cytokine production, and myofibroblast transformation and abolished protection by Res. The findings demonstrate that Res attenuates PQ-induced reactive oxygen species production, inflammation, and fibrotic reactions by activating Nrf2 signaling. The study reveals a new pathway for molecular intervention against pulmonary oxidative injury and fibrosis. PMID:22493042

  16. Tetramethylpyrazine inhibits agiontensin II-induced nuclear factor-kappaB activation and bone morphogenetic protein-2 downregulation in rat vascular smooth muscle cells.

    PubMed

    Ren, Xin-Yu; Ruan, Qiu-Rong; Zhu, Da-He; Zhu, Min; Qu, Zhi-Ling; Lu, Jun

    2007-06-25

    Tetramethylpyrazine (TMP), an effective component of traditional Chinese medicine Chuanxiong, is commonly used to resolve embolism. Its possible therapeutic effect against atherosclerosis has received considerable attention recently. Angiotensin II (Ang II) is highly implicated in the proliferation of vascular smooth muscle cells (VSMCs), resulting in atherosclerosis. The mechanisms of TMP in the proliferation of VSMCs induced by Ang II remain to be defined. The present study was aimed to study the effect of TMP on Ang II-induced VSMC proliferation through detection of nuclear factor-kappaB (NF-kappaB) activity and bone morphogenetic protein-2 (BMP-2) expression. Primary cultured rat aortic smooth muscle cells were divided into the control group, Ang II group, Ang II + TMP group and TMP group. Cells in each group were harvested at different time points (15, 30 and 60 min for detection of NF-kappaB activity; 6, 12 and 24 h for measurement of BMP-2 expression). NF-kappaB activation was identified as nuclear staining by immunohistochemistry. BMP-2 expression was observed through Western blot, immunohistochemistry and in situ hybridization. The results showed that: (1) Ang II stimulated the activation of NF-kappaB. Translocation of NF-kappaB p65 subunit from cytoplasm to nucleus appeared as early as 15 min, peaked at 30 min (P<0.01) and declined after 1 h. (2) TMP inhibited Ang II-induced NF-kappaB activation (P<0.01). (3) Ang II increased BMP-2 expression at 6 h but declined it significantly at 12 and 24 h (P<0.01). (4) BMP-2 expression was also kept at high level at 6 h in Ang II + TMP group but maintained at the normal level at 12 and 24 h. (5) There was no significant difference in NF-kappaB activation and BMP-2 expression between the control group and TMP group. These results indicate that TMP inhibits Ang II-induced VSMC proliferation through repression of NF-kappaB activation and BMP-2 reduction, and BMP-2 expression is independent of the NF-kappaB pathway. In

  17. A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics.

    PubMed

    Kang, NaNa; Koo, JaeHyung; Wang, Sen; Hur, Sun Jin; Bahk, Young Yil

    2016-06-01

    RNA polymerase II C-terminal domain phosphatases are newly emerging family of phosphatases that contain FCPH domain with Mg+2-binding DXDX(T/V) signature motif. Its subfamily includes small CTD phosphatases (SCPs). Recently, we identified several interacting partners of human SCP1 with appearance of dephosphorylation and O-GlcNAcylation. In this study, using an established cell line with inducible CTDSPL2 protein (a member of the new phosphatase family), proteomic screening was conducted to identify binding partners of CTDSPL2 in nuclear extract through immunoprecipitation of CTDSPL2 with its associated. This approach led to the identification of several interacting partners of CTDSPL2. This will provide a better understanding on CTDSPL2. [BMB Reports 2016; 49(6): 319-324]. PMID:26674342

  18. Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells

    SciTech Connect

    Kim, Ji Young; Chung, Jin-Yong; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Yoo, Ki Soo; Yoo, Young Hyun; Park, Young Chul; Kim, Byeong Gee; Kim, Jong-Min . E-mail: jmkim7@dau.ac.kr

    2006-12-01

    Smac/DIABLO is released by mitochondria in response to apoptotic stimuli and is thought to antagonize the function of inhibitors of apoptosis proteins. Recently, it has been shown that, like XIAP, Survivin can potentially interact with Smac/DIABLO. However, the precise mechanisms and cellular location of their action have not been determined. We report for the first time that Smac/DIABLO translocates to the nucleus and is colocalized with Survivin at mitotic spindles during apoptosis resulting from G2/M arrest due to docetaxel treatment of DU145 prostate cancer cells. Our data demonstrate that the nuclear interaction of Smac/DIABLO with Survivin is an important step for suppressing the anti-apoptotic function of Survivin in Doc-induced apoptosis. This suggests that the balance between cellular Smac/DIABLO and Survivin levels could be critical for cellular destiny in taxane-treated cancer cells.

  19. Nuclear respiratory factor-1 (NRF-1) regulated hypoxia-inducible factor-1α (HIF-1α) under hypoxia in HEK293T.

    PubMed

    Wang, Dan; Zhang, Jie; Lu, Yapeng; Luo, Qianqian; Zhu, Li

    2016-09-01

    Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of oxygen homeostasis. Under hypoxia, the active HIF1-α subunits are mainly regulated through increased protein stabilization. Little is known concerning HIF-1α transcriptional regulation. Nuclear respiratory factor 1 (NRF-1) is a DNA-binding transcription factor that regulates mitochondrial biogenesis. In this study, we showed that NRF-1was a repressor of HIF-1α. The cellular depletion of NRF-1 by siRNA targeting leads to increased HIF-1αtranscriptional activity. EMSA, ChIP and luciferase activity allowed the identification of two functional NRF-1 binding sites within HIF-1α promoter. This study therefore identifies NRF-1 as a novel regulator of HIF-1α. © 2016 IUBMB Life, 68(9):748-755, 2016. PMID:27491637

  20. Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2010-08-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  1. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-{kappa}B

    SciTech Connect

    Bin Hafeez, Bilal; Ahmed, Salahuddin; Wang, Naizhen; Gupta, Sanjay; Zhang Ailin; Haqqi, Tariq M. . E-mail: txh5@case.edu

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-{kappa}B (NF-{kappa}B) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 {mu}g/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-{kappa}B/p65 and lowering of NF-{kappa}B/p65 and p50 levels in the cytoplasm and nucleus. GTP treatment of cells reduced I{kappa}B-{alpha} phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-{alpha} and IKK-{beta}, the upstream kinases that phosphorylate I{kappa}B-{alpha}. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-{kappa}B.

