Science.gov

Sample records for 3pd rapid design

  1. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  2. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  3. Design of a rapidly cooled cryogenic mirror

    NASA Astrophysics Data System (ADS)

    Plummer, Ron; Hsu, Ike

    1993-01-01

    The paper discusses the design, analysis, and testing of a rapidly cooled beryllium cryogenic mirror, which is the primary mirror in the four-element optical system for the Long Wavelength Infrared Advanced Technology Seeker. The mirror is shown to meet the requirement of five minutes for cooling to cryogenic operating temperature; it also maintains its optical figure and vacuum integrity and meets the nuclear specification. Results of a detailed thermal analysis on the mirror showed that, using nitrogen gas at 80 K as coolant, the front face of the mirror can be cooled from an initial temperature of 300 K to less than 90 K within five minutes. In a vacuum chamber, using liquid nitrogen as coolant, the mirror can be cooled to 80 K within 1.5 min. The mirror is well thermally insulated, so that it can be maintained at less than its operating temperature for a long time without active cooling.

  4. Computationally designed libraries for rapid enzyme stabilization

    PubMed Central

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    2014-01-01

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed using sampling of backbone conformational space, which tripled the number of experimentally stabilizing disulfide bridges. Next, orthogonal in silico screening steps were used to remove chemically unreasonable mutations and mutations that are predicted to increase protein flexibility. The resulting library of 64 variants was experimentally screened, which revealed 21 (pairs of) stabilizing mutations located both in relatively rigid and in flexible areas of the enzyme. Finally, combining 10–12 of these confirmed mutations resulted in multi-site mutants with an increase in apparent melting temperature from 50 to 85°C, enhanced catalytic activity, preserved regioselectivity and a >250-fold longer half-life. The developed Framework for Rapid Enzyme Stabilization by Computational libraries (FRESCO) requires far less screening than conventional directed evolution. PMID:24402331

  5. Computationally designed libraries for rapid enzyme stabilization.

    PubMed

    Wijma, Hein J; Floor, Robert J; Jekel, Peter A; Baker, David; Marrink, Siewert J; Janssen, Dick B

    2014-02-01

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed using sampling of backbone conformational space, which tripled the number of experimentally stabilizing disulfide bridges. Next, orthogonal in silico screening steps were used to remove chemically unreasonable mutations and mutations that are predicted to increase protein flexibility. The resulting library of 64 variants was experimentally screened, which revealed 21 (pairs of) stabilizing mutations located both in relatively rigid and in flexible areas of the enzyme. Finally, combining 10-12 of these confirmed mutations resulted in multi-site mutants with an increase in apparent melting temperature from 50 to 85°C, enhanced catalytic activity, preserved regioselectivity and a >250-fold longer half-life. The developed Framework for Rapid Enzyme Stabilization by Computational libraries (FRESCO) requires far less screening than conventional directed evolution. PMID:24402331

  6. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  7. Rapid Modeling, Assembly and Simulation in Design Optimization

    NASA Technical Reports Server (NTRS)

    Housner, Jerry

    1997-01-01

    A new capability for design is reviewed. This capability provides for rapid assembly of detail finite element models early in the design process where costs are most effectively impacted. This creates an engineering environment which enables comprehensive analysis and design optimization early in the design process. Graphical interactive computing makes it possible for the engineer to interact with the design while performing comprehensive design studies. This rapid assembly capability is enabled by the use of Interface Technology, to couple independently created models which can be archived and made accessible to the designer. Results are presented to demonstrate the capability.

  8. Mars rapid round trip mission design

    NASA Astrophysics Data System (ADS)

    Sarzi Amade', Nicola

    The present research is divided in two parts. The first part is a well defined mathematical problem, with exact rules and results, in which the basic constraints for interplanetary round trip travels are used to calculate an interplanetary train schedule (ITS) of missions to Mars, in the general case of orbits with non-zero eccentricity and non-zero inclination. Several possible options for round trip travels to Mars are considered. In particular, options at high energy, which allow rapid round trip missions, are discussed. These options have important applications for human travels to Mars. The second part of the research is about systems engineering aspects, which are intrinsically less exact, since they can change with time due, for example, to technology development or economic and political factors. For the case of a selected human rapid round trip mission to Mars, the development of a mission architecture, an assessment of the masses involved in the mission (such as the initial masses required in LEO), an estimate of the necessary number of launches, and a preliminary analysis of the radiation protection requirements, are performed. The main problem that justifies the existence of basic constraints for round trip missions is that by increasing the DeltaV of a mission, in general the total round trip time does not vary much, because a higher DeltaV can only reduce the transfer time and it simply increases the stay-time on the target planet. However, if the DeltaV is increased beyond a well-defined level, the total round trip time has a sudden drop in duration that makes fast round trips possible. This is due to the fact that the traveler can go back before the home planet makes one extra revolution around the Sun. For a sufficiently high DeltaV, a round trip to Mars can change in duration from 2.7 years to about 5 months. For Mars missions, the round trip times are calculated for different DeltaV's and for different transfer trajectories (T1, T2, etc.). An

  9. Rapid iterative reanalysis for automated design

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.

  10. Rapid Prototyping Instructional Design: Revisiting the ISD Model

    ERIC Educational Resources Information Center

    Daugherty, Jenny; Teng, Ya-Ting; Cornachione, Edgard

    2007-01-01

    An exploratory investigation, utilizing mixed methods, was used to examine the quality and usability of the product and the client's role within a rapid prototyping instructional design approach. Forty engineering and business undergraduates participating in a leadership training session and an instructional design team comprised the sample for…

  11. Structure Design and Realization of Rapid Medicine Dispensing System

    NASA Astrophysics Data System (ADS)

    Liu, Xiangquan

    In this paper, the main components and function of rapid medicine dispensing system is analyzed, structure design of automatic feeding device, sloping storeroom, automatic dispensing device and automatic sorting device is completed. The system adopts medicine conveyer working in with manipulator to realize automatic batch supply of the boxed medicine, adopts sloping storeroom as warehouse of medicine to realize dense depositing, adopts dispensing mechanism which includes elevator, turning panel and electric magnet to realize rapid medicine dispensing, adopts sorting conveyor belt and sorting device to send medicine to designated outlet.

  12. Design review report for the SY-101 RAPID mitigation system

    SciTech Connect

    SCHLOSSER, R.L.

    1999-05-24

    This report documents design reviews conducted of the SY-101 Respond And Pump In Days (RAPID) Mitigation System. As part of the SY-101 Surface-Level-Rise Remediation Project, the SY-101 WID Mitigation System will reduce the potential unacceptable consequences of crust growth in Tank 241-SY-101 (SY-101). Projections of the crust growth rate indicate that the waste level in the tank may reach the juncture of the primary and secondary confinement structures of the tank late in 1999. Because of this time constraint, many design activities are being conducted in parallel and design reviews were conducted for system adequacy as well as design implementation throughout the process. Design implementation, as used in this design review report, is the final component selection (e.g., which circuit breaker, valve, or thermocouple) that meets the approved design requirements, system design, and design and procurement specifications. Design implementation includes the necessary analysis, testing, verification, and qualification to demonstrate compliance with the system design and design requirements. Design implementation is outside the scope of this design review. The design activities performed prior to detailed design implementation (i.e., system mission requirements, functional design requirements, technical criteria, system conceptual design, and where design and build contracts were placed, the procurement specification) have been reviewed and are within the scope of this design review report. Detailed design implementation will be controlled, reviewed, and where appropriate, approved in accordance with Tank Waste Remediation System (TWRS) engineering procedures. Review of detailed design implementation will continue until all components necessary to perform the transfer function are installed and tested.

  13. Extensibility of a linear rapid robust design methodology

    NASA Astrophysics Data System (ADS)

    Steinfeldt, Bradley A.; Braun, Robert D.

    2016-05-01

    The extensibility of a linear rapid robust design methodology is examined. This analysis is approached from a computational cost and accuracy perspective. The sensitivity of the solution's computational cost is examined by analysing effects such as the number of design variables, nonlinearity of the CAs, and nonlinearity of the response in addition to several potential complexity metrics. Relative to traditional robust design methods, the linear rapid robust design methodology scaled better with the size of the problem and had performance that exceeded the traditional techniques examined. The accuracy of applying a method with linear fundamentals to nonlinear problems was examined. It is observed that if the magnitude of nonlinearity is less than 1000 times that of the nominal linear response, the error associated with applying successive linearization will result in ? errors in the response less than 10% compared to the full nonlinear error.

  14. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  15. Statistical Methods for Rapid Aerothermal Analysis and Design Technology

    NASA Technical Reports Server (NTRS)

    Morgan, Carolyn; DePriest, Douglas; Thompson, Richard (Technical Monitor)

    2002-01-01

    The cost and safety goals for NASA's next generation of reusable launch vehicle (RLV) will require that rapid high-fidelity aerothermodynamic design tools be used early in the design cycle. To meet these requirements, it is desirable to establish statistical models that quantify and improve the accuracy, extend the applicability, and enable combined analyses using existing prediction tools. The research work was focused on establishing the suitable mathematical/statistical models for these purposes. It is anticipated that the resulting models can be incorporated into a software tool to provide rapid, variable-fidelity, aerothermal environments to predict heating along an arbitrary trajectory. This work will support development of an integrated design tool to perform automated thermal protection system (TPS) sizing and material selection.

  16. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  17. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum

    PubMed Central

    Raynaud, Céline; Sarçabal, Patricia; Meynial-Salles, Isabelle; Croux, Christian; Soucaille, Philippe

    2003-01-01

    The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol dehydratase and its activator protein. The deduced proteins DhaB1 and DhaB2, with calculated molecular masses of 88,074 and 34,149 Da, respectively, showed no homology with the known glycerol dehydratases that are all B12 dependent but significant similarity with the pyruvate formate lyases and pyruvate formate lyases activating enzymes and their homologues. The 1,158-bp dhaT gene codes for a 1,3-PD dehydrogenase with a calculated molecular mass of 41,558 Da, revealing a high level of identity with other DhaT proteins from natural 1,3-PD producers. The expression of the 1,3-PD operon in C. butyricum is regulated at the transcriptional level, and this regulation seems to involve a two-component signal transduction system DhaAS/DhaA, which may have a similar function to DhaR, a transcriptional regulator found in other natural 1,3-PD producers. The discovery of a glycerol dehydratase, coenzyme B12 independent, should significantly influence the development of an economical vitamin B12-free biological process for the production of 1,3-PD from renewable resources. PMID:12704244

  18. Rapid Euler CFD for High-Performance Aircraft Design

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    2004-01-01

    The goal here was to present one approach to rapid CFD for S&C using an unstructured inviscid method, in order to eventually assess S&C properties as early in the design process as possible. Specific results are presented regarding time, accuracy (as compared to a baseline wind tunnel database) and simplicity for the user. For COMSAC, it s more important to talk about the "specifications" required by Advanced Design and S&C, as well as how the CFD results can be combined for envelope evaluation.

