Science.gov

Sample records for 3j scalar couplings

  1. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings.

    PubMed

    Vajpai, Navratna; Gentner, Martin; Huang, Jie-Rong; Blackledge, Martin; Grzesiek, Stephan

    2010-03-10

    Current NMR information on side-chain conformations of unfolded protein states is sparse due to the poor dispersion particularly of side-chain proton resonances. We present here optimized schemes for the detection of (3)J(HalphaHbeta), (3)J(NHbeta), and (3)J(C'Hbeta) scalar and (1)D(CbetaHbeta) residual dipolar couplings (RDCs) in unfolded proteins. For urea-denatured ubiquitin and protein G, up to six (3)J-couplings to (1)H(beta) are detected, which define the chi(1) angle at very high precision. Interpretation of the (3)J couplings by a model of mixed staggered chi(1) rotamers yields excellent agreement and also provides stereoassignments for (1)H(beta) methylene protons. For all observed amino acids with the exception of leucine, the chemical shift of (1)H(beta3) protons was found downfield from (1)H(beta2). For most residues, the precision of individual chi(1) rotamer populations is better than 2%. The experimental chi(1) rotamer populations are in the vicinity of averages obtained from coil regions in folded protein structures. However, individual variations from these averages of up to 40% are highly significant and indicate sequence- and residue-specific interactions. Particularly strong deviations from the coil average are found for serine and threonine residues, an effect that may be explained by a weakening of side-chain to backbone hydrogen bonds in the urea-denatured state. The measured (1)D(CbetaHbeta) RDCs correlate well with predicted RDCs that were calculated from a sterically aligned coil model ensemble and the (3)J-derived chi(1) rotamer populations. This agreement supports the coil model as a good first approximation of the unfolded state. Deviations between measured and predicted values at certain sequence locations indicate that the description of the local backbone conformations can be improved by incorporation of the RDC information. The ease of detection of a large number of highly precise side-chain RDCs opens the possibility for a more

  2. RNA structure and scalar coupling constants

    SciTech Connect

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  3. LIPSS results for photons coupling to light neutral scalar bosons

    SciTech Connect

    Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum

    2008-06-01

    The LIPSS search for a light neutral scalar boson coupling to optical photons is reported. The search covers a region of parameter space of approximately 1.0 meV and coupling strength greater than 10^-6 GeV^-1. The LIPSS results show no evidence for scalar coupling in this region of parameter space.

  4. Inflationary solutions in the nonminimally coupled scalar field theory

    NASA Astrophysics Data System (ADS)

    Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong

    2005-08-01

    We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.

  5. Relativistic stars in scalar-tensor theories with disformal coupling

    NASA Astrophysics Data System (ADS)

    Minamitsuji, Masato; Silva, Hector O.

    2016-06-01

    We present a general formulation to analyze the structure of slowly rotating relativistic stars in a broad class of scalar-tensor theories with disformal coupling to matter. Our approach includes theories with generalized kinetic terms, generic scalar field potentials and contains theories with conformal coupling as particular limits. In order to investigate how the disformal coupling affects the structure of relativistic stars, we propose a minimal model of a massless scalar-tensor theory and investigate in detail how the disformal coupling affects the spontaneous scalarization of slowly rotating neutron stars. We show that for negative values of the disformal coupling parameter between the scalar field and matter, scalarization can be suppressed, while for large positive values of the disformal coupling parameter stellar models cannot be obtained. This allows us to put a mild upper bound on this parameter. We also show that these properties can be qualitatively understood by linearizing the scalar field equation of motion in the background of a general-relativistic incompressible star. To address the intrinsic degeneracy between uncertainties in the equation of state of neutron stars and gravitational theory, we also show the existence of universal equation-of-state-independent relations between the moment of inertia and compactness of neutron stars in this theory. We show that in a certain range of the theory's parameter space the universal relation largely deviates from that of general relativity, allowing, in principle, to probe the existence of spontaneous scalarization with future observations.

  6. Noncommutative scalar field minimally coupled to nonsymmetric gravity

    SciTech Connect

    Kouadik, S.; Sefai, D.

    2012-06-27

    We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.

  7. Inflation from cosmological constant and nonminimally coupled scalar

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen; Marunović, Anja; Prokopec, Tomislav

    2015-08-01

    We consider inflation in a universe with a positive cosmological constant and a nonminimally coupled scalar field, in which the field couples both quadratically and quartically to the Ricci scalar. When considered in the Einstein frame and when the nonminimal couplings are negative, the field starts in slow roll and inflation ends with an asymptotic value of the principal slow-roll parameter, ɛE=4 /3 . Graceful exit can be achieved by suitably (tightly) coupling the scalar field to matter, such that at late time the total energy density reaches the scaling of matter, ɛE=ɛm . Quite generically the model produces a red spectrum of scalar cosmological perturbations and a small amount of gravitational radiation. With a suitable choice of the nonminimal couplings, the spectral slope can be as large as ns≃0.955 , which is about one standard deviation away from the central value measured by the Planck satellite. The model can be ruled out by future measurements if any of the following is observed: (a) the spectral index of scalar perturbations is ns>0.960 ; (b) the amplitude of tensor perturbations is above about r ˜10-2 ; (c) the running of the spectral index of scalar perturbations is positive.

  8. Scalar-tensor theory of gravitation with negative coupling constant

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  9. N-body simulations for coupled scalar-field cosmology

    SciTech Connect

    Li Baojiu; Barrow, John D.

    2011-01-15

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the {Lambda}CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  10. Scalar field conformally coupled to a charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Valtancoli, P.

    2016-06-01

    We study the Klein-Gordon equation of a scalar field conformally coupled to a charged BTZ black hole. The background metric is obtained by coupling a non-linear and conformal invariant Maxwell field to (2 + 1) gravity. We show that the radial part is generally solved by a Heun function and, in the pure gravity limit, by a hypergeometric function.

  11. Scalar decay constant and Yukawa coupling in walking gauge theories

    SciTech Connect

    Hashimoto, Michio

    2011-05-01

    We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.

  12. Trace anomaly of dilaton-coupled scalars in two dimensions

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Hawking, Stephen

    1997-12-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We show that their trace anomaly is (1/24π)[R-6(∇φ)2-2□φ]. It follows that a Russo-Susskind-Thorlacius-type counterterm appears naturally in the one-loop effective action.

  13. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  14. Improved Measurement of 3J(H αi, N i+1 ) Coupling Constants in H 2O Dissolved Proteins

    NASA Astrophysics Data System (ADS)

    Löhr, Frank; Schmidt, Jürgen M.; Maurer, Steffen; Rüterjans, Heinz

    2001-11-01

    A modification to the recently proposed α/β-HN(CO)CA-J TROSY pulse sequence (P. Permi et al., J. Magn. Reson.146, 255-259 (2000)) makes it possible to determine 3J(Hαi, Ni+1) coupling constants from a single E.COSY-type cross-peak pattern rather than from two 1Hα spin-state-edited subspectra. Advantages are increased 15N resolution, critical to extracting accurate 1Hα-15N coupling constants, and minimized differential relaxation due to nested 13Cα and 15N evolution periods. Application of the improved pulse sequence to Desulfovibrio vulgaris flavodoxin results in 3J(Hαi, Ni+1) values being systematically larger than those obtained with the original scheme. Parametrization of the coupling dependence on the protein backbone torsion angle ψ yields the Karplus relation 3J(Hαi, Ni+1)=-1.00 cos2(ψ-120°)+0.65 cos(ψ-120°)-0.15 Hz, with a residual root-mean-square difference of 0.13 Hz between measured and back-calculated coupling constants. The curve compares with data derived from ubiquitin (A. C. Wang and A. Bax, J. Am. Chem. Soc.117, 1810-1813 (1995)), although spanning a slightly larger range of J values in flavodoxin. The orientation of the Ala39/Ser40 peptide link, forming a type-II β-turn in flavodoxin, is twisted against X-ray-derived torsions by approximately 10° in the NMR structure as evident from the analysis of φ- and ψ-related 3J coupling constants. The remaining deviation of some experimental values from the prediction is likely to be due to strong hydrogen bonding, substituent effects, or the additional dependence on the adjacent torsions φ.

  15. Probing scalar coupling differences via long-lived singlet states

    NASA Astrophysics Data System (ADS)

    DeVience, Stephen J.; Walsworth, Ronald L.; Rosen, Matthew S.

    2016-01-01

    We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in syn and anti vicinal or long-range J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of 8 ± 2 mHz in phenylalanine-glycine-glycine and 2.57 ± 0.04 Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory.

  16. Effective field theory of quantum gravity coupled to scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  17. Scalar coupling limits and diphoton Higgs decay from LHC in an U (1 )' model with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Nisperuza, J.; Ochoa, F.; Rubio, J. P.; Sierra, C. F.

    2015-08-01

    We explore constraints on the scalar coupling in a family nonuniversal U (1 )' extension of the standard model free from anomalies with a complex scalar dark matter particle. From unitarity and stability of the Higgs potential, we find the full set of bounds and order relations for the scalar coupling constants. Using recent data from the CERN-LHC collider, we study the signal strength of the diphoton Higgs decay, which imposes very stringent bounds to the scalar couplings and other scalar parameters, including parameters associated to the dark matter. Taking into account these constraints, the observable relic density of the Universe, and the limits from LUX collaboration for direct detection, we obtain allowed masses for the dark matter particle as low as 55 GeV. By assuming that the lightest scalar boson of the model corresponds to the observed Higgs boson, we evaluate deviations from the standard model of the trilineal Higgs self-coupling. The conditions from unitarity, stability and Higgs diphoton decay data allow trilineal deviations in the range 0 ≤δ g ≲-72 %.

  18. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  19. Neutron star structure in the presence of conformally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-10-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  20. Carbon-proton scalar couplings in RNA. 3D heteronuclear and 2D isotope-edited NMR of a [sup 13]C-labeled extra-stable hairpin

    SciTech Connect

    Hines, J.V.; Landry, S.M.; Varani, G.; Tinoco, I. Jr. Lawrence Berkeley Lab., CA )

    1994-06-29

    Long range carbon-proton scalar couplings were measured for an RNA hairpin of 12 nucleotides using 3D and [sup 13]C-edited 2D NMR. The large one-bond carbon-proton scalar couplings ([sup 1]J[sub CH]) and small n-bond couplings ([sup 1]J[sub CH]) produce ECOSY type cross-peaks, thus facilitating the determination of the sign and magnitude of the smaller [sup 2]J[sub CH] or [sup 3]J[sub CH]. The UUCGRNA hairpin (5[prime]-rGGACUUCGGUCC-3[prime]), whose structure has been determined by our laboratory, was uniformly [sup 13]C-labeled at 30% isotopic enrichment. The observed [sup 1]J[sub CH] couplings were then correlated to the known structure. The signs of [sup 2]J[sub C4[prime]H5[prime

  1. Extended quintessence with nonminimally coupled phantom scalar field

    SciTech Connect

    Hrycyna, Orest; Szydlowski, Marek

    2007-12-15

    We investigate evolutional paths of an extended quintessence with a nonminimally coupled phantom scalar field {psi} to the Ricci curvature. The dynamical system methods are used to investigate typical regimes of dynamics at the late time. We demonstrate that there are two generic types of evolutional scenarios which approach the attractor (a focus or a node type critical point) in the phase space: the quasioscillatory and monotonic trajectories approach the attractor which represents the Friedmann-Robertson-Walker model with the cosmological constant. We demonstrate that the dynamical system admits an invariant two-dimensional submanifold and discuss that which cosmological scenario is realized depends on the behavior of the system on the phase plane ({psi},{psi}{sup '}). We formulate simple conditions on the value of the coupling constant {xi} for which trajectories tend to the focus in the phase plane and hence damping oscillations around the mysterious value w=-1. We describe this condition in terms of slow-roll parameters calculated at the critical point. We discover that the generic trajectories in the focus-attractor scenario come from the unstable node. We also investigate the exact form of the parametrization of the equation of state parameter w(z) (directly determined from dynamics) which assumes a different form for both scenarios.

  2. Visualizing Unresolved Scalar Couplings by Real-Time J-Upscaled NMR

    PubMed Central

    2015-01-01

    Scalar coupling patterns contain a wealth of structural information. The determination, especially of small scalar coupling constants, is often prevented by merging the splittings with the signal line width. Here we show that real-time J-upscaling enables the visualization of unresolved coupling constants in the acquisition dimension of one-dimensional (1D) or multidimensional NMR spectra. This technique, which works by introducing additional scalar coupling evolution delays within the recording of the FID (free induction decay), not only stretches the recorded coupling patterns but also actually enhances the resolution of multiplets, by reducing signal broadening by magnetic field inhomogeneities during the interrupted data acquisition. Enlarging scalar couplings also enables their determination in situations where the spectral resolution is limited, such as in the acquisition dimension of heteronuclear broadband decoupled HSQC (heteronuclear single quantum correlation) spectra. PMID:25837306

  3. Conformational study of C8 diazocine turn mimics using {sup 3}J{sub CH} coupling constants with {sup 13}C in natural abundance

    SciTech Connect

    Bean, J.W.; Briand, J.; Burgess, J.L.; Callahan, J.F.

    1994-12-01

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-{omega}-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-{omega}-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, {sup 3}J{sub HH} values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the H{alpha}1 and H{gamma}1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central H{beta}1 and H{beta}2 protons made it impossible to measure {sup 3}J{sub HH} values from the P.E.COSY spectrum. We therefore used a {sup 13}C-filtered TOCSY experiment to measure the {sup 3}J{sub CH} values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with {sup 13}C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation.

  4. Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials

    SciTech Connect

    Granda, L.N.

    2011-04-01

    We study a scalar field with non-minimal kinetic coupling to itself and to the curvature. The slow rolling conditions allowing an inflationary background have been found. The quadratic and Higgs type potentials have been considered, and the corresponding values for the scalar fields at the end of inflation allows to recover the connection with particle physics.

  5. Non-minimally coupled scalar field cosmology on the phase plane

    SciTech Connect

    Hrycyna, Orest; Szydlowski, Marek E-mail: uoszydlo@cyf-kr.edu.pl

    2009-04-15

    In this publication we investigate dynamics of a flat FRW cosmological model with a non-minimally coupled scalar field with the coupling term {xi}R{psi}{sup 2} in the scalar field action. The quadratic potential function V({psi}) {proportional_to} {psi}{sup 2} is assumed. All the evolutional paths are visualized and classified in the phase plane, at which the parameter of non-minimal coupling {xi} plays the role of a control parameter. The fragility of global dynamics with respect to changes of the coupling constant is studied in details. We find that the future big rip singularity appearing in the phantom scalar field cosmological models can be avoided due to non-minimal coupling constant effects. We have shown the existence of a finite scale factor singular point (future or past) where the Hubble function as well as its first cosmological time derivative diverge.

  6. Cosmological three-coupled scalar theory for the dS/LCFT correspondence

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2015-01-01

    We investigate cosmological perturbations generated during de Sitter inflation in the three-coupled scalar theory. This theory is composed of three coupled scalars φ{sub p},p=1,2,3) to give a sixth-order derivative scalar theory for φ{sub 3}, in addition to tensor. Recovering the power spectra between scalars from the LCFT correlators in momentum space indicates that the de Sitter/logarithmic conformal field theory (dS/LCFT) correspondence works in the superhorizon limit. We use LCFT correlators derived from the dS/LCFT differentiate dictionary to compare cosmological correlators (power spectra) and find also LCFT correlators by making use of extrapolate dictionary. This is because the former approach is more conventional than the latter. A bulk version dual to the truncation process to find a unitary CFT in the LCFT corresponds to selecting a physical field φ{sub 2} with positive norm propagating on the dS spacetime.

  7. Matter in loop quantum gravity without time gauge: A nonminimally coupled scalar field

    SciTech Connect

    Cianfrani, Francesco; Montani, Giovanni

    2009-10-15

    We analyze the phase space of gravity nonminimally coupled to a scalar field in a generic local Lorentz frame. We reduce the set of constraints to a first class one by fixing a specific hypersurfaces in the phase space. The main issue of our analysis is to extend the features of the vacuum case to the presence of scalar matter by recovering the emergence of an SU(2) gauge structure and the nondynamical role of boost variables. Within this scheme, the supermomentum and the super-Hamiltonian are those ones associated with a scalar field minimally coupled to the metric in the Einstein frame. Hence, the kinematical Hilbert space is defined as in canonical loop quantum gravity with a scalar field, but the differences in the area spectrum are outlined to be the same as in the time-gauge approach.

  8. Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Myrzakulov, R.; Odintsov, S. D.; Sebastiani, L.

    2016-06-01

    We study inflation for a quantum scalar electrodynamics model in curved space-time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.

  9. Stationary states of fermions in a sign potential with a mixed vector–scalar coupling

    SciTech Connect

    Castilho, W.M. Castro, A.S. de

    2014-01-15

    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. -- Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.

  10. RESEARCH NOTE FROM COLLABORATION: Dimensionless coupling of bulk scalars at the LHC

    NASA Astrophysics Data System (ADS)

    Beauchemin, P.-H.; Azuelos, G.; Burgess, C. P.

    2004-10-01

    We identify the lowest-dimension interaction which is possible between standard model brane fields and bulk scalars in six dimensions. The lowest-dimension interaction is unique and involves a trilinear coupling between the standard model Higgs boson and the bulk scalar. Because this interaction has a dimensionless coupling, it depends only logarithmically on ultraviolet mass scales and heavy physics need not decouple from it. We compute its influence on Higgs physics at ATLAS and identify how large a coupling can be detected at the LHC. Besides providing a potentially interesting signal in Higgs-boson searches, such couplings provide a major observational constraint on 6D large-extra-dimensional models with scalars in the bulk.

  11. Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe

    NASA Astrophysics Data System (ADS)

    Sim, Jonghyun; Lee, Tae Hoon

    2016-03-01

    We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.

  12. Search for strongly coupled Chameleon scalar field with neutron interferometry

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D.; Haun, R.; Heacock, B.; Huber, M.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C.; Skavysh, V.; Snow, M.; Young, A.