  2. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer.

    PubMed

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient's somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  3. A mobile group I intron from Physarum polycephalum can insert itself and induce point mutations in the nuclear ribosomal DNA of saccharomyces cerevisiae.

    PubMed Central

    Muscarella, D E; Vogt, V M

    1993-01-01

    Pp LSU3 is a mobile group I intron in the extrachromosomal nuclear ribosomal DNA (rDNA) of Physarum polycephalum. As found for other mobile introns, Pp LSU3 encodes a site-specific endonuclease, I-Ppo, which mediates "homing" to unoccupied target sites in Physarum rDNA. The recognition sequence for this enzyme is conserved in all eucaryotic nuclear rDNAs. We have introduced this intron into a heterologous species, Saccharomyces cerevisiae, in which nuclear group I introns have not been detected. The expression of Pp LSU3, under control of the inducible GAL10 promoter, was found to be lethal as a consequence of double-strand breaks in the rDNA. However, surviving colonies that are resistant to the lethal effects of I-Ppo because of alterations in the rDNA at the cleavage site were recovered readily. These survivors are of two classes. The first comprises cells that acquired one of three types of point mutations. The second comprises cells in which Pp LSU3 became inserted into the rDNA. In both cases, each resistant survivor appears to carry the same alterations in all approximately 150 rDNA repeats. When it is embedded in yeast rDNA, Pp LSU3 leads to the synthesis of I-Ppo and appears to be mobile in appropriate genetic crosses. The existence of yeast cells carrying a mobile intron should allow dissection of the steps that allow expression of the highly unusual I-Ppo gene. Images PMID:8380887

  4. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  5. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites

    PubMed Central

    Neufeldt, Christopher J.; Joyce, Michael A.; Van Buuren, Nicholas; Levin, Aviad; Kirkegaard, Karla; Gale Jr., Michael; Tyrrell, D. Lorne J.; Wozniak, Richard W.

    2016-01-01

    Hepatitis C virus (HCV) is a positive-strand RNA virus of the Flaviviridae family and a major cause of liver disease worldwide. HCV replicates in the cytoplasm, and the synthesis of viral proteins induces extensive rearrangements of host cell membranes producing structures, collectively termed the membranous web (MW). The MW contains the sites of viral replication and assembly, and we have identified distinct membrane fractions derived from HCV-infected cells that contain replication and assembly complexes enriched for viral RNA and infectious virus, respectively. The complex membrane structure of the MW is thought to protect the viral genome limiting its interactions with cytoplasmic pattern recognition receptors (PRRs) and thereby preventing activation of cellular innate immune responses. Here we show that PRRs, including RIG-I and MDA5, and ribosomes are excluded from viral replication and assembly centers within the MW. Furthermore, we present evidence that components of the nuclear transport machinery regulate access of proteins to MW compartments. We show that the restricted assess of RIG-I to the MW can be overcome by the addition of a nuclear localization signal sequence, and that expression of a NLS-RIG-I construct leads to increased immune activation and the inhibition of viral replication. PMID:26863439

  6. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    SciTech Connect

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William

    2009-03-10

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  7. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites.

    PubMed

    Neufeldt, Christopher J; Joyce, Michael A; Van Buuren, Nicholas; Levin, Aviad; Kirkegaard, Karla; Gale, Michael; Tyrrell, D Lorne J; Wozniak, Richard W

    2016-02-01

    Hepatitis C virus (HCV) is a positive-strand RNA virus of the Flaviviridae family and a major cause of liver disease worldwide. HCV replicates in the cytoplasm, and the synthesis of viral proteins induces extensive rearrangements of host cell membranes producing structures, collectively termed the membranous web (MW). The MW contains the sites of viral replication and assembly, and we have identified distinct membrane fractions derived from HCV-infected cells that contain replication and assembly complexes enriched for viral RNA and infectious virus, respectively. The complex membrane structure of the MW is thought to protect the viral genome limiting its interactions with cytoplasmic pattern recognition receptors (PRRs) and thereby preventing activation of cellular innate immune responses. Here we show that PRRs, including RIG-I and MDA5, and ribosomes are excluded from viral replication and assembly centers within the MW. Furthermore, we present evidence that components of the nuclear transport machinery regulate access of proteins to MW compartments. We show that the restricted assess of RIG-I to the MW can be overcome by the addition of a nuclear localization signal sequence, and that expression of a NLS-RIG-I construct leads to increased immune activation and the inhibition of viral replication. PMID:26863439

  8. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D™) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    NASA Astrophysics Data System (ADS)

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William

    2009-03-01

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D™) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D™ method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  9. Testicular Nuclear Receptor 4 (TR4) Regulates UV Light-induced Responses via Cockayne Syndrome B Protein-mediated Transcription-coupled DNA Repair*

    PubMed Central

    Liu, Su; Yan, Shian-Jang; Lee, Yi-Fen; Liu, Ning-Chun; Ting, Huei-Ju; Li, Gonghui; Wu, Qiao; Chen, Lu-Min; Chang, Chawnshang