  19. Design principles for rapid folding of knotted DNA nanostructures.

    PubMed

    Kočar, Vid; Schreck, John S; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P K; Jerala, Roman

    2016-01-01

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the 'free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins. PMID:26887681

  20. Design principles for rapid folding of knotted DNA nanostructures

    PubMed Central

    Kočar, Vid; Schreck, John S.; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P. K.; Jerala, Roman

    2016-01-01

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the ‘free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins. PMID:26887681

  1. Integration of rapid prototyping into design and manufacturing

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.

    1993-04-01

    The introduction of rapid prototyping machines into the market place promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs improve efficiency, and increase flexibility without sacrificing quality. Sandia Utilizes stereolithography and selective laser sintering capabilities to support internal design and manufacturing efforts. Stereolithography (SLA) is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit check models, visual aids for manufacturing, and functional parts in assemblies. Selective laser sintering (SLS) is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SLA and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the stereolithography and selective laser sintering rapid prototyping machines.

  2. Integration of rapid prototyping into design and manufacturing

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-10-01

    The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

  3. Rapid Risk-Based Evaluation of Competing Conceptual Designs

    SciTech Connect

    Bott, T.F.; Butner, J.M.

    1999-08-22

    In this paper, the authors have shown how a qualitative analysis can provide good input to a risk reduction design problem. Traditionally qualitative analyses such as the FMEA can be supplemented by qualitative fault trees and event trees to produce logic models of the accident sequences for the different design options. These models can be compared using rule-based manipulations of qualitative branch point probabilities. A qualitative evaluation of other considerations such as collateral safety effects, operational impacts and worker-safety impacts can provide a more complete picture of the trade-off between options. The authors believe that their risk-reduction analysis approach that combines logic models with qualitative and possibility metrics provides an excellent tool for incorporating safety concerns rapidly and effectively into a conceptual design evaluation.

  4. Statistical Methods for Rapid Aerothermal Analysis and Design Technology: Validation

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas; Morgan, Carolyn

    2003-01-01

    The cost and safety goals for NASA s next generation of reusable launch vehicle (RLV) will require that rapid high-fidelity aerothermodynamic design tools be used early in the design cycle. To meet these requirements, it is desirable to identify adequate statistical models that quantify and improve the accuracy, extend the applicability, and enable combined analyses using existing prediction tools. The initial research work focused on establishing suitable candidate models for these purposes. The second phase is focused on assessing the performance of these models to accurately predict the heat rate for a given candidate data set. This validation work compared models and methods that may be useful in predicting the heat rate.

  5. Effect of Annealing Twins on Electromigration in Ag-8Au-3Pd Bonding Wires

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Wang, Hsi-Ching; Chuang, Chien-Hsun; Lee, Jun-Der; Tsai, Hsing-Hua

    2013-03-01

    An innovative Ag-8Au-3Pd bonding wire with a high twin density has been produced. The grain size of this annealing-twinned wire changes moderately during electrical stressing, unlike that of the conventional grained wire, which increases drastically and even leads to a bamboo structure. In addition, the durability against electromigration of the annealing-twinned Ag-8Au-3Pd alloy wire is higher than that of the conventional grained wire. This higher durability can be ascribed to the surface reconstruction of a stepwise morphology and slow grain growth resulting from the abundance of annealing twins in this wire.

  6. Custom Multiwell Plate Design for Rapid Assembly of Photopatterned Hydrogels.

    PubMed

    Ahmed, Naveed; Schober, Joseph; Hill, Lindsay; Zustiak, Silviya P

    2016-06-01

    The extracellular matrix provides both mechanical support and biochemical cues that influence cellular behavior. Matrix stiffness, in particular, has been found to regulate cellular morphology, motility, proliferation, differentiation, and drug responses among other behaviors. Thus, biomaterial platforms that exhibit wide range of stiffness and are available in a semi high-throughput format such as a multiwell plate would be useful for elucidating cell-substrate relationships. Polyacrylamide (PA) gels have been widely used as cell platforms since they span a range of stiffness between 0.3 and 300 kPa in Young's modulus, which encompasses all soft tissues. However, PA gels are time consuming and labor intensive to prepare, and are not amenable to a multiwell plate format. In this study, we present a novel custom multiwell plate design that allows for a one-step stiffness assay assembly that reduces preparation time and labor intensity by several fold. Gel stiffness is controlled by ultraviolet light intensity and exposure time to achieve a wide stiffness range from a single gel precursor solution. The geometry of the gels is defined by a custom photomask and gel thickness is controlled by spacers. A multiwell plate upper structure is designed similar to a regular multiwell plate such that a gel fits in each well and cells and media are added on top. The upper structure design allows for adequate gas exchange and minimum evaporation. Comparison between cell behaviors seeded in the custom and a standard multiwell plate demonstrated the suitability of the design as a cell culture platform. In summary, we describe and validate a novel custom design for an easy and rapid assembly of photopolymerizable PA-based stiffness assay. PMID:27059131

  7. Designing light responsive bistable arches for rapid, remotely triggered actuation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew L.; Shankar, M. Ravi; Backman, Ryan; Tondiglia, Vincent P.; Lee, Kyung Min; McConney, Michael E.; Wang, David H.; Tan, Loon-Seng; White, Timothy J.

    2014-03-01

    Light responsive azobenzene functionalized polymer networks enjoy several advantages as actuator candidates including the ability to be remotely triggered and the capacity for highly tunable control via light intensity, polarization, wavelength and material alignments. One signi cant challenge hindering these materials from being employed in applications is their often relatively slow actuation rates and low power densities, especially in the absence of photo-thermal e ects. One well known strategy employed in nature for increasing actuation rate and power output is the storage and quick release of elastic energy (e.g., the Venus ytrap). Using nature as inspiration we have conducted a series of experiments and developed an equilibrium mechanics model for investigating remotely triggered snap-through of bistable light responsive arches made from glassy azobenzene functionalized polymers. After brie y discussing experimental observations we consider in detail a geometrically exact, planar rod model of photomechanical snap-through. Theoretical energy release characteristics and unique strain eld pro les provide insight toward design strategies for improved actuator performance. The bistable light responsive arches presented here are potentially a powerful option for remotely triggered, rapid motion from apparently passive structures in applications such as binary optical switches and positioners, surfaces with morphing topologies, and impulse locomotion in micro or millimeter scale robotics.

  8. Superior metallic alloys through rapid solidification processing (RSP) by design

    SciTech Connect

    Flinn, J.E.

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  9. The Requirements and Design of the Rapid Prototyping Capabilities System

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.

  10. Microbial purification of postfermentation medium after 1,3-PD production from raw glycerol.

    PubMed

    Szymanowska-Powałowska, Daria; Piątkowska, Joanna; Leja, Katarzyna

    2013-01-01

    1,3-Propanediol (1,3-PD) is an important chemical product which can be used to produce polyesters, polyether, and polyurethanes. In the process of conversion of glycerol to 1,3-PD by Clostridium large number of byproducts (butyric, acetic and lactic acid) are generated in the fermentation medium. The aim of this work was to isolate bacteria strains capable of the utilization of these byproducts. Screening of 30 bacterial strains was performed using organic acids as carbon source. Selected isolates were taxonomically characterized and identified as Alcaligenes faecalis and Bacillus licheniformis. The most active strains, Alcaligenes faecalis JP1 and Bacillus licheniformis JP19, were able to utilize organic acids almost totally. Finally, it was find out that by the use of coculture (C. butyricum DSP1 and A. faecalis JP1) increased volumetric productivity of 1,3-PD production (1.07 g/L/h) and the yield equal to 0.53 g/g were obtained in bioreactor fermentation. Moreover, the only by-product present was butyric acid in a concentration below 1 g/L. PMID:24199204

  11. Microbial Purification of Postfermentation Medium after 1,3-PD Production from Raw Glycerol

    PubMed Central

    Szymanowska-Powałowska, Daria; Piątkowska, Joanna

    2013-01-01

    1,3-Propanediol (1,3-PD) is an important chemical product which can be used to produce polyesters, polyether, and polyurethanes. In the process of conversion of glycerol to 1,3-PD by Clostridium large number of byproducts (butyric, acetic and lactic acid) are generated in the fermentation medium. The aim of this work was to isolate bacteria strains capable of the utilization of these byproducts. Screening of 30 bacterial strains was performed using organic acids as carbon source. Selected isolates were taxonomically characterized and identified as Alcaligenes faecalis and Bacillus licheniformis. The most active strains, Alcaligenes faecalis JP1 and Bacillus licheniformis JP19, were able to utilize organic acids almost totally. Finally, it was find out that by the use of coculture (C. butyricum DSP1 and A. faecalis JP1) increased volumetric productivity of 1,3-PD production (1.07 g/L/h) and the yield equal to 0.53 g/g were obtained in bioreactor fermentation. Moreover, the only by-product present was butyric acid in a concentration below 1 g/L. PMID:24199204

  12. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  13. Design Review Closure Report for the SY-101 Rapid Transfer System

    SciTech Connect

    POWELL, W.J.

    1999-11-29

    The purpose of this report, is to document closure of design review open items, resulting from design reviews conducted for the SY-101 Respond And Pump In Days (RAPID) Transfer System. Results of the various design reviews were documented in the Design Review Report for The SY-101 Rapid Mitigation System, HNF-4519. In that report, twenty-three open items were identified. In this report the 23 items are reviewed and statused.

  14. Rapid convergence of airfoil design problems using progressive optimization

    NASA Astrophysics Data System (ADS)

    Dadone, A.; Grossman, B.

    An efficient formulation for the robust design optimization of compressible fluid flow problems is presented. The methodology has three essential ingredients: a highly accurate flow solver, robust and efficient design sensitivities from a discrete adjoint formulation based on a dissipative flow solver and progressive optimization, whereby a sequence of operations, containing a partially converged flow solution, followed by an adjoint solution followed by an optimization step is performed. Furthermore, the progressive optimization involves the use of progressively finer grids. The methodology is shown to be accurate, robust and highly efficient, with a converged design optimization produced in no more than the amount of computational work to perform from one to three flow analyses.