    2015-04-01

    The dark energy proposed to explain the observed accelerated expansion of the universe is not understood. A chameleon scalar field proposed as a dark energy candidate can explain the accelerated expansion and evade all current gravity experimental bounds. It features an effective range of the chameleon scalar field that depends on the local mass density. Hence a perfect crystal neutron interferometer, that measures relative phase shift between two paths, is a prefect tool to search for the chameleon field. We are preparing a two-chamber helium gas cell for the neutron interferometer. We can lower the pressure in one cell so low that the chameleon field range expands into the cell and causes a measurable neutron phase shift while keeping the pressure difference constant. We expect to set a new upper limit of the Chameleon field by at least one order of magnitude. This work is supported by NSF Grant 1205977, DOE Grant DE-FG02-97ER41042, Canadian Excellence Research Chairs program, Natural Sciences and Engineering Research Council of Canada and Collaborative Research and Training Experience Program

  13. A study of dynamical equations for non-minimally coupled scalar field using Noether symmetric approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-06-01

    Non-minimally coupled scalar field cosmology has been studied in this work within the framework of Einstein gravity. In the background of homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime non-minimally coupled scalar field having self-interacting potential is taken as the source of the matter content. The constraint of imposing Noether symmetry on the Lagrangian of the system not only determines the infinitesimal generator (the symmetry vector) but also the coupling function and the self-interacting potential for the scalar field. By choosing appropriately a point transformation in the augmented space, one of the transformed variables is cyclic for the Lagrangian. Finally, using constants of motion, the solutions are analyzed.

  14. Non-minimally coupled scalar fields, Holst action and black hole mechanics

    SciTech Connect

    Chatterjee, Ayan

    2011-02-15

    The paper deals with the extension of the Weak Isolated Horizon (WIH) formulation of black hole horizons to the non-minimally coupled scalar fields. In the early part of the paper, we introduce an appropriate Holst type action to incorporate scalar fields non-minimally coupled to gravity and construct the covariant phase space of the theory. Using this phase space, we proceed to prove the laws of black hole mechanics. Further, we show that with a gauge fixing, the symplectic structure on the horizon reduces to that of a U(1) Chern-Simons theory. The level of the Chern-Simons theory is shown to depend on the non-minimally coupled scalar field.

  15. Determination of unresolved heteronuclear scalar coupling constants by J(up)-HSQMBC

    NASA Astrophysics Data System (ADS)

    Glanzer, Simon; Kunert, Olaf; Zangger, Klaus

    2016-07-01

    Long-range heteronuclear scalar coupling constants provide important structural information, which is necessary for obtaining stereospecific assignment or dihedral angle information. The measurement of small proton-carbon splittings is particularly difficult due to the low natural abundance of carbon-13 and the presence of homonuclear couplings of similar size. Here we present a real-time J-upscaled HSQMBC, which allows the measurement of heteronuclear coupling constants even if they are hidden in the signal linewidth of a regular spectrum.

  16. The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background

    SciTech Connect

    Bernardini, A.E. Bertolami, O.

    2013-11-15

    A novel routine to investigate the scalar fields in a cosmological context is discussed in the framework of the Hamiltonian formalism. Starting from the Einstein–Hilbert action coupled to a Lagrangian density that contains two components–one corresponding to a scalar field Lagrangian, L{sub ϕ}, and another that depends on the scale parameter, L{sub a}–one can identify a generalized Hamiltonian density from which first-order dynamical equations can be obtained. This set up corresponds to the dynamics of Friedmann–Robertson–Walker models in the presence of homogeneous fields embedded into a generalized cosmological background fluid in a system that evolves all together isentropically. Once the generalized Hamiltonian density is properly defined, the constraints on the gravity–matter–field system are straightforwardly obtained through the first-order Hamilton equations. The procedure is illustrated for three examples of cosmological interest for studies of the dark sector: real scalar fields, tachyonic fields and generalized Born–Infeld tachyonic fields. The inclusion of some isentropic fluid component into the Friedmann equation allows for identifying an exact correspondence between the dark sector underlying scalar field and an ordinary real scalar field dynamics. As a final issue, the Hamiltonian formulation is used to set the first-order dynamical equations through which one obtains the exact analytical description of the cosmological evolution of a generalized Chaplygin gas (GCG) with dustlike matter, radiation or curvature contributions. Model stability in terms of the square of the sound velocity, c{sub s}{sup 2}, cosmic acceleration, q, and conditions for inflation are discussed. -- Highlights: •The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background is constructed. •Real scalar, tachyonic and generalized Born–Infeld tachyonic-type fields are considered. •An extended formulation of the Hamilton

  17. Conformally Coupled Scalars, Instantons, and Vacuum Instability in 4D Anti-de Sitter Space

    SciTech Connect

    Haro, Sebastian de; Papadimitriou, Ioannis; Petkou, Anastasios C.

    2007-06-08

    We show that a scalar field conformally coupled to AdS gravity in four dimensions with a quartic self-interaction can be embedded into M theory. The holographic effective potential is exactly calculated, allowing us to study nonperturbatively the stability of AdS{sub 4} in the presence of the conformally coupled scalar. It is shown that there exists a one-parameter family of conformal scalar boundary conditions for which the boundary theory has an unstable vacuum. In this case, the bulk theory has instanton solutions that mediate the decay of the AdS{sub 4} space. These results match nicely with the vacuum structure and the existence of instantons in an effective three-dimensional boundary model.

  18. Thermodynamics of general scalar-tensor theory with non-minimally derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, YuMei; Gong, YunGui

    2016-04-01

    With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field non-minimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.

  19. Holographic fluid from the nonminimally coupled scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zhao, Liu

    2014-05-01

    We establish the gravity/fluid correspondence in the nonminimally coupled scalar-tensor theory of gravity. Imposing the Petrov type I boundary condition over the gravitational field, we find that, for a certain class of background metrics, the boundary fluctuations obey the standard Navier-Stokes equation for an incompressible fluid without any external force term in the leading order approximation under the near horizon expansion. That is to say, the scalar field fluctuations do not contribute in the leading order approximation regardless of what kind of boundary condition we impose on it.

  20. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    SciTech Connect

    Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E.; Luzzi, G. E-mail: Carlos.Martins@astro.up.pt E-mail: up110370652@alunos.fc.up.pt

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  1. Possible Statistics of Two Coupled Random Fields: Application to Passive Scalar

    NASA Technical Reports Server (NTRS)

    Dubrulle, B.; He, Guo-Wei; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    We use the relativity postulate of scale invariance to derive the similarity transformations between two coupled scale-invariant random elds at different scales. We nd the equations leading to the scaling exponents. This formulation is applied to the case of passive scalars advected i) by a random Gaussian velocity field; and ii) by a turbulent velocity field. In the Gaussian case, we show that the passive scalar increments follow a log-Levy distribution generalizing Kraichnan's solution and, in an appropriate limit, a log-normal distribution. In the turbulent case, we show that when the velocity increments follow a log-Poisson statistics, the passive scalar increments follow a statistics close to log-Poisson. This result explains the experimental observations of Ruiz et al. about the temperature increments.

  2. Determination of unresolved heteronuclear scalar coupling constants by J(up)-HSQMBC.

    PubMed

    Glanzer, Simon; Kunert, Olaf; Zangger, Klaus

    2016-07-01

    Long-range heteronuclear scalar coupling constants provide important structural information, which is necessary for obtaining stereospecific assignment or dihedral angle information. The measurement of small proton-carbon splittings is particularly difficult due to the low natural abundance of carbon-13 and the presence of homonuclear couplings of similar size. Here we present a real-time J-upscaled HSQMBC, which allows the measurement of heteronuclear coupling constants even if they are hidden in the signal linewidth of a regular spectrum. PMID:27183090

  3. Hairy black holes sourced by a conformally coupled scalar field in D dimensions

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Leoni, Matías; Oliva, Julio; Ray, Sourya

    2014-04-01

    There exist well-known no-hair theorems forbidding the existence of hairy black hole solutions in general relativity coupled to a scalar conformal field theory in asymptotically flat space. Even in the presence of cosmological constant, where no-hair theorems can usually be circumvented and black holes with conformal scalar hair were shown to exist in D≤4 dimensions, no-go results were reported for D>4. In this paper we prove that these obstructions can be evaded and we answer in the affirmative a question that remained open: Whether hairy black holes do exist in general relativity sourced by a conformally coupled scalar field in arbitrary dimensions. We find the analytic black hole solution in arbitrary dimension D>4, which exhibits a backreacting scalar hair that is regular everywhere outside and on the horizon. The metric asymptotes to (anti-)de Sitter spacetime at large distance and admits spherical horizon as well as horizon of a different topology. We also find analytic solutions when higher-curvature corrections O(Rn) of arbitrary order n are included in the gravity action.

  4. Three-dimensional black holes with conformally coupled scalar and gauge fields

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Fuentealba, Oscar; Martínez, Cristián

    2014-12-01

    We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy black holes are asymptotically anti-de Sitter spacetimes. The mass and the electric charge are computed by using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic condition of the scalar field are present, a boundary condition that functionally relates them is required for determining the mass. Since the asymptotic form of the scalar field solution is defined by two integration constants, the boundary condition may or may not respect the asymptotic conformal symmetry. An analysis of the temperature and entropy of these black holes is presented. The temperature is a monotonically increasing function of the horizon radius as expected for asymptotically anti-de Sitter black holes. However, restrictions on the parameters describing the black holes are found by requiring the entropy to be positive, which, given the nonminimal coupling considered here, does not follow the area law. Remarkably, the same conditions ensure that the conformally related solutions become black holes in the Einstein frame.

  5. Scale-invariant scalar spectrum from the nonminimal derivative coupling with fourth-order term

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2015-08-01

    In this paper, an exactly scale-invariant spectrum of scalar perturbation generated during de Sitter spacetime is found from the gravity model of the nonminimal derivative coupling with fourth-order term. The nonminimal derivative coupling term generates a healthy (ghost-free) fourth-order derivative term, while the fourth-order term provides an unhealthy (ghost) fourth-order derivative term. The Harrison-Zel’dovich spectrum obtained from Fourier transforming the fourth-order propagator in de Sitter space is recovered by computing the power spectrum in its momentum space directly. It shows that this model provides a truly scale-invariant spectrum, in addition to the Lee-Wick scalar theory.

  6. False vacuum bubble nucleation due to a nonminimally coupled scalar field

    SciTech Connect

    Lee, Wonwoo; Park, Chanyong; Lee, Bum-Hoon; Lee, Chul H.

    2006-12-15

    We study the possibility of forming the false vacuum bubble nucleated within the true vacuum background via the true-to-false vacuum phase transition in curved spacetime. We consider a semiclassical Euclidean bubble in the Einstein theory of gravity with a nonminimally coupled scalar field. In this paper we present the numerical computations as well as the approximate analytical computations. We mention the evolution of the false vacuum bubble after nucleation.

  7. False vacuum bubble nucleation due to a nonminimally coupled scalar field

    NASA Astrophysics Data System (ADS)

    Lee, Wonwoo; Lee, Bum-Hoon; Lee, Chul H.; Park, Chanyong

    2006-12-01

    We study the possibility of forming the false vacuum bubble nucleated within the true vacuum background via the true-to-false vacuum phase transition in curved spacetime. We consider a semiclassical Euclidean bubble in the Einstein theory of gravity with a nonminimally coupled scalar field. In this paper we present the numerical computations as well as the approximate analytical computations. We mention the evolution of the false vacuum bubble after nucleation.

  8. Solid-state Hadamard NMR spectroscopy: Simultaneous measurements of multiple selective homonuclear scalar couplings

    NASA Astrophysics Data System (ADS)

    Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh

    2015-02-01

    Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining 1JCC and 3JCC values in 13C6L-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids.

  9. Solid-state Hadamard NMR spectroscopy: simultaneous measurements of multiple selective homonuclear scalar couplings.

    PubMed

    Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh

    2015-02-01

    Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining (1)JCC and (3)JCC values in (13)C6l-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids. PMID:25554944

  10. Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3J coupling constant analysis.

    PubMed

    Gil, Roberto R; Gayathri, Chakicherla; Tsarevsky, Nicolay V; Matyjaszewski, Krzysztof

    2008-02-01

    Poly(methyl methacrylate) (PMMA) gels prepared by copolymerizing methyl methacrylate (MMA) and various amounts of ethylene glycol dimethacrylate (EGDMA) in the presence of the radical initiator V-70 (2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile)) can orient small organic molecules when swollen in NMR tubes with CDCl(3). The aligning properties of the stretched PMMA gels were evaluated by monitoring the quadrupolar splitting of the (2)H NMR signal of CDCl(3), and the aligning degree is proportional to the cross-linking density. Natural abundance one-bond (1)H-(13)C residual dipolar couplings (RDCs) for menthol measured in the gels depended on the cross-link density. The stereochemistry and assignment of the diastereotopic protons of the gastroprotective and nonsteroidal aromatase inhibitor sesquiterpene lactone ludartin, isolated from Stevia yaconensis var. subeglandulosa, were unambiguously determined using a combination of natural abundance one-bond (1)H-(13)C RDCs measured in a PMMA gel and a (3)J coupling constant analysis. PMID:18177050

  11. Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons

    SciTech Connect

    Stolarski, Daniel; Vega-Morales, Roberto

    2012-12-01

    Kinematic distributions in the decays of the newly discovered resonance to four leptons can provide a direct measurement of the tensor structure of the particle's couplings to gauge bosons. Even if the particle is shown to be a parity even scalar, measuring this tensor structure is a necessary step in determining if this particle is responsible for giving mass to the Z. We consider a Standard Model like coupling as well as coupling via a dimension five operator to either ZZ or Z\\gamma. We show that using full kinematic information from each event allows discrimination between renormalizable and higher dimensional coupling to ZZ at the 95% confidence level with O(50) signal events, and coupling to Z\\gamma can be distinguished with as few as 20 signal events. This shows that these measurements can be useful even with this year's LHC data.

  12. Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity

    SciTech Connect

    Eichhorn, Astrid; Gies, Holger; Scherer, Michael M.

    2009-11-15

    We consider the asymptotic-safety scenario for quantum gravity which constructs a nonperturbatively renormalizable quantum gravity theory with the help of the functional renormalization group (RG). We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.

  13. Backreaction for Einstein-Rosen waves coupled to a massless scalar field

    NASA Astrophysics Data System (ADS)

    Szybka, Sebastian J.; Wyrebowski, Michał J.

    2016-07-01

    We present a one-parameter family of exact solutions to Einstein's equations that may be used to study the nature of the Green-Wald backreaction framework. Our explicit example is a family of Einstein-Rosen waves coupled to a massless scalar field. This solution may be reinterpreted as a generalized three-torus polarized Gowdy cosmology with scalar and gravitational waves. We use it to illustrate essential properties of the Green-Wald approach. Among other things we show that within our model the Green-Wald framework uniquely determines backreaction for finite-size inhomogeneities on a predefined background. The results agree with those calculated in the Charach-Malin approach. In the vacuum limit, the Green-Wald, the Charach-Malin and the Isaacson methods imply identical backreaction, as expected.

  14. The universe dominated by oscillating scalar with non-minimal derivative coupling to gravity

    SciTech Connect

    Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori E-mail: mukaida@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the expansion law of the universe dominated by the oscillating scalar field with non-minimal derivative coupling to gravity as G{sup μν}∂{sub μ}φ∂{sub ν}φ. In this system the Hubble parameter oscillates with a frequency of the effective mass of the scalar field, which formerly caused a difficulty in analyzing how the universe expands. We find an analytical solution for power law potentials and interpret the solution in an intuitive way by using a new invariant of the system. As a result, we find marginally accelerated expansion for the quadratic potential and no accelerated expansion for the potential with higher power.

  15. Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs spacetimes in scalar-coupled gravity theories

    SciTech Connect

    Camci, Ugur; Kucukakca, Yusuf

    2007-10-15

    We consider some scalar-coupled theories of gravity, including induced gravity, and study the Noether symmetries of Bianchi I, Bianchi III, and Kantowski-Sachs cosmological models for this theory. For various forms of coupling of the scalar field with gravity, some potentials are found in these cosmological models under the assumption that the Lagrangian admits Noether symmetry. The solutions of the field equations for the considered models are presented by using the results obtained from the Noether symmetry. We also find the explicit form of the scalar field in terms of the conformal time for Bianchi I, III, and Kantowski-Sachs models.

  16. Inflation from non-minimally coupled scalar field in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Artymowski, Michał; Dapor, Andrea; Pawłowski, Tomasz

    2013-06-01

    The FRW model with non-minimally coupled massive scalar field has been investigated in LQC framework. Considered form of the potential and coupling allows applications to Higgs driven inflation. Out of two frames used in the literature to describe such systems: Jordan and Einstein frame, the latter one is applied. Specifically, we explore the idea of the Einstein frame being the natural 'environment' for quantization and the Jordan picture having an emergent nature. The resulting dynamics qualitatively modifies the standard bounce paradigm in LQC in two ways: (i) the bounce point is no longer marked by critical matter energy density, (ii) the Planck scale physics features the ''mexican hat'' trajectory with two consecutive bounces and rapid expansion and recollapse between them. Furthermore, for physically viable coupling strength and initial data the subsequent inflation exceeds 60 e-foldings.

  17. Identification of Weakly Interacting Massive Particles Through a Combined Measurement of Axial and Scalar Couplings

    SciTech Connect

    Bertone, G.; Cerdeno, D. G.; Collar, J. I.; Odom, B.

    2007-10-12

    We study the prospects for detecting weakly interacting massive particles (WIMPs) in a number of phenomenological scenarios, with a detector composed of a target simultaneously sensitive to both spin-dependent and spin-independent couplings, as is the case of COUPP (Chicagoland Observatory for Underground Particle Physics). First, we show that sensitivity to both couplings optimizes chances of initial WIMP detection. Second, we demonstrate that, in case of detection, a comparison of the signal on two complementary targets, such as in COUPP CF{sub 3}I and C{sub 4}F{sub 10} bubble chambers, allows a significantly more precise determination of the dark matter axial and scalar couplings. This strategy would provide crucial information on the nature of the WIMPs and possibly allow discrimination between neutralino and Kaluza-Klein dark matter.

