Science.gov

Sample records for 3mwth combustion test

  1. Combustion test for RDF and coal in the 1.3 MWth ACFB

    SciTech Connect

    Kajita, A.; Tanaka, T.; Narukawa, K.; Kobayashi, N.; Nishiyama, A.; Oide, M.

    1999-07-01

    The diversification of fuel for the generating electricity becomes necessary to secure long-term energy. In this situation, coal is very important fuel resource because of great quantity of reserves under the ground and wide production area over the world. Therefore, the development of the high efficiency burning technology of coal fuel is required. The city garbage is also useful energy resource and it is socially expected the effective utilization technology with renewal energy and good for the environment. In such a background, it becomes important to know the combustion performance of RDF (Refuse Derived Fuel) in a efficient way with minimizing pollutant emissions. The authors conducted the coal and RDF burn tests using the 1.3 MW{sub th} ACFB (Atmospheric Circulating Fluidized-Bed) combustion test facility. The tests were conducted for both of 100% RDF combustion and combination of coal and RDF combustion with varied Ca contents and varied Cl contents in RDF. During combustion test, NO{sub x}, SO{sub 2} and HCl emissions in flue gas were measured. The result of the tests is reported and discussed in this paper.

  2. Combustible dust tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  3. Promoted Combustion Test Propagation Rate Data

    NASA Technical Reports Server (NTRS)

    Borstorff, J.; Jones, P.; Lowery, F.

    2002-01-01

    Combustion propagation rate data were examined for potential use in benchmarking a thermal model of the Promoted Combustion Test (PCT), and also for potential use in measuring the repeatability of PCT results.

  4. Thermal Model of the Promoted Combustion Test

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1996-01-01

    Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test

  5. Small-scale combustion testing

    SciTech Connect

    Gibbon, G.A.; Ekmann, J.M.; White, C.M.; Navadauskas, R.J.; Retcofsky, H.L.; Joubert, J.I.

    1983-01-01

    In order to assess the possible environmental impact of substituting synfuels for petroleum in utility and industrial boilers, two experimental programs have been undertaken at the Pittsburgh Energy Technology Center. First, a fully instrumented 20-hp firetube boiler capable of burning liquid fuels ranging in combustion characteristics from No. 2 to No. 6 petroleum has been installed in the Combustion Division. Second, a sampling and analytical methodology for the organic compounds present in the exhaust duct of the 20-hp boiler is being developed by the Analytical Chemistry Division. This report outlines the progress on this project to date: twenty-four successful combustion runs have been completed on the 20-hp boiler, using a variety of petroleum-based fuels and synfuels; a sampling protocol for organic vapors in hot exhaust gases has been developed; significant differences in the composition of the trace organics in the exhaust gases have been observed as a function of the fuel being burned, but total polynuclear aromatic hydrocarbon levels are comparable for all fuels. 6 references, 10 tables.

  6. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  7. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect

    Brand, L; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  8. Post Combustion Test Bed Development

    SciTech Connect

    Cabe, James E.; King, Dale A.; Freeman, Charles J.

    2011-12-30

    Pacific Northwest National Laboratory (PNNL) assessment methodology and slip-stream testing platform enables the comprehensive early-stage evaluation of carbon capture solvents and sorbents utilizing a breadth of laboratory experimental capability as well as a testing platform at a nearby 600 MW pulverized coal-fired power plant.

  9. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect

    Brand, L.; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project team collected field data on 11 houses in 2015.

  10. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.7 Test procedures for smoldering combustion. This...

  11. Small scale combustion testing of synthetic fuels

    SciTech Connect

    Gibbon, G.A.; Ekmann, J.M.; Navadauskas, R.J.; White, C.M.

    1982-03-01

    In order to assess any changes in the environmental impact of industrial or utility boiler exhaust gases upon changing from petroleum-based fuels to synthetic fuels, detailed characterizations of the exhaust emissions from both types of fuels burned under identical combustion conditions are required. A 20-hp (approximately 5 gallons of liquid fuel feed per hour) firetube boiler has been installed in the Combustion Technology Division of the Pittsburgh Energy Technology Center (PETC) so such experiments can be performed. The boiler is fully instrumented for heat and material balance measurements, including analysis of the major and minor components of the combustion gases and the total hydrocarbons and particulates present in the gases. In addition, the exhaust duct of the boiler has a sampling port adjacent to the one used for major and minor components; this port is used to sample exhaust gases for the analysis of the trace organic compounds present in the gases. The Analytical Chemistry Division of PETC is developing the sampling and analytical methodologies for the trace organics. The effort to date has been focused on the problems involved in sampling the hot (ca. 350/sup 0/F) exhaust gases and on the analysis of the gases for polynuclear aromatic hydrocarbons.

  12. Testing a dual-mode ramjet engine with kerosene combustion

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Karasev, V. N.; Kartovitskii, L. L.; Krymov, E. A.; Skachkov, O. A.

    2015-09-01

    Results of life firing tests of a dual-mode ramjet engine intended for operation in the speed range M = 3-6 are discussed. The tests were carried out on a test bench under freestream conditions typical of Mach 6 flight at 27.6-km altitude. In the tests, the adopted design and technological solutions were verified, and efficient operation of the ramjet engine with kerosene combustion during 110 s was demonstrated.

  13. Subscale Test Methods for Combustion Devices

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Sisco, J. C.; Long, M. R.; Sung, I.-K.

    2005-01-01

    Stated goals for long-life LRE s have been between 100 and 500 cycles: 1) Inherent technical difficulty of accurately defining the transient and steady state thermochemical environments and structural response (strain); 2) Limited statistical basis on failure mechanisms and effects of design and operational variability; and 3) Very high test costs and budget-driven need to protect test hardware (aversion to test-to-failure). Ambitious goals will require development of new databases: a) Advanced materials, e.g., tailored composites with virtually unlimited property variations; b) Innovative functional designs to exploit full capabilities of advanced materials; and c) Different cycles/operations. Subscale testing is one way to address technical and budget challenges: 1) Prototype subscale combustors exposed to controlled simulated conditions; 2) Complementary to conventional laboratory specimen database development; 3) Instrumented with sensors to measure thermostructural response; and 4) Coupled with analysis

  14. Oxygen Compatibility Screening Tests in Oxygen-Rich Combustion Environment

    NASA Technical Reports Server (NTRS)

    Eckel, Anerew J.

    1997-01-01

    The identification and characterization of oxygen-rich compatible materials enables full-flow, staged combustion designs. Although these oxygen-rich designs offer significant cost, performance, and reliability benefits over existing systems, they have never been used operationally by the United States. If these systems are to be realized, it is critical to understand the long-term oxidative stability in high-temperature, high-pressure, oxygen-rich combustion environments. A unique facility has been constructed at the NASA Lewis Research Center to conduct tests of small-scale rocket engine materials and subcomponents in an oxygen-rich combustion environment that closely approximates a full-scale rocket engine. Thus, a broad range of advanced materials and concepts can be screened in a timely manner and at a relatively low cost.

  15. Development of coal combustion sensitivity test for smoke detectors

    SciTech Connect

    Edwards, J.C.; Morrow, G.S.

    1995-09-01

    Standard smoldering and flaming combustion tests using small coal samples have been developed by the US Bureau of Mines as a method to evaluate the response of a smoke detector. The tests are conducted using a standard smoke box designed and constructed according to Underwriters Laboratories. The tests provide a standard, easily reproducible smoke characteristic for smoldering and flaming coal combustion, based upon a comparison of the smoke optical density and the response of a standard ionization chamber to the smoke. With these standard tests, the range of threshold limits for the response of a smoke detector and the detector`s reliability can be evaluated for nearly identical smoke visibility and smoke physical characteristics. The detector`s threshold response limits and reliability need to be well defined prior to the instrument`s use as part of a mine fire warning system for improved mine safety.

  16. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  17. Lignite combustion test project interim report: Tests L101-L114

    SciTech Connect

    Phillips, K.E.; Wilson, K.B.

    1980-08-01

    Fluidized bed combustion research on North Dakota lignite is being performed by Combustion Power Company, Inc. under contract to Grand Forks Energy Technology Center in a 7 sq ft Atmospheric Fluid Bed Combustor. A series of 14 parameteric tests have been completed in which various combinations of bed temperature, superficial velocity, excess air, and limestone Ca/S ratios made up the test matrix. Twelve of the 14 tests used ash recycle. The test results extend the lignite combustion characteristics determined from GFETC tests on smaller reactors with respect to: (1) sulfur retention on lignite ash and supplemental sorbents; (2) ash and bed agglomeration problems; (3) effect of operational conditions and bed characteristics on heat transfer coeffficient; (4) ash reinjection; and (5) flue gas pollutants. This interim report summarizes the test setup, test procedures and test results, describes operational problems, and provides observations noted during the tests and on post-test inspections.

  18. Safety analysis of the 700-horsepower combustion test facility

    SciTech Connect

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  19. Heat pipe gas combustion system endurance test for Stirling engine

    NASA Astrophysics Data System (ADS)

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc. has been developing a general purpose Heat Pipe Gas Combustion (HPGC) system suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator, and a film-cooled gas combustor. The principal component is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. Given here are the test results of the endurance tests run on a Gas Fired Stirling Engine (GFSE).

  20. Technology Solutions Case Study: Combustion Safety Simplified Test Protocol

    SciTech Connect

    L. Brand, D. Cautley, D. Bohac, P. Francisco, L. Shen, and S. Gloss

    2015-12-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives.

  1. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  2. Hot fire fatigue testing results for the compliant combustion chamber

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.

    1992-01-01

    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.

  3. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  4. A test device for premixed gas turbine combustion oscillations

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  5. Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1990-01-01

    Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

  6. A test device for premixed gas turbine combustion oscillations

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  7. MCO combustible gas management leak test acceptance criteria

    SciTech Connect

    SHERRELL, D.L.

    1999-05-11

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

  8. Clean fuel test burn in TVA combustion turbine

    SciTech Connect

    Gunnerman, R.; Houlihan, T.; Hall, R.; Stephens, E.

    1998-07-01

    In the fall of 1997, the Tennessee Valley Authority (TVA) in cooperation with A-55 Clean Fuels of Reno, NV (A-55) conducted a series of tests on the Unit 1 combustion turbine at the TVA Colbert Fossil Plant near Huntsville, AL. TVA was interested in assessing the use of oil/water emulsified fuels because they offered the potential of significant reduction in nitrogen oxide (NOX) emissions without a significant impact on unit performance. Notably, the recorded data shows that there was a significant reduction in NOx emissions--upwards of 50%--in both transient and steady-state operations. Moreover, base load gross output increased 1.2 MW over a full range of operating ambient conditions. The following presentation displays the full set of operating and emission data obtained in the tests.

  9. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby; Ruff, Gary A.; Hunter, Gary

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex®, M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton®, and mixtures of PTFE and Kapton®. Furnace temperatures ranged from 340o to 640o C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different

  10. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.; Hunter, Gary; Ruff, Gary; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different

  11. Structural Benchmark Tests of Composite Combustion Chamber Support Completed

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.

    2005-01-01

    A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.

  12. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  13. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  14. Test Would Quantify Combustion Oxygen From Different Sources

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.

    1993-01-01

    Proposed isotope-enrichment scheme enables determination of contributions of dual sources of oxygen for combustion. Liquid oxygen or other artificial stream enriched with O(18) to about 1 percent by weight. Combustion products analyzed by mass spectrometer to measure relative abundances of H2O(18) and H2O(16). From relative abundances of water products measured, one computes relative contribution of oxygen extracted from stream compared to other source of oxygen in combustion process. Used to determine contributions of natural oxygen in air and liquid oxygen supplied in separate stream mixed with air or sent directly into combustion chamber.

  15. Cooled Ceramic Composite Panel Tested Successfully in Rocket Combustion Facility

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2003-01-01

    Regeneratively cooled ceramic matrix composite (CMC) structures are being considered for use along the walls of the hot-flow paths of rocket-based or turbine-based combined-cycle propulsion systems. They offer the combined benefits of substantial weight savings, higher operating temperatures, and reduced coolant requirements in comparison to components designed with traditional metals. These cooled structures, which use the fuel as the coolant, require materials that can survive aggressive thermal, mechanical, acoustic, and aerodynamic loads while acting as heat exchangers, which can improve the efficiency of the engine. A team effort between the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and various industrial partners has led to the design, development, and fabrication of several types of regeneratively cooled panels. The concepts for these panels range from ultra-lightweight designs that rely only on CMC tubes for coolant containment to more maintainable designs that incorporate metal coolant containment tubes to allow for the rapid assembly or disassembly of the heat exchanger. One of the cooled panels based on an all-CMC design was successfully tested in the rocket combustion facility at Glenn. Testing of the remaining four panels is underway.

  16. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion

    SciTech Connect

    Sears, R.E.; Griswold, G.H.; Fankhanel, M.O.; Kastner, C.E.; Pontium, D.H.