    2011-01-01

    UV irradiation is one of the major external insults to cells and can cause skin aging and cancer. In response to UV light-induced DNA damage, the nucleotide excision repair (NER) pathways are activated to remove DNA lesions. We report here that testicular nuclear receptor 4 (TR4), a member of the nuclear receptor family, modulates DNA repair specifically through the transcription-coupled (TC) NER pathway but not the global genomic NER pathway. The level of Cockayne syndrome B protein (CSB), a member of the TC-NER pathway, is 10-fold reduced in TR4-deficient mouse tissues, and TR4 directly regulates CSB at the transcriptional level. Moreover, restored CSB expression rescues UV hypersensitivity of TR4-deficient cells. Together, these results indicate that TR4 modulates UV sensitivity by promoting the TC-NER DNA repair pathway through transcriptional regulation of CSB. These results may lead to the development of new treatments for UV light-sensitive syndromes, skin cancer, and aging. PMID:21918225

  10. Effects of shock-induced tensile failure on mb-Ms discrimination: Contrasts between historic nuclear explosions and the North Korean test of 9 October 2006

    NASA Astrophysics Data System (ADS)

    Patton, Howard J.; Taylor, Steven R.

    2008-07-01

    Rayleigh wave excitation is studied for an explosion source model consisting of a superposition of isotropic (monopole), tensile failure, and tectonic release point sources. The body-force representation for shock-induced, deep-seated tensile failure is a compensated linear vector dipole CLVD, where the relative strength of the CLVD is given by an index K. Rayleigh wave amplitudes are reduced owing to destructive interference between an explosive monopole and a CLVD source with vertical axis of symmetry in extension (K > 1). The effect of tensile failure on M s is to enhance the explosion-like characteristics on a plot of m b -M s . This model suggests that the success of the m b -M s discriminant results from the fact that nuclear tests were conducted under containment practices for which tensile failure is ubiquitous, while the North Korean nuclear test of 9 October 2006 is a harbinger of poor m b -M s performance when tensile failure is completely suppressed.

  11. Regulation of Early Light-Inducible Protein Gene Expression by Blue and Red Light in Etiolated Seedlings Involves Nuclear and Plastid Factors.

    PubMed Central

    Adamska, I.

    1995-01-01

    Early light-inducible proteins (ELIPs) are nuclear-encoded chloroplast proteins whose genes are transiently transcribed during the greening process of etiolated plants. In the present work the regulation of ELIP gene expression by blue and red light has been investigated in plumulas of etiolated pea plants (Pisum sativum). The results show that the steady-state level of ELIP transcripts is controlled by a combined action of phytochrome and blue light receptor systems and, in addition, depends on the age of the seedlings. Both a low-light fluence system of blue and a very-low-fluence system of red light are involved in ELIP induction. The threshold for accumulation of ELIP transcripts was as low as 10-5 [mu]E m-2 s-1 for both light qualities but a different pattern of accumulation was obtained in blue and in red light. Blue light not only acts at the level of transcription but also regulates the stability of the ELIP transcripts in a light intensity-dependent manner. Moreover, it is shown that product(s) of nuclear gene(s) negatively regulate the steady-state level of ELIP transcripts during the 1st h of illumination with red light. Preillumination of seedlings with white light abolishes this repression. Accumulation of ELIP transcripts requires "plastid factors" in both blue and red light qualities. PMID:12228423

  12. Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: Isolation and identification of the accumulating protein

    SciTech Connect

    Dietrich, D.R. Heussner, A.H.; O'Brien, E.; Gramatte, T.; Runkel, M.; Rumpf, S.; Day, B.W.

    2008-12-15

    Male and female F344 rats but not B6C3F1 mice exposed for 104 weeks to propiverine hydrochloride (1-methylpiperid-4-yl 2,2-diphenyl-2-(1-propoxy)acetate hydrochloride), used for treatment of patients with neurogenic detrusor overactivity (NDO) and overactive bladder (OAB), presented with an accumulation of proteins in the cytosol and nuclei of renal proximal tubule epithelial cells, yet despite this, no increased renal tumor incidence was observed. In order to provide an improved interpretation of these findings and a better basis for human health risk assessment, male and female F344 rats were exposed for 16 weeks to 1000 ppm propiverine in the diet, the accumulating protein was isolated from the kidneys via cytosolic and nuclear preparations or laser-capture microdissection and analyzed using molecular weight determination and mass spectrometry. The accumulating protein was found to be D-amino acid oxidase (DAAO), an enzyme involved in amino and fatty acid metabolism. Subsequent reanalysis of kidney homogenate and nuclear samples as well as tissue sections using western blot and DAAO-immunohistochemistry, confirmed the presence and localization of DAAO in propiverine-treated male and female F344 rats. The accumulation of DAAO only in rats, and the limited similarity of rat DAAO with other species, including humans, suggests a rat-specific mechanism underlying the drug-induced renal DAAO accumulation with little relevance for patients chronically treated with propiverine.