  18. Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Samsarov, Andjelo

    2016-05-01

    In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick-wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy obtained through these two different methods agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising a commutative massive scalar field but in a modified geometry: that of the rotational BTZ black hole, the result that hints at a duality between the commutative and noncommutative systems in the background of a BTZ black hole.

  19. Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.

    PubMed

    Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S

    2005-07-29

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity. PMID:16090861

  20. Order preserving contact transformations and dynamical symmetries of scalar and coupled Riccati and Abel chains

    NASA Astrophysics Data System (ADS)

    Gladwin Pradeep, R.; Chandrasekar, V. K.; Mohanasubha, R.; Senthilvelan, M.; Lakshmanan, M.

    2016-07-01

    We identify contact transformations which linearize the given equations in the Riccati and Abel chains of nonlinear scalar and coupled ordinary differential equations to the same order. The identified contact transformations are not of Cole-Hopf type and are new to the literature. The linearization of Abel chain of equations is also demonstrated explicitly for the first time. The contact transformations can be utilized to derive dynamical symmetries of the associated nonlinear ODEs. The wider applicability of identifying this type of contact transformations and the method of deriving dynamical symmetries by using them is illustrated through two dimensional generalizations of the Riccati and Abel chains as well.

  1. Late-time cosmology of a scalar-tensor theory with a universal multiplicative coupling between the scalar field and the matter Lagrangian

    NASA Astrophysics Data System (ADS)

    Minazzoli, Olivier; Hees, Aurélien

    2014-07-01

    We investigate the late-time cosmological behavior of scalar-tensor theories with a universal multiplicative coupling between the scalar field and the matter Lagrangian in the matter era. This class of theory encompasses the case of the massless string dilaton [see Damour and Polyakov, General Relativity and Gravitation 26, 1171 (1994)] as well as a theory with an intrinsic decoupling mechanism in the solar system [see Minazzoli and Hees, Phys. Rev. D 88, 041504 (2013)]. The cosmological evolution is studied in the general relativity limit justified by solar system constraints on the gravitation theory. The behavior of these cosmological evolutions are then compared to two types of observations: the constraints on temporal variations of the constants of nature and the distance-luminosity measurements. In particular, the nonminimal coupling implies that the distance-luminosity relation is modified compared to general relativity. Theories producing a cosmological behavior in agreement with these observations are identified.

  2. Intrinsic Solar System decoupling of a scalar-tensor theory with a universal coupling between the scalar field and the matter Lagrangian

    NASA Astrophysics Data System (ADS)

    Minazzoli, Olivier; Hees, Aurélien

    2013-08-01

    In this Communication, we present a class of Brans-Dicke-like theories with a universal coupling between the scalar field and the matter Lagrangian. We show this class of theories naturally exhibits a decoupling mechanism between the scalar field and matter. As a consequence, this coupling leads to almost the same phenomenology as general relativity in the Solar System: the trajectories of massive bodies and the light propagation differ from general relativity only at the second post-Newtonian order. Deviations from general relativity are beyond present detection capabilities. However, this class of theories predicts a deviation of the gravitational redshift at a level detectable by the future ACES and STE/QUEST missions.

  3. Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3

    PubMed Central

    Vögeli, Beat; Olsson, Simon; Riek, Roland; Güntert, Peter

    2015-01-01

    We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE) distance limits, residual dipolar couplings (RDCs) and scalar (J) couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations. PMID:26504890

  4. Randall-Sundrum cosmological model with nonminimal derivative coupling of scalar field

    SciTech Connect

    Widiyani, Agustina Suroso, Agus Zen, Freddy P.

    2015-04-16

    Nonminimal derivative coupling (NMDC) of scalar field in time-dependent Randall-Sundrum model is investigated. Firstly, we take a simple relation between the scale factor on the brane, a(t), and the scale factor of the extradimension, b(t), as b = a{sup γ} where γ is a constant. Then, we derive the Einstein equation and find its cosmological solution for a special case of static extra dimension, γ = 0. As the result, we find that de Sitter solution is a typical solution of our model. We also find that the brane tension which is related to cosmological constant on the brane is related to the coupling constant of the model.

  5. Quasinormal modes of a scalar perturbation coupling with Einstein's tensor in the warped AdS3 black hole spacetime

    NASA Astrophysics Data System (ADS)

    Yao, Weiping; Chen, Songbai; Jing, Jiliang

    2011-06-01

    We have studied the quasinormal modes of a massive scalar field coupling to Einstein’s tensor in the spacelike stretched AdS3 black hole spacetime. We find that both the right-moving and left-moving quasinormal frequencies depend not only on the warped parameter v of the black hole, but also on the coupling between the scalar field and Einstein’s tensor. Moreover, we also discuss the warped AdS/CFT correspondence from the quasinormal modes and probe the effects of the coupling on the left and right conformal weights hL and hR of the operators dual to the scalar field in the boundary.

  6. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    NASA Astrophysics Data System (ADS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  7. Strong coupling constants of bottom and charmed mesons with scalar, pseudoscalar, and axial vector kaons

    SciTech Connect

    Sundu, H.; Suengue, J. Y.; Sahin, S.; Yinelek, N.; Azizi, K.

    2011-06-01

    The strong coupling constants, g{sub D{sub sDK{sub 0}{sup *}, g{sub B{sub sBK{sub 0}{sup *}, g{sub D{sub s}{sup *}{sub DK}}}}}}, g{sub B{sub s}{sup *}{sub BK}}, g{sub D{sub s}{sup *}{sub DK{sub 1}}} and g{sub B{sub s}{sup *}{sub BK{sub 1}}}, where K{sub 0}{sup *}, K and K{sub 1} are scalar, pseudoscalar, and axial-vector kaon mesons, respectively, are calculated in the framework of three-point QCD sum rules. In particular, the correlation functions of the considered vertices when both B(D) and K{sub 0}{sup *}(K)(K{sub 1}) mesons are off shell are evaluated. In the case of K{sub 1}, which is either K{sub 1}(1270) or K{sub 1}(1400), the mixing between these two states are also taken into account. A comparison of the obtained result with the existing prediction on g{sub D{sub s}{sup *}{sub DK}} as the only coupling constant among the considered vertices, previously calculated in the literature, is also made.

  8. Iteration Profiles in Radiative Transfer Problems. I. From Vectorial to Scalar Coupling

    NASA Astrophysics Data System (ADS)

    Crivellari, L.; Simonneau, E.

    1995-09-01

    We have recently introduced a new algorithm, the implicit integral method (IIM), for solving radiative transfer problems in which the specific source functions (for each frequency and direction) depend linearly on the radiation field via a single quantity which is independent of both frequency and direction. We define this kind of relationship as scalar coupling. The fact that our method turned out to be fast, robust, and highly reliable leads us to seek its extension to include those problems where the above, necessary condition is not fulfilled. In these problems, the specific source functions depend on the radiation field through a nonfactorable redistribution operator. In our definition, these are cases of vectorial coupling. In this paper we present the successful application of the IIM, through an iterative procedure, to two specific instances of vectorial coupling. The first is the determination of the temperature distribution, self-consistent with the energy conservation constraint, within a LTE stellar atmosphere model. Here the physical processes other than radiative transfer require an iterative procedure for the global solution of the problem. Thus we take advantage of this circumstance to solve iteratively the radiative transfer part as well. The second is the case of the non-LTE two-level-atom line formation problem in which partial redistribution is taken into account in the presence of a background continuum. This problem allows a direct solution, but at the cost of using algorithms that necessarily require the storage and inversion of very high order matrices. On the contrary, we show that a solution based on the iterative application of the IIM, thanks to the outstanding features of the latter, is not only fast, but above all much more reliable in numerical terms.

  9. Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2016-06-01

    We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model due to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.

  10. Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field

    NASA Astrophysics Data System (ADS)

    Zampeli, Adamantia

    2015-09-01

    We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities.

  11. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  12. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  13. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. I. Neutral gravitational collapse

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-02-01

    There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic `clock' while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multicomponent matter-geometry system. We concentrated on a neutral case, which means that the elaborated system was not charged electrically nor magnetically. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke field and the matter sector of the theory. The obtained results indicated that the evolving scalar fields can be treated as time variables in close proximity of the singularity due to the following reasons. The constancy hypersurfaces of the Brans-Dicke field are spacelike in the vicinity of the singularity apart from the case, in which the equation of motion of the field reduces to the wave equation due to a specific choice of free evolution parameters. The hypersurfaces of constant complex and real scalar fields are spacelike in the regions nearby the singularities formed during the examined process. The values of the field functions change monotonically in the areas, in which the constancy hypersurfaces are spacelike.

  14. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    SciTech Connect

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    2011-10-15

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. These solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.

  15. Scalar and tensorial topological matter coupled to (2 + 1)-dimensional gravity: I. Classical theory and global charges

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Popescu, Eugeniu M.

    2006-06-01

    We consider the coupling of scalar topological matter to (2 + 1)-dimensional gravity. The matter fields consist of a 0-form scalar field and a 2-form tensor field. We carry out a canonical analysis of the classical theory, investigating its sectors and solutions. We show that the model admits both BTZ-like black-hole solutions and homogeneous/inhomogeneous FRW cosmological solutions.We also investigate the global charges associated with the model and show that the algebra of charges is the extension of the Kac Moody algebra for the field-rigid gauge charges, and the Virasoro algebra for the diffeomorphism charges. Finally, we show that the model can be written as a generalized Chern Simons theory, opening the perspective for its formulation as a generalized higher gauge theory.

  16. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  17. 3j Symbols: To Normalize or Not to Normalize?

    ERIC Educational Resources Information Center

    van Veenendaal, Michel

    2011-01-01

    The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to…

  18. K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Sravan Kumar, K.; Marto, João; Morais, João; Zhuk, Alexander

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K-essence models: (i) the pure kinetic K-essence field, (ii) a K-essence with a constant speed of sound and (iii) the K-essence model with the Lagrangian bX+cX2‑V(phi). We demonstrate that if the K-essence is coupled, all these K-essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  19. Measurement of Long Range 1H-19F Scalar Coupling Constants and their Glycosidic Torsion Dependence in 5-Fluoropyrimidine Substituted RNA

    PubMed Central

    Hennig, Mirko; Munzarová, Markéta L.; Bermel, Wolfgang; Scott, Lincoln G.; Sklenár̂, Vladimír; Williamson, James R.

    2008-01-01

    Long range scalar 5J(H1’,F) couplings were observed in 5-fluoropyrimidine substituted RNA. We developed a novel S3E-19F-α,β-edited NOESY experiment for quantitation of these long range scalar 5J(H1’,F), where the J-couplings can be extracted from inspection of intraresidual (H1’,H6) NOE crosspeaks. Quantum chemical calculations were exploited to investigate the relation between scalar couplings and conformations around the glycosidic bond in oligonucleotides. The theoretical dependence of the observed 5J(H1’,F) couplings on the torsion angle χ can be described by a generalized Karplus relationship. The corresponding density functional theory (DFT) analysis is outlined. Additional NMR experiments facilitating the resonance assignments of 5-fluoropyrimidine substituted RNAs are described and chemical shift changes due to altered shielding in the presence of fluorine-19 (19F) are presented. PMID:16637654

  20. Power law inflation with a non-minimally coupled scalar field in light of Planck 2015 data: the exact versus slow roll results

    NASA Astrophysics Data System (ADS)

    del Campo, Sergio; Gonzalez, Carlos; Herrera, Ramón

    2015-08-01

    We study the power law inflation in the context of non-minimally coupled to the scalar curvature. We analyze the inflationary solutions under an exact analysis and also in the slow roll approximations. In both solutions, we consider the recent data from Planck 2015 data to constraint the parameters in our model. In this framework, we find that in the slow roll approximations the spectral scalar index , during the power law inflation.

  1. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  2. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1Hz. PMID:26859865

  3. Conformally coupled scalar black holes admit a flat horizon due to axionic charge

    NASA Astrophysics Data System (ADS)

    Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos

    2012-09-01

    Static, charged black holes in the presence of a negative cosmological constant and with a planar horizon are found in four dimensions. The solutions have scalar secondary hair. We claim that these constitute the planar version of the Martínez-Troncoso-Zanelli black holes, only known up to now for a curved event horizon in four dimensions. Their planar version is rendered possible due to the presence of two, equal and homogeneously distributed, axionic charges dressing the flat horizon. The solutions are presented in the conformal and minimal frame and their basic properties and thermodynamics analysed. Entertaining recent applications to holographic superconductors, we expose two branches of solutions: the undressed axionic Reissner-Nordström-AdS black hole, and the novel black hole carrying secondary hair. We show that there is a critical temperature at which the (bald) axionic Reissner-Nordström-AdS black hole undergoes a second order phase transition to the hairy black hole spontaneously acquiring scalar hair.

  4. A line source in Minkowski for the de Sitter spacetime scalar Green's function: Massless minimally coupled case

    SciTech Connect

    Chu, Yi-Zen

    2014-09-15

    Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere.

  5. The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos

    SciTech Connect

    Li, Changhong; Cheung, Yeuk-Kwan E. E-mail: cheung@nju.edu.cn

    2014-07-01

    We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scale invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.

  6. 3j symbols : to normalize or not to normalize.

    SciTech Connect

    van Veenendaal, M.

    2011-07-01

    The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to tesseral harmonics. The methodology developed here leads to a significantly clearer presentation, which is of interest, not only for textbooks but also for researchers using spherical tensors.

  7. Determination of transverse relaxation rates in systems with scalar-coupled spins: The role of antiphase coherences

    NASA Astrophysics Data System (ADS)

    Segawa, Takuya F.; Bodenhausen, Geoffrey

    2013-12-01

    Homogeneous line-widths that arise from transverse relaxation tend to be masked by B0 field inhomogeneity and by multiplets due to homonuclear J-couplings. Besides well-known spin-locking sequences that lead to signals that decay with a rate R1ρ without any modulations, alternative experiments allow one to determine the transverse relaxation rates R2 in systems with scalar-coupled spins. We evaluate three recent strategies by experiment and simulation: (i) moderate-amplitude SITCOM-CPMG sequences (Dittmer and Bodenhausen, 2006 [2]), (ii) multiple-quantum filtered (MQF) sequences (Barrère et al., 2011 [4]) and (iii) PROJECT sequences (Aguilar et al., 2012 [5]). Experiments where the J-evolution is suppressed by spin-locking measure the pure relaxation rate R2(Ix) of an in-phase component. Experiments based on J-refocusing yield a mixture of in-phase rates R2(Ix) and antiphase rates R2(2IySz), where the latter are usually faster than the former. Moderate-amplitude SITCOM-CPMG and PROJECT methods can be applied to systems with many coupled spins, but applications of MQF sequences are limited to two-spin systems since modulations in larger systems can only partly be suppressed.

  8. Nonminimal derivative coupling scalar-tensor theories: Odd-parity perturbations and black hole stability

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Cruz, Miguel; Delsate, Térence; Saavedra, Joel

    2015-11-01

    We derive the odd-parity perturbation equation for the nonminimal kinetic coupling sector of the general Horndeski theory, where the kinetic term is coupled to the metric and the Einstein tensor. We derive the potential of the perturbation, by identifying a master function and switching to tortoise coordinates. We then prove the mode stability under linear odd-parity perturbations of hairy black holes in this sector of Horndeski theory, when a cosmological constant term in the action is included. Finally, we comment on the existence of slowly rotating black hole solutions in this setup and discuss their implications on the physics of compact object configurations, such as neutron stars.

  9. Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables

    NASA Astrophysics Data System (ADS)

    Gambini, Rodolfo; Pullin, Jorge

    2013-01-01

    We discuss a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. In a previous paper, we had presented it using Ashtekar’s new variables. Here we study it in metric variables. We specify completely the initial-boundary value problem for ingoing Gaussian pulses.

  10. Near-Horizon Geometry and the Entropy of a Minimally Coupled Scalar Field in the Schwarzschild Black Hole

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik

    2016-01-01

    In this article, we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in the Schwarzschild black hole background using the brick wall model of 't Hooft. In the original article, the Wentzel-Kramers-Brillouin (WKB) approximation was used for the modes that are globally stationary. In a previous article, we found that the WKB quantization rule together with a proper counting of the states, leads to a new expression of the scalar field entropy which is not proportional to the area of the horizon. The expression of the entropy is logarithmically divergent in the brick wall cut-off parameter in contrast to an inverse power divergence obtained earlier. In this article, we will consider the entropy for a thin shell of matter field of a given thickness surrounding the black hole horizon. The thickness is chosen to be large compared with the Planck length and is of the order of the atomic scale. We will discuss the corresponding boundary conditions and the appropriateness of the WKB approximation using the Regge-Wheeler tortoise coordinates. When expressed in terms of a covariant cut-off parameter, the entropy of a thin shell of matter field of a given thickness and surrounding the horizon in the Schwarzschild black hole background is given by an expression proportional to the area of the black hole horizon. This leading order divergent term in the cut-off parameter remains to be logarithmically divergent. The logarithmic divergence is expected from the nature of the near-horizon geometry and is discussed in detail at the end of Sect. 2. We will find that these discussions are significant in the context of the continuation to the Euclidean sector and the corresponding regularization schemes used to evaluate the thermodynamical properties of matter fields in curved spaces. These are related with to geometric aspects of curved spaces.

  11. Relativistic coupled-cluster calculation of the electron-nucleus scalar-pseudoscalar interaction constant Ws in YbF

    NASA Astrophysics Data System (ADS)

    Sunaga, A.; Abe, M.; Hada, M.; Das, B. P.