    1992-11-01

    Efficiencies in advanced power generation systems such as integrated gasification combined cycle, pressurized fluidized bed combustion and integrated gasification fuel cells can be maximized by feeding hot fuel gas or flue gas to the power block. However, advanced gas turbines have strict particulate requirements to minimize wear on the blades due to the close tolerances used to maximize the efficiency of the turbomachinery. Molten Carbonate Fuel Cells also have strict particulate requirements to prevent blinding of the electrodes. Therefore, one of the main barriers to developing these advanced power generation systems is the removal of particulates in a hot gas stream. Although the development of several high temperature/pressure PCD systems has been ongoing for the past several years, long term operation under realistic conditions for advanced power generation has been limited. The demonstration of reliable operation is critical to the commercialization of PCD technology for advanced power generation. The conceptual design of the Hot Gas Cleanup Test Facility Project was expanded to include additional modules to better address the scope of the Cooperative Agreement with the DOE/METC. The expanded test facility, referred to as the Power Systems Development Facility, will provide a flexible test location in which the development of advanced power system components, the evaluation of advanced turbine and fuel cell configurations, and the integration and control issues of these systems. The facility is intended to provide direct support for upcoming DOE demonstrations of power generation technologies utilizing hot stream cleanup and will provide a resource for rigorous testing and performance assessment of hot stream cleanup devices now being developed with the support of DOE/METC.

  17. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  18. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  19. Characterization of Ceramic Matrix Composite Fasteners Exposed in a Combustion Liner Rig Test

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Brewer, David; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Combustion tests on SiC/SiC CMC (Ceramic Matrix Composite) components were performed in an aircraft combustion environment using the Rich-burn, Quick-quench, Lean-burn (RQL) sector rig. SiC/SiC fasteners were used to attach several of these components to the metallic rig structure. The effect of combustion exposure on the fastener material was characterized via microstructural examination. Fasteners were also destructively tested, after combustion exposure, and the failure loads of fasteners exposed in the sector rig were compared to those of as-manufactured fasteners. Combustion exposure reduced the fastener failure load by 50% relative to the as-manufactured fasteners for exposure times ranging from 50 to 260 hours. The fasteners exposed in the combustion environment demonstrated failure loads that varied with failure mode. Fasteners that had the highest average failure load, failed in the same manner as the unexposed fasteners.

  20. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  1. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  2. Development of a vortex combustor (VC) for space/water heating applications (combustion tests)

    SciTech Connect

    Fu, T.T. ); Nieh, S. . Combustion and Multiphase Flows Lab.)

    1990-11-01

    This is the final report for Interagency Agreement DE-AI22-87PC79660 on Combustion Test'' for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft[sup 3]), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

  3. Development of a vortex combustor (VC) for space/water heating applications (combustion tests). Final report

    SciTech Connect

    Fu, T.T.; Nieh, S.

    1990-11-01

    This is the final report for Interagency Agreement DE-AI22-87PC79660 on ``Combustion Test`` for vortex combustor (VC) development for commercial applications. The work culminated in the successful demonstration of a 2 MB/H proof-of-concept (POC) model firing coal-water fuel (CWF). This development is concerned with a new concept in combustion, and was a general lack of relevant information. The work therefore began (in addition to the companion cold flow modeling study) with the design and test of two subscale models (0.15 and 0.3 MB/H) and one full scale model (3 MB/H) to obtain the needed information. With the experience gained, the 2 MB/H POC model was then designed and demonstrated. Although, these models were designed somewhat differently from one another, they all performed well and demonstrated the superiority of the concept. In summary, test results have shown that VC can be fired on several coal fuels (CWF, dry ultrafine coal, utility grind pulverized coal) at high combustion efficiency (>99%), high firing intensity (up to 0.44 MB/H-ft{sup 3}), and at temperatures sufficiently low or dry ash removal. The combustion process is completed totally inside the combustor. Conventional combustion enhancement techniques such as: preheating (air and/or fuel), pre-combustion, and post combustion are not needed.

  4. Solid Fuel Delivery System Developed for Combustion Testing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    2004-01-01

    NASA initiated Bioastronautics and Human Research Initiatives in 2001 and 2003, respectively, to enhance the safety and performance of humans in space. The Flow Enclosure Accommodating Novel Investigations in Combustion of Solids (FEANICS) is a multiuser facility being built at the NASA Glenn Research Center to advance these initiatives by studying fire safety and the combustion of solid fuels in the microgravity environment of the International Space Station (ISS). One of the challenges for the FEANICS team was to build a system that allowed for several consecutive combustion tests to be performed with minimal astronaut crew interaction. FEANICS developed a fuel carousel that contains a various number of fuel samples, depending on the fuel width, and introduces them one at a time into a flow tunnel in which the combustion testing takes place. This approach will allow the science team to run the experiments from the ground, while only requiring the crew to change out carousels after several tests have been completed.

  5. Fluidized bed combustion tested for Turkish oil shales

    SciTech Connect

    Not Available

    1986-09-01

    About 7.5 billion tons of lignite and 5 billion tons of oil shale deposits are potential energy sources and therefore potential air pollution sources for Turkey. The low calorific value, and high ash and sulfur contents of these fuels render fluidized bed combustion a promising method of utilization. A fluidized bed combustion system with a nominal capacity of 418,000 to 627,000 kilojoules per hour for producing hot water has been designed and constructed at Istanbul Technical University. This paper lists the important characteristics of the main Turkish lignite and oil shale reserves, and the specifications of the pilot-scale fluidized-bed combustor designed to burn these fuels.

  6. Laboratory test methods for combustion stability properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Brown, R. S.

    1992-01-01

    An overview is presented of experimental methods for determining the combustion-stability properties of solid propellants. The methods are generally based on either the temporal response to an initial disturbance or on external methods for generating the required oscillations. The size distribution of condensed-phase combustion products are characterized by means of the experimental approaches. The 'T-burner' approach is shown to assist in the derivation of pressure-coupled driving contributions and particle damping in solid-propellant rocket motors. Other techniques examined include the rotating-valve apparatus, the impedance tube, the modulated throat-acoustic damping burner, and the magnetic flowmeter. The paper shows that experimental methods do not exist for measuring the interactions between acoustic velocity oscillations and burning propellant.

  7. Small-scale combustion testing of synthetic fuels

    SciTech Connect

    Gibbon, G.A.; Ekmann, J.M.; White, C.M.; Navadauskas, R.J.; Joubert, J.I.; Retcofsky, H.L.

    1981-11-01

    In order to assess the possible environmental impact of substituting synfuels for petroleum in utility and industrial boilers, two experimental programs have been undertaken at the Pittsburgh Energy Technology Center. First, a fully instrumented 20-hp firetube boiler capable of burning liquid fuels ranging in combustion characteristics from No. 2 to No. 6 petroleum has been installed in the Combustion Division. Second, a sampling and analytical methodology for the organic compounds present in the exhaust duct of the 20-hp boiler is being developed by the Analytical Chemistry Division. This report outlines the progress on this project to date: twenty-four successful combustion runs have been completed on the 20-hp boiler, using a variety of petroleum-based fuels and synfuels; a sampling protocol for organic vapors in hot exhaust gases has been developed; significant differences in the composition of the trace organics in the exhaust gases have been observed as a function of the fuel being burned, but total polynuclear aromatic hydrocarbon levels are comparable for all fuels.

  8. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. II - Combustion test rig evaluation

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Several commercial monolithic catalysts were tested in a combustion test rig to determine their suitability for use in a gas-turbine combustor primary zone. The catalyst test bed consisted of two to four elements of 12-centimeter diameter by 2.5-centimeter long monolith. Results are presented of the measured combustion efficiency and catalyst bed temperature history for an inlet propane-air mixture temperature of 800 K, a pressure of 300,000 newtons per square meter, inlet velocities of 10 to 25 meters per second and equivalence ratios of 0.1 to 0.3. The best catalysts tested gave combustion efficiencies of virtually 100% for reaction temperatures ranging from 1325 K at 10 meters per second to 1400 K at 25 meters per second. This performance was only possible with fresh catalysts. The catalysts tested were not specifically developed for use at these conditions and showed some loss in activity after about 3 hours' testing.

  9. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    SciTech Connect

    Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

    1993-11-01

    This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

  10. A facility for testing the acoustic combustion instability characteristics of solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Mathes, H. B.

    1980-01-01

    A facility is described that has been specifically designed for small-scale laboratory testing of solid rocket propellants. A description of the facility is provided which includes the general plan of the facility and features related to personnel safety. One of the major activities in the facility is testing solid rocket propellants for combustion response to acoustic perturbations. A detailed discussion of acoustic instability testing is given including specially designed combustion apparatus, data acquisition, and signal conditioning. Techniques of data reduction are reviewed and some of the instrumentation problems that arise in this type of testing are mentioned along with practical solutions.

  11. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  12. COMBUSTION MODIFICATION TESTS ON A SUBSCALE CEMENT KILN FOR NOX REDUCTION

    EPA Science Inventory

    The report gives results of field tests of a subscale rotary cement kiln to evaluate the effect of various combustion modifications on gaseous emissions, using a research kiln donated by a cement company. The test unit was 8.2 m (27 ft) long and 0.38 m (15 in.) inside diameter an...

  13. Determination of Pass/Fail Criteria for Promoted Combustion Testing

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle M.; Stoltzfus, Joel M.; Steinberg, Theodore A.; Lynn, David

    2009-01-01

    Promoted ignition testing is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. In these tests, a promoter is used to ignite each metal rod to start the sample burning. Experiments were performed to better understand the promoted ignition test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Various ignition promoters were used to ignite the test samples. The thermocouple measurements and test video was synchronized to determine temperature increase with respect to time and length along each test sample. A recommended length of test sample that must be consumed to be considered a flammable material was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.

  14. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  15. Methodology of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths

    NASA Astrophysics Data System (ADS)

    Hannemann, Klaus; Karl, Sebastian; Martinez Schramm, Jan; Steelant, Johan

    2010-10-01

    In the framework of the European Commission co-funded LAPCAT (Long-Term Advanced Propulsion Concepts and Technologies) project, the methodology of a combined ground-based testing and numerical modelling analysis of supersonic combustion flow paths was established. The approach is based on free jet testing of complete supersonic combustion ramjet (scramjet) configurations consisting of intake, combustor and nozzle in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) and computational fluid dynamics studies utilising the DLR TAU code. The capability of the established methodology is demonstrated by applying it to the flow path of the generic HyShot II scramjet flight experiment configuration.

  16. Modeling of Nonacoustic Combustion Instability in Simulations of Hybrid Motor Tests

    NASA Technical Reports Server (NTRS)

    Rocker, M.

    2000-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of nonacoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne, and Martin Marietta at NASA Marshall Space Flight Center (MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5-Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5-Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in elimination of combustion instability with the installation of an orifice immediately upstream of the injector. Formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom. and Claflin. The previous model simulated an unstable independent research and development (IR&D) hybrid motor test performed by Thiokol. There was very good agreement between the model and test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, tests performed at MSFC under the HPTLVB program were actually simulated. ln the current model, the hybrid motor, consisting of the liquid oxygen (lox) injector, the multiport solid fuel grain, and nozzle, was simulated. The lox feedsystem, consisting of the tank, venturi. valve, and feed lines, was also simulated in the model. All components of the hybrid motor and lox feedsystem are treated by a lumped-parameter approach. Agreement between the results of the transient model and actual test data was very good. This agreement between simulated and actual test data indicated

  17. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  18. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  19. Influence of test configuration on the combustion characteristics of polymers as ignition sources

    NASA Technical Reports Server (NTRS)

    Julien, Howard L.

    1993-01-01

    The experimental evaluation of polymers as ignition sources for metals was accomplished at the NASA White Sands Test Facility (WSTF) using a standard promoted combustion test. These tests involve the transient burning of materials in high-pressure oxygen environments. They have provided data from which design decisions can be made; data include video recordings of ignition and non-ignition for specific combinations of metals and polymers. Other tests provide the measured compositions of combustion products for polymers at select burn times and an empirical basis for estimating burn rates. With the current test configuration, the detailed analysis of test results requires modeling a three-dimensional, transient convection process involving fluid motion, thermal conduction and convection, the diffusion of chemical species, and the erosion of sample surface. At the high pressure extremes, it even requires the analysis of turbulent, transient convection where the physics of the problem are not well known and the computation requirements are not practical at this time. An alternative test configuration that can be analyzed with a relatively-simple convection model was developed during the summer period. The principal change constitutes replacing a large-diameter polymer disk at the end of the metal test rod with coaxial polymer cylinders that have a diameter nearer to that of the metal rod. The experimental objective is to assess the importance of test geometries on the promotion of metal ignition by testing with different lengths of the polymer and, with an extended effort, to analyze the surface combustion in the redesigned promoted combustion tests through analytical modeling of the process. The analysis shall use the results of cone-calorimeter tests of the polymer material to model primary chemical reactions and, with proper design of the promoted combustion test, modeling of the convection process could be conveniently limited to a quasi-steady boundary layer

  20. Building America Case Study: Combustion Safety Simplified Test Protocol, Chicago Illinois, and Minneapolis, Minnesota

    SciTech Connect

    2015-12-01

    "9Combustion safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  1. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME I: TANGENTIAL COAL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives results of an environmental assessment field testing program on a tangential-coal-fired utility boiler. The aim of the program was to measure multimedia emissions changes as a result of applying combustion modification NOx control. Emissions of trace elements, or...