  15. Rapid E-learning Development Strategies and a Multimedia Project Design Model

    ERIC Educational Resources Information Center

    Sözcü, Ömer Faruk; Ipek, Ismail

    2014-01-01

    The purpose of the study is to discuss e-learning design strategies which can be used for multimedia projects as a design model. Recent advances in instructional technologies have been found to be very important in the design of training courses by using rapid instructional design (ID) approaches. The approaches were developed to use in training…

  16. An Intelligent Automation Platform for Rapid Bioprocess Design

    PubMed Central

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  17. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  18. Coexistence of Antiferromagnetism and Superconductivity in Heavy Fermion Cerium Compound Ce3PdIn11

    PubMed Central

    Kratochvílová, M.; Prokleška, J.; Uhlířová, K.; Tkáč, V.; Dušek, M.; Sechovský, V.; Custers, J.

    2015-01-01

    Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ – 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons. PMID:26514364

  19. Rapid Turnaround of Costing/Designing of Space Missions Operations

    NASA Technical Reports Server (NTRS)

    Kudrle, Paul D.; Welz, Gregory A.; Basilio, Eleanor

    2008-01-01

    The Ground Segment Team (GST), at NASA's Jet Propulsion Laboratory in Pasadena, California, provides high-level mission operations concepts and cost estimates for projects that are in the formulation phase. GST has developed a tool to track costs, assumptions, and mission requirements, and to rapidly turnaround estimates for mission operations, ground data systems, and tracking for deep space and near Earth missions. Estimates that would often take several weeks to generate are now generated in minutes through the use of an integrated suite of cost models. The models were developed through interviews with domain experts in areas of Mission Operations, including but not limited to: systems engineering, payload operations, tracking resources, mission planning, navigation, telemetry and command, and ground network infrastructure. Data collected during interviews were converted into parametric cost models and integrated into one tool suite. The tool has been used on a wide range of missions from small Earth orbiters, to flagship missions like Cassini. The tool is an aid to project managers and mission planners as they consider different scenarios during the proposal and early development stages of their missions. The tool is also used for gathering cost related requirements and assumptions and for conducting integrated analysis of multiple missions.

  20. Rapid Assessment of Agility for Conceptual Design Synthesis

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1996-01-01

    This project consists of designing and implementing a real-time graphical interface for a workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window scene of the aircraft's flying environment, with extensive information about the aircraft's state displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the graphics primitives. Included in this report is a detailed description of the capabilities of the code, including graphical examples, as well as a printout of the code itself

  1. The rapid enrollment design for Phase I clinical trials.

    PubMed

    Ivanova, Anastasia; Wang, Yunfei; Foster, Matthew C

    2016-07-10

    We propose a dose-finding design for Phase I oncology trials where each new patient is assigned to the dose most likely to be the target dose given observed data. The main model assumption is that the dose-toxicity curve is non-decreasing. This method is beneficial when it is desirable to assign a patient to a dose as soon as the patient is enrolled into a study. To prevent assignments to doses with limited toxicity information in fast accruing trials we propose a conservative rule that assigns temporary fractional toxicities to patients still in follow-up. We also recommend always using a safety rule in any fast accruing dose-finding trial. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26833922

  2. Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains

    PubMed Central

    Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han

    2016-01-01

    We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γnTc) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower Tc, compared to that of Ta4Pd3Te16, may be attributed to the lower density of states. PMID:26876362

  3. Effects of Annealing Twins on the Grain Growth and Mechanical Properties of Ag-8Au-3Pd Bonding Wires

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Tsai, Chih-Hsin; Wang, Hsi-Ching; Chang, Che-Cheng; Chuang, Chien-Hsun; Lee, Jun-Der; Tsai, Hsing-Hua

    2012-11-01

    An innovative Ag-8Au-3Pd bonding wire containing a large amount of annealing twins has been produced. In contrast to the apparent grain growth in a conventional Ag-8Au-3Pd wire during aging at 600°C, the grain size of this annealing-twinned Ag alloy wire remains almost unchanged. The high thermal stability of the grain structure leads to a smaller heat-affected zone near the free air ball of this twinned wire. The annealing twins in this material also result in the dual merits of increased tensile strength and elongation with aging time, which is beneficial for the reliability of wire-bonded packages.

  4. Rapid surveys for program evaluation: design and implementation of an experiment in Ecuador.

    PubMed

    Macintyre, K; Bilsborrow, R E; Olmedo, C; Carrasco, R

    1999-09-01

    This paper presents details from the field test of two rapid surveys in Ecuador in 1995. It focuses on how the surveys were designed and implemented, including descriptions of the sampling procedures, the preparation and use of preprogrammed palmtop computers for data entry, the selection criteria for the interviewing team, and how the training was designed. Lessons are drawn that will assist health professionals plan and carry out better rapid data collection in the future. The objective of the study was to evaluate the reliability and validity of data gathered during the rapid surveys as compared with a recent "gold standard" national survey. A two-way factorial design was used to control for differences in sampling (probability versus quasi-probability) and methods of data collection (paper versus palmtop computer). Few differences were detected between the surveys done on palmtops as compared to paper ones, but urban and rural differentials in contraceptive use were less pronounced in the rapid surveys than in the earlier, national survey. This suggests that caution should be exercised in interpreting the disaggregated data in these rapid surveys. In-depth interviews revealed two features of the rapid surveys that were especially popular: the palmtops for their speed of data entry, and the short questionnaire for its "low impact" on a respondent's time. The common belief that computers would disturb respondents was not found to be the case. Even with no computer experience, the interviewers rapidly mastered the new technology. PMID:10517097

  5. RETRACTED: Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies.

    PubMed

    Shah, Mayank

    2016-06-01

    At the request of the editorMayank Shah 'Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies' Prosthetics and Orthotics International, published online before print on October 8, 2013 as doi:10.1177/0309364613504779has been retracted. This is because it contains unattributed overlap withK. Subburaj, C. Nair, S. Rajesh, S. M. Meshram, B. Ravi 'Rapid development of auricular prosthesis using CAD and rapid prototyping technologies' International Journal of Oral & Maxillofacial Surgery 2007; 36: 938-943 doi:10.1016/j.ijom.2007.07.013. PMID:24104058

  6. Developing a workstation-based, real-time simulation for rapid handling qualities evaluations during design

    NASA Technical Reports Server (NTRS)

    Anderson, Frederick; Biezad, Daniel J.

    1994-01-01

    This paper describes the Rapid Aircraft DynamIcs AssessmeNt (RADIAN) project - an integration of the Aircraft SYNThesis (ACSTNT) design code with the USAD DATCOM code that estimates stability derivatives. Both of these codes are available to universities. These programs are then linked to flight simulation and flight controller synthesis tools and resulting design is evaluated on a graphics workstation. The entire process reduces the preliminary design time by an order of magnitude and provides an initial handling qualities evaluation of the design coupled to a control law. The integrated design process is applicable to both conventional aircraft taken from current textbooks and to unconventional designs emphasizing agility and propulsive control of attitude. The interactive and concurrent nature of the design process has been well received by industry and by design engineers at NASA. The process is being implemented into the design curriculum and is being used by students who view it as a significant advance over prior methods.

  7. Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6

    NASA Astrophysics Data System (ADS)

    Portnichenko, P. Y.; Cameron, A. S.; Surmach, M. A.; Deen, P. P.; Paschen, S.; Prokofiev, A.; Mignot, J.-M.; Strydom, A. M.; Telling, M. Â. T. F.; Podlesnyak, A.; Inosov, D. S.

    2015-03-01

    Among heavy-fermion metals, Ce3Pd20Si6 is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramagnetic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width Γ ≈0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220), and equivalent wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f electrons via the Ruderman-Kittel-Kasuya-Yosida mechanism. With increasing temperature, the energy width of the signal follows the conventional T1 /2 law, Γ (T ) =Γ0+A √{T } . The momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8 c Wyckoff site, whereas the crystallographically inequivalent 4 a site remains magnetically silent in this material.

  8. Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6

    DOE PAGESBeta

    Portnichenko, P. Y.; Cameron, A. S.; Surmach, M. A.; Deen, Pascale P.; Paschen, S.; Prokofiev, A.; Mignot, Jean-Michel; Strydom, A. M.; Telling, Mark T. F.; Podlesnyak, Andrey A.; et al

    2015-03-13

    Surrounded by heavy-fermion metals, Ce3Pd20Si6 is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramagnetic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width Γ ≈ 0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220), and equivalentmore » wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f electrons via the Ruderman-Kittel-Kasuya-Yosida mechanism. With increasing temperature, the energy width of the signal follows the conventional T1/2 law, Γ(T)=Γ0+A√T. Lastly, the momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8c Wyckoff site, whereas the crystallographically inequivalent 4a site remains magnetically silent in this material.« less

  9. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  10. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range. PMID:21874102

  11. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range. PMID:21874102

  12. Rapid Prototyping and Evaluation of Control System Designs for Manned and Unmanned Applications

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Frye, Michael; Montegut, Michael; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    The development and optimization of flight control systems for modem fixed- and rotary- wing aircraft consume significant time and cost during aircraft development. Similarly, as unmanned aerial vehicles perform more complex tasks, sometimes autonomously, the control system design requirements for this class of vehicles, and the corresponding time and cost requirements, are also becoming significant. Therefore, for both manned and unmanned vehicles, substantial program savings can be achieved if integrated design and optimization tools are employed to shorten the design and flight-test cycle for new or upgraded,pontrol systems. To bring about this reduction in the length of the design-cycle, and therefore its cost, Madab and Simulink are being used to implement block diagrams and to rapidly evaluate the expected responses of the completed systems. In conjunction, CONDUIT (CONtrol Designer's Unified InTerface) is being used to enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied.

  13. Design Considerations for Miniaturized Control Moment Gyroscopes for Rapid Retargeting and Precision Pointing of Small Satellites

    NASA Technical Reports Server (NTRS)

    Patankar, Kunal; Fitz-Coy, Norman; Roithmayr, Carlos M.