    2016-04-01

    The scalar-pseudoscalar (S-PS) interaction, which has been predicted between the electrons and nuclei of atoms and molecules, violates parity- (P -) and time- (T -) reversal symmetries. The electric dipole moment of the electron (eEDM) and the S-PS interaction together give rise to an energy shift in paramagnetic polar molecules, which in principle can be measured. The determination of the S-PS interaction constant, ks ,A, for an atom A could be a sensitive probe of physics beyond the standard model. The upper limit for it can be obtained by combining the results of the measured energy shift mentioned above and the accurate quantum chemical calculation of the S-PS coefficient, Ws ,A. In this work, we use a method based on the four-component relativistic coupled-cluster singles and doubles (RCCSD) method to calculate this coefficient for YbF, one of the most promising candidates for the search of the eEDM and the S-PS interaction. We obtain Ws ,Yb=-40.5 (kHz ) with an estimated error of less than 10% for YbF. We also calculate the effective electric field (Eeff), the molecular dipole moment, and the parallel component of the hyperfine coupling constant (A∥) by the RCCSD method. The discrepancies in the results of these calculations with those of accurate measurements are used to estimate the accuracy of our calculation of Ws ,Yb.

  12. Pseudo-scalar pi N coupling and relativistic proton-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Gross, Franz; Maung, Khin Maung; Tjon, J. A.; Townsend, L. W.; Wallace, S. J.

    1988-01-01

    Relativistic p-Ca-40 elastic scattering observables are calculated using relativistic NN amplitudes obtained from the solution of a two-body relativistic equation in which one particle is kept on its mass-shell. Results at 200 MeV are presented for two sets of NN amplitudes, one with pure pseudo-vector coupling for the pion and another with a 25 percent admixture of pseudo-scaling coupling. Both give a very good fit to the positive energy on-shell NN data. Differences between the predictions of these two models (which are shown to be due only to the differences in their corresponding negative energy amplitudes) provide a measure of the uncertainty in contructing Dirac optical potentials from NN amplitudes.

  13. Collection of NMR Scalar and Residual Dipolar Couplings Using a Single Experiment.

    PubMed

    Gil-Silva, Leandro F; Santamaría-Fernández, Raquel; Navarro-Vázquez, Armando; Gil, Roberto R

    2016-01-11

    A new DMSO-compatible aligning gel based on cross-linked poly(2-hydroxylethyl methacrylate) (poly-HEMA) has been developed. Due to a significant difference in bulk magnetic susceptibility between the DMSO inside and outside the gel, it is possible to simultaneously collect isotropic and anisotropic NMR data, such as residual dipolar couplings (RDC), in the same NMR tube. RDC-assisted structural analysis of menthol and the alkaloid retrorsine is reported as proof of concept. PMID:26515991

  14. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ¹⁹⁹Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF₃ and NpF₆. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  15. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.

    PubMed

    Yao, Lishan; Ying, Jinfa; Bax, Ad

    2009-03-01

    The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of (1)J(NH) splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of (2)J(NHalpha), (3)J(NHbeta) and (3)J(HNHalpha). Insertion of band-selective (1)H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields (1)J(NH) splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the (1)H-(15)N RDCs extracted from the minute differences in (1)J(NH) splitting measured at 500 and 750 MHz (1)H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of (2)J(NHalpha) couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the (15)N-(1)H(alpha) or (15)N-(1)H(beta) dipolar interaction. As expected, we find that (2)J(NHalpha) < or = 2 Hz, with values in the alpha-helix (0.86 +/- 0.52 Hz) slightly larger than in beta-sheet (0.66 +/- 0.26 Hz). Results indicate that under isotropic conditions, N-H(N)/N-H(beta) cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve (3)J(HNHalpha) and J(NHalpha), but when weakly aligned any aliphatic proton proximate to both N and H(N) can contribute. PMID:19205898

  16. A user-friendly Matlab program and GUI for the pseudorotation analysis of saturated five-membered ring systems based on scalar coupling constants

    PubMed Central

    Hendrickx, Pieter MS; Martins, José C

    2008-01-01

    Background The advent of combinatorial chemistry has revived the interest in five-membered heterocyclic rings as scaffolds in pharmaceutical research. They are also the target of modifications in nucleic acid chemistry. Hence, the characterization of their conformational features is of considerable interest. This can be accomplished from the analysis of the 3JHH scalar coupling constants. Results A freely available program including an easy-to-use graphical user interface (GUI) has been developed for the calculation of five-membered ring conformations from scalar coupling constant data. A variety of operational modes and parameterizations can be selected by the user, and the coupling constants and electronegativity parameters can be defined interactively. Furthermore, the possibility of generating high-quality graphical output of the conformational space accessible to the molecule under study facilitates the interpretation of the results. These features are illustrated via the conformational analysis of two 4'-thio-2'-deoxynucleoside analogs. Results are discussed and compared with those obtained using the original PSEUROT program. Conclusion A user-friendly Matlab interface has been developed and tested. This should considerably improve the accessibility of this kind of calculations to the chemical community. PMID:18950513

  17. New exact solutions of Bianchi I, Bianchi III and Kantowski-Sachs spacetimes in scalar-coupled gravity theories via Noether gauge symmetries

    NASA Astrophysics Data System (ADS)

    Camci, U.; Yildirim, A.; Basaran Oz, I.

    2016-03-01

    The Noether symmetry approach is useful tool to restrict the arbitrariness in a gravity theory when the equations of motion are underdetermined due to the high number of functions to be determined in the ansatz. We consider two scalar-coupled theories of gravity, one motivated by induced gravity, the other more standard; in Bianchi I, Bianchi III and Kantowski-Sachs cosmological models. For these models, we present a full set of Noether gauge symmetries, which are more general than those obtained by the strict Noether symmetry approach in our recent work. Some exact solutions are derived using the first integrals corresponding to the obtained Noether gauge symmetries.

  18. Scalar limitations of diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew

    1993-01-01

    In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.

  19. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups

    NASA Astrophysics Data System (ADS)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V.; Düwel, Stephan; Durst, Markus; Schulte, Rolf F.; Menzel, Marion I.

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., 79Br-13C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-13C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T1 shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar 14N adjacent to the 13C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the 13C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a 15N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  20. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  1. DFT studies of the conformational/structural dependencies of geminal 1H,1H scalar coupling 2J(H,H') in substituted methanes.

    PubMed

    Barfield, Michael

    2007-08-01

    A study is presented of the structural dependencies for scalar, interproton J-coupling across two bonds in a series of substituted methanes. The coupled perturbed, density functional theory method with a B3PW91 functional and aug-cc-pVTZ-J basis sets is used to examine coupling between geminal protons (2)J(H,H') in methane and a series of substituted compounds CH(3)X (X = CH3, CH(2)CH(3), CH=CH2, CH=O, and NH2) as functions of the dihedral angle phi measured about the C1-X2 bonds. All four contributions are obtained but all conformational effects are dominated by the Fermi contact term. Simple linear combination of atomic orbitals (LCAO)-molecular orbital (MO) sum-over-states methods are used to examine the relationships of the coupling constants with dihedral angles as well as internal H-C-H and H-C1-X2 angles. This study explores some novel aspects of geminal H-H coupling including an analysis of the asymmetry in the conformational dependencies arising from non-next-nearest neighbor interactions. For each of the substituted methanes, explicit trigonometric/exponential expressions are given and these accurately reproduce the (2)J(H,H') structural dependencies with standard deviations usually less than 0.03 Hz. The molecular structures for representative bicyclic molecules were fully optimized, and DFT results for (2)J(H,H') reproduce all the trends in the experimental data. A discussion is given on the applicability of the equations for H--H coupling in the substituted methanes to coupling in the bicyclic molecules. PMID:17559165

  2. Electroweak Baryogenesis and Colored Scalars

    SciTech Connect

    Cohen, Timothy; Pierce, Aaron; /Michigan U., MCTP

    2012-02-15

    We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.

  3. Conformal scalar field wormholes

    NASA Technical Reports Server (NTRS)

    Halliwell, Jonathan J.; Laflamme, Raymond

    1989-01-01

    The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.

  4. The stereospecific assignment of H5' and H5' in RNA using the sign of two-bond carbon-proton scalar couplings

    SciTech Connect

    Hines, J.V.; Varani, G.; Landry, S.M.; Tinoco, I. Jr. )

    1993-11-17

    Stereospecific assignment of H5' and H5' protons in the NMR spectra of nucleic acids provides significant improvement in the use of NOE distance and torsion angle constraints for structure determination. With stereospecific assignments, the torsion angles [beta] (P5'-O5'-C5'-C4') and [gamma] (O5'-C5'-C4'-C3') can be determined on the basis of [sup 1]H-[sup 1]H and [sup 31]P-[sup 1]H couplings. In addition, stereospecific assignment allows use of NOE distance constraints for H5' and H5'. We report a novel, independent method for the stereospecific assignment of the H5' (pro-S) and H5' (pro-R) protons which is based only on the sign of the carbon-proton two-bond scalar couplings and will not be greatly limited by line width. The sign of [sup 2]J[sub CH] can also be used to determine torsion angle [gamma] and the sugar conformation. Determination of the sign of the two-bond carbon-proton couplings provides a useful new method for the structure determination of RNA molecules. The ribose sugar conformation and torsion angle [gamma] (O5'-C5'-C4'-C3') can be specified. Furthermore, H5' and H5' protons can be stereospecifically assigned, allowing their use in NOE distance constraints and in determining [beta] (P5'-O5'-C5'-C4'). The correlation we have reported between the sign of [sup 2]J[sub CH] and RNA structure will be particularly useful in the study of large RNAs and RNA-protein complexes. 21 refs., 1 fig., 1 tab.

  5. Are stealth scalar fields stable?

    SciTech Connect

    Faraoni, Valerio; Moreno, Andres F. Zambrano

    2010-06-15

    Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.

  6. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods

    SciTech Connect

    Cheng, Lan

    2015-08-14

    Quantum-chemical computations of nuclear quadrupole-coupling parameters for 24 open-shell states of small molecules based on non-relativistic and spin-free exact two-component (SFX2C) relativistic equation-of-motion coupled-cluster (EOM-CC) as well as spin-orbital-based restricted open-shell Hartree-Fock coupled-cluster (ROHF-CC) methods are reported. Relativistic effects, the performance of the EOM-CC and ROHF-CC methods for treating electron correlation, as well as basis-set convergence have been carefully analyzed. Consideration of relativistic effects is necessary for accurate calculations on systems containing third-row (K-Kr) and heavier elements, as expected, and the SFX2C approach is shown to be a useful cost-effective option here. Further, it is demonstrated that the EOM-CC methods constitute flexible and accurate alternatives to the ROHF-CC methods in the calculations of nuclear quadrupole-coupling parameters for open-shell states.

  7. Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar

    2016-04-01

    In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.

  8. Imploding scalar fields

    SciTech Connect

    Roberts, M.D.

    1996-09-01

    Static spherically symmetric uncoupled scalar space{endash}times have no event horizon and a divergent Kretschmann singularity at the origin of the coordinates. The singularity is always present so that nonstatic solutions have been sought to see if the singularities can develop from an initially singular free space{endash}time. In flat space{endash}time the Klein{endash}Gordon equation {D`Alembertian}{var_phi}=0 has the nonstatic spherically symmetric solution {var_phi}={sigma}({ital v})/{ital r}, where {sigma}({ital v}) is a once differentiable function of the null coordinate {ital v}. In particular, the function {sigma}({ital v}) can be taken to be initially zero and then grow, thus producing a singularity in the scalar field. A similar situation occurs when the scalar field is coupled to gravity via Einstein{close_quote}s equations; the solution also develops a divergent Kretschmann invariant singularity, but it has no overall energy. To overcome this, Bekenstein{close_quote}s theorems are applied to give two corresponding conformally coupled solutions. One of these has positive ADM mass and has the following properties: (i) it develops a Kretschmann invariant singularity, (ii) it has no event horizon, (iii) it has a well-defined source, (iv) it has well-defined junction condition to Minkowski space{endash}time, and (v) it is asymptotically flat with positive overall energy. This paper presents this solution and several other nonstatic scalar solutions. The properties of these solutions which are studied are limited to the following three: (i) whether the solution can be joined to Minkowski space{endash}time, (ii) whether the solution is asymptotically flat, (iii) and, if so, what the solutions{close_quote} Bondi and ADM masses are. {copyright} {ital 1996 American Institute of Physics.}

  9. Maximum J Pairing and Asymptotic Behavior of the 3j and 9j Coefficients

    NASA Astrophysics Data System (ADS)

    Hertz-Kintish, Daniel; Zamick, Larry; Kleszyk, Brian

    2014-09-01

    We investigate the large j behavior of certain 3 j and 9 j symbols, where j is the total angular momentum of one particle in a given shell. Our motivation is the problem of maximum J pairing in nuclei, along with the more familiar J = 0 pairing. Maximum J pairing leads to an increase in J = 2 coupling of two protons and two neutrons relative to J = 0 . We find that a coupling unitary 9 j symbol (U 9 j) is very weak as j increases, leading to wavefunctions which are to an excellent approximation single U 9 j coefficients. Our study of the large j behavior of coupling unitary 9 j symbols is through the consideration of the case when the total angular momentum I is equal to Imax - 2 n and Imax ≡ 4 j - 2 , where n = 0 , 1 , 2 , ... . We here derive asymptotic approximations of coupling 3 j symbols and find that the 3 j ~j - 3 / 4 in the high j limit. One major analytical tool we used is the Stirling Approximation. Through analytical, numerical, and graphical methods, we show the power law behavior of the coupling unitary 9 j symbols in the n / j << 1 limit, i.e. U 9 j ~j-n . Power-law behavior is evident if there is a linear dependence of ln | U 9 j | vs. ln j . We also present some examples of percent errors in our approximations. We investigate the large j behavior of certain 3 j and 9 j symbols, where j is the total angular momentum of one particle in a given shell. Our motivation is the problem of maximum J pairing in nuclei, along with the more familiar J = 0 pairing. Maximum J pairing leads to an increase in J = 2 coupling of two protons and two neutrons relative to J = 0 . We find that a coupling unitary 9 j symbol (U 9 j) is very weak as j increases, leading to wavefunctions which are to an excellent approximation single U 9 j coefficients. Our study of the large j behavior of coupling unitary 9 j symbols is through the consideration of the case when the total angular momentum I is equal to Imax - 2 n and Imax ≡ 4 j - 2 , where n = 0 , 1 , 2 , ... . We here

  10. Helix-Capping Histidines: Diversity of N-H···N Hydrogen Bond Strength Revealed by (2h)JNN Scalar Couplings.

    PubMed

    Preimesberger, Matthew R; Majumdar, Ananya; Rice, Selena L; Que, Lauren; Lecomte, Juliette T J

    2015-11-24

    In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules. PMID:26523621

  11. Regular scalar collapse

    NASA Astrophysics Data System (ADS)

    Lasukov, V. V.

    2012-06-01

    It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.

  12. Creation of the universe with a stealth scalar field

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki; Maeda, Kei-ichi

    2012-12-01

    The stealth scalar field is a nontrivial configuration without any backreaction to geometry, which is characteristic for nonminimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by Hartle and Hawking’s semiclassical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant, and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.

  13. Generic scalar potentials in geometric scalar gravity

    NASA Astrophysics Data System (ADS)

    Kan, Nahomi; Shiraishi, Kiyoshi

    2016-06-01

    We discuss a generic form of the scalar potential appearing in the geometric scalar theory of gravity. We find the conditions on the potential by considering weak and strong gravity. The modified black hole solutions are obtained for generic potentials and the inverse problems on a black hole and on a spherical body (`pseudo-gravastar') are investigated.

  14. Black hole hair in generalized scalar-tensor gravity.

    PubMed

    Sotiriou, Thomas P; Zhou, Shuang-Yong

    2014-06-27

    The most general action for a scalar field coupled to gravity that leads to second-order field equations for both the metric and the scalar--Horndeski's theory--is considered, with the extra assumption that the scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a recent no-hair theorem which seems to have overlooked the presence of this coupling. PMID:25014801

  15. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  16. Scalar self-interactions loosen constraints from fifth force searches

    SciTech Connect

    Gubser, Steven S.; Khoury, Justin

    2004-11-15

    The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups.

  17. Scalar Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  18. Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation.

    PubMed

    Llinares, Claudio; Mota, David F

    2013-04-19

    Several extensions of general relativity and high energy physics include scalar fields as extra degrees of freedom. In the search for predictions in the nonlinear regime of cosmological evolution, the community makes use of numerical simulations in which the quasistatic limit is assumed when solving the equation of motion of the scalar field. In this Letter, we propose a method to solve the full equations of motion for scalar degrees of freedom coupled to matter. We run cosmological simulations which track the full time and space evolution of the scalar field, and find striking differences with respect to the commonly used quasistatic approximation. This novel procedure reveals new physical properties of the scalar field and uncovers concealed astrophysical phenomena which were hidden in the old approach. PMID:23679591

  19. Scalar explanation of diphoton excess at LHC

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Wang, Shaoming; Zheng, Sibo

    2016-06-01

    Inspired by the diphoton signal excess observed in the latest data of 13 TeV LHC, we consider either a 750 GeV real scalar or pseudo-scalar responsible for this anomaly. We propose a concrete vector-like quark model, in which the vector-like fermion pairs directly couple to this scalar via Yukawa interaction. For this setting the scalar is mainly produced via gluon fusion, then decays at the one-loop level to SM diboson channels gg , γγ , ZZ , WW. We show that for the vector-like fermion pairs with exotic electric charges, such model can account for the diphoton excess and is consistent with the data of 8 TeV LHC simultaneously in the context of perturbative analysis.

  20. A Search for Scalar Chameleons with ADMX

    SciTech Connect

    Rybka, G.; Hotz, M.; Rosenberg, L.J.; Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D.B.; Bradley, R.; Clarke, J.

    2010-04-26

    Scalar fields with a"chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling beta_gamma excluding values between 2x109 and 5x1014 for effective chameleon masses between 1.9510 and 1:9525 micro eV.