  13. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Hâkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-01

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  14. Regulated Necrosis in HeLa Cells Induced by ZnPc Photodynamic Treatment: A New Nuclear Morphology

    PubMed Central

    Soriano, Jorge; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena

    2014-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality based on the administration of a photosensitizer (PS), which accumulates preferentially in tumor cells. Subsequent irradiation of the neoplastic area triggers a cascade of photochemical reactions that leads to the formation of highly reactive oxygen species responsible for cell inactivation. Photodynamic treatments in vitro are performed with the PS, zinc-phthalocyanine (ZnPc). The PS is near the plasma membrane during uptake and internalization. Inactivation clearly occurs by a necrotic process, manifested by nuclear pyknosis, negative TUNEL and Annexin V assays and non-relocation of cytochrome c. In contrast, by increasing the incubation time, ZnPc is accumulated in the Golgi apparatus and produces cell inactivation with characteristics of apoptosis and necrosis: TUNEL positive, relocated cytochrome c and negative Annexin V assay. This type of death produces a still undescribed granulated nuclear morphology, which is different from that of necrosis or apoptosis. This morphology is inhibited by necrostatin-1, a specific inhibitor of regulated necrosis. PMID:25501332

  15. Regulated necrosis in HeLa cells induced by ZnPc photodynamic treatment: a new nuclear morphology.

    PubMed

    Soriano, Jorge; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena

    2014-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality based on the administration of a photosensitizer (PS), which accumulates preferentially in tumor cells. Subsequent irradiation of the neoplastic area triggers a cascade of photochemical reactions that leads to the formation of highly reactive oxygen species responsible for cell inactivation. Photodynamic treatments in vitro are performed with the PS, zinc-phthalocyanine (ZnPc). The PS is near the plasma membrane during uptake and internalization. Inactivation clearly occurs by a necrotic process, manifested by nuclear pyknosis, negative TUNEL and Annexin V assays and non-relocation of cytochrome c. In contrast, by increasing the incubation time, ZnPc is accumulated in the Golgi apparatus and produces cell inactivation with characteristics of apoptosis and necrosis: TUNEL positive, relocated cytochrome c and negative Annexin V assay. This type of death produces a still undescribed granulated nuclear morphology, which is different from that of necrosis or apoptosis. This morphology is inhibited by necrostatin-1, a specific inhibitor of regulated necrosis. PMID:25501332

  16. Transposon-induced nuclear mutations that alter chloroplast gene expression. Annual report, September 1, 1991--August 31, 1992

    SciTech Connect

    Barkan, A.

    1992-12-31

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  17. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    SciTech Connect

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T{sub 1}. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in {sup 13}CH{sub 3} groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  18. Osteopontin is associated with nuclear factor {kappa}B gene expression during tail-suspension-induced bone loss

    SciTech Connect

    Ishijima, Muneaki; Ezura, Yoichi . E-mail: ezura.mph@mril.tmd.ac.jp; Tsuji, Kunikazu

    2006-10-01

    Osteoporosis due to unloading-induced bone loss is a critical issue in the modern aging society. Although the mechanisms underlying this phenomenon are largely unknown, osteopontin (OPN) is one of the critical mediators required for unloading-induced bone loss [M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, and M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin, J Exp Med, 193 (2001) 399-404]. To clarify the molecular bases for OPN actions, we carried out microarray analyses on the genes expressed in the femoral bone marrow cells in wild type and OPN-/- mice. The removal of the mechanical load induced bone loss in wild type, but not in OPN-/- mice, as previously reported. Expression analysis of 9586 cDNAs on a microarray system revealed that OPN deficiency blocked tail-suspension-induced expression of ten genes (group A). This observation was confirmed based on semi-quantitative RT-PCR analyses. On the other hand, expression of four genes (group B) was not altered by tail suspension in wild type but was enhanced in OPN-deficient mice. NF-{kappa}B p105 subunit gene (Nfkb1) was found in group A and Bax in group B. p53 gene expression was upregulated by tail suspension in wild type mice, but it was no longer observed in OPN-/- mice. These data indicate that OPN acts to mediate mechanical stress signaling upstream to the genes encoding apoptosis-related molecules, and its action is associated with alteration of the genes.

  19. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes.

    PubMed

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. PMID:27343554

  20. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  1. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells

    PubMed Central

    ISHIKAWA, Shingo; TAKEMITSU, Hiroshi; HABARA, Makoto; MORI, Nobuko; YAMAMOTO, Ichiro; ARAI, Toshiro

    2015-01-01

    Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and is deeply involved in age-related and metabolic diseases development. These diseases have become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are considered an important factor in the development of chronic inflammation. Therefore, we aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of inflammation in cat fibroblast cells. PMID:26165138

  2. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO.

    PubMed

    Xiao, Liping; Naganawa, Takahiro; Lorenzo, Joseph; Carpenter, Thomas O; Coffin, J Douglas; Hurley, Marja M

    2010-01-22

    FGF2 transgenic mice were developed in which type I collagen regulatory sequences drive the nuclear high molecular weight FGF2 isoforms in osteoblasts (TgHMW). The phenotype of TgHMW mice included dwarfism, decreased bone mineral density (BMD), osteomalacia, and decreased serum phosphate (P(i)). When TgHMW mice were fed a high P(i) diet, BMD was increased, and dwarfism was partially reversed. The TgHMW phenotype was similar to mice overexpressing FGF23. Serum FGF23 was increased in TgHMW mice. Fgf23 mRNA in bones and fibroblast growth factor receptors 1c and 3c and Klotho mRNAs in kidneys were increased in TgHMW mice, whereas the renal Na(+)/P(i) co-transporter Npt2a mRNA was decreased. Immunohistochemistry and Western blot analyses of TgHMW kidneys showed increased KLOTHO and decreased NPT2a protein. The results suggest that overexpression of HMW FGF2 increases FGF23/FGFR/KLOTHO signaling to down-regulate NPT2a, causing P(i) wasting, osteomalacia, and decreased BMD. We assessed whether HMW FGF2 expression was altered in the Hyp mouse, a mouse homolog of the human disease X-linked hypophosphatemic rickets/osteomalacia. Fgf2 mRNA was increased in bones, and Western blots showed increased FGF2 protein in nuclear fractions from osteoblasts of Hyp mice. In addition, immunohistochemistry demonstrated co-localization of FGF23 and HMW FGF2 protein in osteoblasts and osteocytes from Hyp mice. This study reveals a novel mechanism of regulation of the FGF23-P(i) homeostatic axis. PMID:19933269

  3. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis.