  2. THREE STAGE COMBUSTION (REBURNING) TEST RESULTS FROM A 300 MW BOILER IN THE UKRAINE

    EPA Science Inventory

    The paper gives results of a program to design, install, and test a natural gas three-stage combustion (reburn) system on a 300-MWe, opposed-wall, wetbottom (slagging) coal-fired utility boiler operating in the Ukraine. The U. S. EPA sponsored this-program in support of a working...

  3. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  4. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Method of Testing for Sustained Combustibility H Appendix H to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS...

  5. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  6. Successful First J-2X Combustion Stability Test

    NASA Video Gallery

    NASA conducted a key stability test firing of the J-2X rocket engine Dec. 1, marking another step forward in development of the upper-stage engine that will carry humans farther into space than eve...

  7. Active control of the acoustic boundary conditions of combustion test rigs

    NASA Astrophysics Data System (ADS)

    Bothien, Mirko R.; Moeck, Jonas P.; Oliver Paschereit, Christian

    2008-12-01

    In the design process of burners for gas turbines, new burner generations are generally tested in single or multi burner combustion test rigs. With these experiments, computational fluid dynamics, and finite element calculations, the burners' performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behaviour and the emission characteristics is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match, or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavourable dynamics at the same conditions in the engine. In this work, a method is proposed which uses an active control scheme to manipulate the acoustic boundary conditions of the test rig. Using this method, the boundary conditions can be continuously modified, ranging from anechoic to fully reflecting in a broad frequency range. The concept is applied to an atmospheric combustion test rig with a swirl-stabilized burner. It is shown that the test rig's properties can be tuned to correspond to those of the full-scale engine. For example, the test rig length can be virtually extended, thereby introducing different resonance frequencies, without having to implement any hardware changes. Furthermore, the acoustic boundary condition can be changed to that of a choked flow without actually needing the flow to be choked.

  8. Ground testing of the HyShot supersonic combustion flight experiment in HEG

    NASA Astrophysics Data System (ADS)

    Gardner, A. D.; Hannemann, K.; Pauli, A.; Steelant, J.

    The first phase of the HyShot supersonic combustion ramjet (scramjet) flight exper- iment program of The University of Queensland in Australia was designed to provide benchmark data on supersonic combustion for a flight Mach number of approximately M=8. The second flight of the HyShot program, performed on July 30th 2002, was successful and supersonic com- bustion was observed along the specified trajectory range. The operating range of the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Centre (DLR) was recently extended. The facility has now the capability of testing a complete scramjet engine with internal combustion and external aerodynamics at M=7.8 flight conditions in altitudes of about 30 km. A post flight analysis of the HyShot flight experiment was performed using an operational scramjet wind tunnel model with a geometry which is identical to that of the flight configuration.

  9. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3

    SciTech Connect

    Not Available

    1992-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  10. HIGH ALTITUDE TESTING OF RESIDENTIAL WOOD-FIRED COMBUSTION EQUIPMENT

    EPA Science Inventory

    To determine whether emissions from operating a wood stove at high altitude differ from those at low altitude, a high altitude sampling program was conducted which was compared to previously collected low altitude data. Emission tests were conducted in the identical model stove u...

  11. Residential wood-combustion-equipment standards and testing workshop

    SciTech Connect

    Not Available

    1980-12-01

    Explored are concerns related to proper safety, acceptable practices, and consumer protection as related to woodburning. Issues relating to safety and efficiency testing are discussed and the implications of these programs for the manufacturer, dealer and distributor are related. Also, consumer related problems regarding truth in advertising, product safety, building codes and standards, and insurance implications are dealt with. (LEW)

  12. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... shall be approximately 2.5 cm (1 in) thick with a thermal conductivity of 0.30±0.05 cal(g)/hr cm2 °C/cm... characteristics of materials used for thermal insulation. This test shall be conducted on materials at...

  13. Technology evaluation report: SITE (Superfund Innovative Technology Evaluation) program demonstration test. The American Combustion Pyretron Thermal Destruction System at the US EPA's (Environmental Protection Agency's) combustion research facility

    SciTech Connect

    Waterland, L.; Lee, J.W.

    1989-04-01

    A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. The Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.

  14. Analytical flow/thermal modeling of combustion gas flows in Redesigned Solid Rocket Motor test joints

    NASA Technical Reports Server (NTRS)

    Woods, G. H.; Knox, E. C.; Pond, J. E.; Bacchus, D. L.; Hengel, J. E.

    1992-01-01

    A one-dimensional analytical tool, TOPAZ (Transient One-dimensional Pipe flow AnalyZer), was used to model the flow characteristics of hot combustion gases through Redesigned Solid Rocket Motor (RSRM) joints and to compute the resultant material surface temperatures and o-ring seal erosion of the joints. The capabilities of the analytical tool were validated with test data during the Seventy Pound Charge (SPC) motor test program. The predicted RSRM joint thermal response to ignition transients was compared with test data for full-scale motor tests. The one-dimensional analyzer is found to be an effective tool for simulating combustion gas flows in RSRM joints and for predicting flow and thermal properties.

  15. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cigarette without filter tip made from natural tobacco, 85±2 mm (3.35±.08 in) long with a tobacco packing... holder (volume 4,000 cm3or 0.14 ft3) at the settled density as determined in § 1209.4(e). The material... tested and withdrawn to form an appropriate cavity for the ignition source, such that the cigarette...

  16. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cigarette without filter tip made from natural tobacco, 85±2 mm (3.35±.08 in) long with a tobacco packing... holder (volume 4,000 cm3or 0.14 ft3) at the settled density as determined in § 1209.4(e). The material... tested and withdrawn to form an appropriate cavity for the ignition source, such that the cigarette...

  17. CFB combustion of high-ash Ukrainian anthracite -- Pilot testing and design implications

    SciTech Connect

    Belin, F.; Fuller, T.A.; Maryamchik, M.; Perna, M.A.; Maystrenko, A.Yu.

    1997-12-31

    High-ash anthracite is the most important indigenous fuel used for power generation in Ukraine. The power plant upgrade program, developed jointly by US Department of Energy (DOE) and Ukrainian Ministry of Energy, anticipates applying the CFB technology for efficient and environmentally clean utilization of this hard-to-burn fuel. Testing of high-ash anthracite sponsored by DOE was conducted at CFB test facilities at the Division of High Temperature Energy Conversion (DHTEC) of Ukrainian Academy of Science in Kiev and at the Babcock and Wilcox Research Center in Alliance, Ohio, USA (ARC). Testing at DHTEC included kinetic studies and combustion tests on a small-scale (100 mm diameter) CFB combustor. The rest results were used to select the fuel sizing and limestone type for pilot testing at ARC and to evaluate the effects of operating parameters on fuel combustion. Testing at the ARC 2.5 MW{sub t} CFB pilot facility (700 x 700 mm cross section, 23 m high) provided combustion and emission performance data applicable for designing of commercial-scale CFB boilers. Stable combustion without supplemental fuel and with the unburned carbon loss of less than 3% was achieved over a 55 to 100% load range. About 90% of sulfur was removed by adding limestone at a Ca/S ratio of 1.85; nitrogen oxide and carbon monoxide emissions were below 340 mg/Nm{sup 3} and 260 mg/Nm{sup 3}, respectively. The CFB boiler design recommendations for high-ash anthracite, developed based on the test results, are described in the paper.

  18. Stack contamination effects during small-scale combustion testing of synthetic fuels

    SciTech Connect

    Douglas, L.J.; Gibbon, G.A.; White, C.M.

    1984-01-01

    The Analytical Chemistry Branch at the Pittsburgh Energy Technology Center has undertaken the assessment of the possible environmental impact of substituting synfuels for petroleum-based fuels in utility and industrial boilers. The assessment is based on a study of results obtained from the analysis of trace organic compounds present in the exaust gases of a fully instrumented 20-hp firetube boiler. The stack gases from petroleum-based fuels, synfuels, and methanol combustion tests have been sampled and analyzed by combined gas chromatography/mass spectrometry. The stack gas sampled during the combustion of methanol showed the presence of saturated and aromatiic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol showed the presence of saturated and aromatic hydrocarbons as well as detectable amounts of organic sulfur compounds, such as dibenzothiophene. The presence of these compounds could not be explained on the basis of methanol combustion but suggests contamination of the 20-hp combustor-exhaust system from earlier tests using petroleum or coal-derived fuels. The previously established exhaust stack protocol was reviewed by the Combustion Technology Branch and the Analytical Chemistry Branch. It was decided that a more exhaustive protocol was required. When this revised protocol was instituted, cross-contamination and memory effects disappeared, and sampling integrity was reestablished, thus allowing the analytical data to be properly interpreted. 5 references, 7 figures, 5 tables.

  19. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    2000-02-01

    The purpose of this data collection activity is to obtain data for a screening of combustible gases in catch tanks that are currently operated by the River Protection Project (RPP). The results will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the ''Tank Safety Screening Data Quality Objective'' (Dukelow et a1 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, vapor grab samples will be collected for laboratory analysis. In addition, ventilation rates of some catch tanks will be determined using the tracer gas injection method to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the field tests, sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides step by-step direction for field measurement of combustible gas concentrations and determination of ventilation rates.

  20. Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor

    SciTech Connect

    Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

    2007-05-01

    The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

  1. Developmemt of coal combustion sensitivity tests for smoke detectors. Report of investigations/1995

    SciTech Connect

    Edwards, J.C.; Morrow, G.S.

    1994-11-01

    Standard smoldering and flaming combustion tests using small coal samples have been developed by the U.S. Bureau of Mines as a method to evaluate the response of a smoke detector. The test provides a standard, easily reproducible smoke characteristic for coal smoldering and flaming combustion based upon a comparison of the smoke optical density and the response of a standard ionization chamber to the smoke. With these standard tests, the range of threshold limits for the response of a smoke detector and the detector`s reliability can be evaluated for nearly identical smoke visibility and smoke physical characteristics. The detector`s threshold response limits and reliability need to be well defined prior to the instrument`s use as part of a mine fire warning system for improved mine safety.

  2. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are

  3. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  4. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    SciTech Connect

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  5. [Testing of Concentration and Characteristics of Particulate Matters Emitted from Stationary Combustion Sources in Beijing].

    PubMed

    Hu, Yue-qi; Wu, Xiao-dong; Wang, Chen; Liang, Yun-ping; Ma, Zhao-hui

    2016-05-15

    A self-built monitoring sampling system on particulate matters and water soluble ions emitted from stationary combustion sources and a size separated sampling system on particulate matters based on FPS4000 and ELPI + were applied to test particulate matters in fumes of typical stationary combustion sources in Beijing. The results showed that the maximum concentration of total particulate matters in fumes of stationary combustion sources in Beijing was 83.68 mg · m⁻³ in standard smoke oxygen content and the minimum was 0.12 mg · m⁻³. And particle number concentration was in the 10⁴-10⁶ cm⁻³ number of grade. Both mass and number concentration ranking order of particulate matters emitted from stationary combustion sources in Beijing was: heating gas fired boilers < power plant coal fired boilers < heating coal fired boilers. And two or three peaks existed under 1 µm of particulate size for both number size distribution and mass size distribution. The number concentration for PM₂.₅ accounted for over 99.8% of that for PM₁₀ and that for PM₀.₁ accounted for over 83% of that for PM₂.₅. But the proportions of PM₀.₁, and PM₂.₅ in PM₁₀ were significantly lower in quality analysis,the proportion of PM₂.₅ in PM₁₀ was about 82%, and that of PM₀.₁ in PM₂.₅ was about 27%-33%. PMID:27506016

  6. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  7. Multi Canister Overpack (MCO) Combustible Gas Management Leak Test Acceptance Criteria (OCRWM)

    SciTech Connect

    SHERRELL, D.L.

    2000-10-10

    The purpose of this document is to support the Spent Nuclear Fuel Project's combustible gas management strategy while avoiding the need to impose any requirements for oxygen free atmospheres within storage tubes that contain multi-canister overpacks (MCO). In order to avoid inerting requirements it is necessary to establish and confirm leak test acceptance criteria for mechanically sealed and weld sealed MCOs that are adequte to ensure that, in the unlikely event the leak test results for any MCO were to approach either of those criteria, it could still be handled and stored in stagnant air without compromising the SNF Project's overall strategy to prevent accumulation of combustible gas mixtures within MCOs or within their surroundings. To support that strategy, this document: (1) establishes combustible gas management functions and minimum functional requirements for the MCO's mechanical seals and closure weld(s); (2) establishes a maximum practical value for the minimum required initial MCO inert backfill gas pressure; and (3) based on items 1 and 2, establishes and confirms leak test acceptance criteria for the MCO's mechanical seal and final closure weld(s).