  1. Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Franzin, Edgardo; Serra, Matteo

    2016-01-01

    We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d + 2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

  2. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.

    PubMed

    Santiago, Marcelina; Low, Eddy; Chambournier, Gilles; Gawley, Robert E

    2003-10-31

    The solution conformation of N-methyl-2-(tributylstannyl)piperidines has been determined through the use of vicinal 119Sn-13C coupling constants, revealing a conformational distortion caused by an unexpected stereoelectronic effect in some cases. Specifically, the "equatorial" conformer is distorted into a half-chair, in which the nitrogen lone pair eclipses the C-Sn bond. This distortion, which "costs" approximately 1 kcal/mol, correlates with a conformational dependence of geminal 119Sn-15N couplings and a possible correlation with reactivity in the tin-lithium exchange reaction. PMID:14575474

  3. Induced gravity I: real scalar field

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-01-01

    We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.

  4. Inflation as AN Attractor in Scalar Cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2013-06-01

    We study an inflation mechanism based on attractor properties in cosmological evolutions of a spatially flat Friedmann-Robertson-Walker spacetime based on the Einstein-scalar field theory. We find a new way to get the Hamilton-Jacobi equation solving the field equations. The equation relates a solution "generating function" with the scalar potential. We analyze its stability and find a later time attractor which describes a Universe approaching to an eternal-de Sitter inflation driven by the potential energy, V0>0. The attractor exists when the potential is regular and does not have a linear and quadratic terms of the field. When the potential has a mass term, the attractor exists if the scalar field is in a symmetric phase and is weakly coupled, λ<9V0/16. We also find that the attractor property is intact under small modifications of the potential. If the scalar field has a positive mass-squared or is strongly coupled, there exists a quasi-attractor. However, the quasi-attractor property disappears if the potential is modified. On the whole, the appearance of the eternal inflation is not rare in scalar cosmology in the presence of an attractor.

  5. Scalar and anisotropic J interactions in undoped InP: A triple-resonance NMR study

    NASA Astrophysics Data System (ADS)

    Tomaselli, Marco; Degraw, David; Yarger, Jeffery L.; Augustine, Matthew P.; Pines, Alexander

    1998-10-01

    The heteronuclear J-coupling tensor between nearest neighbor 31P and 113In spins in undoped InP is investigated by means of 113In-->31P polarization transfer under rapid magic angle spinning (MAS). The scalar contribution can be measured directly and is found to have the value \\|Jiso(31P-113,115In)\\|=(225+/-10) Hz. The principal value of the traceless anisotropic J-coupling tensor (pseudodipolar coupling) is determined to be Janiso(31P-113,115In)=2/3[J||(31P-113,115In)-J⊥(31P-113,115In)]=(813+/-50) or (1733+/-50) Hz, assuming axial symmetry with the principal axis parallel to the In-P bond. Our values deviate from those reported previously [M. Engelsberg and R. E. Norberg, Phys. Rev. B 5, 3395 (1972)] [based on a moment analysis of the 31P resonance \\|Jiso(31P-113,115In)\\|=350 Hz and Janiso(31P-113,115In)=1273 Hz], but confirm the postulate that the nearest neighbor 31P-113,115In magnetic dipolar and pseudodipolar interactions are of the same order of magnitude and partially cancel each other.

  6. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  7. Spontaneous Scalarization of Massive Fields

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.; Pretorius, Frans

    2014-03-01

    Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.

  8. Nonprojectable Horava-Lifshitz gravity without the unwanted scalar graviton

    NASA Astrophysics Data System (ADS)

    Chaichian, Masud; KlusoÅ, Josef; Oksanen, Markku

    2015-11-01

    We consider a way of eliminating the unwanted scalar graviton from Horava-Lifshitz gravity that is achieved via introduction of certain additional constraints. We perform canonical analysis of both projectable and nonprojectable versions of the theory. We obtain the structure of constraints in each case, and analyze its dependence on the values of the coupling constants involved in the additional constraints. In the nonprojectable theory, the scalar graviton is absent when the coupling constants have certain values, while for other values the scalar graviton appears. The projectable theory is free from the scalar graviton regardless of the values of the coupling constants, even though the structure of the constraints does depend on the value of a coupling constant.

  9. Interacting scalar radiation and dark matter in cosmology

    NASA Astrophysics Data System (ADS)

    Tang, Yong

    2016-06-01

    We investigate possible cosmological effects of interacting scalar radiation and dark matter. After its decoupling, scalar radiation can stream freely as neutrinos or self-interact strongly as perfect fluid, highly depending on the magnitude of its self-couplings. We obtain the general and novel structure for self-scattering rate and compare it with the expansion rate of our Universe. If its trilinear/cubic coupling is non-zero, scalar radiation can be eventually treated as perfect fluid. Possible effects on CMB are also discussed. When this scalar also mediates interaction among dark matter particles, the linear matter power spectrum for large scale structure can be modified differently from other models. We propose to use Debye shielding to avoid the singularity appearing in the scattering between scalar radiation and dark matter.

  10. Sine-Gordon model coupled with a free scalar field emergent in the low-energy phase dynamics of a mixture of pseudospin-\\frac{1}{2} Bose gases with interspecies spin exchange

    NASA Astrophysics Data System (ADS)

    Ge, Li; Shi, Yu

    2012-10-01

    Using the approach of low-energy effective field theory, the phase diagram is studied for a mixture of two species of pseudospin-\\frac{1}{2} Bose atoms with interspecies spin exchange. There are four mean-field regimes on the parameter plane of ge and gz, where ge is the interspecies spin-exchange interaction strength, while gz is the difference between the interaction strength of interspecies scattering without spin exchange of equal spins and that of unequal spins. Two regimes, with |gz| > |ge|, correspond to ground states with the total spins of the two species parallel or antiparallel along the z direction, and the low-energy excitations are equivalent to those of two-component spinless bosons. The other two regimes, with |ge| > |gz|, correspond to ground states with the total spins of the two species parallel or antiparallel on the xy plane, and the low-energy excitations are described by a sine-Gordon model coupled with a free scalar field, where the effective fields are combinations of the phases of the original four boson fields. In (1 + 1)-dimension, they are described by Kosterlitz-Thouless renormalization group (RG) equations, and there are three sectors in the phase plane of a scaling dimension and a dimensionless parameter proportional to the strength of the cosine interaction, both depending on the densities. The gaps of these elementary excitations are experimental probes of the underlying many-body ground states.

  11. Eigenvalue-based determinants for scalar products and form factors in Richardson-Gaudin integrable models coupled to a bosonic mode

    NASA Astrophysics Data System (ADS)

    Claeys, Pieter W.; De Baerdemacker, Stijn; Van Raemdonck, Mario; Van Neck, Dimitri

    2015-10-01

    Starting from integrable su(2) (quasi-)spin Richardson-Gaudin (RG) XXZ models we derive several properties of integrable spin models coupled to a bosonic mode. We focus on the Dicke-Jaynes-Cummings-Gaudin models and the two-channel (p + ip)-wave pairing Hamiltonian. The pseudo-deformation of the underlying su(2) algebra is here introduced as a way to obtain these models in the contraction limit of different RG models. This allows for the construction of the full set of conserved charges, the Bethe ansatz state, and the resulting RG equations. For these models an alternative and simpler set of quadratic equations can be found in terms of the eigenvalues of the conserved charges. Furthermore, the recently proposed eigenvalue-based determinant expressions for the overlaps and form factors of local operators are extended to these models, linking the results previously presented for the Dicke-Jaynes-Cummings-Gaudin models with the general results for RG XXZ models.

  12. Self-accelerating solutions of scalar-tensor gravity

    SciTech Connect

    Barenboim, Gabriela; Lykken, Joseph D E-mail: lykken@fnal.gov

    2008-03-15

    Scalar-tensor gravity is the simplest and best understood modification of general relativity, consisting of a real scalar field coupled directly to the Ricci scalar curvature. Models of this type have self-accelerating solutions. In an example inspired by string dilaton couplings, scalar-tensor gravity coupled to ordinary matter exhibits a de Sitter type expansion, even in the presence of a negative cosmological constant whose magnitude exceeds that of the matter density. This unusual behavior does not require phantoms, ghosts or other exotic sources. More generally, we show that any expansion history can be interpreted as arising partly or entirely from scalar-tensor gravity. To distinguish any quintessence or inflation model from its scalar-tensor variants, we use the fact that scalar-tensor models imply deviations of the post-Newtonian parameters of general relativity and time variation of Newton's gravitational coupling G. We emphasize that next-generation probes of modified GR and the time variation of G are an essential complement to dark energy probes based on luminosity-distance measurements.

  13. Regarding the scalar mesons

    SciTech Connect

    Liu Yunhu; Shao Jianxin; Wang Xiaogang; Zhang Ziying; Li Demin

    2008-02-01

    Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it is supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.

  14. Model core potentials for studies of scalar-relativistic effects and spin-orbit coupling at Douglas-Kroll level. I. Theory and applications to Pb and Bi.

    PubMed

    Zeng, Tao; Fedorov, Dmitri G; Klobukowski, Mariusz

    2009-09-28

    A theory of model core potentials that can treat spin-orbit-coupling (SOC) effects at the level of Douglas-Kroll formalism has been developed. By storing the damping effect of kinematic operator in the Douglas-Kroll spin-orbit operator into an additional set of basis set contraction coefficients, the Breit-Pauli spin-orbit code in the GAMESS-US program was successfully used to perform Douglas-Kroll spin-orbit calculations. It was found that minute errors in the radial functions of valence orbitals lead to large errors in the spin-orbit energy levels and thus fitting the radial part of the spin-orbit matrix elements is necessary in model core potential parametrization. The first model core potentials that include the new formalism were developed for two 6p-block elements, Pb and Bi. The valence space of the 5p, 5d, 6s, and 6p orbitals was used because of the large SOC between the 5p and 6p orbitals. The model core potentials were validated in the calculations of atomic properties as well as spectroscopic constants of diatomic metal hydrides. The agreement between results of the model core potential and all-electron calculations was excellent, with energy errors of hundreds of cm(-1) and hundredths of eV, r(e) errors of thousandths of A, and omega(e) errors under 20 cm(-1). Two kinds of interplay between SOC effect and bonding process (antibonding and bonding SOC) were demonstrated using spin-free term potential curves of PbH and BiH. The present study is the first extension of the model core potential method beyond Breit-Pauli to Douglas-Kroll SOC calculations. PMID:19791854

  15. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  16. Time-dependent scalar fields in modified gravities in a stationary spacetime

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao

    2016-07-01

    Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.

  17. On the late-time cosmology of a condensed scalar field

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-04-01

    We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.

  18. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  19. Quaternion scalar field

    SciTech Connect

    De Leo, S. ); Rotelli, P. )

    1992-01-15

    We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.

  20. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6▿

    PubMed Central

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L.; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  1. Cosmological model with gravitational, electromagnetic, and scalar waves

    SciTech Connect

    Charach, C.; Malin, S.

    1980-06-15

    Following Gowdy, Berger, and Misner we construct a new exact solution of the Einstein--Maxwell--massless-scalar-field equations which corresponds to an inhomogeneous closed universe filled with scalar, gravitational, and electromagnetic waves. It is obtained as a result of homogeneity breaking in the corresponding Bianchi type-I universe. The combined effect of the scalar and vector fields on the dynamics of the evolution process and the interactions between the fields involved are systematically investigated. The structure of the initial singularity is studied in detail in both the homogeneous and inhomogeneous cases. The final stage of evolution is studied and interpreted in terms of the quanta of scalar, gravitational, and electromagnetic fields. Possible extensions of the present model to the conformally coupled scalar field and the Abelian solutions of the Yang-Mills field equations are pointed out.

  2. Identification of a scalar glueball.

    PubMed

    Albaladejo, M; Oller, J A

    2008-12-19

    We perform a coupled channel study of the meson-meson S waves with isospin (I) 0 and 1/2 up to 2 GeV. A new approach is derived that allows one to include the many channels pipi, KK[over ], etaeta, sigmasigma, etaeta; eta; eta; , rhorho, omegaomega, omegavarphi, varphivarphi, a(1)pi, and pipi with still few free parameters. It follows that coupled channel dynamics is strong and cannot be neglected in order to study resonance properties in the region 1.4-1.6 GeV. All the resonances with masses below 2 GeV and I=0 and 1/2 are generated. We identify the f(0)(1710) and an important contribution to the f (0)(1500) as an unmixed glueball. This is based on an accurate agreement of our results with predictions of lattice QCD and the chiral suppression of the coupling of a scalar glueball to q[over ]q. Another pole, mainly corresponding to the f_{0}(1370), is a pure octet state. PMID:19113698

  3. Robinson-Trautman solution with scalar hair

    NASA Astrophysics Data System (ADS)

    Tahamtan, T.; Svítek, O.

    2015-05-01

    The explicit Robinson-Trautman solution with a minimally coupled free scalar field is derived and analyzed. It is shown that this solution contains curvature singularity, which is initially naked but later enveloped by the horizon. We use the quasilocal horizon definition and prove its existence in later retarded times using sub- and supersolution method combined with growth estimates. We show that the solution is generally of algebraic type II but reduces to type D in spherical symmetry.

  4. Growth of spherical overdensities in scalar-tensor cosmologies

    NASA Astrophysics Data System (ADS)

    Nazari-Pooya, N.; Malekjani, M.; Pace, F.; Jassur, D. Mohammad-Zadeh

    2016-06-01

    The accelerated expansion of the universe is a rather established fact in cosmology and many different models have been proposed as a viable explanation. Many of these models are based on the standard general relativistic framework of non-interacting fluids or more recently of coupled (interacting) dark energy models, where dark energy (the scalar field) is coupled to the dark matter component giving rise to a fifth-force. An interesting alternative is to couple the scalar field directly to the gravity sector via the Ricci scalar. These models are dubbed non-minimally coupled models and give rise to a time-dependent gravitational constant. In this work, we study few models falling into this category and describe how observables depend on the strength of the coupling. We extend recent work on the subject by taking into account also the effects of the perturbations of the scalar field and showing their relative importance on the evolution of the mass function. By working in the framework of the spherical collapse model, we show that perturbations of the scalar field have a limited impact on the growth factor (for small coupling constant) and on the mass function with respect to the case where perturbations are neglected.

  5. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  6. More about scalar gravity

    NASA Astrophysics Data System (ADS)

    Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.

    2016-06-01

    We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.

  7. Scalar multi-wormholes

    NASA Astrophysics Data System (ADS)

    Egorov, A. I.; Kashargin, P. E.; Sushkov, Sergey V.

    2016-09-01

    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats.

  8. Revisiting scalar glueballs

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang; Liu, Keh-Fei

    2015-11-01

    It is commonly believed that the lowest-lying scalar glueball lies somewhere in the isosinglet scalar mesons f0(1370 ) , f0(1500 ) and f0(1710 ) denoted generically by f0. In this work we consider lattice calculations and experimental data to infer the glue and q q ¯ components of f0. These include the calculations of the scalar glueball masses in quenched and unquenched lattice QCD, measurements of the radiative decays J /ψ →γ f0 , the ratio of f0 decays to π π , K K ¯ and η η , the ratio of J /ψ decays to f0(1710 )ω and f0(1710 )ϕ , the f0 contributions to Bs→J /ψ π+π- , and the near mass degeneracy of a0(1450 ) and K0*(1430 ) . All analyses suggest the prominent glueball nature of f0(1710 ) and the flavor octet structure of f0(1500 ).

  9. Hyperbolicity of scalar-tensor theories of gravity

    SciTech Connect

    Salgado, Marcelo; Martinez del Rio, David; Alcubierre, Miguel; Nunez, Dario

    2008-05-15

    Two first order strongly hyperbolic formulations of scalar-tensor theories of gravity allowing nonminimal couplings (Jordan frame) are presented along the lines of the 3+1 decomposition of spacetime. One is based on the Bona-Masso formulation, while the other one employs a conformal decomposition similar to that of Baumgarte-Shapiro-Shibata-Nakamura. A modified Bona-Masso slicing condition adapted to the scalar-tensor theory is proposed for the analysis. This study confirms that the scalar-tensor theory has a well-posed Cauchy problem even when formulated in the Jordan frame.

  10. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-01

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions. PMID:24949750

  11. Global integrability of cosmological scalar fields

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  12. Bi-scalar modified gravity and cosmology with conformal invariance

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.; Tsoukalas, Minas

    2016-04-01

    We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.

  13. Outburst of CV ROTSE3 J031031.4+431115.0

    NASA Astrophysics Data System (ADS)

    Dhungana, G.; Ferrante, F. V.; Staten, R.; Kehoe, R.

    2015-02-01

    Further to ATel#1272, we report observations of an outburst of the U Geminorum-type CV ROTSE3 J031031.4+431115.0 in unfiltered CCD images taken by the 0.45 m ROTSE-IIIb telescope at McDonald Observatory, Texas.

  14. 29 CFR 451.4 - Labor organizations under section 3(j).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Labor organizations under section 3(j). 451.4 Section 451.4 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS LABOR ORGANIZATIONS AS DEFINED IN THE LABOR-MANAGEMENT REPORTING AND DISCLOSURE ACT OF 1959 § 451.4 Labor organizations...

  15. Scalar meson spectroscopy with lattice staggered fermions

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa

    2007-11-01

    With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.

  16. Morphine analgesic tolerance in 129P3/J and 129S6/SvEv mice

    PubMed Central

    Bryant, Camron D.; Roberts, Kristofer W.; Byun, Janet S.; Fanselow, Michael S.; Evans, Christopher J.