    PubMed

    Tong, Xin; Li, Pei; Zhang, Deqiang; VanDommelen, Kyle; Gupta, Neil; Rui, Liangyou; Omary, M Bishr; Yin, Lei

    2016-07-01

    Upon food intake, insulin stimulates de novo lipogenesis (DNL) in hepatocytes via the AKT-mTORC1-sterol regulatory element-binding protein (SREBP)-1c pathway. How insulin maintains the maximal SREBP-1c activities during the entire feeding state remains elusive. We previously reported that insulin induced b-ZIP transcription factor, E4-binding protein 4 (E4BP4), in hepatocytes. In the current study, we show that insulin injection increases hepatic E4bp4 expression by activating the AKT-mTORC1-SREBP-1c pathway in hepatocytes. E4bp4-deficient hepatocytes not only fail to maintain robust DNL but also become resistant to SREBP-1c-induced lipogenesis. In vivo, acute depletion of E4bp4 in the liver by adenoviral shRNA reduces the expression of lipogenic enzymes and results in reduced levels of serum triglycerides and cholesterol during the postprandial phase. In hepatocytes, E4BP4 interacts with nuclear SREBP-1c to preserve its acetylation, and subsequently protects it from ubiquitination-dependent degradation. In conclusion, the current studies uncover a novel positive feedback pathway mediated by E4BP4 to augment SREBP-1c-mediated DNL in the liver during the fed state. PMID:27252523

  4. Suppression of nuclear factor erythroid 2-related factor 2 via extracellular signal-regulated kinase contributes to bleomycin-induced oxidative stress and fibrogenesis.

    PubMed

    Liu, Rui; Chen, Hongli; Bai, Hua; Zhang, Wei; Wang, Xin; Qin, Xujun; Zhang, Xiaodi; Li, Wenli; Liang, Xin; Hai, Chunxu

    2013-06-20

    Pulmonary fibrosis is a serious and irreversible lung injury with obscure etiologic mechanisms and no effective treatment to date. This study explored a crucial link between oxidative stress and pulmonary fibrogenesis, focusing on nuclear factor erythroid 2-related factor 2 (Nrf2), a core transcription factor in antioxidative regulation systems. Treatment of C57 BL/6 mice with bleomycin increased fibroblast viability and collagen production and significantly downregulated Nrf2. In addition, prominent oxidative stress was indicated by changes in superoxide dismutase, catalase activity, and glutathione and thiobarbituric acid-reactive substance levels. In a cell-based model, bleomycin suppressed Nrf2 activation via extracellular signal-related kinase phosphorylation, enhancing intracellular reactive oxygen species in lung fibroblasts and stimulating abnormal cell proliferation and collagen secretion. To confirm this novel mechanism of bleomycin-induced fibrogenesis, we attempted to upregulate Nrf2 and related antioxidant proteins in bleomycin-treated fibroblasts using a putative Nrf2 activator, caffeic acid phenethyl ester, and the results showed that bleomycin-induced fibroblast proliferation and collagen content were attenuated through improved redox balance. Collectively, these results disclose a potential regulatory mechanism in pulmonary fibrosis that will aid the development of new therapies. PMID:23570914

  5. Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry.

    PubMed

    Zhang, Fusheng; Wang, Dongqin; Li, Xiaowei; Li, Zhenyu; Chao, Jung; Qin, Xuemei

    2013-01-01

    A metabolomic investigation of baker's yeast-induced fever in rats was carried out. Plasma derived from Sprague-Dawley rats treated by subcutaneous administration of 20% (w/v) baker's yeast was analyzed using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Statistical data analysis using t-test and orthogonal partial least-squares discriminant analysis revealed many significant changes in the metabolic data in the plasma of the fever group. Clear separation was achieved between the fever and control groups. Seventeen marked metabolites were found in the fever group. The metabolites, which include amino acids, carbohydrate, organic acids, and fatty acids, mostly contributed to the discrimination of plasma samples from the control and fever groups. These results suggested that fever may involve in the perturbation of amino acid metabolism coupled with energy metabolism, lipid metabolism, and glycometabolism. After determining the antipyretic effects of aspirin on the fever group, four metabolites in the fever rat plasma were found to be signally regulated and recognized as potential biomarkers, including 3-hydroxybutyric acid, gamma-aminobutyric acid, glucose, and linoleic acid. The metabolic relationships that possibly exist between these potential biomarkers were speculated, and the mechanism of baker's yeast-induced fever was illustrated based on the metabolic relationships. This study found that metabolomic approaches such as GC-MS and NMR could be used as potential powerful tools to investigate the biochemical changes and mechanisms in certain pathological states at the metabolism level. PMID:23670098

  6. CXXC5 (Retinoid-Inducible Nuclear Factor, RINF) is a Potential Therapeutic Target in High-Risk Human Acute Myeloid Leukemia

    PubMed Central

    Astori, Audrey; Fredly, Hanne; Aloysius, Thomas Aquinas; Bullinger, Lars; Mas, Véronique Mansat-De; de la Grange, Pierre; Delhommeau, François; Hagen, Karen Marie; Récher, Christian; Dusanter-Fourt, Isabelle; Knappskog, Stian; Lillehaug, Johan Richard