    2014-01-01

    This paper presents the design as well as characterization of a practical control moment gyroscope (CMG) based attitude control system (ACS) for small satellites in the 15-20 kilogram mass range performing rapid retargeting and precision pointing maneuvers. The paper focuses on the approach taken in the design of miniaturized CMGs while considering the constraints imposed by the use of commercial off-the-shelf (COTS) components as well as the size of the satellite. It is shown that a hybrid mode is more suitable for COTS based moment exchange actuators; a mode that uses the torque amplification of CMGs for rapid retargeting and direct torque capabilities of the flywheel motors for precision pointing. A simulation is provided to demonstrate on-orbit slew and pointing performance.

  14. Rapid model-based inter-disciplinary design of a CubeSat mission

    NASA Astrophysics Data System (ADS)

    Lowe, C. J.; Macdonald, M.

    2014-12-01

    With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.

  15. DESIGN AND PRELIMINARY VALIDATION OF A RAPID AUTOMATED BIODOSIMETRY TOOL FOR HIGH THROUGPUT RADIOLOGICAL TRIAGE.

    PubMed

    Chen, Youhua; Zhang, Jian; Wang, Hongliang; Garty, Guy; Xu, Yanping; Lyulko, Oleksandra V; Turner, Helen C; Randers-Pehrson, Gerhard; Simaan, Nabil; Yao, Y Lawrence; Brenner, D J

    2009-01-01

    This paper presents design, hardware, software, and parameter optimization for a novel robotic automation system. RABiT is a Rapid Automated Biodosimetry Tool for high throughput radiological triage. The design considerations guiding the hardware and software architecture are presented with focus on methods of communication, ease of implementation, and need for real-time control versus soft time control cycles. The design and parameter determination for a non-contact PVC capillary laser cutting system is presented. A novel approach for lymphocyte concentration estimation based on computer vision is reported. Experimental evaluations of the system components validate the success of our prototype system in achieving a throughput of 6,000 samples in a period of 18 hours. PMID:21258614

  16. DESIGN AND PRELIMINARY VALIDATION OF A RAPID AUTOMATED BIODOSIMETRY TOOL FOR HIGH THROUGPUT RADIOLOGICAL TRIAGE

    PubMed Central

    Chen, Youhua; Zhang, Jian; Wang, Hongliang; Garty, Guy; Xu, Yanping; Lyulko, Oleksandra V.; Turner, Helen C.; Randers-Pehrson, Gerhard; Simaan, Nabil; Yao, Y. Lawrence; Brenner, D. J.

    2010-01-01

    This paper presents design, hardware, software, and parameter optimization for a novel robotic automation system. RABiT is a Rapid Automated Biodosimetry Tool for high throughput radiological triage. The design considerations guiding the hardware and software architecture are presented with focus on methods of communication, ease of implementation, and need for real-time control versus soft time control cycles. The design and parameter determination for a non-contact PVC capillary laser cutting system is presented. A novel approach for lymphocyte concentration estimation based on computer vision is reported. Experimental evaluations of the system components validate the success of our prototype system in achieving a throughput of 6,000 samples in a period of 18 hours. PMID:21258614

  17. Structural and physical properties of the new intermetallic compound Yb{sub 3}Pd{sub 2}Sn{sub 2}

    SciTech Connect

    Solokha, P.; Curlik, I.; Giovannini, M.; Lee-Hone, N.R.; Reiffers, M.; Ryan, D.H.; Saccone, A.

    2011-09-15

    The crystal structure of the ternary intermetallic compound Yb{sub 3}Pd{sub 2}Sn{sub 2} has been determined ab initio from powder X-ray diffraction data. The compound crystallizes as a new structure type in the orthorhombic space group Pbcm and lattice constants a=0.58262(3), b=1.68393(8), c=1.38735(7) nm. Yb{sub 3}Pd{sub 2}Sn{sub 2} is composed of a complex {sub {infinity}}[Pd{sub 2}Sn{sub 2}]{sup {delta}-} polyanionic network in which the Yb ions are embedded. A comparison between this structure and those of Eu{sub 3}Pd{sub 2}Sn{sub 2} and Ca{sub 3}Pd{sub 2}Sn{sub 2}, other novel polar intermetallic compounds, was made. DC susceptibility and {sup 170}Yb Moessbauer spectroscopic measurements indicate a close-to divalent Yb behavior. Moreover, a hybridization between 4f and conduction electrons is suggested by electronic structure calculations and heat capacity measurements. - Graphical Abstract: Polyanionic networks for Yb{sub 3}Pd{sub 2}Sn{sub 2} and Eu{sub 3}Pd{sub 2}Sn{sub 2}. Highlights: > We determined ab initio the crystal structure of the novel ternary Yb{sub 3}Pd{sub 2}Sn{sub 2} stannide. > This structure has been compared with those of other polar 3:2:2 stannides discovered in this work. > Measurements of physical properties on Yb{sub 3}Pd{sub 2}Sn{sub 2} point to a close-to-divalent Yb ion. > Electron structure calculation and heat capacity indicate some hybridization between 4f and conduction electrons.

  18. A model for the rapid evaluation of active magnetic shielding designs

    NASA Astrophysics Data System (ADS)

    Washburn, Scott Allen

    The use of active magnetic radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs that utilize only passive shielding. One of the common techniques for assessing the effectiveness of active or passive shielding designs is the use of Monte Carlo analysis to determine crew radiation exposure. Unfortunately, Monte Carlo analysis is a lengthy and computationally intensive process, and the associated time requirements to generate results make a broad analysis of the active magnetic shield design trade space impractical using this method. The ability to conduct a broad analysis of system design variables would allow the selection of configurations suited to specific mission goals, including mission radiation exposure limits, duration, and destination. Therefore, a rapid analysis method is required in order to effectively assess active shielding design parameters, and this body of work was developed in order to address this need. Any shielding analysis should also use complete representations of the radiation environment and detailed transport analyses to account for secondary particle production mechanisms. This body of work addresses both of these issues by utilizing the full Galactic Cosmic Radiation GCR flux spectrum and a detailed transport analysis to account for secondary particle effects due to mass interactions. Additionally, there is a complex relationship between the size and strength of an active shielding design and the amount and type of mass required to create it. This mass can significantly impact the resulting flux and radiation exposures inside the active shield, and any shielding analysis should not only include passive mass, but should attempt to provide a reasonable estimate of the actual mass associated with a given design. Therefore, a survey of active shielding systems is presented so that reasonable mass quantity and composition

  19. Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.

  20. Optic fiber hydrogen sensor based on high-low reflectivity Bragg gratings and WO3-Pd-Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Dai, Jixiang; Yang, Minghong; Li, Zhi; Wang, Gaopeng; Huang, Chujia; Qi, Chongjie; Dai, Yutang; Wen, Xiaoyan; Cheng, Cheng; Guo, Huiyong

    2015-09-01

    A novel optic fiber hydrogen sensor is proposed in this paper. Two Bragg gratings with different reflectivity were written in single mode fiber with phase mask method by 248 nm excimer laser. The end-face of singe mode fiber was deposited with WO3-Pd-Pt multilayer films as sensing element. The peak intensity of low reflectivity FBG is employed for hydrogen characterization, while that of high reflectivity FBG is used as reference. The experimental results show the hydrogen sensor still has good repeatability when the optic intensity in the fiber is only 1/3 of its initial value. The hydrogen sensor has great potential in measurement of hydrogen concentration.

  1. Converse effect of pressure on the quadrupolar and magnetic transition in Ce3Pd20Si6

    NASA Astrophysics Data System (ADS)

    Larrea J., J.; Strydom, A. M.; Martelli, V.; Prokofiev, A.; Lorenzer, K.-A.; Rønnow, H. M.; Paschen, S.

    2016-03-01

    The heavy fermion compound Ce3Pd20Si6 displays unconventional quantum criticality as the lower of two consecutive phase transitions is fully suppressed by magnetic field. Here we report on the effects of pressure as an additional tuning parameter. Specific heat and electrical resistivity measurements reveal a converse effect of pressure on the two transitions, leading to the merging of both transitions at 6.2 kbars. The field-induced quantum criticality is robust under pressure tuning. We rationalize our findings within an extended version of the global phase diagram for antiferromagnetic heavy fermion quantum criticality.

  2. Designation of rapid detection system for chlorophyll fluorescence parameters based on LED irradiation

    NASA Astrophysics Data System (ADS)

    Li, Zhengming; Ji, Jianwei; Xu, Minghu

    2013-03-01

    Adopting high-power light-emitting diode (LED) as excitation light source, the study designed a rapid detection system for fluorescence parameters based on MINIPAM. The system uses a microcomputer as the core of the programmable power supply to provide constant current drive of the LED array, and the LED array as a fluorescence excitation light source produces light photochemical system needed. It also uses MINIPAM to detect the fluorescence, analyzing the fluorescence parameters of the mathematical model, studying the plant photosystem& light response curve. The System is of great significance in the evaluation of chlorophyll photosynthesis ability and the plant physiological stress response and the appropriate mechanism.

  3. Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming.

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1986-01-01

    Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors

  4. Science Partnerships Enabling Rapid Response: Designing a Strategy for Improving Scientific Collaboration during Crisis Response

    NASA Astrophysics Data System (ADS)

    Mease, L.; Gibbs, T.; Adiseshan, T.

    2014-12-01

    The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government

  5. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  6. Golden Spirals and Scalp Whorls: Nature's Own Design for Rapid Expansion.

    PubMed

    Paul, Sharad P

    2016-01-01

    This paper documents what began as an exercise in curiosity-logarithmic spiral designs abound in nature-in galaxies, flowers, even pinecones, and on human scalps as whorls. Why are humans the only primates to have whorls on the scalp? Is the formation of scalp whorls mechanical or genetic? A mechanical theory has long been postulated- the mechanical theory suggests that hair whorl patterning is determined by the tension on the epidermis during rapid expansion of the cranium while the hair follicle is growing downwards-however, this has never before, to the author's knowledge, been experimentally proven conclusively. We found, that under certain conditions, we were able to experimentally recreate spirals on the scalp to demonstrate that the basis of scalp whorls is indeed mechanical-and that logarithmic spirals may be nature's own design for rapid expansion of organic tissues. Given our experiments only created whorls when certain conditions were satisfied (and not in others), they have given us great insight into the mechanical formation of skin whorls and the physiology of skin stretch. We believe that these findings will lead to many more advances in understanding skin dynamics and indeed the changes that occur in tissue when confronted by stretch. PMID:27583520

  7. 20 CFR 631.30 - Designation or creation and functions of a State dislocated worker unit or office, and rapid...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... provision of early intervention services and other appropriate forms of immediate assistance in response to... State dislocated worker unit or office, and rapid response assistance. 631.30 Section 631.30 Employees... dislocated worker unit or office, and rapid response assistance. (a) Designation or creation of...