    2007-01-01

    Morphine analgesic tolerance is heritable in both humans and rodents, with some individuals and strains exhibiting little and others exhibiting robust tolerance. 129S6/SvEv and 129P3/J mice reportedly do not demonstrate tolerance to morphine analgesia. Using our laboratory's standard morphine tolerance regimen and a between-subjects design, tolerance developed in the hot plate and tail withdrawal assays as indicated by a change in analgesic efficacy following a morphine challenge dose. Furthermore, the non-competitive NMDA receptor antagonist MK-801 (dizocilipine) blocked morphine tolerance in 129S6/SvEv and CD-1 mice in the hot plate assay. As previously reported, when a within-subjects design and cumulative dosing was employed, no tolerance was observed in the 129P3/J strain. However, using the same morphine regimen and a between-subjects design, comparable tolerance developed between 129P3/J and C57BL/6J strains following a single challenge dose of morphine. Spontaneous hyperalgesia was observed in the tail withdrawal assay following chronic morphine in C57BL/6J, but not 129P3/J mice. Additionally, morphine-tolerant C57BL/6J mice, but not 129P3/J mice, exhibited a large increase in the frequency of tail flicks during the first second following the baseline nociceptive response which may facilitate detection of the response during the tolerant state. We conclude that the method of tolerance assessment affects the ability to detect tolerance and thus, may affect the degree and pattern of heritability of this trait and this could have implications for gene mapping studies. PMID:17196637

  17. Constructing scalar-photon three point vertex in massless quenched scalar QED

    NASA Astrophysics Data System (ADS)

    Fernández-Rangel, L. Albino; Bashir, Adnan; Gutiérrez-Guerrero, L. X.; Concha-Sánchez, Y.

    2016-03-01

    Nonperturbative studies of Schwinger-Dyson equations require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable Ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the nonperturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations, (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces the one-loop asymptotic result in the weak coupling regime of the theory.

  18. Landau pole in the Standard Model with weakly interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu; Tsumura, Koji

    2015-07-01

    We consider the Standard Model with a new scalar field X which is an nX representation of the SU (2)L with a hypercharge YX. The renormalization group running effects on the new scalar quartic coupling constants are evaluated. Even if we set the scalar quartic coupling constants to be zero at the scale of the new scalar field, the coupling constants are induced by the one-loop effect of the weak gauge bosons. Once non-vanishing couplings are generated, the couplings rapidly increase by renormalization group effect of the quartic coupling constant itself. As a result, the Landau pole appears below Planck scale if nX ≥ 4. We find that the scale of the obtained Landau pole is much lower than that evaluated by solving the one-loop beta function of the gauge coupling constants.

  19. A Lagrangian PDF Model for the Scalar Dissipation in Homogeneous Turbulence

    NASA Astrophysics Data System (ADS)

    Fox, Rodney O.

    1996-11-01

    The scalar dissipation is a key quantity in the description of turbulent mixing. The spectral relaxation model (SRM) was developed to account for the effect of the evolution of the scalar spectrum on the mean scalar dissipation < ɛ_φ >, and it successfully predicts the observed (DNS, grid turbulence) dependence on Re, Sc (>= 1), and the initial scalar spectrum without recourse to fitting parameters. In this work, we present a Lagrangian PDF version (LSRM) for the PDF of ɛ_φ conditioned on the turbulent vortex stretching history of Kolmogorov-scale fluid particles. In homogeneous turbulence, the LSRM is coupled to a Lagrangian PDF model for the turbulent dissipation (ɛ) which strongly influences the statistics of ɛ_φ. Closure of scalar molecular dissipation term (< Γ nabla^2 φ | φ, ɛ^*_φ, ɛ^* >) is carried out using the Fokker-Planck model that was developed earlier for the joint scalar, scalar gradient PDF following fluid particles with the identical vortex stretching histories. Model predictions for inert scalar mixing in homogeneous turbulence with and without a uniform mean scalar gradient are compared to DNS data. In particular, the effect of the mean scalar gradient on the correlation between ɛ_φ and ɛ (i.e. local anisotropy) is examined, as well as the effect of the initial scalar spectrum and small-scale random vortex stretching on non-Gaussian behavior of the scalar PDF.

  20. Anisotropic inflation from charged scalar fields

    SciTech Connect

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem E-mail: firouz@ipm.ir E-mail: m.zarei@cc.iut.ac.ir

    2011-02-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.

  1. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    SciTech Connect

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-02-15

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  2. On the distribution of scalar k for elliptic scalar multiplication

    NASA Astrophysics Data System (ADS)

    Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza

    2015-10-01

    In this study, we introduce the probability distribution of the elliptic curve scalar multiplication through finding the probability distribution of the secret key, namely, the scalar k of the scalar multiplication kP of a point P which has a large prime order n lying on elliptic curve group E(Fp) over a finite prime field Fp. To determine this distribution of k, we use the integer sub-decomposition (ISD) approach that inspired from Gallant, Lambert and Vanstone (GLV) idea. In ISD approach, the distribution of the values of scalars k lie outside the range ±√{n } on the interval [1, n - 1]. This distribution determines the successful rate to compute a scalar multiplication kP, on ISD approach, in comparison with the original GLV method. The conception of the ISD approach depends on the sub- decomposition of the scalar k to compute the scalar multiplication kP which uses efficiently computable endomorphisms Ψ1 and Ψ2 of elliptic curve E over Fp. The ISD sub-decomposition can be defined by k P =k11P +k12ψ1(P )+k21P +k22ψ2(P ), with max{ | k11 | ,| k12 | } and max{ | k21 | ,| k22 | } ≤C √{n }, for some explicit constant C > 0. Furthermore, this study compares between the GLV and ISD approaches on the basis of the probability distribution of the scalar k in the interval [1, n - 1], where n is a large prime number.

  3. General analytic solutions of scalar field cosmology with arbitrary potential

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Karagiorgos, A.; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T.; Terzis, Petros A.

    2016-06-01

    We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.

  4. Composite (pseudo) scalar contributions to muon g - 2

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki; Kim, Du Hwan

    2016-07-01

    We have calculated the composite (pseudo) scalar contributions to the anomalous magnetic moment of muons in models of walking technicolor. By the axial or scale anomaly the light scalars such as techni-dilaton, techni-pions or techni-eta have anomalous couplings to two-photons, which make them natural candidates for the recent 750 GeV resonance excess, observed at LHC. Due to the anomalous couplings, their contributions to muon (g - 2) are less suppressed and might explain the current deviation in muon (g - 2) measurements from theory.

  5. On the stability and causality of scalar-vector theories

    SciTech Connect

    Fleury, Pierre; Pitrou, Cyril; Uzan, Jean-Philippe; Almeida, Juan P. Beltrán E-mail: juanpbeltran@uan.edu.co E-mail: uzan@iap.fr

    2014-11-01

    Various extensions of standard inflationary models have been proposed recently by adding vector fields. Because they are generally motivated by large-scale anomalies, and the possibility of statistical anisotropy of primordial fluctuations, such models require to introduce non-standard couplings between vector fields on the one hand, and either gravity or scalar fields on the other hand. In this article, we study models involving a vector field coupled to a scalar field. We derive restrictive necessary conditions for these models to be both stable (Hamiltonian bounded by below) and causal (hyperbolic equations of motion)

  6. Spontaneous scalarization with massive fields

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.; Pretorius, Frans

    2016-03-01

    We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.

  7. Scalar self-force on static charge in a long throat

    NASA Astrophysics Data System (ADS)

    Popov, A.; Aslan, O.

    2015-08-01

    We compute the self-force on a scalar charge at rest in the space-time of long throat. We consider arbitrary values of the mass of the scalar field and the constant of nonminimal coupling of the scalar field to the curvature of space-time. We also show the coincidence of explicit calculations of self-force in the limit of large mass of the field with known results.

  8. Ultrarelativistic boost with scalar field

    NASA Astrophysics Data System (ADS)

    Svítek, O.; Tahamtan, T.

    2016-02-01

    We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.

  9. Scalar-tensor theories with an external scalar

    NASA Astrophysics Data System (ADS)

    Chauvineau, Bertrand; Rodrigues, Davi C.; Fabris, Júlio C.

    2016-06-01

    Scalar-tensor (ST) gravity is considered in the case where the scalar is an external field. We show that general relativity (GR) and usual ST gravity are particular cases of the external scalar-tensor (EST) gravity. It is shown with a particular cosmological example that it is possible to join a part of a GR solution to a part of a ST one such that the complete solution neither belongs to GR nor to ST, but fully satisfies the EST field equations. We argue that external fields may effectively work as a type of screening mechanism for ST theories.

  10. Scalar field collapse with negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baier, R.; Nishimura, H.; Stricker, S. A.

    2015-07-01

    The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.

  11. Scalar multiplet recombination at large N and holography

    NASA Astrophysics Data System (ADS)

    Bashmakov, Vladimir; Bertolini, Matteo; Di Pietro, Lorenzo; Raj, Himanshu

    2016-05-01

    We consider the coupling of a free scalar to a single-trace operator of a large N CFT in d dimensions. This is equivalent to a double-trace deformation coupling two primary operators of the CFT, in the limit when one of the two saturates the unitarity bound. At leading order, the RG-flow has a non-trivial fixed point where multiplets recombine. We show this phenomenon in field theory, and provide the holographic dual description. Free scalars correspond to singleton representations of the AdS algebra. The double-trace interaction is mapped to a boundary condition mixing the singleton with the bulk field dual to the single-trace operator. In the IR, the singleton and the bulk scalar merge, providing just one long representation of the AdS algebra.

  12. Domain Walls in AdS-EINSTEIN-SCALAR Gravity

    NASA Astrophysics Data System (ADS)

    Yun, Sangheon

    In this paper, we show that the supergravity theory which is dual to ABJM field theory can be consistently reduced to scalar-coupled AdS-Einstein gravity and then consider the reflection symmetric domain wall and its small fluctuation. It is also shown that this domain wall solution is none other than dimensional reduction of M2-brane configuration.

  13. Simplified recursive algorithm for Wigner 3j and 6j symbols

    SciTech Connect

    Luscombe, J.H.; Luban, M.

    1998-06-01

    We present a highly accurate, {ital ab initio} recursive algorithm for evaluating the Wigner 3j and 6j symbols. Our method makes use of two-term, nonlinear recurrence relations that are obtained from the standard three-term recurrence relations satisfied by these quantities. The use of two-term recurrence relations eliminates the need for rescaling of iterates to control numerical overflows and thereby simplifies the widely used recursive algorithm of Schulten and Gordon. {copyright} {ital 1998} {ital The American Physical Society}

  14. Pseudo-scalar form factors at three loops in QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Gehrmann, Thomas; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2015-11-01

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the 't Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-loop form factor is an important ingredient to the precise prediction of the pseudo-scalar Higgs boson production cross section at hadron colliders. We discuss potential applications and derive the hard matching coefficient in soft-collinear effective theory.

  15. Symmetry inheritance of scalar fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2015-07-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.

  16. Gravitational scalar-tensor theory

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Yoshida, Daisuke; Mukohyama, Shinji

    2016-05-01

    We consider a new form of gravity theories in which the action is written in terms of the Ricci scalar and its first and second derivatives. Despite the higher derivative nature of the action, the theory is ghost-free under an appropriate choice of the functional form of the Lagrangian. This model possesses 2 + 2 physical degrees of freedom, namely 2 scalar degrees and 2 tensor degrees. We exhaust all such theories with the Lagrangian of the form f(R,{({{\

  17. Scalar graviton as dark matter

    SciTech Connect

    Pirogov, Yu. F.

    2015-06-15

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  18. Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition

    NASA Astrophysics Data System (ADS)

    Horbatsch, Michael; Silva, Hector O.; Gerosa, Davide; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo; Sperhake, Ulrich

    2015-10-01

    Gravitational theories with multiple scalar fields coupled to the metric and each other—a natural extension of the well studied single-scalar-tensor theories—are interesting phenomenological frameworks to describe deviations from general relativity in the strong-field regime. In these theories, the N-tuple of scalar fields takes values in a coordinate patch of an N-dimensional Riemannian target-space manifold whose properties are poorly constrained by weak-field observations. Here we introduce for simplicity a non-trivial model with two scalar fields and a maximally symmetric target-space manifold. Within this model we present a preliminary investigation of spontaneous scalarization for relativistic, perfect fluid stellar models in spherical symmetry. We find that the scalarization threshold is determined by the eigenvalues of a symmetric scalar-matter coupling matrix, and that the properties of strongly scalarized stellar configurations additionally depend on the target-space curvature radius. In preparation for numerical relativity simulations, we also write down the 3 + 1 decomposition of the field equations for generic tensor-multi-scalar theories.

  19. Abnormal Sperm Development in pcd3J-/- Mice: the Importance of Agtpbp1 in Spermatogenesis

    PubMed Central

    Kim, Nameun; Xiao, Rui; Choi, Hojun; Kim, Jin-Hoi; Sang-Jun, Uhm; Chankyu, Park

    2011-01-01

    Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd3J-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd3J-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward. PMID:21110128

  20. Braneworld inflation with a complex scalar field from Planck 2015

    NASA Astrophysics Data System (ADS)

    Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.

    2016-06-01

    We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.

  1. Color Sextet Scalars in Early LHC Experiments

    SciTech Connect

    Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao

    2010-10-29

    We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.

  2. Scalar-field coordinates and the spherically symmetric Einstein equations for a zero-mass scalar field

    NASA Astrophysics Data System (ADS)

    Berberian, John Edwin

    1999-01-01

    matching interface, and scalar-tensor coupling function) to which they can be joined. The screening procedure is independent of the particular spherically symmetric coordinate system in which the candidate solution is expressed. Scalar field coordinates are also used to examine succinctly the problem of perturbative expansion of scalar-tensor vacuum solutions about the vacuum solution of general relativity. All solutions are shown to fall into three categories: perturbation about the Schwarzschild solution, perturbation about a two dimensional metric, and non-perturbative solutions. In the process of classification, the Birkhoff theorem for vacuum solutions of general relativity is explicitly shown. In the final section, future directions are discussed. They are: exploiting Lie-theoretic methods to find new solution families which may lead to an explicit matched solution, searching for the Choptuik critical solution, and application of scalar field coordinates to relativistic perfect fluids (T = 0) in order to find exact solutions. Finally, a re-examination of classical gravitational collapse of a scalar field is advocated using matched solutions.

  3. Non-perturbative Calculation of the Scalar Yukawa Theory in Four-Body Truncation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Karmanov, V. A.; Maris, P.; Vary, J. P.

    2015-09-01

    The quenched scalar Yukawa theory is solved in the light-front Tamm-Dancoff approach including up to four constituents (one scalar nucleon, three scalar pions). The Fock sector dependent renormalization is implemented. By studying the Fock sector norms, we find that the lowest two Fock sectors dominate the state even in the large-coupling region. The one-body sector shows convergence with respect to the Fock sector truncation. However, the four-body norm exceeds the three-body norm at the coupling.

  4. Big bang nucleosynthesis constraints on scalar-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2006-04-01

    We investigate Big bang nucleosynthesis (BBN) in scalar-tensor theories of gravity with arbitrary matter couplings and self-interaction potentials. We first consider the case of a massless dilaton with a quadratic coupling to matter. We perform a full numerical integration of the evolution of the scalar field and compute the resulting light element abundances. We demonstrate in detail the importance of particle mass thresholds on the evolution of the scalar field in a radiation dominated universe. We also consider the simplest extension of this model including a cosmological constant in either the Jordan or Einstein frame.

  5. Big bang nucleosynthesis constraints on scalar-tensor theories of gravity

    SciTech Connect

    Coc, Alain; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2006-04-15

    We investigate Big bang nucleosynthesis (BBN) in scalar-tensor theories of gravity with arbitrary matter couplings and self-interaction potentials. We first consider the case of a massless dilaton with a quadratic coupling to matter. We perform a full numerical integration of the evolution of the scalar field and compute the resulting light element abundances. We demonstrate in detail the importance of particle mass thresholds on the evolution of the scalar field in a radiation dominated universe. We also consider the simplest extension of this model including a cosmological constant in either the Jordan or Einstein frame.

  6. Dynamical Characteristics of a Non-canonical Scalar-Torsion Model of Dark Energy

    NASA Astrophysics Data System (ADS)

    Banijamali, A.; Ghasemi, E.

    2016-04-01

    In this paper, we analyze the phase-space of a model of dark energy in which a non-canonical scalar field (tachyon) non-minimally coupled to torsion scalar in the framework of teleparallelism. Scalar field potential and non-minimal coupling function are chosen as V(ϕ) = V 0 ϕ n and f(ϕ) = ϕ N , respectively. We obtain a critical point that behaves like a stable or saddle point depending on the values of N and n. Additionally we find an unstable critical line. We have shown such a behavior of critical points using numerical computations and phase-space trajectories explicitly.

  7. Asymptotic cosmological regimes in scalar-torsion gravity with a perfect fluid

    NASA Astrophysics Data System (ADS)

    Skugoreva, Maria A.; Toporensky, Alexey V.

    2016-06-01

    We consider the cosmological dynamics of a nonminimally coupled scalar field in scalar-torsion gravity in the presence of hydrodynamical matter. The potential of the scalar field have been chosen as power law with negative index, this type of potentials is usually used in quintessence scenarios. We identify several asymptotic regimes, including de Sitter, kinetic dominance, kinetic tracker, and tracker solutions and study the conditions for their existence and stability. We show that for each combination of coupling constant and potential power index one of the regimes studied in the present paper is stable to the future.

  8. Dynamical Characteristics of a Non-canonical Scalar-Torsion Model of Dark Energy

    NASA Astrophysics Data System (ADS)

    Banijamali, A.; Ghasemi, E.

    2016-08-01

    In this paper, we analyze the phase-space of a model of dark energy in which a non-canonical scalar field (tachyon) non-minimally coupled to torsion scalar in the framework of teleparallelism. Scalar field potential and non-minimal coupling function are chosen as V( ϕ) = V 0 ϕ n and f( ϕ) = ϕ N , respectively. We obtain a critical point that behaves like a stable or saddle point depending on the values of N and n. Additionally we find an unstable critical line. We have shown such a behavior of critical points using numerical computations and phase-space trajectories explicitly.