    2013-01-01

    The retinoid-responsive gene CXXC5 localizes to the 5q31.2 chromosomal region and encodes a retinoid-inducible nuclear factor (RINF) that seems important during normal myelopoiesis. We investigated CXXC5/RINF expression in primary human acute myeloid leukemia (AML) cells derived from 594 patients, and a wide variation in CXXC5/RINF mRNA levels was observed both in the immature leukemic myeloblasts and in immature acute lymphoblastic leukemia cells. Furthermore, patients with low-risk cytogenetic abnormalities showed significantly lower levels compared to patients with high-risk abnormalities, and high RINF/CXXC5/ mRNA levels were associated with decreased overall survival for patients receiving intensive chemotherapy for newly diagnosed AML. This association with prognosis was seen both when investigating (i) an unselected patient population as well as for patients with (ii) normal cytogenetic and (iii) core-binding factor AML. CXXC5/RINF knockdown in AML cell lines caused increased susceptibility to chemotherapy-induced apoptosis, and regulation of apoptosis also seemed to differ between primary human AML cells with high and low RINF expression. The association with adverse prognosis together with the antiapoptotic effect of CXXC5/RINF suggests that targeting of CXXC5/RINF should be considered as a possible therapeutic strategy, especially in high-risk patients who show increased expression in AML cells compared with normal hematopoietic cells. PMID:23988457

  7. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks.

    PubMed Central

    Maser, R S; Monsen, K J; Nelms, B E; Petrini, J H

    1997-01-01

    We previously identified a conserved multiprotein complex that includes hMre11 and hRad50. In this study, we used immunofluorescence to investigate the role of this complex in DNA double-strand break (DSB) repair. hMre11 and hRad50 form discrete nuclear foci in response to treatment with DSB-inducing agents but not in response to UV irradiation. hMre11 and hRad50 foci colocalize after treatment with ionizing radiation and are distinct from those of the DSB repair protein, hRad51. Our data indicate that an irradiated cell is competent to form either hMre11-hRad50 foci or hRad51 foci, but not both. The multiplicity of hMre11 and hRad50 foci is much higher in the DSB repair-deficient cell line 180BR than in repair-proficient cells. hMre11-hRad50 focus formation is markedly reduced in cells derived from ataxia-telangiectasia patients, whereas hRad51 focus formation is markedly increased. These experiments support genetic evidence from Saccharomyces cerevisiae indicating that Mre11-Rad50 have roles distinct from that of Rad51 in DSB repair. Further, these data indicate that hMre11-hRad50 foci form in response to DNA DSBs and are dependent upon a DNA damage-induced signaling pathway. PMID:9315668

  8. Solar radiation induces non-nuclear perturbations and a false start to regulated exocytosis in Cryptosporidium parvum.

    PubMed

    King, Brendon J; Hoefel, Daniel; Wong, Pao Ee; Monis, Paul T

    2010-01-01

    Stratospheric ozone depletion, climate warming and acidification of aquatic ecosystems have resulted in elevated levels of solar radiation reaching many aquatic environments with an increased deleterious impact on a wide range of living organisms. While detrimental effects on living organisms are thought to occur primarily through DNA damage, solar UV can also damage cellular proteins, lipids and signalling pathways. Cryptosporidium, a member of the eukaryotic phylum Apicomplexa, contain numerous vesicular secretory organelles and their discharge via regulated exocytosis is essential for the successful establishment of infection. Using flow cytometric techniques we demonstrate that solar UV rapidly induces sporozoite exocytosis resulting in a significant reduction in the ability of sporozoites to attach and invade host cells. We found that solar UV induced sporozoite membrane depolarization, resulting in reduced cellular ATP and increased cytosolic calcium. These changes were accompanied by a reduction in the internal granularity of sporozoites, indicative of apical organelle discharge, which was confirmed by analysis of sporozoites with an exocytosis-sensitive dye. The precise timing of apical organelle discharge in the presence of a compatible host cell is critical for sporozoite attachment and invasion. Our results demonstrate for the first time how solar UV radiation can interfere with exocytosis, a fundamental cellular process in all eukaryotic cells. We contend that not only may the forecast increases in solar radiation in both aquatic and terrestrial environments significantly affect members of the Apicomplexa, solar UV-induced membrane depolarizations resulting in cytosolic calcium perturbation may affect a wider range of eukaryotic organisms through antagonistic effects on a myriad of calcium dependant cellular functions. PMID:20668710

  9. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis.

    PubMed

    Gagnidze, Khatuna; Hajdarovic, Kaitlyn H; Moskalenko, Marina; Karatsoreos, Ilia N; McEwen, Bruce S; Bulloch, Karen

    2016-05-17

    Certain components and functions of the immune system, most notably cytokine production and immune cell migration, are under circadian regulation. Such regulation suggests that circadian rhythms may have an effect on disease onset, progression, and resolution. In the vesicular stomatitis virus (VSV)-induced encephalitis model, the replication, caudal penetration, and survivability of intranasally applied VSV depends on both innate and adaptive immune mechanisms. In the current study, we investigated the effect of circadian time of infection on the progression and outcome of VSV-induced encephalitis and demonstrated a significant decrease in the survival rate in mice infected at the start of the rest cycle, zeitgeber time 0 (ZT0). The lower survival rate in these mice was associated with higher levels of circulating chemokine (C-C motif) ligand 2 (CCL2), a greater number of peripherally derived immune cells accumulating in the olfactory bulb (OB), and increased production of proinflammatory cytokines, indicating an immune-mediated pathology. We also found that the acrophase of molecular circadian clock component REV-ERBα mRNA expression in the OB coincides with the start of the active cycle, ZT12, when VSV infection results in a more favorable outcome. This result led us to hypothesize that REV-ERBα may mediate the circadian effect on survival following VSV infection. Blocking REV-ERBα activity before VSV administration resulted in a significant increase in the expression of CCL2 and decreased survival in mice infected at the start of the active cycle. These data demonstrate that REV-ERBα-mediated inhibition of CCL2 expression during viral-induced encephalitis may have a protective effect. PMID:27143721