  8. 77 FR 31831 - Designation for the Topeka, KS; Cedar Rapids, IA; Minot, ND; and Cincinnati, OH Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... hours (7 CFR 1.27(c)). SUPPLEMENTARY INFORMATION: In the February 9, 2012 Federal Register (76 FR 6781... Grain Inspection, Packers and Stockyards Administration Designation for the Topeka, KS; Cedar Rapids, IA.... Topeka, KS; Cedar Rapids, IA; Minot, ND and Cincinnati, OH areas were the sole applicants for...

  9. Rapid trade-space realization of IR missile seeker design with a dynamic performance model

    NASA Astrophysics Data System (ADS)

    McGlynn, John D.

    1996-06-01

    Tactical air-to-air or ground-to-air IR missile seeker design involves a vast number of interrelated design criteria spread over a very large parameter space. To further exacerbate matters, many of these critical parameters are dynamic in nature. A common approach to seeker design is to model the behavior of each critical component, or set of components, with a mathematical simulation of its predicted behavior. While this approach is generally very high in fidelity, it tends to be very computationally (and man-hour) intensive, requiring a large number of iterations for each component. Furthermore, many of these modeled components, for example, signal processing, are both space- and time-dependent in nature, and hence are dynamically related to the missile flyout (dynamics) model; consequently, they cannot be fully modeled by a purely static model. An end-to-end (launch to closest approach) dynamic seeker performance model is briefly described herein, which allows for rapid trade space realization over all relevant seeker parameters, and an example seeker design flowdown using the dynamic performance model is presented.

  10. The design evaluation of inductive power-transformer for personal rapid transit by measuring impedance

    SciTech Connect

    Han, Kyung-Hee; Lee, Byung-Song; Baek, Soo-Hyun

    2008-04-01

    The contact-less inductive power transformer (IPT) uses the principle of electromagnetic induction. The concept of the IPT for vehicles such as the personal rapid transit (PRT) system is proposed and some suggestions for power collector design of IPT to improve power transfer performance are presented in this paper. The aim of this paper is to recommend the concept of IPT for vehicles such as the PRT system and also to present some propositions for the power collector design of the IPT, which is to improve the power transfer performance. Generally, there are diverse methods to evaluate transfer performance of the traditional transformers. Although the principle of IPT is similar to that of the general transformer, it is impossible to apply the methods directly because of large air gap. The system must be compensated by resonant circuit due to the large air gap. Consequently, it is difficult to apply numerical formulas to the magnetic design of IPT systems. This paper investigates the magnetic design of a PRT system using three-dimensional magnetic modeling and measurements of the pick-up coupling coefficient and its impedances. In addition, how the use of Litz wire and leakage inductance is related will be observed through experiment and simulation.

  11. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  12. Dallas area rapid transit LRT starter line assessment study design. Final research report

    SciTech Connect

    Shunk, G.A.; Turnbull, K.F.; Lindquist, N.F.

    1995-03-01

    Light rail transit (LRT) systems have recently been implemented in a number of urban areas throughout the United States and additional projects are in various stages of planning and development. Questions have been raised concerning the impact of these systems on ridership levels, transit operating costs, regional mobility, land use, economic development, energy, air quality, congestion levels, and other factors. The implementation of the Dallas Area Rapid Transit (DART) LRT starter line provides the opportunity to assess the impact of an LRT system in a Southwestern city in the United States. This research project was undertaken to assist with the development of a comprehensive study design for assessing the effects of the DART LRT starter line. To accomplish this objective, a review was conducted of before-and-after studies of recent LRT, heavy rail, and high-occupancy vehicle (HOV) projects. The goals and objectives of the DART system were also reviewed and existing transportation-related data collection activities in the Dallas area were examined. This information was used to develop a preliminary study design for assessing the effects of the DART LRT starter line. This report documents the review of recent before-and-after studies and presents the preliminary study design for assessing the effects of the DART LRT starter line.

  13. Overweight, obesity, and inactivity and urban design in rapidly growing Chinese cities.

    PubMed

    Day, Kristen; Alfonzo, Mariela; Chen, Yufei; Guo, Zhan; Lee, Karen K

    2013-05-01

    China faces rising rates of overweight, obesity, and physical inactivity among its citizens. Risk is highest in China's rapidly growing cities and urban populations. Current urban development practices and policies in China heighten this risk. These include policies that support decentralization in land use planning; practices of neighborhood gating; and policies and practices tied to motor vehicle travel, transit planning, and bicycle and pedestrian infrastructure. In this paper, we review cultural, political, and economic issues that influence overweight, obesity, and inactivity in China. We examine key urban planning features and policies that shape urban environments that may compromise physical activity as part of everyday life, including walking and bicycling. We review the empirical research to identify planning and design strategies that support physical activity in other high-density cities in developing and developed countries. Finally, we identify successful strategies to increase physical activity in another growing, high-density city - New York City - to suggest strategies that may have relevance for rapidly urbanizing Chinese cities. PMID:23416231

  14. Workstation-Based Simulation for Rapid Prototyping and Piloted Evaluation of Control System Designs

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Colbourne, Jason D.; Chang, Yu-Kuang; Aiken, Edwin W. (Technical Monitor)

    1998-01-01

    The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.

  15. Rapid recollection of foresight judgments increases hindsight bias in a memory design.

    PubMed

    Calvillo, Dustin P

    2013-05-01

    One component of hindsight bias is memory distortion. This component is measured with a memory design, in which individuals answer questions, learn the correct answers, and recall their original answers. Hindsight bias occurs when participants' recollections are closer to the correct answers than their original judgments actually were. The present study used a memory design to examine the relationship between response time in recalling original answers and the magnitude of hindsight bias. In Experiment 1, participants' response times were negatively correlated with a hindsight bias index. In Experiment 2, half of the participants were instructed to recall their original judgments quickly and the other participants were instructed to take time to recall their judgments. The hindsight bias index was greater among rapidly responding participants than among delayed responding participants. These results, in conjunction with other findings, support a separate components view of hindsight bias. The memory distortion component of hindsight bias appears to occur quickly, and unbiased responding requires time for processing. This finding relates the memory distortion component of hindsight bias to other cognitive biases, such as the belief bias in syllogistic reasoning. The relationship of this hindsight bias component to dual-process models of cognition is discussed, and several avenues for additional research are suggested. PMID:22582966

  16. The theory and methodology of capturing and representing the design process and its application to the task of rapid redesign

    NASA Astrophysics Data System (ADS)

    Nii, Kendall M.

    The paradigm under which engineering design is being performed in the Aerospace industry is changing. There is an increased emphasis on a "faster, better, and cheaper" way of doing business. Designers are tasked with developing a better product, in a shorter time, with less money. Engineers are continually trying to improve their products, lower their costs, and reduce their schedules. So at first glance, it might seem difficult if not impossible to perform these three tasks simultaneously and attempt to achieve order of magnitude improvements in each area. Indeed it might well be impossible for an engineer using only traditional tools and techniques. However, there is a new tool, known as design capture, available to the designer. A design capture system, can aid the designer in a variety of ways. One specific use for a design capture system is to aid the designer in performing rapid redesign. This thesis presents a new methodology for a Design Capture System (DCS) which can aid the designer with performing rapid redesign. The Design Capture for Rapid Redesign (DCARRD) method facilitates rapid redesign in three ways: it allows the designer to assess the impact of changing an initial requirement, it allows the designer to assess the impact of changing a decision, and it enhances the ability of the designer to assess the impact of a completely new requirement. The DCARRD method was implemented into an html-based design capture system accessible through a Web browser. This implementation demonstrates the feasibility of the DCARRD method. The most important features of DCARRD are that it is focused an performing rapid redesign, it places the design decisions within the framework of the design process, it is simple to use and implement, and it has the ability to track subsystem baselines. The many complex issues surrounding testing of design tools in general, and DCARRD in particular, are discussed at length. There are a number of complex issues which must be addressed

  17. Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries.

    PubMed

    Lai, Simon S M; Yiu, Billy Y S; Poon, Alexander K K; Yu, Alfred C H

    2013-09-01

    Anatomically realistic flow phantoms are essential experimental tools for vascular ultrasound. Here we describe how these flow phantoms can be efficiently developed via a rapid prototyping (RP) framework that involves direct fabrication of compliant vessel geometries. In this framework, anthropomorphic vessel models were drafted in computer-aided design software, and they were fabricated using stereolithography (one type of RP). To produce elastic vessels, a compliant photopolymer was used for stereolithography. We fabricated a series of compliant, diseased carotid bifurcation models with eccentric stenosis (50%) and plaque ulceration (types I and III), and they were used to form thin-walled flow phantoms by coupling the vessels to an agar-based tissue-mimicking material. These phantoms were found to yield Doppler spectrograms with significant spectral broadening and color flow images with mosaic patterns, as typical of disturbed flow under stenosed and ulcerated disease conditions. Also, their wall distension behavior was found to be similar to that observed in vivo, and this corresponded with the vessel wall's average elastic modulus (391 kPa), which was within the nominal range for human arteries. The vessel material's acoustic properties were found to be sub-optimal: the estimated average acoustic speed was 1801 m/s, and the attenuation coefficient was 1.58 dB/(mm·MHz(n)) with a power-law coefficient of 0.97. Such an acoustic mismatch nevertheless did not notably affect our Doppler spectrograms and color flow image results. These findings suggest that phantoms produced from our design framework have the potential to serve as ultrasound-compatible test beds that can simulate complex flow dynamics similar to those observed in real vasculature. PMID:23791354

  18. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  19. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    PubMed Central

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  20. Reverse engineering and rapid prototyping techniques to innovate prosthesis socket design

    NASA Astrophysics Data System (ADS)

    Colombo, Giorgio; Bertetti, Massimiliano; Bonacini, Daniele; Magrassi, Grazia

    2006-02-01

    The paper presents an innovative approach totally based on digital data to optimize lower limb socket prosthesis design. This approach is based on a stump's detailed geometric model and provides a substitute to plaster cast obtained through the traditional manual methodology with a physical model, realized with Rapid Prototyping technologies; this physical model will be used for the socket lamination. The paper discusses a methodology to reconstruct a 3D geometric model of the stump able to describe with high accuracy and detail the complete structure subdivided into bones, soft tissues, muscular masses and dermis. Some different technologies are used for stump acquisition: non contact laser technique for external geometry, CT and MRI imaging technologies for the internal structure, the first one dedicated to bones geometrical model, the last for soft tissues and muscles. We discuss problems related to 3D geometric reconstruction: the patient and stump positioning for the different acquisitions, markers' definition on the stump to identify landmarks, alignment's strategies for the different digital models, in order to define a protocol procedure with a requested accuracy for socket's realization. Some case-studies illustrate the methodology and the results obtained.