  8. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further

  9. Test Medium Effects on Ignition, Combustion and Flameholding Processes in Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Pellett, G. L.

    2000-01-01

    The total temperatures (enthalpies) required to ground-test air-breathing (aero-propulsion) engines at high Mach number flight conditions can be achieved in a number of ways. Among these are: 1. Heat exchangers, including pre-heated ceramic beds. 2. direct electrical heating, e.g., arc discharge and resistance heaters. 3. Compression heating. 4. Shock heating, and 5. In-stream combustion, with oxygen replenishment to match air content. Each method has distinct advantages, disadvantages and limitations. All have a common characteristic of being designed for intermittent flow, due to the extreme energy required for continuous operation at simulated Mach numbers above about 3. All also distort the composition of atmospheric air to some degree, due to the high temperatures that occur in the plenum section prior to expansion of the flow to simulated flight conditions. In the case of in-stream combustion, the resulting test medium is commonly referred to as "vitiated air", being composed of oxygen, nitrogen and some fraction of combustion products.

  10. Development of eddy current testing system for inspection of combustion chambers of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    He, D. F.; Zhang, Y. Z.; Shiwa, M.; Moriya, S.

    2013-01-01

    An eddy current testing (ECT) system using a high sensitive anisotropic magnetoresistive (AMR) sensor was developed. In this system, a 20 turn circular coil with a diameter of 3 mm was used to produce the excitation field. A high sensitivity AMR sensor was used to measure the magnetic field produced by the induced eddy currents. A specimen made of copper alloy was prepared to simulate the combustion chamber of liquid rocket. Scanning was realized by rotating the chamber with a motor. To reduce the influence of liftoff variance during scanning, a dual frequency excitation method was used. The experimental results proved that ECT system with an AMR sensor could be used to check liquid rocket combustion chamber.

  11. Development of eddy current testing system for inspection of combustion chambers of liquid rocket engines.

    PubMed

    He, D F; Zhang, Y Z; Shiwa, M; Moriya, S

    2013-01-01

    An eddy current testing (ECT) system using a high sensitive anisotropic magnetoresistive (AMR) sensor was developed. In this system, a 20 turn circular coil with a diameter of 3 mm was used to produce the excitation field. A high sensitivity AMR sensor was used to measure the magnetic field produced by the induced eddy currents. A specimen made of copper alloy was prepared to simulate the combustion chamber of liquid rocket. Scanning was realized by rotating the chamber with a motor. To reduce the influence of liftoff variance during scanning, a dual frequency excitation method was used. The experimental results proved that ECT system with an AMR sensor could be used to check liquid rocket combustion chamber. PMID:23387673

  12. The NASA broad-specification fuels combustion technology program: An assessment of phase 1 test results

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1983-01-01

    An assessment is made of the results of Phase 1 screening testing of current and advanced combustion system concepts using several broadened-properties fuels. The severity of each of several fuels-properties effects on combustor performance or liner life is discussed, as well as design techniques with the potential to offset these adverse effects. The selection of concepts to be pursued in Phase 2 refinement testing is described. This selection takes into account the relative costs and complexities of the concepts, the current outlook on pollutant emissions control, and practical operational problems.

  13. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  14. The role of combustion diagnostics in coal quality impact and NO{sub x} emissions field test programs

    SciTech Connect

    Thompson, R.E.; Dyas, B.

    1995-03-01

    Many utilities are examining low sulfur coal or coal blending options to comply with the Clean Air Act Amendment SO{sub 2} emission limits. Test burns have been conducted with the more promising candidate coals to characterize the potential impact of a change in coal quality on boiler operation and performance. Utilities are also under considerable pressure to evaluate NO{sub x} control options and develop a compliance plan to meet strict NO{sub x} regulations, particularly in high population density metropolitan areas on the Eastern seaboard. Field test programs have been conducted to characterize baseline NO{sub x} emissions, evaluate the NO{sub x} reduction potential of combustion modifications, and assess the potential of combustion tuning as an alternative to burner replacement. Coal quality impacts (slagging, fouling, heat absorption, ash removal) and NO{sub x} emissions are both strongly dependent upon the coal combustion process and site-specific boiler firing practices. Non-uniform combustion in the burner region can result in adverse ash deposition characteristics, carbon carryover problems, high furnace exit gas temperatures, and NO{sub x}emission characteristics that are not representative of the coal or the combustion equipment. Advanced combustion diagnostic test procedures have been developed to evaluate and improve burner zone combustion uniformity, even in cases where the coal flow to the individual burners may be non-uniform. The paper outlines a very practical solving approach to identifying combustion related problems that affect ash deposition and NO{sub x} emissions. The benefits of using advanced diagnostic instrumentation to identify problems and tune combustion conditions is illustrated using test data from recent quality field test programs.

  15. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  16. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  17. Development of recommended test method for toxicological assessment of inhaled combustion products. Final report

    SciTech Connect

    Birky, M.M.; Paabo, M.; Levin, B.C.; Womble, S.E.; Malek, D.

    1980-09-01

    The objective of the project supported by PRC was to develop a test method for measuring the toxicity of combustion products from polymeric materials including cellular plastics. The development of such a test procedure was considered an essential first step to determine the hazard to life when cellular plastics are involved in fire. As result of this work, a test procedure was developed. It consists of 3 major elements; (1) combustion system, (2) chemical analysis system and (3) animal exposure system. Two biological endpoints obtained from the exposure are: (1) incapacitation in 30 minute exposure period, and (2) lethality in 30 minutes plus 14 days post exposure. The test apparatus has been evaluated to determine mixing rates and loss of reactive chemicals in the exposure chamber. In addition, a statistical evaluation of the experimental results demonstrated that order of incapacitation was independent of animal location. Evaluation of a limited number of different materials that produce different toxicological syndromes has demonstrated the utility of all 3 endpoints. Two natural polymers (wood and wool) and 2 synthetic materials (modacrylic and PTFE) have been studied in detail. In addition, preliminary data have been obtained on a flexible polyurethane foam (CM-21).

  18. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  19. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  20. Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Package

    SciTech Connect

    Hafner, R S; Mok, G C; Hagler, L G

    2004-04-23

    The U.S. Nuclear Regulatory Commission (USNRC) contracted with the Packaging Review Group (PRG) at Lawrence Livermore National Laboratory (LLNL) to conduct a single, 30-ft shallow-angle drop test on the Combustion Engineering ABB-2901 drum-type shipping package. The purpose of the test was to determine if bolted-ring drum closures could fail during shallow-angle drops. The PRG at LLNL planned the test, and Defense Technologies Engineering Division (DTED) personnel from LLNL's Site-300 Test Group executed the plan. The test was conducted in November 2001 using the drop-tower facility at LLNL's Site 300. Two representatives from Westinghouse Electric Company in Columbia, South Carolina (WEC-SC); two USNRC staff members; and three PRG members from LLNL witnessed the preliminary test runs and the final test. The single test clearly demonstrated the vulnerability of the bolted-ring drum closure to shallow-angle drops-the test package's drum closure was easily and totally separated from the drum package. The results of the preliminary test runs and the 30-ft shallow-angle drop test offer valuable qualitative understandings of the shallow-angle impact.

  1. Development and testing of the ACT-1 experimental facility for hypersonic combustion research

    NASA Astrophysics Data System (ADS)

    Baccarella, D.; Liu, Q.; Passaro, A.; Lee, T.; Do, H.

    2016-04-01

    A new pulsed-arc-heated hypersonic wind tunnel facility, designated as ACT-1 (Arc-heated Combustion Test-rig 1), has been developed and built at the University of Notre Dame in collaboration with the University of Illinois at Urbana-Champaign and Alta S.p.A. The aim of the design is to provide a suitable test platform for experimental studies on supersonic and hypersonic turbulent combustion phenomena. ACT-1 is composed of a high temperature gas-generator system and a model scramjet combustor that is installed in an open-type vacuum test section of the wind tunnel facility. The gas-generator is designed to produce high-enthalpy (stagnation temperature  =  2000 K-3500 K) hypersonic flows for a run time up to 1 s. The supersonic combustor section is composed of a compression ramp (scramjet inlet), an internal flow channel of constant cross-section, a fuel jet nozzle, and a flame holder (wall cavity). The facility allows three-way optical accesses (top and sides) into the supersonic combustor to enable various advanced optical and laser diagnostics. In particular, planar laser Rayleigh scattering (PLRS), high-speed schlieren imaging and OH-planar laser induced fluorescence (OH-PLIF) have successfully been implemented to visualize the turbulent flows and flame structures at high speed flight conditions.

  2. Development and Testing of Industrial Scale, Coal-Fired Combustion System: Phase 3.

    SciTech Connect

    Zauderer, B.

    1997-04-21

    In the first quarter of calendar year 1997, 17 days of combustor- boiler tests were performed, including one day of tests on a parallel DOE sponsored project on sulfur retention in a slagging combustor. Between tests, modifications and improvements that were indicated by these tests were implemented. This brings the total number of test days required to meet the task 5 project plan. The key project objectives in the areas of combustor performance and environmental performance have been exceeded. With sorbent injection in the combustion gas train, NO{sub x} emissions as low as 0.07 lb/MMBtu and SO{sub 2} emissions as low as 0.2 lb/MMBtu have been measured in tests in this quarter. Tests in the present quarter have resulted in further optimizing the sorbent injection and NO{sub x} control processes. A very important milestone in this quarter was two successful combustor tests on a very high ash (37%) Indian coal. Work in the next quarter will focus on commercialization of the combustor- boiler system. In addition, further tests of the NO{sub x} and SO{sub 2} control process and on the Indian coal will be performed.

  3. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect

    Chattopadhyay, A.

    1995-01-01

    The report describes the results of combustion testing work, and analysis of heat recovery and use at the Monroe County Frank E. Van Lare wastwater treatment plant (WWTP). The three multiple-hearth furnaces at the plant process an average of 65 dry tons of dewatered sludge per day. The furnaces use about 12.5 million Btus of natural gas per dry ton of sludge incinerated, or about 300 billion Btus per year. Center shaft and rabble arm cooling air is recirculated to the furnaces as pre-heated combustion air. No other heat from the combustion process is recovered for use in the plant. The project had four objectives: to record and analyze sludge management operations data and sludge incinerator combustion data; to ascertain instrumentation and control needs; to calculate heat balances for the incineration system; and to determine the feasibility of full waste-heat recovery and utilization, at the Frank E. Van Lare wastewater treatment plant.

  4. Reducing kickback of portable combustion chain saws and related injury risks: laboratory tests and deductions.

    PubMed

    Dąbrowski, Andrzej

    2012-01-01

    Portable chain saws are still very dangerous machines. Reduced prices of these machines mean they are widely available to people who like DIY (do it yourself) and professionals. Kickback of chain saws is extremely dangerous for the operator. This paper discusses the results of laboratory investigations of combustion chain saws. The tests were conducted on a standardized kickback test stand and covered the course of kickback, its energy, angle and duration. The results showed that during the contact of a saw chain with wood, the first to appear was the process of wood cutting, which absorbed 90-95% of the reduced energy of the cutting system. The greater the absorbed energy, the smaller the kickback angle. Wood cutting work is particularly influenced by proper chain tension, the use of chains with anti-kickback links, guide bars with sliding endings and a quickly activated chain brake. PMID:22995138

  5. Preliminary results on performance testing of a turbocharged rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  6. Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Kenny, R. L.; Casiano, M. J.

    2013-01-01

    Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional

  7. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  8. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect

    1995-08-01

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  9. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    SciTech Connect

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  10. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  11. National Dioxin Study Tier 4 - combustion sources: final test report - Site 77, wood-fired boiler WFB-A

    SciTech Connect

    Keller, L.E.; Keating, M.H.; Jamgochian, C.L.

    1987-04-01

    This report summarizes the results of a dioxin/furan emissions test of a wood-fired boiler equipped with a fabric-filter system for particulate emissions control. The boiler combusts a combination of bark, hogged wood, sawdust, and green and dry planar shavings. The test is the seventh in a series of emission tests conducted under Tier 4 of the National Dioxin Study. The primary objective of tier 4 is to determine if various combustion devices are sources of dioxin and/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Wood-fired boilers are one of eight combustion-device categories that have been tested in the Tier 4 program. The tested boiler, WFB-A, was selected for this test after an initial information screening and a 1-day pretest survey. The logs processed at the plant are stored in a salt-water body adjacent to the plant. Thus, the feed to Boiler WFB-A has a higher inorganic chloride content than the feed to most wood-fired boilers. Boiler WFB-A is considered representative of those wood-fired boilers in the United States firing salt-laden wood. Data presented in the report include dioxin (tetra through octa homologue +2378 TCDD) and furan (tetra through octa homologue +2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  12. Droplet combustion experiment drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.