  9. ROTSE3 J133033.0-313427 is a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Quimby, R. M.

    2010-03-01

    A spectrum (340-760 nm) of ROTSE3 J133033.0-313427 (Zheng et al., ATel #2468) obtained on Mar 14.58 UT with the 10-m Keck I (+ Low Resolution Imaging Spectrometer) shows it to be a normal Type Ia supernova. The spectra are similar to SN 1992A a few days after maximum light (Kirshner et al. 1993, ApJ 415,589). Adopting the redshift of the apparent host (z=0.048; Katgert et al. 1998, A&AS 129, 399), the expansion velocity derived from the minimum of the SiII (rest 635.5 nm) line is about 12,000 km/s.

  10. Primordial power spectra for scalar perturbations in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Martín de Blas, Daniel; Olmedo, Javier

    2016-06-01

    We provide the power spectrum of small scalar perturbations propagating in an inflationary scenario within loop quantum cosmology. We consider the hybrid quantization approach applied to a Friedmann-Robertson-Walker spacetime with flat spatial sections coupled to a massive scalar field. We study the quantum dynamics of scalar perturbations on an effective background within this hybrid approach. We consider in our study adiabatic states of different orders. For them, we find that the hybrid quantization is in good agreement with the predictions of the dressed metric approach. We also propose an initial vacuum state for the perturbations, and compute the primordial and the anisotropy power spectrum in order to qualitatively compare with the current observations of Planck mission. We find that our vacuum state is in good agreement with them, showing a suppression of the power spectrum for large scale anisotropies. We compare with other choices already studied in the literature.

  11. A scalar field dark energy model: Noether symmetry approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  12. An inflationary model with small scalar and large tensor nongaussianities

    NASA Astrophysics Data System (ADS)

    Cook, Jessica L.; Sorbo, Lorenzo

    2013-11-01

    We study a model of inflation where the scalar perturbations are almost gaussian while there is sizable (equilateral) nongaussianity in the tensor sector. In this model, a rolling pseudoscalar gravitationally coupled to the inflaton amplifies the vacuum fluctuations of a vector field. The vector sources both scalar and tensor metric perturbations. Both kinds of perturbations are nongaussian, but, due to helicity conservation, the tensors have a larger amplitude, so that nongaussianity in the scalar perturbations is negligible. Moreover, the tensors produced this way are chiral. We study, in the flat sky approximation, how constraints on tensor nongaussianities affect the detectability of parity violation in the Cosmic Microwave Background. We expect the model to feature interesting patterns on nongaussianities in the polarization spectra of the CMB.

  13. Scalar field dark matter and the Higgs field

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Cosme, Catarina; Rosa, João G.

    2016-08-01

    We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  14. Inert scalars and vacuum metastability around the electroweak scale

    NASA Astrophysics Data System (ADS)

    Świeżewska, Bogumiła

    2015-07-01

    We analyse effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with a heavy scalar doublet. We show that the additional scalars can have a strong impact on vacuum stability. Although the additional heavy scalars may improve the behaviour of running Higgs self-coupling at large field values, we prove that they can destabilise the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.

  15. Thick branes from self-gravitating scalar fields

    SciTech Connect

    Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.

    2014-07-23

    The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.

  16. Cosmic variance in inflation with two light scalars

    NASA Astrophysics Data System (ADS)

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie; Shandera, Sarah

    2016-05-01

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light (m lesssim 0.1 H), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always has the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.

  17. DFT analysis of NMR scalar interactions across the glycosidic bond in DNA.

    PubMed

    Munzarová, Markéta L; Sklenár, Vladimír

    2003-03-26

    The relationship between the glycosidic torsion angle chi, the three-bond couplings (3)J(C2/4-H1') and (3)J(C6/8-H1'), and the one-bond coupling (1)J(C1'-H1') in deoxyribonucleosides and a number of uracil cyclo-nucleosides has been analyzed using density functional theory. The influence of the sugar pucker and the hydroxymethyl conformation has also been considered. The parameters of the Karplus relationships between the three-bond couplings and chi depend strongly on the aromatic base. (3)J(C2/4-H1') reveals different behavior for deoxyadenosine, deoxyguanosine, and deoxycytidine as compared to deoxythymidine and deoxyuridine. In the case of (3)J(C6/8-H1'), an opposite trans to cis ratio of couplings is obtained for pyrimidine nucleosides in contrast to purine nucleosides. The extremes of the Karplus curves are shifted by ca. 10 degrees with respect to syn and anti-periplanar orientations of the coupled nuclei. The change in the sugar pucker from S to N decreases (3)J(C2/4-H1') and (3)J(C6/8-H1'), while increasing (1)J(C1'-H1') for the syn rotamers, whereas all of the trends are reversed for the anti rotamers. The influence of the sugar pucker on (1)J(C1'-H1') is interpreted in terms of interactions between the n(O4'), sigma*(C1'-H1') orbitals. The (1)J(C1'-H1') are related to chi through a generalized Karplus relationship, which combines cos(chi) and cos(2)(chi) functions with mutually different phase shifts that implicitly accounts for a significant portion of the related sugar pucker effects. Most of theoretical (3)J(C2/4-H1') and (3)J(C6/8-H1') for uracil cyclo-nucleosides compare well with available experimental data. (3)J(C6/8-H1') couplings for all C2-bridged nucleosides are up to 3 Hz smaller than in the genuine nucleosides with the corresponding chi, revealing a nonlocal aspect of the spin-spin interactions across the glycosidic bond. Theoretical (1)J(C1'-H1') are underestimated with respect to the experiment by ca. 10% but reproduce the trends in (1)J

  18. Astrophysical effects of scalar dark matter miniclusters

    NASA Astrophysics Data System (ADS)

    Zurek, Kathryn M.; Hogan, Craig J.; Quinn, Thomas R.

    2007-02-01

    We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters (“ScaMs”). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes a second-order phase transition below the QCD scale. Such a scalar field may couple too weakly to the standard model to be detectable directly through particle interactions, but may still be detectable by gravitational effects, such as lensing and baryon accretion by large, gravitationally bound miniclusters. The masses of these objects are shown to be constrained by the Lyα power spectrum to be less than ˜104M⊙, but they may be as light as classical axion miniclusters, of the order of 10-12M⊙. We simulate the formation and nonlinear gravitational collapse of these objects around matter-radiation equality using an N-body code, estimate their gravitational lensing properties, and assess the feasibility of studying them using current and future lensing experiments. Future MACHO-type variability surveys of many background sources can reveal either high-amplification, strong-lensing events, or measure density profiles directly via weak-lensing variability, depending on ScaM parameters and survey depth. However, ScaMs, due to their low internal densities, are unlikely to be responsible for apparent MACHO events already detected in the Galactic halo. As a result, in the entire window between 10-7M⊙ and 102M⊙ covered by the galactic scale lensing experiments, ScaMs may in fact compose all the dark matter. A simple estimate is made of parameters that would give rise to early structure formation; in principle, early stellar collapse could be triggered by ScaMs as early as recombination, and significantly affect cosmic reionization.

  19. Scalar transport by planktonic swarms

    NASA Astrophysics Data System (ADS)

    Martinez-Ortiz, Monica; Dabiri, John O.

    2012-11-01

    Nutrient and energy transport in the ocean is primarily governed by the action of physical phenomena. In previous studies it has been suggested that aquatic fauna may significantly contribute to this process through the action of the induced drift mechanism. In this investigation, the role of planktonic swarms as ecosystem engineers is assessed through the analysis of scalar transport within a stratified water column. The vertical migration of Artemia salina is controlled via luminescent signals on the top and bottom of the column. The scalar transport of fluorescent dye is visualized and quantified through planar laser induced fluorescence (PLIF). Preliminary results show that the vertical movement of these organisms enhances scalar transport relative to control cases in which only buoyancy forces and diffusion are present. Funded by the BSF program (2011553).

  20. The emergence of scalar meanings

    PubMed Central

    Etxeberria, Urtzi; Irurtzun, Aritz

    2015-01-01

    This paper analyzes the emergence of scalar additive meanings. We show that in Basque the same particle ere can obtain both the “simple additive” reading (akin to English too) and the “scalar additive” reading (akin to English even) but we argue that we do not have to distinguish two types of ere. We provide evidence, by means of a production and a perception experiment, that the reading is disambiguated by means of prosody (the placement of nuclear stress), which is a correlate of focus. We argue that the scalarity effect is generated by the combination of two presuppositions (a focus-induced one and a lexical one) and the assertion of the sentence. PMID:25745405

  1. Iron Kα line of Kerr black holes with scalar hair

    NASA Astrophysics Data System (ADS)

    Ni, Yueying; Zhou, Menglei; Cárdenas-Avendaño, Alejandro; Bambi, Cosimo; Herdeiro, Carlos A. R.; Radu, Eugen

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J, these objects are characterized by a Noether charge Q, measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q, ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q, because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  2. Effect of dilatation on scalar dissipation in turbulent premixed flames

    SciTech Connect

    Swaminathan, N.; Bray, K.N.C.

    2005-12-01

    The scalar dissipation rate signifies the local mixing rate and thus plays a vital role in the modeling of reaction rate in turbulent flames. The local mixing rate is influenced by the turbulence, the chemical, and the molecular diffusion processes which are strongly coupled in turbulent premixed flames. Thus, a model for the mean scalar dissipation rate, and hence the mean reaction rate, should include the contributions of these processes. Earlier models for the scalar dissipation rate include only a turbulence time scale. In this study, we derive exact transport equations for the instantaneous and the mean scalar dissipation rates. Using these equations, a simple algebraic model for the mean scalar dissipation rate is obtained. This model includes a chemical as well as a turbulence time scale and its prediction compares well with direct numerical simulation results. Reynolds-averaged Navier-Stokes calculations of a test flame using the model obtained here show that the contribution of dilatation to local turbulent mixing rate is important to predict the propagation phenomenon.

  3. Constraining scalar fields with stellar kinematics and collisional dark matter

    SciTech Connect

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano E-mail: jbarranc@aei.mpg.de E-mail: rezzolla@aei.mpg.de

    2010-11-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m{sub φ} and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei.

  4. Survival of scalar zero modes in warped extra dimensions

    SciTech Connect

    George, Damien P.

    2011-05-15

    Models with an extra dimension generally contain background scalar fields in a nontrivial configuration, whose stability must be ensured. With gravity present, the extra dimension is warped by the scalars, and the spin-0 degrees of freedom in the metric mix with the scalar perturbations. Where possible, we formally solve the coupled Schroedinger equations for the zero modes of these spin-0 perturbations. When specializing to the case of two scalars with a potential generated by a superpotential, we are able to fully solve the system. We show how these zero modes can be used to construct a solution matrix, whose eigenvalues tell whether a normalizable zero mode exists, and how many negative mass modes exist. These facts are crucial in determining stability of the corresponding background configuration. We provide examples of the general analysis for domain-wall models of an infinite extra dimension and domain-wall soft-wall models. For five-dimensional models with two scalars constructed using a superpotential, we show that a normalizable zero mode survives, even in the presence of warped gravity. Such models, which are widely used in the literature, are therefore phenomenologically unacceptable.

  5. Long-lived, colour-triplet scalars from unnaturalness

    NASA Astrophysics Data System (ADS)

    Barnard, James; Cox, Peter; Gherghetta, Tony; Spray, Andrew

    2016-03-01

    Long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10 TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo NambuGoldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb-1 at 13 TeV triplet scalar masses up to 1.4 TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8 TeV. In addition we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modifications of the Higgs couplings.

  6. Electroweak baryogenesis in a scalar-assisted vectorlike fermion model

    NASA Astrophysics Data System (ADS)

    Xiao, Ming-Lei; Yu, Jiang-Hao

    2016-07-01

    We extend the standard model to a scalar-assisted vectorlike fermion model to realize electroweak baryogenesis. The extended Cabibbo-Kobayashi-Maskawa matrix, due to the mixing among the vectorlike quark and the standard model quarks, provides additional sources of the C P violation. Together with the enhancement from a large vectorlike quark mass, a large enough baryon-to-photon ratio could be obtained. The strongly first-order phase transition could be realized via the potential barrier which separates the broken minimum and the symmetric minimum in the scalar potential. We investigate in detail the one loop temperature-dependent effective potential and perform a random parameter scan to study the allowed parameter region that satisfies the strongly first order phase transition criteria vc≥Tc. Several distinct patterns of phase transition are classified and discussed. Among these patterns, a large trilinear mass term between the Higgs boson and the scalar is preferred, for it controls the width of the potential barrier. Our results indicate large quartic scalar couplings and a moderate mixing angle between the Higgs boson and the new scalar. This parameter region could be further explored at the Run 2 LHC.

  7. Effects of a real singlet scalar on Veltman condition

    NASA Astrophysics Data System (ADS)

    Karahan, Canan Nurhan; Korutlu, Beste

    2014-05-01

    We revisit the fine-tuning problem in the Standard Model (SM) and show the modification in the Veltman condition by virtue of a minimally-extended particle spectrum with one real SM gauge singlet scalar field. We demand the new scalar to interact with the SM fields through Higgs portal only, and the new singlet to acquire a vacuum expectation value, resulting in a mixing with the CP-even neutral component of the Higgs doublet in the SM. The experimental bounds on the mixing angle are determined by the observed best-fit signal strength σ/σ. While, the one-loop radiative corrections to the Higgs mass squared, computed with an ultraviolet cut-off scale Λ, come with a negative coefficient, the quantum corrections to the singlet mass squared acquire both positive and negative values depending on the parameter space chosen, which if positive might be eliminated by introducing singlet or doublet vector-like fermions. However, based upon the fact that there is mixing between the scalars, when transformed into the physical states, the tree-level coupling of the Higgs field to the vector-like fermions worsens the Higgs mass hierarchy problem. Therefore, the common attempt to introduce vector-like fermions to cancel the divergences in the new scalar mass might not be a solution, if there is mixing between the scalars.

  8. Modelling Scalar Skewness in Cloudy Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mironov, Dmitrii; Machulskaya, Ekaterina; Naumann, Ann Kristin; Seifert, Axel; Mellado, Juan Pedro

    2015-04-01

    Following the pioneering work of Sommeria and Deardorff (1977), statistical cloud schemes are widely used in numerical weather prediction (NWP) and climate models to parameterize the effect of shallow clouds on turbulent mixing and radiation fluxes. Statistical cloud schemes compute the cloud fraction, the amount of cloud condensate and the effect clouds on the buoyancy flux in a given atmospheric-model grid box. This is done with due regard for the sub-grid scale (SGS) fluctuations of temperature and humidity (and possibly the vertical velocity), thus providing an important coupling between cloudiness and the SGS mixing processes. The shape of the PDF of fluctuating fields is assumed, whereas the PDF moments should be provided to the cloud scheme as an input. For non-precipitation clouds, the mixing schemes are usually formulated in terms of quasi-conservative variable, e.g. the liquid (total) water potential temperature and the total water specific humidity. Then, the cloud schemes are conveniently cast in terms of the linearized saturation deficit, referred to as the "s" variable (Mellor 1977), that accounts for the combined effect of the two scalars. If a simple two-parameter single-Gaussian PDF is used, the only "turbulence" parameter to be provided to the cloud scheme is the variance of s. The single-Gaussian PDF ignores the skewed nature of SGS motions and fails to describe many important regimes, e.g. shallow cumuli. A number of more flexible skewed PDFs have been proposed to date. A three-parameter PDF, based on a double-Gaussian distribution and diagnostic relations between some PDF parameters derived from LES and observational data (Naumann et al. 2013), appears to be a good compromise between physical realism and computational economy. A crucial point is that the cloud schemes using non-Gaussian PDFs require the scalar skewness as an input. Using rather mild non-restrictive assumptions, we develop a transport equation for the s-variable triple

  9. Optimizing elliptic curve scalar multiplication for small scalars

    NASA Astrophysics Data System (ADS)

    Giorgi, Pascal; Imbert, Laurent; Izard, Thomas

    2009-08-01

    On an elliptic curve, the multiplication of a point P by a scalar k is defined by a series of operations over the field of definition of the curve E, usually a finite field Fq. The computational cost of [k]P = P + P + ...+ P (k times) is therefore expressed as the number of field operations (additions, multiplications, inversions). Scalar multiplication is usually computed using variants of the binary algorithm (double-and-add, NAF, wNAF, etc). If s is a small integer, optimized formula for [s]P can be used within a s-ary algorithm or with double-base methods with bases 2 and s. Optimized formulas exists for very small scalars (s <= 5). However, the exponential growth of the number of field operations makes it a very difficult task when s > 5. We present a generic method to automate transformations of formulas for elliptic curves over prime fields in various systems of coordinates. Our method uses a directed acyclic graph structure to find possible common subexpressions appearing in the formula and several arithmetic transformations. It produces efficient formulas to compute [s]P for a large set of small scalars s. In particular, we present a faster formula for [5]P in Jacobian coordinates. Moreover, our program can produce code for various mathematical software (Magma) and libraries (PACE).

  10. Global structure of exact scalar hairy dynamical black holes

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying; Chen, Bin; Lü, H.

    2016-05-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/( n-1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  11. Infrared behavior of scalar condensates in effective holographic theories

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Pani, Paolo; Serra, Matteo

    2013-06-01

    We investigate the infrared behavior of the spectrum of scalar-dressed, asymptotically Anti de Sitter (AdS) black brane (BB) solutions of effective holographic models. These solutions describe scalar condensates in the dual field theories. We show that for zero charge density the ground state of these BBs must be degenerate with the AdS vacuum, must satisfy conformal boundary conditions for the scalar field and it is isolated from the continuous part of the spectrum. When a finite charge density is switched on, the ground state is not anymore isolated and the degeneracy is removed. Depending on the coupling functions, the new ground state may possibly be energetically preferred with respect to the extremal Reissner-Nordstrom AdS BB. We derive several properties of BBs near extremality and at finite temperature. As a check and illustration of our results we derive and discuss several analytic and numerical, BB solutions of Einstein-scalar-Maxwell AdS gravity with different coupling functions and different potentials. We also discuss how our results can be used for understanding holographic quantum critical points, in particular their stability and the associated quantum phase transitions leading to superconductivity or hyperscaling violation.