  1. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  2. Rapid application design of an electronic clinical skills portfolio for undergraduate medical students.

    PubMed

    Dornan, Tim; Lee, Catherine; Stopford, Adam; Hosie, Liam; Maredia, Neil; Rector, Alan

    2005-04-01

    The aim was to find how to use information and communication technology to present the clinical skills content of an undergraduate medical curriculum. Rapid application design was used to develop the product, and technical action research was used to evaluate the development process. A clinician-educator, two medical students, two computing science masters students, two other project workers, and a hospital education informatics lead, formed a design team. A sample of stakeholders took part in requirements planning workshops and continued to advise the team throughout the project. A university hospital had many features that favoured fast, inexpensive, and successful system development: a clearly defined and readily accessible user group; location of the development process close to end-users; fast, informal communication; leadership by highly motivated and senior end-users; devolved authority and lack of any rigidly imposed management structure; cooperation of clinicians because the project drew on their clinical expertise to achieve scholastic goals; a culture of learning and involvement of highly motivated students. A detailed specification was developed through storyboarding, use case diagramming, and evolutionary prototyping. A very usable working product was developed within weeks. "SkillsBase" is a database web application using Microsoft Active Server Pages, served from a Microsoft Windows 2000 Server operating system running Internet Information Server 5.0. Graphing functionality is provided by the KavaChart applet. It presents the skills curriculum, provides a password-protected portfolio function, and offers training materials. The curriculum can be presented in several different ways to help students reflect on their objectives and progress towards achieving them. The reflective portfolio function is entirely private to each student user and allows them to document their progress in attaining skills, as judged by self, peer and tutor assessment, and

  3. QXP: powerful, rapid computer algorithms for structure-based drug design.

    PubMed

    McMartin, C; Bohacek, R S

    1997-07-01

    chemical complementarity to all four molecules. The QXP program is reliable, easy to use and sufficiently rapid for routine application in structure-based drug design. PMID:9334900

  4. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    PubMed

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  5. Design and application of a virtual reality 3D engine based on rapid indices

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Mai, Jin

    2007-06-01

    This article proposes a data structure of a 3D engine based on rapid indices. Taking a model for a construction unit, this data structure can construct a coordinate array with 3D vertex rapidly and arrange those vertices in a sequence of triangle strips or triangle fans, which can be rendered rapidly by OpenGL. This data structure is easy to extend. It can hold texture coordinates, normal coordinates of vertices and a model matrix. Other models can be added to it, deleted from it, or transformed by model matrix, so it is flexible. This data structure also improves the render speed of OpenGL when it holds a large amount of data.

  6. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; Mayer, David; Quigley, Emmett; Rasay, Mike; Swank, Aaron; Vandersteen, Jeroen

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  7. Mechanism of versatile catalytic activities of quaternary CuZnFeS nanocrystals designed by a rapid synthesis route.

    PubMed

    Dalui, Amit; Thupakula, Umamahesh; Khan, Ali Hossain; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-04-17

    Quaternary alloyed nanocrystals (NCs) composed of earth abundant, environment friendly elements are of interest for energy-harvesting applications. These complex NCs are useful as catalysts for the degradation of multiple refractory organic pollutants as well as nitro-organic reduction at a rapid rate. Here, a remarkably fast (∼30 s) and facile synthesis of crystalline quaternary chalcopyrite copper-zinc-iron-sulfide (CZIS) NCs is reported. These NCs show excellent catalytic properties by degrading a number of refractory organic dyes and converting nitro-compounds at a rapid rate. The valence and conduction band information of the newly designed NCs are extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy, which reveal energy levels suitable for performing redox chemistry by generating reactive radicals establishing NCs as efficient catalyst with multiple uses. Rapid synthesis of high quality phase-controlled CZIS NCs with robust catalytic activities could be useful for organic waste treatment. PMID:25504671

  8. A rapid blade-to-blade solution for use in turbomachinery design

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1982-01-01

    A rapid technique for solving the blade-to-blade turbomachinery flow problem was developed. Approximate governing flow equations, which include the effects of compressibility, radius change, rotation, and variable stream sheet thickness are solved using a panel method. The development and solution of these equations are described. Sample calculations are presented to illustrate the method's capabilities and accuracy.

  9. Rapid evolution of 6-phenylpurine inhibitors of protein kinase B through structure-based design.

    PubMed

    Donald, Alastair; McHardy, Tatiana; Rowlands, Martin G; Hunter, Lisa-Jane K; Davies, Thomas G; Berdini, Valerio; Boyle, Robert G; Aherne, G Wynne; Garrett, Michelle D; Collins, Ian

    2007-05-17

    6-phenylpurines were identified as novel, ATP-competitive inhibitors of protein kinase B (PKB/Akt) from a fragment-based screen and were rapidly progressed to potent compounds using iterative protein-ligand crystallography with a PKA-PKB chimeric protein. An elaborated lead compound showed cell growth inhibition and effects on cellular signaling pathways characteristic of PKB inhibition. PMID:17451235

  10. A Rapid Auto-Indexing Technology for Designing Readable E-Learning Content

    ERIC Educational Resources Information Center

    Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang; Cheng, Po-Jen; Pai, Chun-Hsuan

    2012-01-01

    A rapid scene indexing method is proposed to improve retrieval performance for students accessing instructional videos. This indexing method is applied to anchor suitable indices to the instructional video so that students can obtain several small lesson units to gain learning mastery. The method also regulates online course progress. These…

  11. Rapid estimation of earthquake loss based on instrumental seismic intensity: design and realization

    NASA Astrophysics Data System (ADS)

    Huang, Hongsheng; Chen, Lin; Zhu, Gengqing; Wang, Lin; Lin, Yanzhao; Wang, Huishan

    2013-11-01

    As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the M L4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.

  12. A rapid blade-to-blade solution for use in turbomachinery design

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1984-01-01

    A rapid technique for solving the blade-to-blade turbomachinery flow problem was developed. Approximate governing flow equations, which include the effects of compressibility, radius change, rotation, and variable stream sheet thickness are solved using a panel method. The development and solution of these equations are described. Sample calculations are presented to illustrate the method's capabilities and accuracy. Previously announced in STAR as N83-13077

  13. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  14. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    SciTech Connect

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  15. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  16. The Design of a RapidDischarge Varistor System for the MICE Magnet Circuits

    SciTech Connect

    Green, Michael A.

    2008-07-23

    The need for a magnet circuit discharge system, in order to protect the magnet HTS leads during a power failure, has been discussed in recent MICE reports [1], [2]. In order to rapidly discharge a magnet, one has to put enough resistance across the lead. The resistance in this case is varistor that is put across the magnet in the event of a power outage. The resistance consists of several diodes, which act as constant voltage resistors and the resistance of the cables connecting the magnets in the circuit to each other and to the power supply. In order for the rapid discharge system to work without quenching the magnets, the voltage across the magnets must be low enough so that the diodes in the quench protection circuit don't fire and cause the magnet current to bypass the superconducting coils. It is proposed that six rapid discharge varistors be installed across the three magnet circuits the power the tracker solenoids, which are connected in series. The focusing magnets, which are also connected in series would have three varistors (one for each magnet). The coupling magnets would have a varistor for each magnet. The peak voltage that is allowed per varistor depends on the number of quench protection diodes that make up the quench protection circuit for each magnet coil circuit. It is proposed that the varistors be water cooled as the magnet circuits are being discharged through them. The water cooling circuit can be supplied with tap water. The tap water flows only when the varistor temperature reaches a temperature of 45 C.

  17. The application of computational simulation to design optimization of an axisymmetric rapid thermal processing system

    SciTech Connect

    Spence, P.A.; Winters, W.S.; Kee, R.J.; Kermani, A.

    1994-08-01

    We are developing and applying computational models to guide the development of a rapid-thermal-processing system. This work concentrates on scale-up and commercialization of the axisymmetric, multiple-lamp-ring approach that was pioneered by Texas Instruments in the Microelectronics Manufacturing Science and Technology program. CVC Products intends to incorporate the tool into their open-architecture MESC compatible cluster environment. Integration of modeling into the product development process can reduce time-to-market and development costs, as well as improve tool performance.

  18. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  19. Rapid improvement of canine cognitive dysfunction with immunotherapy designed for Alzheimer's disease.

    PubMed

    Bosch, Maria Neus; Gimeno-Bayón, Javier; Rodríguez, Manuel J; Pugliese, Marco; Mahy, Nicole

    2013-06-01

    Immunotherapy against amyloid-β(Aβ) may improve rodent cognitive function by reducing amyloid neuropathology and is being validated in clinical trials with positive preliminary results. However, for a complete understanding of the direct and long-term immunization responses in the aged patient, and also to avoid significant side effects, several key aspects remain to be clarified. Thus, to investigate brain Aβ clearance and Th2 responses in the elderly, and the reverse inflammatory events not found in the immunized rodent, better Alzheimer's disease (AD) models are required. In the aged familiar canine with a Cognitive Dysfunction Syndrome (CDS) we describe the rapid effectiveness and the full safety profile of a new active vaccine candidate for human AD prevention and treatment. In these aged animals, besidesa weak immune system, the antibody response activated a coordinated central and peripheral Aβ clearance, that rapidly improved their cognitive function in absence of any side effects. Our results also confirm the interest to use familiar dogs to develop innovative and reliable therapies for AD. PMID:23566345

  20. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  1. Design and synthesis of immunoconjugates and development of an indirect ELISA for rapid detection of 3, 5-dinitrosalicyclic Acid hydrazide.