  13. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  15. Liquid oxygen/hydrogen testing of a single swirl coaxial injector element in a windowed combustion chamber

    NASA Astrophysics Data System (ADS)

    Hulka, J.; Makel, D.

    1993-06-01

    A modular, high pressure, liquid rocket single element combustion chamber was developed at Aerojet for use with nonintrusive combustion diagnostics. The hardware is able to accommodate full-size injection elements and includes a recessed annular injector around the single element to provide a source for hot gas background flow, which reduces recirculation in the chamber and provides additional injection mass to elevate chamber pressure. Experiments are being conducted to develop the diagnostics required to characterize a single-element combustion spray field for combustion modeling, benchmark data for CFD model validation, and development of the transfer functions between single element cold flow and multielement hot fire. The latter task is being pursued using an injector element identical to elements that had been previously cold-flow tested in single element tests to ambient backpressure and hot fire tested in a multielement injector. Preliminary tests conducted to date without hydrogen flowing through the annular coaxial orifice of the single element show the general flow characteristics of a reacting, unconfined, liquid oxygen hollow cone swirl spray.

  16. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. Part 2: Combustion test rig evaluation

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Several commercial monolithic catalysts were tested in a combustion test rig to determine their suitability for use in a gas turbine combuster primary zone. The catalyst test bed consisted of two to four elements of 12-centimeter diameter by 2.5-centimeter long monolith. Results are presented of the measured combustion efficiency and catalyst bed temperature history for an inlet propane-air mixture temperature of 800 K, a pressure of 300,000 newtons per square meter, inlet velocities of 10 to 25 meters per second and equivalence ratios of 0.1 to 0.3. The best catalysts tested gave combustion efficiencies of virtually 100 percent for reaction temperatures ranging from 1,325 K at 10 meters per second to 1,400 K at 25 meters per second. This performance was only possible with fresh catalysts. The catalysts tested were not specifically developed for use at these conditions and showed some loss in activity after about 3 hours' testing.

  17. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  18. Validation of a Pressure-Based Combustion Simulation Tool Using a Single Element Injector Test Problem

    NASA Technical Reports Server (NTRS)

    Thakur, Siddarth; Wright, Jeffrey

    2006-01-01

    The traditional design and analysis practice for advanced propulsion systems, particularly chemical rocket engines, relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment by non-CFD specialists. A computational tool, called Loci-STREAM is being developed for this purpose. It is a pressure-based, Reynolds-averaged Navier-Stokes (RANS) solver for generalized unstructured grids, which is designed to handle all-speed flows (incompressible to hypersonic) and is particularly suitable for solving multi-species flow in fixed-frame combustion devices. Loci-STREAM integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective of the ongoing work is to develop a robust simulation capability for combustion problems in rocket engines. As an initial step towards validating this capability, a model problem is investigated in the present study which involves a gaseous oxygen/gaseous hydrogen (GO2/GH2) shear coaxial single element injector, for which experimental data are available. The sensitivity of the computed solutions to grid density, grid distribution, different turbulence models, and different near-wall treatments is investigated. A refined grid, which is clustered in the vicinity of

  19. Lightweight, Actively Cooled Ceramic Matrix Composite Thrustcells Successfully Tested in Rocket Combustion Lab

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Elam, Sandra K.; Effinger, Michael R.

    2002-01-01

    In a joint effort between the NASA Glenn Research Center and the NASA Marshall Space Flight Center, regeneratively cooled ceramic matrix composite (CMC) thrustcells were developed and successfully tested in Glenn's Rocket Combustion Lab. Cooled CMC's offer the potential for substantial weight savings over more traditional metallic parts. Two CMC concepts were investigated. In the first of these concepts, an innovative processing approach utilized by Hyper-Therm, Inc., allowed woven CMC coolant containment tubes to be incorporated into the complex thruster design. In this unique design, the coolant passages had varying cross-sectional shapes but maintained a constant cross-sectional area along the length of the thruster. These thrusters were silicon carbide matrix composites reinforced with silicon carbide fibers. The second concept, which was supplied by Ceramic Composites, Inc., utilized copper cooling coils surrounding a carbon-fiber-reinforced carbon matrix composite. In this design, a protective gradient coating was applied to the inner thruster wall. Ceramic Composites, Inc.'s, method of incorporating the coating into the fiber and matrix eliminated the spallation problem often observed with thermal barrier coatings during hotfire testing. The focus of the testing effort was on screening the CMC material's capabilities as well as evaluating the performance of the thermal barrier or fiber-matrix interfacial coatings. Both concepts were hot-fire tested in gaseous O2/H2 environments. The test matrix included oxygen-to-fuel ratios ranging from 1.5 to 7 with chamber pressures to 400 psi. Steady-state internal wall temperatures in excess of 4300 F were measured in situ for successful 30-sec test runs. Photograph of actively cooled composite thrustcell fabricated by Hyper-Therm is shown. The thrustcell is a silicon-carbide-fiber-reinforced silicon carbide matrix composite with woven cooling channels. The matrix is formed via chemical vapor infiltration. Photograph of

  20. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  1. Beta Testing of CFD Code for the Analysis of Combustion Systems

    NASA Technical Reports Server (NTRS)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  2. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    SciTech Connect

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  3. Altitude-test-chamber Investigation of Performance of a 28-inch Ram-jet Engine I : Combustion and Operational Performance of Four Combustion-chamber Configurations

    NASA Technical Reports Server (NTRS)

    Shillito, T B; Jones, W L; Henzel, J G , Jr

    1950-01-01

    An altitude-test-chamber investigation of a 28-inch-diameter ram-jet engine at a simulated flight Mach number of approximately 2.0 for altitudes of 40,000 to 50,000 feet was conducted at the NACA Lewis laboratory. Three different flame holders, varying in the number and size of the annular gutters, in conjunction with several fuel-injection systems were investigated. The combustion efficiency for the flame-holder fuel-injection system that provided the best over-all operational fuel-air-ratio range (0.03 to 0.075) was over 0.9 at a fuel-air ratio of about 0.065 for the altitude range investigated.

  4. Studies of hydrogen combustion in an intermediate-scale test facility

    SciTech Connect

    Kumar, R.K.; Tamm, H.; Harrison, W.C.

    1984-01-01

    Combustion of hydrogen-air-steam mixtures has been studied in a 2.3-m (8 ft) diameter sphere and in a pipe-sphere combination consisting of a 0.3-m (1 ft) diameter, 6-m (20 ft) long pipe connected to the sphere. The range of concentrations investigated included 4 to 42% hydrogen and up to 40% steam by volume. Most of the experiments were conducted at 100/sup 0/C and near-atmospheric pressure (approx. 98 kPa) although some experiments were also performed at room temperature. The effects of fan-induced turbulence were investigated qualitatively. In some experiments, gratings in the form of perforated sheets were placed in the sphere to assess their effect on combustion. Combustible mixtures in the sphere, alone, were ignited either at the bottom, centre, or top with a single electric spark. To evaluate the effects of volume geometry on combustion, hydrogen-air mixtures were ignited either at the pipe end or at the sphere centre. The effects on combustion of concentration differences between the gases in the pipe and in the sphere were investigated by placing a rupture disc in the pipe near its junction with the sphere. Discussion of the experimental results is presented.

  5. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  6. The development of an optically accessible, high-power combustion test rig.

    PubMed

    Slabaugh, Carson D; Pratt, Andrew C; Lucht, Robert P; Meyer, Scott E; Benjamin, Michael; Lyle, Kent; Kelsey, Mark

    2014-03-01

    This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. PMID:24689618

  7. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was

  8. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  9. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  10. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  11. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  12. Combustibility Tests of 1,1,1,2-tetrafluoroethane in a Simulated Compressor Cylinder

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.; Bruce, Robert A.

    1997-01-01

    The advantages of high-molecular-weight gas (heavy gas) as a wind-tunnel medium have been recognized for some time. The current heavy gas of choice chlorofluorocarbon-12(CFC-12) (refrigerant R12) for the Transonic Dynamics Tunnel(TDT) must be replaced because manufacture of this gas ceased in 1995. An attractive replacement is 1,1,1,2-tetrafluoroethane (refrigerant R134a). Acceptable properties of this gas include molecular weight and speed of sound. Its vapor pressure allows simplified reclamation from mixtures with air. However, it is recognized that R134a is combustible under certain conditions of temperature, pressure, and concentration. A comprehensive study was conducted to identify those conditions and the influence of various parameters on the combustibility of the gas-air mixture.

  13. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  14. High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion

    NASA Technical Reports Server (NTRS)

    Masters, Philip A.; Armstrong, Elizabeth S.; Price, Harold G.

    1988-01-01

    An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall.

  15. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  16. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; hot Gas Cleanup Units to mate to all gas streams; and Combustion Gas Turbine. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  17. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  18. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  19. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  20. Final test report on the combustion of solvent-refined coal in a 100 hp firetube boiler

    SciTech Connect

    Pan, Y.S.; Wieczenski, D.E.; Snedden, R.B.; Bellas, G.T.; Joubert, J.I.; Curio, A.R.; Wildman, D.J.

    1982-01-01

    Although solid Solvent-Refined Coal (SRC-I) was burned successfully in a coal-designed utility boiler in 1977, the feasibility of using this fuel in more compact oil- or gas-designed units at signficantly higher heat liberation rates remained uncertain. Combustion tests were conducted at the Pittsburgh Energy Technology Center using a 100 hp (3450 lb of steam per hour) firetube boiler, designed to burn No. 6 oil. The fuel was produced at an SRC pilot plant in Wilsonville, Alabama, from high-sulfur Kentucky coal, and 0.8% sulfur and 0.3% ash. In the combustion tests, SRC was fed to the boiler in three different physical forms: (1) a slurry composed of 70% by weight SRC-I process solvent and 30% by weight solid SRC pulverized to 92% minus 200 mesh; (2) a molten liquid at approx. 600/sup 0/F, using superheated steam at 800/sup 0/F for atomization, and preheated combustion air at 400/sup 0/F in a conventional oil burner; and (3) a solid, pulverized to 90% minus 325 mesh, using preheated secondary combustion air at 550/sup 0/F. The slurry and molten forms were burned at full boiler load at a heat liberation rate of 184,000 Btu/ft/sup 3/-hr. Carbon conversion efficiencies were generally 99.7% or greater, and boiler efficiencies were about 82%, the same as when burning No. 6 fuel oil. The pulverized SRC was burned at approx. 50% of full boiler load (1656 to 1803 lb of steam per hour) due to the limitations on the burner that was available. Carbon conversion efficiencies ranged from 98.6 to 99.6%, and boiler efficiency again was about 82%. The test results indicate that SRC-I, including the solid form, can probably be burned without derating in larger oil-designed industrial boilers of watertube design. Such units usually operate at heat liberation rates in the range of 25,000-50,000 Btu/ft/sup 3/-hr, significantly lower than rates employed in these tests.

  1. The N.A.C.A. Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1931-01-01

    Described here is an apparatus for studying the formation and combustion of fuel sprays under conditions closely simulating those in a high speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel injection system so designed that a single charge of fuel can be injected into the combustion chamber, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2000 per second are taken of the spray formation by means of spark discharges. When combustion takes place, the light of combustion is recorded on the same photographic film as the spray photographs. Included here are the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation. The results show that the compression temperature has little effect on the penetration of the fuel spray, but does not affect the dispersion, that air velocities of about 300 feet per second are necessary to destroy the core of the spray, and that the effect of air flow on the spray is controlled to a certain extent by the design of the injection nozzle. The results on the combustion of the spray show that when ignition does not take place until after spray cut-off, the ignition may start almost simultaneously throughout the combustion chamber or at different points throughout the chamber. When ignition takes place before spray cut-off, the combustion starts around the edge of the spray and then spreads throughout the chamber.

  2. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    SciTech Connect

    G. C. Sclippa; L. L. Baxter; S. G. Buckley

    1999-02-01

    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  3. Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

    SciTech Connect

    Cook, C.S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-11-01

    One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) measurement of NO{sub x}, CO, and particulate emissions; and (3) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fired with simulated low Btu fuel. The overall objective of this project is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  4. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect

    1996-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  5. Controlled combustion tests and bottom ash analysis using household waste with varying composition

    SciTech Connect

    Hu Yanjun; Bakker, Maarten; Brem, Gerrit; Chen Guanyi

    2011-02-15

    The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition.

  6. Batch test assessment of waste-to-energy combustion residues impacts on precipitate formation in landfill leachate collection systems.