  10. Interferon-induced HERC5 is evolving under positive selection and inhibits HIV-1 particle production by a novel mechanism targeting Rev/RRE-dependent RNA nuclear export

    PubMed Central

    2014-01-01

    Background Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERC5 is the main cellular E3 ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to inhibit the replication of evolutionarily diverse viruses, including HIV-1. The contribution of the RCC1-like domain to the antiviral activity of HERC5 was previously unknown. Results In this study, we showed that HERC5 inhibits HIV-1 particle production by a second distinct mechanism that targets the nuclear export of Rev/RRE-dependent RNA. Unexpectedly, the E3 ligase activity of HERC5 was not required for this inhibition. Instead, this activity required the amino-terminal RCC1-like domain of HERC5. Inhibition correlated with a reduction in intracellular RanGTP protein levels and/or the ability of RanGTP to interact with RanBP1. Inhibition also correlated with altered subcellular localization of HIV-1 Rev. In addition, we demonstrated that positive evolutionary selection is operating on HERC5. We identified a region in the RCC1-like domain that exhibits an exceptionally high probability of having evolved under positive selection and showed that this region is required for HERC5-mediated inhibition of nuclear export. Conclusions We have identified a second distinct mechanism by which HERC5 inhibits HIV-1 replication and demonstrate that HERC5 is evolving under strong positive selection. Together, our findings contribute to a growing body of evidence suggesting that HERC5 is a novel host restriction factor

  11. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation.

    PubMed

    Rajapurohitam, Venkatesh; Izaddoustdar, Farzad; Martinez-Abundis, Eduardo; Karmazyn, Morris

    2012-12-01

    Leptin, a product of the obesity gene, has been shown to produce cardiac hypertrophy. Although leptin's mechanism of action is poorly understood activation of the RhoA/ROCK pathway has been proposed as a contributing mechanism. The Ca(2+)-dependent phosphatase calcineurin plays a critical role in the hypertrophic program although it is not known whether leptin can activate this signaling pathway or whether there is a relationship between RhoA activation and calcineurin. Accordingly, we determined the effect of leptin on calcineurin activation and assessed the possible role of RhoA. Experiments were performed using cultured neonatal rat ventricular myocytes exposed to 50 ng/ml leptin for 24h which resulted in a robust hypertrophic response. Moreover, leptin significantly increased intracellular Ca(2+) and Na(+) concentrations which was associated with significantly reduced activity of the 3Na(+)-2K(+)ATPase. The hypertrophic response to leptin were completely abrogated by both C3 exoenzyme (C3), a RhoA inhibitor as well as the reverse mode 3Na(+)-1Ca(2+) exchange inhibitor KB-R7943 ((2-[2-[4-(4-nitrobenzyloxy)phenyl] ethyl]isothiourea methanesulfonate), however only the effect of the latter was associated with attenuation of intracellular Ca(2+) concentrations whereas Ca(2+) concentrations were unaffected by C3. Similarly, C3 and KB-R7943 significantly attenuated early leptin-induced increase in calcineurin activity as well as the increase in nuclear translocation of the transcriptional factor nuclear factor of activated T cells. The hypertrophic response to leptin was also associated with increased p38 and ERK1/2 MAPK phosphorylation and increased p38, but not ERK1/2, translocation into nuclei. Both p38 responses as well as hypertrophy were abrogated by KB-R7943 as well as the calcineurin inhibitor FK-506 although ERK1/2 phosphorylation was unaffected. Our study therefore demonstrates a critical role for the calcineurin pathway in mediating leptin-induced

  12. Propofol attenuates LPS-induced tumor necrosis factor-α, interleukin-6 and nitric oxide expression in canine peripheral blood mononuclear cells possibly through down-regulation of nuclear factor (NF)-κB activation.

    PubMed

    Pei, Zengyang; Wang, Jinqiu

    2015-02-01

    Sepsis is a major cause of mortality in intensive care medicine. Propofol, an intravenous general anesthetic, has been suggested to have anti-inflammatory properties and able to prevent sepsis induced by Gram-positive and Gram-negative bacteria by down-regulating the gene expression of pro-inflammatory cytokines. However, propofol's anti-inflammatory effects upon canine peripheral blood mononuclear cells (PBMCs) have not yet been clarified. Here, we isolate canine PBMCs and investigate the effects of propofol on the gene expressions of both lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α and upon the production of nitric oxide (NO). Through real-time quantitative PCR and the Griess reagent system, we found that non-cytotoxic levels of propofol significantly inhibited the release of NO and IL-6 and TNF-α gene expression in LPS-induced canine PBMCs. Western blotting revealed that LPS does significantly increase the expression of inducible NO synthase (iNOS) protein in canine PBMCs, while pretreatment with propofol significantly decreases the LPS-induced iNOS protein expression. Propofol, at concentration of 25 µM and 50 µM, also significantly inhibited the LPS-induced nuclear translocation of nuclear factor (NF)-κB p65 protein in canine PBMCs. This diminished TNF-α, IL-6 and iNOS expression, and NO production was in parallel to the respective decreased NF-κB p65 protein nuclear translocation in the LPS-activated canine PBMCs pretreated with 25 µM and 50 µM propofol. This suggests that non-cytotoxic levels of propofol pretreatment can down-regulate LPS-induced inflammatory responses in canine PBMCs, possibly by inhibiting the nuclear translocation of the NF-κB p65 protein. PMID:25312048

  13. [Reaction mechanism studies of heavy ion induced nuclear reactions]. [Dept. of Chemistry and Biochemistry, Univ. of Maryland, College Park, Maryland

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  14. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    SciTech Connect

    Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2012-11-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs{sup 3+}) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs{sup 3+} exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs{sup 3+} and monomethylarsonous acid (MMA{sup 3+})-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs{sup 3+}-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs{sup 3+}. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs{sup 3+} in β-cells. ► Deficiency of Nrf2 in

  15. Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro

    PubMed Central

    Wilk, Anna; Urbanska, Katarzyna; Grabacka, Maja; Mullinax, Jennifer; Marcinkiewicz, Cezary; Impastato, David; Estrada, John J.; Reiss, Krzysztof

    2012-01-01

    Anti-neoplastic potential of calorie restriction or ligand-induced activation of peroxisome proliferator activated receptors (PPARs) has been demonstrated in multiple studies; however, mechanism(s) by which tumor cells respond to these stimuli remain to be elucidated. One of the potent agonists of PPARα, fenofibrate, is a commonly used lipid-lowering drug with low systemic toxicity. Fenofibrate-induced PPARα transcriptional activity is expected to shift energy metabolism from glycolysis to fatty acid β-oxidation, which in the long-term, could target weak metabolic points of glycolysis-dependent glioblastoma cells. The results of this study demonstrate that 25 μM fenofibrate can effectively repress malignant growth of primary glial tumor cells and glioblastoma cell lines. This cytostatic action involves G1 arrest accompanied by only a marginal level of apoptotic cell death. Although the cells treated with 25 μM fenofibrate remain arrested, the cells treated with 50 μM fenofibrate undergo massive apoptosis, which starts after 72 h of the treatment. This delayed apoptotic event was preceded by FoxO3A nuclear accumulation, FoxO3A phosphorylation on serine residue 413, its elevated transcriptional activity and expression of FoxO-dependent apoptotic protein, Bim. siRNA-mediated inhibition of FoxO3A attenuated fenofibrate-induced apoptosis, indicating a direct involvement of this transcription factor in the fenofibrate action against glioblastoma. These properties of fenofibrate, coupled with its low systemic toxicity, make it a good candidate in support of conventional therapies against glial tumors. PMID:22732497

  16. Nuclear receptor subfamily 4, group A, member 1 inhibits extrinsic apoptosis and reduces caspase-8 activity in H2O2-induced human HUC-F2 fibroblasts

    PubMed Central

    Shimizu, Yuri; Miyakura, Reiko; Otsuka, Yuzuru

    2015-01-01

    Objective: Apoptosis is characterized by distinct morphological and biochemical changes that occur upon activation of a family of serine proteases known as caspases. Reactive oxygen species (ROS) induce apoptosis in many cell systems. Nuclear receptor subfamily 4, group A, member 1 (NR4A1) has been shown to induce apoptosis in a number of cell lineages, but can also paradoxically act as a death inhibitory factor. In the current study, we focused on the potential role of NR4A1 in hydrogen peroxide (H2O2)-induced apoptosis of normal human umbilical cord fibroblast (HUC-F2) cells. Methods: Growth of HUC-F2 cells treated with H2O2 was measured by MTT assay. Analysis of gene expression was performed with a STEP ONE PLUS Real Time PCR system. Inactivation of NR4A1 was treated with siRNA. Apoptosis was measured by Beckman Coulter flow cytometer after inhibition of NR4A1 with siRNA and H2O2 treatment. Caspase -3, -8 and -9 was measured by caspase assay kit. Results: H2O2 treatment led to enhanced NR4A1 expression. Moreover inhibition of NR4A1 with specific siRNA in HUC-F2 cells triggered an increase in apoptosis and caspase-8 and -3 activities following the addition of H2O2. Discussion: Our results collectively suggest that NR4A1 is a regulator that inhibits extrinsic apoptosis in HUC-F2 cells during oxidative stress through reduction of caspase-8 and -3 activities. PMID:25330024

  17. Sulphur antioxidants inhibit oxidative stress induced retinal ganglion cell death by scavenging reactive oxygen species but influence nuclear factor (erythroid-derived 2)-like 2 signalling pathway differently.

    PubMed

    Majid, Aman Shah Abdul; Yin, Zheng Qin; Ji, Dan

    2013-01-01

    This study aimed to show if two different sulphur containing drugs sulbutiamine and acetylcysteine (NAC) could attenuate the effects of two different insults being serum deprivation and glutamate/buthionine sulfoximine (GB)-induced death to transformed retinal ganglion cell line (RGC-5) in culture. Cells were exposed to either 5 mM of GB for 24 h or serum deprivation for 48 h with inclusion of either NAC or sulbutiamine. Cell viability, microscopic evidence for apoptosis, caspase 3 activity, reactive oxygen species (ROS), glutathione (GSH), catalase and gluthathione-S-transferase (GST) were determined. The effects of NAC and sulbutiamine on the oxidative stress related transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) levels and its dependent phase II enzyme haemeoxygenase-1 (HO-1) were carried out using Western blot and quantitative-polymerase chain reaction (PCR). NAC and sulbutiamine dose-dependently attenuated serum deprivation-induced cell death. However NAC but not sulbutiamine attenuated GB-induced cell death. NAC and sulbutiamine both independently stimulated the GSH and GST production but scavenged different types of ROS with different efficacy. Moreover only sulbutiamine stimulated catalase and significantly increased Nrf-2 and HO-1 levels. In addition, the pan caspase inhibitor, benzoylcarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) attenuated the negative effect of serum deprivation while the necroptosis inhibitor (necrostatin-1) counteracted solely an insult of GB. The neuroprotective actions of NAC and sulbutiamine in GB or serum-deprivation insult are therefore different. PMID:23811559

  18. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells.

    PubMed

    Mohan, Vijay; Agarwal, Rajesh; Singh, Rana P

    2016-09-01

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20-40 μM evodiamine treatment for 24-48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. PMID:27402273

  19. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western