    PubMed

    Shen, Yu-Dong; Zhang, Shi-Wei; Lei, Hong-Tao; Wang, Hong; Xiao, Zhi-Li; Jiang, Yue-Ming; Sun, Yuan-Ming

    2008-01-01

    In this study novel immunoconjugates were designed, synthesized and then used to develop a rapid, specific and sensitive indirect ELISA method to directly detect residues of 3,5-dinitrosalicyclic acid hydrazide (DNSH), a toxic metabolite of nifursol present in chicken tissues. The hapten DNSHA was first designed and used to covalently couple to BSA to form an immunogen which was immunized to rabbits to produce a polyclonal antibody against DNSH. Furthermore, a novel 3,5-dinitrosalicylic acidovalbumin (DNSA-OVA) immunoconjugate structurally different from DNSHA-OVA was designed and used as a "substructural coating antigen" to improve the sensitivity of an indirect ELISA analysis for a direct DNSH detection. Based on the "substructural coating antigen" concept, an optimized indirect ELISA method was established that exhibited good specificity and high sensitivity for detecting DNSH, with a cross-reactivity of less than 0.1% (excluding the parent compound nifursol), IC(50) of 0.217 nmol/mL and detection limit of 0.018 nmol/mL. Finally, a simple and efficient analysis of DNSH samples in chicken tissues showed that the average recovery rate of the indirect ELISA analysis was 82.3%, with the average coefficient of variation 15.9%. Thus, the developed indirect ELISA method exhibited the potential for a rapid detection of DNSH residues in tissue. PMID:18830153

  2. Rapid Recollection of Foresight Judgments Increases Hindsight Bias in a Memory Design

    ERIC Educational Resources Information Center

    Calvillo, Dustin P.

    2013-01-01

    One component of hindsight bias is memory distortion. This component is measured with a memory design, in which individuals answer questions, learn the correct answers, and recall their original answers. Hindsight bias occurs when participants' recollections are closer to the correct answers than their original judgments actually were. The present…

  3. Rapid Processing of Turner Designs Model 10-Au-005 Internally Logged Fluorescence Data

    EPA Science Inventory

    Continuous recording of dye fluorescence using field fluorometers at selected sampling sites facilitates acquisition of real-time dye tracing data. The Turner Designs Model 10-AU-005 field fluorometer allows for frequent fluorescence readings, data logging, and easy downloading t...

  4. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  5. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  6. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.

    2000-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  7. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  8. Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.

    PubMed

    Bertsch, Andreas; Jung, Stephan; Zerck, Alexandra; Pfeifer, Nico; Nahnsen, Sven; Henneges, Carsten; Nordheim, Alfred; Kohlbacher, Oliver

    2010-05-01

    Targeted proteomic approaches such as multiple reaction monitoring (MRM) overcome problems associated with classical shotgun mass spectrometry experiments. Developing MRM quantitation assays can be time consuming, because relevant peptide representatives of the proteins must be found and their retention time and the product ions must be determined. Given the transitions, hundreds to thousands of them can be scheduled into one experiment run. However, it is difficult to select which of the transitions should be included into a measurement. We present a novel algorithm that allows the construction of MRM assays from the sequence of the targeted proteins alone. This enables the rapid development of targeted MRM experiments without large libraries of transitions or peptide spectra. The approach relies on combinatorial optimization in combination with machine learning techniques to predict proteotypicity, retention time, and fragmentation of peptides. The resulting potential transitions are scheduled optimally by solving an integer linear program. We demonstrate that fully automated construction of MRM experiments from protein sequences alone is possible and over 80% coverage of the targeted proteins can be achieved without further optimization of the assay. PMID:20201589

  9. The design of rapid turbidity measurement system based on single photon detection techniques

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  10. Novel design of rapid single flux quantum logic based on a single layer of a high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Kaplunenko, V. K.; Ivanov, Z. G.; Stepantsov, E. A.; Claeson, T.; Holst, T.; Sun, Z. J.; Kromann, R.; Shen, Y. Q.; Vase, P.; Freltoft, T.; Wikborg, E.

    1995-07-01

    We suggest a new design of rapid single flux quantum (RSFQ) logic circuits which is based on a single superconducting layer and does not require a superconducting ground plane. Small inductances of about 10 pH, obligatory for RSFQ circuits, are formed as narrow slits of widths comparable to the London penetration depth (≂0.15 μm). The design allows us to decrease the geometric size of the RSFQ cell. Test circuits with YBaCuO grain boundary junctions on asymmetric 32° Y- ZrO2 bicrystals were used to measure the slit inductance per unit length and the mutual inductance of neighboring slits. A typical inductance of a 0.4 μm slit was found to be 0.7-0.8 pH/μm.

  11. An Open Source Rapid Computer Aided Control System Design Toolchain Using Scilab, Scicos and RTAI Linux

    NASA Astrophysics Data System (ADS)

    Bouchpan-Lerust-Juéry, L.

    2007-08-01

    Current and next generation on-board computer systems tend to implement real-time embedded control applications (e.g. Attitude and Orbit Control Subsystem (AOCS), Packet Utililization Standard (PUS), spacecraft autonomy . . . ) which must meet high standards of Reliability and Predictability as well as Safety. All these requirements require a considerable amount of effort and cost for Space Sofware Industry. This paper, in a first part, presents a free Open Source integrated solution to develop RTAI applications from analysis, design, simulation and direct implementation using code generation based on Open Source and in its second part summarises this suggested approach, its results and the conclusion for further work.

  12. Application of the rapid prototyping technique to design a customized temporomandibular joint used to treat temporomandibular ankylosis

    PubMed Central

    Chaware, Suresh M.; Bagaria, Vaibhav; Kuthe, Abhay

    2009-01-01

    Anthropometric variations in humans make it difficult to replace a temporomandibular joint (TMJ), successfully using a standard “one-size-fits-all” prosthesis. The case report presents a unique concept of total TMJ replacement with customized and modified TMJ prosthesis, which is cost-effective and provides the best fit for the patient. The process involved in designing and modifications over the existing prosthesis are also described. A 12-year- old female who presented for treatment of left unilateral TMJ ankylosis underwent the surgery for total TMJ replacement. A three-dimensional computed tomography (CT) scan suggested features of bony ankylosis of left TMJ. CT images were converted to a sterolithographic model using CAD software and a rapid prototyping machine. A process of rapid manufacturing was then used to manufacture the customized prosthesis. Postoperative recovery was uneventful, with an improvement in mouth opening of 3.5 cm and painless jaw movements. Three years postsurgery, the patient is pain-free, has a mouth opening of about 4.0 cm and enjoys a normal diet. The postoperative radiographs concur with the excellent clinical results. The use of CAD/CAM technique to design the custom-made prosthesis, using orthopaedically proven structural materials, significantly improves the predictability and success rates of TMJ replacement surgery. PMID:19881026

  13. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  14. Design of a smart, survivable sensor system for rapid transit applications

    SciTech Connect

    Hogan, J.R.; Mitchell, J.L.

    1994-08-01

    An application of smart sensor technology developed by Sandia National Laboratories has been proposed for real-time monitoring and tracking in the transportation industry. Its primary purpose is to reduce operating costs by improving preventative maintenance scheduling, reducing the number, severity and consequence of accidents and by reducing losses due to theft. The concept uses a strap-on sensor package, the Green Box, that can be attached to any vehicle. The Green Box is designed as a valued-added component, integrated into existing transportation industry systems and standards. The device, designed to provide advanced warning of component failures, would be capable of surviving most typical accidents. In an accident, the system would send a distress signal notifying authorities of the location and condition of the cargo; permitting them to respond in the most effective manner. In addition, the Green Box is adaptable for use as a notification/locator system to enhance the security of operators and passengers for various modes of public transportation. The modular architecture which facilitates system integration in a number of different applications is discussed. A test plan for evaluating performance in both normal and abnormal operating and accident conditions is described.

  15. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    PubMed

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century. PMID:18183523

  16. Design and development of a facility for compressible dynamic stall studies of a rapidly pitching airfoil

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, L. W.

    1989-01-01

    A facility for the study of dynamic stall of an airfoil undergoing a transient ramp-type pitching motion is described. The facility can produce pitch rates of 3600 deg/sec to an angle of attack of 60 deg by using a specially designed hydraulic drive with feedback control. The ramp motion generator can also generate arbitrary motion of the airfoil and thus can simulate an arbitrary aircraft maneuver. A unique airfoil support system allows unobstructed flow visualization including the complete airfoil contour, thus permitting the use of nonintrusive optical diagnostic methods for flow measurement close to the surface as well as simultaneous far-field measurements. Schlieren pictures obtained during the study reveal the instantaneous density gradients associated with dynamic stall, even under conditions of very low Mach numbers.

  17. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  18. A modular design for rapid-response telecoms and navigation missions

    NASA Astrophysics Data System (ADS)

    Davies, P.; Liddle, D.; Buckley, John; Sweeting, M.; Roussel-Dupre, Diane; Caffrey, Michael

    2004-11-01

    Surrey Satellite Technology Ltd and Los Alamos National Laboratory are together building the Cibola Flight Experiment (CFESat), a mission with the aim of flight-proving a reconfigurable processor payload intended for a Low Earth Orbit system. The mission will survey portions of the VHF and UHF radio spectra. The satellite will be launched by the Space Test Program in September 2006 on the USAF Evolved Expendable Launch Vehicle (EELV) using the EELV's Secondary Payload Adapter (ESPA) that allows up to six small satellites to be launched as "piggyback" passengers with larger spacecraft. The payload is based on networks of reprogrammable, Field Programmable Gate Arrays (FPGAs) to process the received signals for ionospheric and lightning studies. The objective is to validate the on-orbit use of commercial, reconfigurable FPGA technology utilizing several different single-event upset mitigation schemes. It will also detect and measure impulsive events that occur in a complex background. SSTL's satellite platform is based on a new, ESPA- compatible, structure housing subsystems and equipments with proven flight heritage from SSTL's disaster monitoring constellation (DMC) and the Topsat mission satellite due for launch in 2005. The structure is mechanically quite complex for a microsatellite having both deployed solar panels and a pair of long booms as part of the payload. The satellite design is highly constrained by the mass and volume requirements of the EELV/EPSA.

  19. A New Seismic Broadband Sensor Designed for Easy and Rapid Deployment

    NASA Astrophysics Data System (ADS)

    Guralp, Cansun; Pearcey, Chris; Nicholson, Bruce; Pearce, Nathan

    2014-05-01

    Properly deploying digital seismic broadband sensors in the field can be time consuming and logistically challenging. On active volcanoes the time it takes to install such instruments has to be particularly short in order to minimize the risk for the deployment personnel. In addition, once a seismometer is installed it is not always feasible to pay regular visits to the deployment site in order to correct for possible movements of the seismometer due to settling, sliding or other external events. In order to address those issues we have designed a new type of versatile and very robust three component feedback sensor which can be easily installed and is capable of self correcting changes of its tilt and measuring orientation changes during deployment. The instrument can be installed by direct burial in soil, in a borehole, in glacial ice and can even be used under water as an ocean bottom seismometer (OBS). It components are fitted above each other in a cylindrical stainless steel casing with a diameter of 51 mm. Each seismic sensor has a flat response to velocity between 30s to 100 Hz and a tilt tolerance of up to 20 degrees. A tilt sensor and a two axis magnetometer inside the casing capture changes in tilt and horizontal orientation during the course of the deployment. Their output can be fed into internal motors which in turn adjust the actual orientation of each sensor in the casing. First production models of this instrument have been deployed as OBS in an active submarine volcanic area along the Juan de Fuca Ridge in the NE Pacific. We are currently finishing units to be deployed for volcano monitoring in Icelandic glaciers. This instrument will be offered as an analogue version or with a 24-bit-digitizer fitted into the same casing. A pointy tip can be added to the casing ease direct burial.