    PubMed

    Cardoso, Antonio J; Levine, Audrey D; Rhea, Lisa R

    2008-01-01

    Disposal practices for bottom ash and fly ash from waste-to-energy (WTE) facilities include emplacement in ash monofills or co-disposal with municipal solid waste (MSW) and residues from water and wastewater treatment facilities. In some cases, WTE residues are used as daily cover in landfills that receive MSW. A recurring problem in many landfills is the development of calcium-based precipitates in leachate collection systems. Although MSW contains varying levels of calcium, WTE residues and treatment plant sludges have the potential to contribute concentrated sources of leachable minerals into landfill leachates. This study was conducted to evaluate the leachability of calcium and other minerals from residues generated by WTE combustion using residues obtained from three WTE facilities in Florida (two mass-burn and one refuse-derived fuel). Leaching potential was quantified as a function of contact time and liquid-to-solid ratios with batch tests and longer-term leaching tests using laboratory lysimeters to simulate an ash monofill containing fly ash and bottom ash. The leachate generated as a result of these tests had total dissolved solid (TDS) levels ranging from 5 to 320 mg TDS/g ash. Calcium was a major contributor to the TDS values, contributing from 20 to 105 g calcium/kg ash. Fly ash was a major contributor of leachable calcium. Precipitate formation in leachates from WTE combustion residues could be induced by adding mineral acids or through gas dissolution (carbon dioxide or air). Stabilization of residual calcium in fly ashes that are landfilled and/or the use of less leachable neutralization reagents during processing of acidic gases from WTE facilities could help to decrease the calcium levels in leachates and help to prevent precipitate formation in leachate collection systems. PMID:18236791

  7. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    NASA Astrophysics Data System (ADS)

    Bellmann, B.; Creutzenberg, O.; Ernst, H.; Muhle, H.

    2009-02-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m3. The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  8. Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; Fiechtner, G. J.; Branch, M. C.; Daily, J. W.

    1994-01-01

    An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented.

  9. Fabric filter testing at the TVA Atmospheric Fluidized-bed Combustion (AFBC) Pilot Plant

    SciTech Connect

    Cushing, K.M.; Bush, P.V.; Snyder, T.R.

    1988-05-01

    Experience with fluidized bed combustion (FBC) units on a research and industrial scale has indicated that FBC power plants could be a viable alternative to pulverized-coal power plants with wet limestone scrubbers or spray dryers. To provide design confidence and the flexibility to evaluate process improvements, the Tennessee Valley Authority constructed a 20-MW(e) AFBC (bubbling bed) Pilot Plant. Subseqently, EPRI and Southern Research Institute entered into a program to monitor the performance of the fabric filter at the pilot plant. The objective of the program was to determine if unique characteristics of AFBC operation or emissions would require special design criteria or operating procedures in the application of fabric filtration to utility-size AFBC boilers. With reverse-gas cleaning the fabric filter experienced high tubesheet pressure drop while operating at low filtering air-to-cloth values and with low residual dustcake areal densities compared to fabric filters downstream from pulverized-coal boilers. This implied that the AFBC fly ash had properties distinct from those of pulverized-coal fly ash. Implementaion of reverse-gas cleaning with sonic assistance resulted in lower operating pressure drops at higher filtering air-to-cloth values, although slightly higher than comparable data from baghouses filtering pulverized-coal fly ash. Fly ash analyses showed that the AFBC ash particles are generally smaller, more irregualr in shape, and the dustcakes are lighter and more porous than those formed from pulverized-coal fly ashes. 8 refs., 18 figs., 7 tabs.

  10. The N.A.C.A. Combustion Chamber Gas-sampling Valve and Some Preliminary Test Results

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Buckley, E C

    1933-01-01

    A gas sampling valve of the inertia-operated type was designed for procuring samples of the gases in the combustion chamber of internal combustion engines at identical points in successive cycles so that the analysis of the gas samples thus procured may aid in the study of the process of combustion. The operation of the valve is described. The valve was used to investigate the CO2 content of gases taken from the quiescent combustion chamber of a high speed compression-ignition engine when operating with two different multiple-orifice fuel injection nozzles. An analysis of the gas samples thus obtained shows that the state of quiescence in the combustion chamber is maintained during the combustion of the fuel.

  11. Heat Effects of Promoters and Determination of Burn Criterion in Promoted Combustion Testing

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle M.; Stoltzfus, Joel M.; Steinberg, Theodore A.; Lynn, David

    2010-01-01

    Promoted ignition testing (NASA Test 17) [1] is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. A promoter is used to ignite a metal sample rod, initiating sample burning. If a predetermined length of the sample burns, beyond the promoter, the material is considered flammable at the condition tested. Historically, this burn length has been somewhat arbitrary. Experiments were performed to better understand this test by obtaining insight into the effect a burning promoter has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Thermocouple measurements and test video were synchronized to determine temperature increase with respect to time and length along each test sample. A recommended flammability burn length, based on a sample preheat of 500 F, was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.

  12. ASRM combustion instability studies

    NASA Technical Reports Server (NTRS)

    Strand, L. D.

    1992-01-01

    The objectives of this task were to measure and compare the combustion response characteristics of the selected propellant formulation for the Space Shuttle Advanced Solid Rocket Motor (ASRM) with those of the current Redesigned Solid Rocket Motor (RSRM) formulation. Tests were also carried out to characterize the combustion response of the selected propellant formulation for the ASRM igniter motor.

  13. A critical evaluation of combustible/explosible dust testing methods-part 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...

  14. VERIFICATION TESTING OF EMISSIONS FROM THE COMBUSTION OF A-55 CLEAN FUELS IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of testing three fuels in a small (732 kW) firetube package boiler to determine emissions of carbon monoxide (CO), nitrogen oxide (NO), particulate matter (PM), and total hydrocarbons (THCs). The tests were part of EPA's Environmental Technology Verificat...

  15. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) of this appendix. Correct this temperature for the difference in barometric pressure from the standard atmospheric pressure (101.3 kPa) by raising the test temperature for a higher pressure or lowering the test temperature for a lower pressure by 1.0 °C for each 4 kPa difference. Ensure that the top...

  16. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) of this appendix. Correct this temperature for the difference in barometric pressure from the standard atmospheric pressure (101.3 kPa) by raising the test temperature for a higher pressure or lowering the test temperature for a lower pressure by 1.0 °C for each 4 kPa difference. Ensure that the top...

  17. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) of this appendix. Correct this temperature for the difference in barometric pressure from the standard atmospheric pressure (101.3 kPa) by raising the test temperature for a higher pressure or lowering the test temperature for a lower pressure by 1.0 °C for each 4 kPa difference. Ensure that the top...

  18. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) of this appendix. Correct this temperature for the difference in barometric pressure from the standard atmospheric pressure (101.3 kPa) by raising the test temperature for a higher pressure or lowering the test temperature for a lower pressure by 1.0 °C for each 4 kPa difference. Ensure that the top...

  19. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  20. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup

  1. Development and testing of industrial scale, coal fired combustion system: Phase 3, Progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Zauderer, B.

    1995-10-12

    The primary objective of the present Phase 3 effort is to perform the final testing, at a 20 MMBtu/hr commercial scale, of an air cooled, slagging coal combustor for application to industrial steam boilers and power plants. The focus of the test effort is on combustor durability, automatic control of the combustor`s operation, and optimum environmental control of emissions inside the combustor. In connection with the latter, the goal is to achieve 0.4lb/MMBtu of SO{sub 2} emissions, 0.2 lb./MMBtu of NO{sub x}, emissions, and 0.02 lb. particulates/MMBtu. To meet the particulate goal a baghouse will be used to augment the slag retention in the combustor. The NO{sub x} emission goal will require a modest improvement over maximum reduction achieved to date in the combustor to a level of 0.26 lb. /MMBtu. To reach the SO{sub 2} emissions goal may require a combination of sorbent injection inside the combustor and sorbent injection inside the boiler, or stack. In the third quarter of calendar year 1995 work continued on task 5, ``Site Demonstration``, with emphasis on installation of the 20 MMBtu/hr combustor and auxiliary equipment at the Philadelphia test site. The task 5 effort involve testing the combustor over extended periods under conditions that fully simulate commercial operation and that meet the combustion and environmental specifications for this project. During the present quarterly reporting period, over 90% of the components needed to implement the initial 100 hours of testing were installed at the test site.

  2. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  3. ADVANCED COMBUSTION SYSTEMS FOR STATIONARY GAS TURBINE ENGINES. VOLUME IV. COMBUSTOR VERIFICATION TESTING. ADDENDUM

    EPA Science Inventory

    The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from stationary gas turbine engines. Volume 4 describes an additional series of tests to evaluate the performance of the combustor on heavy...

  4. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not

  5. Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Shipping Package

    SciTech Connect

    Mok, G; Hagler, L

    2002-06-01

    Steel cylindrical drums have been used for many years to transport radioactive materials. The radioactive material inserted into the drum cavity for shipping is usually restrained within its own container or containment vessel. For additional protection, the container is surrounded or supported by components made of impact-absorbent and/or thermal-insulation materials. The components are expected to protect the container and its radioactive contents under severe transportation conditions like free drops and fires. Due to its simplicity and convenience, bolted-ring drum closures are commonly used to close many drum packages. Because the structural integrity of the drum and drum closure often play a significant role in determining the package's ability to maintain sub-criticality, shielding, and containment of the radioactive contents, regulations require that the complete drum package be tested for safety performance. The structural integrity of the drum body is relatively simple to understand and analyze, whereas analyzing the integrity of the drum closure is not so simple. In summary, the drop test accomplished its mission. Because the lid and closure device separated from the drum body in the 30-ft 17.5{sup o} shallow-angle drop, the drop test confirmed that the common drum closure with a bolted ring is vulnerable to damage by a shallow-angle drop, even though the closure has been shown to survive much steeper-angle drops. The test program also demonstrated one of the mechanisms by which the shallow-angle drop opens the common bolted-ring drum closure. The separation of the drum lid and closure device from the drum body was initiated by a large outward buckling deformation of the lid and completed with minimal assistance by the round plywood boards behind the lid. The energy spent to complete the separation appeared to be only a small fraction of the total impact energy. Limited to only one test, the present test program could not explore all possible mechanisms

  6. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3, Technical progress report, October 1993--December 1993

    SciTech Connect

    1993-12-31

    The objective of this Phase III program for the development of a commercial scale, coal-fired combustion system is to develop and integrate all system components from fuel through total system controls building upon the prior Phase I and II development accomplishments of the MTCI pulse combustion technology and to then field test the complete system in order to evaluate its potential marketability. During this 13th quarter, a steam generation cost model was developed to compare the economics of steam production in the commercial-scale, coal-fired pulse combustion system with that in a natural gas- or oil-fired system. The purpose of this model is to define the competitive capital cost range for the MTCI system under a specified set of technical and economic conditions. A current preliminary estimate of the MTCI pulse coal combustion system capital cost turns out to be about $120,000 and this is within the target range of the US commercial boiler market sector. European differential fuel costs are expected to be more favorable. Several conceptual arrangements for coal reburn and char burnout were evaluated. The arrangement was selected based on the following considerations viz. utilization of the existing pulse combustor as is, minimization of footprint and vertical space requirement, good mixing of coal, steam and combustion products in the reburn section, and adequate char residence time in the char burnout section.

  7. Altitude Test Chamber Investigation of Performance of a 28-inch Ram-jet Engine II : Effects of Gutter Width and Blocked Area on Operating Range and Combustion Efficiency

    NASA Technical Reports Server (NTRS)

    Shillito, T B; Jones, W L; Kahn, R W

    1950-01-01

    Altitude-test-chamber investigation of effects of flame-holder blocked area and gutter width on performance of 28-inch diameter ram jet at simulated flight Mach number of 2.0 for altitudes from 40,000 to 55,000 feet was conducted at NACA Lewis laboratory. Ten flame holders investigated covered gutter widths from 1.00 to 2.50 inches and blocked areas from 40.5 to 62.0 percent of combustion-chamber area. Gutter width did not appreciably affect combustion efficiency. Increase in blocked area from 40 to 62 percent resulted in 5- to 10-percent increase in combustion efficiency. Increasing gutter width resulted in improvement in fuel-air-ratio operating range.

  8. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  9. COMBUSTION MODIFICATION CONTROLS FOR STATIONARY GAS TURBINES. VOLUME II: UTILITY UNIT FIELD TEST

    EPA Science Inventory

    The report gives methods and results of an environmental assessment test program at Houston Lighting and Power's T.H. Wharton Generating Station, Unit 52. The aim of the program was to measure emissions changes resulting from applying NOx controls. Emissions of trace elements, or...

  10. Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber

    NASA Astrophysics Data System (ADS)

    Burdukov, A. P.; Chernetskiy, M. Yu.; Dekterev, A. A.; Anufriev, I. S.; Strizhak, P. A.; Greben'kov, P. Yu.