  12. Scalar fields and particle accelerators

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-06-01

    The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked

  13. Scalar Dark Matter From Theory Space

    SciTech Connect

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  14. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  15. Entanglement entropy and variational methods: Interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan S.; Mueller, Mark T.

    2016-02-01

    We develop a variational approximation to the entanglement entropy for scalar ϕ4 theory in 1 + 1, 2 + 1, and 3 + 1 dimensions, and then examine the entanglement entropy as a function of the coupling. We find that in 1 + 1 and 2 + 1 dimensions, the entanglement entropy of ϕ4 theory as a function of coupling is monotonically decreasing and convex. While ϕ4 theory with positive bare coupling in 3 + 1 dimensions is thought to lead to a trivial free theory, we analyze a version of ϕ4 with infinitesimal negative bare coupling, an asymptotically free theory known as precariousϕ4 theory, and explore the monotonicity and convexity of its entanglement entropy as a function of coupling. Within the variational approximation, the stability of precarious ϕ4 theory is related to the sign of the first and second derivatives of the entanglement entropy with respect to the coupling.

  16. Sweetener preference of C57BL/6ByJ and 129P3/J mice.

    PubMed

    Bachmanov, A A; Tordoff, M G; Beauchamp, G K

    2001-09-01

    Previous studies have shown large differences in taste responses to several sweeteners between mice of the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame-K, sucralose and SC-45647 were preferred by both strains, but the B6 mice had lower preference thresholds and higher solution intakes. Second, the amino acids D-phenylalanine, D-tryptophan, L-proline and glycine were highly preferred by B6 mice, but not by 129 mice. Third, glycyrrhizic acid, neohesperidin dihydrochalcone, thaumatin and cyclamate did not evoke strong preferences in either strain. Aspartame was neutral to all 129 and some B6 mice, but other B6 mice strongly preferred it. Thus, compared with the 129 mice the B6 mice had higher preferences for sugars, sweet tasting amino acids and several but not all non-caloric sweeteners. Glycyrrhizic acid, neohesperidin, thaumatin and cyclamate are not palatable to B6 or 129 mice. PMID:11555485

  17. The continuous tower of scalar fields as a system of interacting dark matter-dark energy

    NASA Astrophysics Data System (ADS)

    Santos, Paulo

    2015-10-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter-dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  18. The trace anomaly and massless scalar degrees of freedom

    SciTech Connect

    Gianotti, Maurizio; Mottola, Emil

    2008-01-01

    The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.

  19. Bianchi I in scalar and scalar-tensor cosmologies

    NASA Astrophysics Data System (ADS)

    Belinchón, José

    2012-08-01

    We study how the constants G and Λ may vary in different theoretical models (general relativity (GR) with a perfect fluid, scalar cosmological models (SM) ("quintessence") with and without interacting scalar and matter fields and three scalar-tensor theories (STT) with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study the Bianchi I models, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we conclude that the solutions are isotropic and noninflationary. We also arrive at the conclusion that in the GR model with time-varying constants, Λ vanishes while G is constant. In the SM all the solutions are massless i.e. the potential vanishes and all the interacting models are inconsistent from the thermodynamical point of view. The solutions obtained in the STT collapse to the perfect fluid one obtained in the GR model where G is a true constant and Λ vanishes as in the GR and SM frameworks.

  20. Weak Gravitational Wave and Casimir Energy of a Scalar Field

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Pirmoradian, R.; Parsabod, I.

    2016-09-01

    In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.

  1. Scalar fields in BTZ black hole spacetime and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Veer Singh, Dharm; Siwach, Sanjay

    2013-12-01

    We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.

  2. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kanti, Panagiota; Gannouji, Radouane; Dadhich, Naresh

    2015-10-01

    In this work, we consider a generalized gravitational theory that contains the Einstein term, a scalar field, and the quadratic Gauss-Bonnet (GB) term. We focus on the early-universe dynamics, and demonstrate that a simple choice of the coupling function between the scalar field and the Gauss-Bonnet term and a simplifying assumption regarding the role of the Ricci scalar can lead to new, analytical, elegant solutions with interesting characteristics. We first argue, and demonstrate in the context of two different models, that the presence of the Ricci scalar in the theory at early times (when the curvature is strong) does not affect the actual cosmological solutions. By considering therefore a pure scalar-GB theory with a quadratic coupling function we derive a plethora of interesting, analytic solutions: for a negative coupling parameter, we obtain inflationary, de Sitter-type solutions or expanding solutions with a de Sitter phase in their past and a natural exit mechanism at later times; for a positive coupling function, we find instead singularity-free solutions with no big bang singularity. We show that the aforementioned solutions arise only for this particular choice of coupling function, a result that may hint at some fundamental role that this coupling function may hold in the context of an ultimate theory.

  3. Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field

    NASA Astrophysics Data System (ADS)

    Gaete, Moisés Bravo; Hassaïne, Mokhtar

    2013-11-01

    We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity and matter parts) of the Einstein equations vanish. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exact (D-1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling parameter.

  4. Gravitational self-force in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter

    2015-09-01

    Motivated by the theoretical possibility of floating orbits and the potential to contribute extra constraints on alternative theories, in this paper we derive the self-force equation for a small compact object moving on an accelerated world line in a background spacetime which is a solution of the coupled gravitational and scalar field equations of scalar-tensor theory. In the Einstein frame, the coupled field equations governing the perturbations sourced by the particle share the same form as the field equations for perturbations of a scalarvac spacetime in general relativity, with both falling under the general class of hyperbolic field equations studied in [1]. Here, we solve the field equations formally in terms of retarded Green functions, which have explicit representations as Hadamard forms in the neighborhood of the world line. Using a quasilocal expansion of the Hadamard form, we derive the regular solutions in Fermi normal coordinates according to the Detweiler-Whiting prescription. To compute the equation of motion, we parametrize the world line by the particle's mass and "charge," which we define in terms of the original Jordan frame mass, its derivative, and the parameter which translates the proper time in the Jordan frame to the Einstein frame. These parameters depend on the value of the background scalar field and its self-field corrections. The equation of motion which follows from the regular fields strongly resembles the equation for the self-force acting on a charged, massive particle in a scalarvac geometry of general relativity. Unlike the scalar vacuum scenario, the charge parameter in the scalar-tensor self-force equation is time variable and leading to additional local and tail terms. We also provide evolution equations for the world line parameters under the influence of the self-fields.

  5. Scalar speed limits and cosmology: Acceleration from D-cceleration

    NASA Astrophysics Data System (ADS)

    Silverstein, Eva; Tong, David

    2004-11-01

    Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of the N=4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll. This effect can be traced to higher-derivative operators arising from integrating out light degrees of freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS Poincaré patch, combined with an estimate of the (ultimately suppressed) rate of particle and string production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling regime of the field theory and extend the analysis to cosmological systems obtained by coupling this type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.

  6. Constrained inflaton due to a complex scalar

    NASA Astrophysics Data System (ADS)

    Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro

    2015-09-01

    We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential varphin. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model

  7. Constrained inflaton due to a complex scalar

    SciTech Connect

    Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro

    2015-09-14

    We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential φ{sup n}. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model.

  8. Variations on Slavnov's scalar product

    NASA Astrophysics Data System (ADS)

    Foda, O.; Wheeler, M.

    2012-10-01

    We consider the rational six-vertex model on an L× L lattice with domain wall boundary conditions and restrict N parallel-line rapidities, N ≤ L/2, to satisfy length- L XXX spin-1/2 chain Bethe equations. We show that the partition function is an ( L - 2 N )- parameter extension of Slavnov's scalar product of a Bethe eigenstate and a generic state, with N magnons each, on a length- L XXX spin-1/2 chain. Decoupling the extra parameters, we obtain a third determinant expression for the scalar product, where the first is due to Slavnov [1], and the second is due to Kostov and Matsuo [2]. We show that the new determinant is Casoratian, and consequently that tree-level {N}=4 SYM structure constants that are known to be determinants, remain determinants at 1-loop level.

  9. Scalar top study: Detector optimization

    SciTech Connect

    Milstene, C.; Sopczak, A.; /Lancaster U.

    2006-09-01

    A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavor identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the International Linear Collider (ILC).

  10. Myers-Perry black holes with scalar hair and a mass gap

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen

    2014-12-01

    We construct a family of asymptotically flat, rotating black holes with scalar hair and a regular horizon, within five dimensional Einstein's gravity minimally coupled to a complex, massive scalar field doublet. These solutions are supported by rotation and have no static limit. They are described by their mass M, two equal angular momenta J1 =J2 ≡ J and a conserved Noether charge Q, measuring the scalar hair. For vanishing horizon size the solutions reduce to five dimensional boson stars. In the limit of vanishing Noether charge density, the scalar field becomes point-wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that of a specific set of Myers-Perry black holes (MPBHs); but there remains a global difference with respect to the latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear perturbation of MPBHs. This is a qualitative difference when compared to Kerr black holes with scalar hair [1]. Whereas the existence of the latter can be anticipated in linear theory, from the existence of scalar bound states on the Kerr geometry (i.e. scalar clouds), the hair of these MPBHs is intrinsically non-linear.

  11. Multiscale renormalization group methods for effective potentials with multiple scalar fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Wei; Steele, Tom; McKeon, Gerry

    2015-04-01

    Conformally symmetric scalar extensions of the Standard Model are particular appealing to reveal the underlying mechanism for electroweak symmetry breaking and to provide dark matter candidates. The Gildener & Weinberg (GW) method is widely used in these models, but is limited to weakly coupled theories. In this talk, multi-scale renormalization group (RG) methods are reviewed and applied to the analysis of the effective potential for radiative symmetry breaking with multiple scalar fields, allowing an extension of the GW method beyond the weak coupling limit. A model containing two interacting real scalar fields is used as an example to illustrate these multi-scale RG methods. Extensions of these multi-scale methods for effective potentials in models containing multiple scalars with O(M) × O(N) symmetry will also be discussed. Reseach funded by NSERC (Natural Sciences and Engineering Research Council of Canada).

  12. Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D dimensions

    SciTech Connect

    Fodor, Gyula; Forgacs, Peter; Mezei, Mark

    2010-03-15

    Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field coupled to Einstein's gravity in 1+D dimensional spacetimes. Oscillations are known to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single massive free scalar field coupled to gravity.

  13. The search for scalar mesons

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    1989-04-01

    The search for I=0 0++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues.

  14. Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.

    2016-05-01

    Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.

  15. Quantum tunneling from rotating black holes with scalar hair in three dimensions

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Gursel, H.

    2016-06-01

    We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3 D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T_H) of the 3 D RSHBH.

  16. Vacuum stability of a general scalar potential of a few fields

    NASA Astrophysics Data System (ADS)

    Kannike, Kristjan

    2016-06-01

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the mathbb {Z}3 scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues.

  17. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Karpathopoulos, L.; Wojnar, A.; Capozziello, S.

    2016-04-01

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries.

  18. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    NASA Astrophysics Data System (ADS)

    Farakos, K.; Metaxas, D.

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z = 2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  19. Long-lived colored scalars at the LHC

    NASA Astrophysics Data System (ADS)

    de la Puente, Alejandro; Szynkman, Alejandro

    2016-03-01

    We study the collider signatures of a long-lived massive colored scalar transforming trivially under the weak interaction and decaying within the inner sections of a detector such as ATLAS or CMS. In our study, we assume that the colored scalar couples at tree-level to a top quark and a stable fermion, possibly arising from a dark sector or from supersymmetric extensions of the Standard Model. After implementing the latest experimental searches for long-lived colored scalars, we observe a region of parameter space consistent with a colored electroweak-singlet scalar with mass between {˜ }200-350 GeV and a lifetime between 0.1-1 {mm}/c together, with a nearly degenerate dark fermion that may be probed at the √{s}=13 TeV LHC. We show that a search strategy using a combination of cuts on missing transverse energy and impact parameters can exclude regions of parameter space not accessed by prompt searches. We show that a region of parameter space within our simplified model may naturally arise from the light-stop window regime of supersymmetric extensions of the Standard Model, where a light mostly right-handed stop has a mass slightly larger than the lightest neutralino and decays through a four-body process.

  20. Scalar triplet flavored leptogenesis: a systematic approach

    SciTech Connect

    Sierra, D. Aristizabal; Dhen, Mikaël; Hambye, Thomas E-mail: mikadhen@ulb.ac.be

    2014-08-01

    Type-II seesaw is a simple scenario in which Majorana neutrino masses are generated by the exchange of a heavy scalar electroweak triplet. When endowed with additional heavy fields, such as right-handed neutrinos or extra triplets, it also provides a compelling framework for baryogenesis via leptogenesis. We derive in this context the full network of Boltzmann equations for studying leptogenesis in the flavored regime. To this end we determine the relations which hold among the chemical potentials of the various particle species in the thermal bath. This takes into account the standard model Yukawa interactions of both leptons and quarks as well as sphaleron processes which, depending on the temperature, may be classified as faster or slower than the Universe Hubble expansion. We find that when leptogenesis is enabled by the presence of an extra triplet, lepton flavor effects allow the production of the B-L asymmetry through lepton number conserving CP asymmetries. This scenario becomes dominant as soon as the triplets couple more to leptons than to standard model scalar doublets. In this case, the way the B-L asymmetry is created through flavor effects is novel: instead of invoking the effect of L-violating inverse decays faster than the Hubble rate, it involves the effect of L-violating decays slower than the Hubble rate. We also analyze the more general situation where lepton number violating CP asymmetries are present and actively participate in the generation of the B-L asymmetry, pointing out that as long as L-violating triplet decays are still in thermal equilibrium when the triplet gauge scattering processes decouple, flavor effects can be striking, allowing to avoid all washout suppression effects from seesaw interactions. In this case the amount of B-L asymmetry produced is limited only by a universal gauge suppression effect, which nevertheless goes away for large triplet decay rates.

  1. Scalar field evolution in Gauss-Bonnet black holes

    SciTech Connect

    Abdalla, E.; Konoplya, R.A.; Molina, C.

    2005-10-15

    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.

  2. Lepton-flavored scalar dark matter with minimal flavor violation

    NASA Astrophysics Data System (ADS)

    Lee, Chao-Jung; Tandean, Jusak

    2015-04-01

    We explore scalar dark matter that is part of a lepton flavor triplet satisfying symmetry requirements under the hypothesis of minimal flavor violation. Beyond the standard model, the theory contains in addition three right-handed neutrinos that participate in the seesaw mechanism for light neutrino mass generation. The dark-matter candidate couples to standard-model particles via Higgs-portal renormalizable interactions as well as to leptons through dimension-six operators, all of which have minimal flavor violation built-in. We consider restrictions on the new scalars from the Higgs boson measurements, observed relic density, dark-matter direct detection experiments, LEP II measurements on e + e - scattering into a photon plus missing energy, and searches for flavor-violating lepton decays. The viable parameter space can be tested further with future data. Also, we investigate the possibility of the new scalars' couplings accounting for the tentative hint of Higgs flavor-violating decay h → μτ recently detected in the CMS experiment. They are allowed by constraints from other Higgs data to produce a rate of this decay roughly compatible with the CMS finding.

  3. Entropic quantization of scalar fields

    SciTech Connect

    Ipek, Selman; Caticha, Ariel

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  4. Entropic quantization of scalar fields

    NASA Astrophysics Data System (ADS)

    Ipek, Selman; Caticha, Ariel

    2015-01-01

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  5. A realizable EDQNM model for anisotropic scalars

    NASA Astrophysics Data System (ADS)

    Collins, Lance; Ulitsky, Mark

    1999-11-01

    As noted in the previous talk and abstract, the direct application of the edqnm formalism to two scalars with different diffusivities leads to a scalar covariance spectrum that violates the Cauchy-Schwartz inequality. This can be remedied by eliminating the explicit dependence of the eddy damping time scales on the molecular diffusivities, which can be shown to be unphysical at short times. Here we present an extension of this idea to anisotropic scalars. Anisotropy in this case results from uniform mean gradients of the scalar concentration in one direction. The approach we take is similar to the one described in Herr, Wang and Collins (Phys. Fluids 8:1588, 1996), except we substitute the modified eddy damping coefficients derived earlier for the isotropic scalar. The resulting edqnm model yields a realizable covariance spectrum for all times and for all combinations of the scalar diffusivities we considered. Several example calculations will be presented.

  6. Disformal scalars as dark matter candidates — Branon phenomenology

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.; Maroto, Antonio L.

    2016-05-01

    Scalar particles coupled to the Standard Model fields through a disformal coupling arise in different theories, such as massive gravity or braneworld models. We will review the main phenomenology associated with such particles. Distinctive disformal signatures could be measured at colliders and with astrophysical observations. The phenomenological relevance of the disformal coupling demands the introduction of a set of symmetries, which may ensure the stability of these new degrees of freedom. In such a case, they constitute natural dark matter candidates since they are generally massive and weakly coupled. We will illustrate these ideas by paying particular attention to the branon case, since these questions arise naturally in braneworld models with low tension, where they were first discussed.

  7. New class of consistent scalar-tensor theories.

    PubMed

    Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo

    2015-05-29

    We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians-obtained by direct replacement of derivatives with covariant derivatives-belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity. PMID:26066423

  8. New Class of Consistent Scalar-Tensor Theories

    NASA Astrophysics Data System (ADS)

    Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo

    2015-05-01

    We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians—obtained by direct replacement of derivatives with covariant derivatives—belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity.

  9. Gauge Fields and Scalars in Rolling Tachyon Backgrounds

    SciTech Connect

    Thomas Mehen; Brian Wecht

    2003-04-01

    We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curvature of the effective metric as well as the time variation of the gauge coupling. The equations of state for these fields resemble those of nonrelativistic matter rather than those of massless particles.

  10. Baryogenesis from baryon-number-violating scalar interactions

    NASA Astrophysics Data System (ADS)

    Bowes, J. P.; Volkas, R. R.

    1997-03-01

    In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.