    2016-01-01

    Results of investigation of furnace processes upon burning of pulverized fuel at a test bench with a power of 5 MW are presented. The test bench consists of two stages with tangential air and pulverized coal feed, and it is equipped by a vibrocentrifugal mill and a disintegrator. Such milling devices have an intensive mechanical impact on solid organic fuel, which, in a number of cases, increases the reactivity of ground material. The processes of ignition and stable combustion of a mixture of gas coal and sludge (wastes of concentration plant), as well as Ekibastus coal, ground in the disintegrator, were studied at the test bench. The results of experimental burning demonstrated that preliminary fuel grinding in the disintegrator provides autothermal combustion mode even for hardly inflammable organic fuels. Experimental combustion of biomass, wheat straw with different lignin content (18, 30, 60%) after grinding in the disintegrator, was performed at the test bench in order to determine the possibility of supporting stable autothermal burning. Stable biofuel combustion mode without lighting by highly reactive fuel was achieved in the experiments. The influence of the additive GTS-Powder (L.O.M. Leaders Co., Ltd., Republic of Korea) in the solid and liquid state on reducing sulfur oxide production upon burning Mugun coal was studied. The results of experimental combustion testify that, for an additive concentration from 1 to 15% of the total mass of the burned mixture, the maximum SO2 concentration reduction in ejected gases was not more than 18% with respect to the amount for the case of burning pure coal.

  11. Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture.

    PubMed

    Fisher, James C; Gray, McMahan

    2015-02-01

    The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity. PMID:25510438

  12. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  13. Gas turbine combustion instability

    SciTech Connect

    Richards, G.A.; Lee, G.T.

    1996-09-01

    Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

  14. A 3D numerical study of LO2/GH2 supercritical combustion in the ONERA-Mascotte Test-rig configuration

    NASA Astrophysics Data System (ADS)

    Benmansour, Abdelkrim; Liazid, Abdelkrim; Logerais, Pierre-Olivier; Durastanti, Jean-Félix

    2016-02-01

    Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed.

  15. Bench Scale Development and Testing of a Novel Adsorption Process for Post-Combustion CO₂ Capture

    SciTech Connect

    Jain, Ravi

    2015-09-01

    A physical sorption process to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas taken before or after the FGD was demonstrated both in the lab and in the field (one ton per day scale). A CO₂ recovery of over 94% and a CO₂ purity of over 99% were obtained in the field tests. The process has a moisture, SOX, and Hg removal stage followed by a CO₂ adsorption stage. Evaluations based on field testing, process simulation and detailed engineering studies indicate that the process has the potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA. The process has the potential to provide CO₂ at a cost (<$40/tonne) and quality (<1 ppm H₂O, <1 ppm SOX, <10 ppm O₂) suitable for EOR applications which can make CO₂ capture profitable even in the absence of climate legislation. The process is applicable to power plants without SOX, Hg and NOX removal equipment.

  16. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-09-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m3N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO2 and NOX simultaneously in wide concentration range of SO2 (250-2,000ppm) and NOX (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality.

  17. Proposed methodology for combustion toxicology testing of combined halon replacement agent/jet fuel interaction. Final report, June-September 1991

    SciTech Connect

    Kibert, C.J.

    1993-04-01

    An international consensus to remove Chlorofluorocarbon (CFC) compounds from production and U.S. national policy to implement the resulting protocols has motivated the U.S. Air Force to embark on a program to find a suitable replacement for Halon 1211, currently used to extinguish flight line fires. This research addressed the feasibility of conducting a combustion toxicology (CT) program to assess the toxic products of the combustion interaction of JP-8 and the Group 1 or so-called Near Term candidate replacement agents for Halon 1211: HCFCs -123, -124, and -142b. A laboratory scale experiment benchmarked on large scale testing of a 150 sq ft pool fire was developed on the basis of Froude scaling of the full scale fire to a 15 x 15 cm pan fire. A prototype apparatus was developed and investigation into the use of animal behavior methods as an indicator of human incapacitation was conducted. The result is a new method which may potentially be utilized for future toxicity studies of the combustion interaction of current and future U.S. Air Force fuels with various fire extinguishants. Extinguishing agents, Halon 1211, Halon replacement, Combustion.

  18. FULL-SCALE LABORATORY SIMULATION FACILITY TO TEST PARTICULATE AND ORGANIC EMISSIONS FROM A THIRD WORLD RESIDENTIAL COMBUSTION PROCESS. I. FACILITY DESCRIPTION AND RESULTS OF TESTS OF THREE RURAL CHINA RESIDENTIAL COALS, A U.S. COAL, AND WOOD

    EPA Science Inventory

    The paper gives results of a series of 12 tests for 3 coals from a rural area of China with abnormally high lung cancer rates, a U. S. coal, and pine wood fuel. It also discusses a residential combustion simulator, built at EPA's Research Triangle Park, NC, facility to conduct em...

  19. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  20. Simulating Combustion

    NASA Astrophysics Data System (ADS)

    Merker, G.; Schwarz, C.; Stiesch, G.; Otto, F.

    The content spans from simple thermodynamics of the combustion engine to complex models for the description of the air/fuel mixture, ignition, combustion and pollutant formation considering the engine periphery of petrol and diesel engines. Thus the emphasis of the book is on the simulation models and how they are applicable for the development of modern combustion engines. Computers can be used as the engineers testbench following the rules and recommendations described here.

  1. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1993--August 15, 1993

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1993-09-24

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement with the purpose of determining if CWSF prepared from a cleaned coal (containing approximately 3.5 wt % ash and 0.9 wt % sulfur) can be effectively burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also generate information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The approach being used in the program is as follows: 1. Install a natural gas/fuel oil-designed package boiler and generate baseline data firing natural gas; 2. Shake down the system with CWSF and begin the first 1,000 hours of testing using the burner/atomizer system provided with the boiler. The first 1,000-hour demonstration was to consist of boiler operation testing and combustion performance evaluation using CWSF preheat, a range of atomizing air pressures (up to 200 psig as compared to the 100 psig boiler manufacturer design pressure), and steam as the atomizing medium; 3. If the combustion performance was not acceptable based on the combustion efficiency obtained and the level of gas support necessary to maintain flame stabilization, then low-cost modifications were to be implemented, such as installing a quarl and testing alternative atomizers; 4. If acceptable combustion performance was not obtained with the low-cost modifications, then the first demonstration was to be terminated and the burner system replaced with one of proven CWSF design.

  2. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  3. Combustion 2000

    SciTech Connect

    2000-06-30

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  4. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semi-annual technical progress report, February 15--September 15, 1995

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1997-06-02

    A coal-water slurry fuel (CWSF) program is being undertaken to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. Information will also be generated to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated In a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (target is 98%) was achieved; however, natural gas cofiring was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second demonstration (Phase 4) will be conducted after a proven CWSF-designed burner is installed on the boiler. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production.

  5. Combustion detector

    NASA Technical Reports Server (NTRS)

    Trimpi, R. L.; Nealy, J. E.; Grose, W. L. (Inventor)

    1973-01-01

    A device has been developed for generating a rapid response signal upon the radiation-emitting combustion reaction of certain gases in order to provide a means for the detection and identification of such reaction and concurrently discriminate against spurious signals. This combustion might be the first stage of a coal mine explosion process, and thereby this device could provide a warning of the impending explosion in time to initiate quenching action. This device has the capability of distinguishing between the light emitted from a combustion reaction and the light emitted by miners' lamps, electric lamps, welding sparks or other spurious events so that the quenching mechanism is triggered only when an explosion-initiating combustion occurs.

  6. Combustion physics

    NASA Astrophysics Data System (ADS)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  7. Combustion 2000

    SciTech Connect

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas

  8. METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products

    SciTech Connect

    Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

    1982-05-01

    The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

  9. Combustion tests of a turbine simulator burning low Btu fuel and a rich-quench-lean combustor

    SciTech Connect

    Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-06-01

    The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, and particulate emission. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fires with simulated low Btu fuel. The overall objective of this work is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  10. Combustion 2000

    SciTech Connect

    1999-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Combustion 2000 - Phase II.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: {lg_bullet} thermal efficiency (HHV) {ge} 47% {lg_bullet} NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) {lg_bullet} coal providing {ge} 65% of heat input {lg_bullet} all solid wastes benign {lg_bullet} cost of electricity {le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: {lg_bullet} Task 2.2.4 Pilot Scale Testing {lg_bullet} Task 2.2.5.2 Laboratory and Bench Scale Activities

  11. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A. (Inventor)

    1971-01-01

    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture.

  12. Biofuels combustion*

    DOE PAGESBeta

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  13. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  14. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  15. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  16. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  17. Hybrid rocket combustion study

    NASA Astrophysics Data System (ADS)

    Strand, L. D.; Ray, R. L.; Cohen, N. S.

    1993-06-01

    The objectives of this study of 'pure' or 'classic' hybrids are to (1) extend our understanding of the boundary layer combustion process and the critical engineering parameters that define this process, (2) develop an up-to-date hybrid fuel combustion model, and (3) apply the model to correlate the regression rate and scaling properties of potential fuel candidates. Tests were carried out with a hybrid slab window motor, using several diagnostic techniques, over a range of motor pressure and oxidizer mass flux conditions. The results basically confirmed turbulent boundary layer heat and mass transfer as the rate limiting process for hybrid fuel decomposition and combustion. The measured fuel regression rates showed good agreement with the analytical model predictions. The results of model scaling calculations to Shuttle SRM size conditions are presented.

  18. Hybrid rocket combustion study

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Ray, R. L.; Cohen, N. S.

    1993-01-01

    The objectives of this study of 'pure' or 'classic' hybrids are to (1) extend our understanding of the boundary layer combustion process and the critical engineering parameters that define this process, (2) develop an up-to-date hybrid fuel combustion model, and (3) apply the model to correlate the regression rate and scaling properties of potential fuel candidates. Tests were carried out with a hybrid slab window motor, using several diagnostic techniques, over a range of motor pressure and oxidizer mass flux conditions. The results basically confirmed turbulent boundary layer heat and mass transfer as the rate limiting process for hybrid fuel decomposition and combustion. The measured fuel regression rates showed good agreement with the analytical model predictions. The results of model scaling calculations to Shuttle SRM size conditions are presented.

  19. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect

    1995-01-01

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  20. Development and testing of industrial scale, coal fired combustion system, Phase 3. Fifth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Zauderer, B.

    1993-05-17

    In the present reporting period, the first quarter of calendar year 1993, the effort was divided between Task 2. ``Pre Systems Tests`` and Task 4 ``Economics and Commercialization Plan.`` A major part of the task 2 effort was devoted converting the nozzle from adiabatic to air cooted operation. This conversion will allow immediate implementation of the longer duration task 3.2 tests after the completion of the task 2 tests. Therefore, a significant pan of the exit nozzle conversion effort is also part of task 3.1, ``Combustor Refurbishment.`` In task 1 the only activity remaining is to receive the results of the BYU combustion modeling. The results are anticipated this Spring. One of the three remaining tests in task 2 was implemented in late January under freezing weather and snow conditions. Ice plugged the coal feed lines and stack scrubber water outlet and ice jammed and damaged the coal metering auger. While these lines were thawed, the combustor was fired with oil. The coal used in this test contained fine fibrous tramp material which passed through the two tramp material retaining screens and eventually plugged several of the coal feed lines to the combustor. This cut the planned coal feed rate in half. As a result it was decided for the next test to increase the number of coal injection ports by 50% in order to provide excess capacity in the pneumatic feed feed. This will allow continued operation even in the presence of fine tramp material in the coal.

  1. Turbulent combustion

    SciTech Connect

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  2. Catalytic combustion nears application

    SciTech Connect

    1994-11-01

    This article is a brief review of efforts to develope a catalytic combustion system with emissions levels less than 10 ppm. Two efforts are discussed: (1) tests by General Electric using a GE Frame 7E/9E and 7F/9F gas turbine, and (2) tests by AES using a Kawasaki M1A-13A industrial gas turbine. The latter also employs a heat recovery steam generator and produces 3 MWe and 28,000 lbm/hr of steam.

  3. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1994--February 15, 1995

    SciTech Connect

    Miller, B.G.

    1995-05-12

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and stagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases (i.e., the first demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. Consequently, the first demonstration has been concluded at 500 hours.

  4. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993--February 15, 1994

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first demonstrations been completed and the combustion performance of the burner that was provided with the boiler has been determined to be unacceptable. Consequently, the first demonstration has been concluded at 500 hours. The second demonstration will be conducted after a proven CWSF-designed burner is installed on the boiler. During this reporting period, the construction of the fuel preparation facility that will contain the CWSF circuit (as well as a dry, micronized coal circuit) was completed. Proposals from potential suppliers of the flue gas treatment systems were reviewed by Penn State and DOE.

  5. Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS

    SciTech Connect

    Qingfeng Yu; Quanke Feng

    2006-07-01

    A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

  6. Mock-up tests on the combustion of hydrogen air mixture in the vertical tube simulating the CNS channel of the CARR

    NASA Astrophysics Data System (ADS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Xu, Jian

    2007-01-01

    A two-phase thermo-siphon loop for removing nuclear heating and maintaining the stable liquid level in the moderator cell was adopted for the cold neutron source (CNS) of the China advanced research reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon loop consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The main feature of the loop is that the moderator cell is covered by the helium sub-cooling system. The cold helium gas from the helium refrigerator is firstly introduced into the helium sub-cooling system and then flows up through the tube covering the moderator transfer tube into the condenser. The main part of this system is installed in the CNS vertical channel made of aluminum alloy 6061 T6 (Al-6061-T6) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS channel, the combustion tests using a tube compatible with the CNS channel were carried out using the hydrogen-air mixture under which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.14 MPa G. This condition is involved with the maximum design basis accident of the CARR-CNS. The peak pressure due to combustion was 1.09 MPa, and the design pressure of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the maximum design basis accident occurs. The pressure and stress distributions along the axial direction and the displacement of the tube were also measured.

  7. Fluidized bed combustion of coal

    NASA Astrophysics Data System (ADS)

    Tatebayashi, J.; Okada, Y.; Yano, K.; Takada, T.; Handa, K.

    The effect of various parameters on combustion efficiency, desulfurization efficiency and NO emission in fluidized bed combustion of coal were investigated by using two test combustors whose sectional areas were 200 mm and 500 mm square. It has been revealed that by employing two-stage combustion and setting the primary air ratio, secondary air injection height and other parameters to optimum levels, NO emission can be greatly reduced while barely impairing combustion efficiency or desulfurization efficiency. Also, NO emission of less than 50 ppm and desulfurization efficiency of as high as 93% were achieved. These results have ensured good prospects for the development of a coal combustion boiler system which can satisfy the strictest environmental protection regulations, without installing special desulfurization and de-NO(X) facilities.

  8. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  9. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  10. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  11. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  12. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  13. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  14. APPLICATION OF COMBUSTION MODIFICATIONS OF INDUSTRIAL EQUIPMENT

    EPA Science Inventory

    The report gives results of a field test program to evaluate the effect of minor combustion modifications on pollutant emissions from a variety of industrial combustion equipment types. Tested were 22 units, including refinery process heaters; clay and cement kilns; steel and alu...

  15. Coal slurry combustion and technology. Volume 2

    SciTech Connect

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  16. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME III: RESIDUAL OIL WALL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives methods and results of an environmental assessment test program at Pacific Gas and Electric's Moss Landing Power Plant, Unit 6. The aim of the program was to measure changes in emissions as a result of applying NOx controls. Emissions of trace elements, organic m...

  17. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME II: PULVERIZED-COAL WALL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives methods and results of an environmental assessment test program at Gulf Power's Crist Power Plant, Unit 7. The aim of the program was to measure multimedia emissions changes as a result of applying NOx controls. Emissions of trace elements, organic materials, sul...

  18. MUNICIPAL WASTE COMBUSTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  19. COMPARISON OF FIVE SOLIDIFICATION/STABILIZATION PROCESSES FOR TREATMENT OF MUNICIPAL WASTE COMBUSTION RESIDUES - PART I - PHYSICAL TESTING

    EPA Science Inventory

    This paper presents results from physical tests used to evaluate MWC residues treated by five S/S processes. he physical properties are especially important for determining utilization applications. onsiderable emphasis was placed on structural properties and long-term durability...

  20. Thermophysics Characterization of Kerosene Combustion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2001-01-01

    A one-formula surrogate fuel formulation and its quasi-global combustion kinetics model are developed to support the design of injectors and thrust chambers of kerosene-fueled rocket engines. This surrogate fuel model depicts a fuel blend that properly represents the general physical and chemical properties of kerosene. The accompanying gaseous-phase thermodynamics of the surrogate fuel is anchored with the heat of formation of kerosene and verified by comparing a series of one-dimensional rocket thrust chamber calculations. The quasi-global combustion kinetics model consists of several global steps for parent fuel decomposition, soot formation, and soot oxidation and a detailed wet-CO mechanism to complete the combustion process. The final thermophysics formulations are incorporated with a computational fluid dynamics model for prediction of the combustion efficiency of an unielement, tripropellant combustor and the radiation of a kerosene-fueled thruster plume. The model predictions agreed reasonably well with those of the tests.

  1. NASA Glenn's Advanced Subsonic Combustion Rig Supported the Ultra-Efficient Engine Technology Project's Emissions Reduction Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.

    2004-01-01

    The Advanced Subsonic Combustor Rig (ASCR) is NASA Glenn Research Center's unique high-pressure, high-temperature combustor facility supporting the emissions reduction element of the Ultra-Efficient Engine Technology (UEET) Project. The facility can simulate combustor inlet test conditions up to a pressure of 900 psig and a temperature of 1200 F (non-vitiated). ASCR completed three sector tests in fiscal year 2003 for General Electric, Pratt & Whitney, and Rolls-Royce North America. This will provide NASA and U.S. engine manufacturers the information necessary to develop future low-emission combustors and will help them to better understand durability and operability at these high pressures and temperatures.

  2. Characterization and wall compatibility testing of a 40K pound thrust class swirl-coaxial injector and calorimeter combustion chamber

    NASA Technical Reports Server (NTRS)

    Petersen, E. L.; Rozelle, R.; Borgel, P. J.

    1991-01-01

    Subscale injector-combustor tests under the NASA Space Transportation Engine Thrust Chamber Technology program measured characteristic velocity (c-asterisk) efficiencies and wall heat fluxes for the pressure range 1710 psia to 2360 psia and for the overall O2/H2 mixture ratio range 5.5 to 6.4. Tests involving radially-uniform mixture ratio profiles produced c-asterisk efficiencies above 99 percent; nonuniform profiles associated with wall durability-enhancement schemes resulted in lower efficiencies. Though all three wall protection methods proved successful at reducing wall heat flux, scarfing of the outer-row, swirl-coaxial injection elements was the technique which resulted in the least debit in c-asterisk per unit reduction in heat flux.

  3. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  4. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1994--August 15, 1994

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new system specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. During this reporting period, the construction of the CWSF preparation circuit (as well as a dry, micronized coal circuit) continued. The CWSF preparation circuit will be completed by November 1,1994. Additional activities included receiving a coal-designed burner and installing it on the demonstration boiler, and working with DOE in selecting pollution control systems to install on the boiler.

  5. PROCEEDINGS OF THE STATIONARY SOURCE COMBUSTION SYMPOSIUM (3RD). VOLUME III. STATIONARY ENGINE AND INDUSTRIAL PROCESS COMBUSTION SYSTEMS

    EPA Science Inventory

    ;Contents: Stationary engines and industrial process combustion systems--(Application of advanced combustion modifications to industrial process equipment--process heater subscale tests, Pollutant emissions from 'dirty' low and medium - Btu gases, Some aspects of afterburner perf...

  6. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system SNCR test report. Test period, January 11--April 9, 1993

    SciTech Connect

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2}, Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the fourth phase of the test program, where the performance of the SNCR system, after the low-NO{sub x} combustion system retrofit, was assessed. Previous to this phase of testing, a subsystem was added to the existing SNCR system which allowed on-line conversion of a urea solution to aqueous ammonium compounds. Both convened and unconverted urea were investigated as SNCR chemicals.

  7. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  8. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  9. Combustion technologies

    SciTech Connect

    Barsin, J.A.

    1994-12-31

    The presentation will cover the highlights of sludge, providing information as to where it comes from, projection of how much more is expected, what is sludge, what can be done with them, and finally focus in one combustion technology that can be utilized and applied to recycle sludge. The author is with Gotaverken Energy Systems Inc. where for the past 100 years they have been involved in the recovery of chemicals in chemical pulp mills. One week ago, our name was changed to Kvaerner Pulping Inc. to better reflect our present make-up which is a combination of Kamyr AB (suppliers of proprietary highly engineered totally chlorine free chemical pulp manufacturing systems, including digesters, O{sub 2} delignification systems, and bleach plant systems) and Goetaverken. Sludges that we are concerned with derive from several sources within chemical pulp mills such as: such as primary clarifier sludges, secondary clarifier sludges, and most recently those sludges derived from post consumer paper and board recycle efforts including de-inking and those from the thermal mechanical pulping processes. These sludges have been classified as non-hazardous therefore, residue can be landfilled, but the volumes involved are growing at an alarming rate.

  10. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused

  11. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  12. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  13. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  14. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  15. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  16. Testing the National Combustion Code

    NASA Video Gallery

    During their summer internships at NASA centers this year, Aeronautics Academy and Aeronautics Scholarship Program interns produced videos about their work for the NASA Aeronautics "Ideas in Flight...

  17. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results

    SciTech Connect

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

  18. Final report: Prototyping a combustion corridor

    SciTech Connect

    Rutland, Christopher J.; Leach, Joshua

    2001-12-15

    The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real world research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.

  19. Limestone calcination during pulsating combustion

    SciTech Connect

    James, R.E. III ); Richards, G.A. )

    1992-01-01

    METC is currently conducting research on enhanced calcination during pulsating combustion as part of the Heat Engines program. It has been shown elsewhere that rapid, high temperature calcination will result in a calcined product with relatively large surface area, as desired for sulfur capture. It is proposed that such a process may occur during pulsating combustion where the oscillating pressure/velocity field around a particle increases the heat/mass transfer to and from the particle. To test this hypothesis, calcination tests in progress at METC use a novel form of pulse combustion called thermal'' pulse combustion, operating at 60000 BTUH, 100 Hz, and 5--15 psig peak-to- peak amplitude. Two configurations are being studied during the testing: one configuration is injection of sorbent into a refractory lined drop tube being heated by the pulse combustor, and the other configuration is injection of the sorbent into the pulse combustor through its centerbody and along the tailpipe at various positions. To understand the observed behavior, a characterization study of the pulse combustor is being conducted. Different flow rates, equivalence ratios, and injection positions are being tested.

  20. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties. PMID:20109297

  1. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  2. Properties of Combustion Gases

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1986-01-01

    New series of reports: First report lists data from combustion of ASTM Jet A fuel and dry air; second report presents tables and figures for combustion-gas properties of natural-gas fuel and dry air, and equivalent ratios.

  3. Internal combustion engine with multiple combustion chambers

    SciTech Connect

    Gruenwald, D.J.

    1992-05-26

    This patent describes a two-cycle compression ignition engine. It comprises one cylinder, a reciprocable piston moveable in the cylinder, a piston connecting rod, a crankshaft for operation of the piston connecting rod, a cylinder head enclosing the cylinder, the upper surface of the piston and the enclosing surface of the cylinder head defining a cylinder clearance volume, a first combustion chamber and a second combustion chamber located in the cylinder head. This patent describes improvement in means for isolating the combustion process for one full 360{degrees} rotation of the crankshaft; wherein the combustion chambers alternatively provide for expansion of combustion products in the respective chambers into the cylinder volume near top dead center upon each revolution of the crankshaft.

  4. Maximal combustion temperature estimation

    NASA Astrophysics Data System (ADS)

    Golodova, E.; Shchepakina, E.

    2006-12-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models.

  5. Combustion of Coal/Oil/Water Slurries

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.

    1982-01-01

    Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

  6. Mechanisms of droplet combustion

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1982-01-01

    The fundamental physico-chemical mechanisms governing droplet vaporization and combustion are discussed. Specific topics include governing equations and simplifications, the classical d(2)-Law solution and its subsequent modification, finite-rate kinetics and the flame structure, droplet dynamics, near- and super-critical combustion, combustion of multicomponent fuel blends/emulsions/suspensions, and droplet interaction. Potential research topics are suggested.

  7. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  8. Symposium (International) on Combustion, 18th, 1980

    SciTech Connect

    Anon

    1980-08-01

    This conference proceedings contains 196 papers. 181 papers are indexed separately. Topics covered include: combustion generated pollution; propellant combustion; fluidized bed combustion; combustion of droplets and spray; premixed flame studies; fire studies; flame stabilization; coal flammability; chemical kinetics; turbulent combustion; soot; coal combustion; modeling of combustion processes; combustion diagnostics; detonations and explosions; ignition; internal combustion engines; combustion studies; and furnaces.

  9. APPLICATION OF COMBUSTION MODIFICATIONS TO INDUSTRIAL COMBUSTION EQUIPMENT (DATA SUPPLEMENT A)

    EPA Science Inventory

    The supplement provides raw data from a study of the effects of combustion modifications on air pollutant emissions from a variety of industrial combustion equipment. Tested were 22 units, including refinery process heaters; clay and cement kilns; steel and aluminum furnaces; boi...

  10. APPLICATION OF COMBUSTION MODIFICATIONS TO INDUSTRIAL COMBUSTION EQUIPMENT (DATA SUPPLEMENT B)

    EPA Science Inventory

    The supplement provides raw data from a study of the effects of combustion modifications on air pollutant emissions from a variety of industrial combustion equipment. Tested were 22 units, including refinery process heaters; clay and cement kilns; steel and aluminum furnaces; boi...