  20. Updates on the Construction of an Eyeglass-Supported Nasal Prosthesis Using Computer-Aided Design and Rapid Prototyping Technology.

    PubMed

    Ciocca, Leonardo; Tarsitano, Achille; Marchetti, Claudio; Scotti, Roberto

    2016-01-01

    This study was undertaken to design an updated connection system for an eyeglass-supported nasal prosthesis using rapid prototyping techniques. The substructure was developed with two main endpoints in mind: the connection to the silicone and the connection to the eyeglasses. The mold design was also updated; the mold was composed of various parts, each carefully designed to allow for easy release after silicone processing and to facilitate extraction of the prosthesis without any strain. The approach used in this study enabled perfect transfer of the reciprocal position of the prosthesis with respect to the eyeglasses, from the virtual to the clinical environment. Moreover, the reduction in thickness improved the flexibility of the prosthesis and promoted adaptation to the contours of the skin, even during functional movements. The method described here is a simplified and viable alternative to standard construction techniques for nasal prostheses and offers improved esthetic and functional results when no bone is available for implant-supported prostheses. PMID:26288248

  1. Rapid screening test for gestational diabetes: public health need, market requirement, initial product design, and experimental results

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Zwisler, Greg; Peck, Roger; Abu-Haydar, Elizabeth

    2013-03-01

    Gestational diabetes is a global epidemic where many urban areas in Southeast Asia have found prevalence rates as high as 20%, exceeding the highest prevalence rates in the developed world. It can have serious and life-threatening consequences for mothers and babies. We are developing two variants of a new, simple, low-cost rapid test for screening for gestational diabetes mellitus for use primarily in low-resource settings. The pair of assays, both semiquantitative rapid diagnostic strip tests for glycated albumin, require neither fasting nor an oral glucose challenge test. One variant is an extremely simple strip test to estimate the level of total glycated albumin in blood. The other, which is slightly more complex and expensive, is a test that determines the ratio of glycated albumin to total albumin. The screening results can be used to refer women to receive additional care during delivery to avoid birth complications as well as counseling on diet and exercise during and after pregnancy. Results with the latter test may also be used to start treatment with glucose-lowering drugs. Both assays will be read visually. We present initial results of a preliminary cost-performance comparison model evaluating the proposed test versus existing alternatives. We also evaluated user needs and schematic paper microfluidics-based designs aimed at overcoming the challenge of visualizing relatively narrow differences between normal and elevated levels of glycated albumin in blood.

  2. Correction of a skeletal Class II malocclusion with severe crowding by a specially designed rapid maxillary expander.

    PubMed

    Wang, Honghong; Feng, Jing; Lu, Peijun; Shen, Gang

    2015-02-01

    To correct an Angle Class II malocclusion or to create spaces in the maxillary arch by nonextraction treatment, distal movement of the maxillary molars is required. Various modalities for distalizing the buccal segment have been reported. Conventional extraoral appliances can be used to obtain maximum anchorage. However, many patients reject headgear wear because of social and esthetic concerns, and the success of this treatment depends on patient compliance. Intraoral appliances, such as repelling magnets, nickel-titanium coils, pendulum appliance, Jones jig appliance, distal jet appliance, and modified Nance appliance, have been introduced to distalize the molars with little or no patient cooperation. However, intraoral appliances can result in anchorage loss of the anterior teeth and distal tipping of the maxillary molars. In this case report, we introduce a diversified rapid maxillary expansion appliance that was custom designed and fabricated for the treatment of a growing girl with a skeletal Class II malocclusion and severe crowding from a totally lingually positioned lateral incisor. The appliance concomitantly expanded the maxilla transversely and retracted the buccal segment sagittally, distalizing the maxillary molars to reach a Class I relationship and creating the spaces to displace the malpositioned lateral incisor. The uniqueness of this special diversified rapid maxillary expansion appliance was highlighted by a series of reconstructions and modifications at different stages of the treatment to reinforce the anchorage. PMID:25636559

  3. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space- based observatories drive the end-to-end data analysis and distribution requirements. The Swift mission is managed by the GSFC, and includes an international team of contributors that each bring their unique perspective that have proven invaluable to the mission. The spacecraft bus, provided by Spectrum Astro, Inc. was procured through a Rapid Spacecraft Development Office (RSDO) contract by the GSFC. There are three instruments: the Burst Alert Telescope (BAT) provided by the GSFC; the X-Ray Telescope (XRT) provided by a team led by the Pennsylvania State University (PSU); and the Ultra-Violet Optical Telescope (UVOT), again managed by PSU. The Mission Operations Center (MOC) was developed by and is located at PSU. Science archiving and data analysis centers are located at the GSFC, in the UK and in Italy.

  4. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  5. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  6. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.

  7. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  8. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  9. A hybrid CFD-DSMC model designed to simulate rapidly rarefying flow fields and its application to physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gott, Kevin

    This research endeavors to better understand the physical vapor deposition (PVD) vapor transport process by determining the most appropriate fluidic model to design PVD coating manufacturing. An initial analysis was completed based on the calculation of Knudsen number from titanium vapor properties. The results show a dense Navier-Stokes solver best describes flow near the evaporative source, but the material properties suggest expansion into the chamber may result in a strong drop in density and a rarefied flow close to the substrate. A hybrid CFD-DSMC solver is constructed in OpenFOAM for rapidly rarefying flow fields such as PVD vapor transport. The models are patched together combined using a new patching methodology designed to take advantage of the one-way motion of vapor from the CFD region to the DSMC region. Particles do not return to the dense CFD region, therefore the temperature and velocity can be solved independently in each domain. This novel technique allows a hybrid method to be applied to rapidly rarefying PVD flow fields in a stable manner. Parameter studies are performed on a CFD, Navier-Stokes continuum based compressible solver, a Direct Simulation Monte Carlo (DSMC) rarefied particle solver, a collisionless free molecular solver and the hybrid CFD-DSMC solver. The radial momentum at the inlet and radial diffusion characteristics in the flow field are shown to be the most important to achieve an accurate deposition profile. The hybrid model also shows sensitivity to the shape of the CFD region and rarefied regions shows sensitivity to the Knudsen number. The models are also compared to each other and appropriate experimental data to determine which model is most likely to accurately describe PVD coating deposition processes. The Navier-Stokes solvers are expected to yield backflow across the majority of realistic inlet conditions, making their physics unrealistic for PVD flow fields. A DSMC with improved collision model may yield an accurate

  10. Srystal structure and physical properties of the new ternary antimonides Ln{sub 3}Pd{sub 8}Sb{sub 4} (Ln=Y, Gd, Tb, Dy, Ho, Er, Tm)

    SciTech Connect

    Zelinska, Mariya; Oryshchyn, Stepan; Zhak, Olga; Pivan, Jean-Yves; Potel, Michel; Tougait, Olivier; Noel, Henri; Kaczorowski, Dariusz

    2010-09-15

    The ternary antimonides Ln{sub 3}Pd{sub 8}Sb{sub 4} (Ln=Y, Gd, Tb, Dy, Ho, Er, Tm) have been synthesized for the first time. The crystal structure of Er{sub 3}Pd{sub 8}Sb{sub 4} has been solved from the X-ray single crystal data: own type structure, space group Fm3-bar m, a=1.3050(1) nm, R{sub F}=0.0484, R{sub W}=0.0524 for 17 free parameters and 401 reflections with F(hkl)>4{sigma}(F). The structure of Er{sub 3}Pd{sub 8}Sb{sub 4} can be viewed as a ternary ordered version of the Sc{sub 11}Ir{sub 4}-type. The lattice parameters of the isotypic compounds Ln{sub 3}Pd{sub 8}Sb{sub 4} (Ln=Y, Gd, Tb, Dy, Ho, Tm) have been refined from the X-ray powder diffraction data. The magnetic and electrical properties of the compounds Ln{sub 3}Pd{sub 8}Sb{sub 4} (Ln=Tb, Ho, Er) have been studied down to 1.75 K. The Ho- and Er-based phases have been found to order antiferromagnetically at 2.5 and 2.0 K, respectively. For all three compounds, the magnetic susceptibility follows in the paramagnetic region the Curie-Weiss behavior with the effective magnetic moments close to the respective free trivalent ion values. All three antimonides studied exhibit metallic character of the electrical conductivity. - Graphical abstract: Projection of the crystal structure of Er{sub 3}Pd{sub 8}Sb{sub 4} onto XY plane and the coordination polyhedra of all the atoms.

  11. Advanced rapid prototyping by laser beam sintering of metal prototypes: design and development of an optimized laser beam delivery system

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Coremans, A.; Neubauer, Norbert; Niebling, F.

    1996-08-01

    Fast technological advances and steadily increasing severe worldwide competition force industry to respond all the time faster to new and chanced customer wishes. Some of the recently emerged processes, commonly referred to as 'rapid prototyping' (RP), have proved to be powerful tools for accelerating product and process development. Early approaches aimed at the automated production of plastic models. These techniques achieved industrial maturity extremely fast and are meanwhile established as standard utilities in the field of development/design processes. So far, their applicability to metal working industry was limited to design studies because the mechanical properties of the prototypes, e.g. modulus of elasticity and mechanical strength were not comparable to the final products they represented. Therefore, RP-processes aimed at the direct production of metallic prototypes gained more and more importance during recent years. A technique belonging to this group is manufacturing of prototypes by using a laser beam sintering machine capable of directly processing metal powders. This so called laser beam sintering process showed a great potential for direct manufacturing of functional tools and prototypes in early feasibility studies. Detailed examinations were performed at several research centers to determine the attainable quality of the parts concerning roughness, dimensional accuracy and mechanical strength. These examinations showed, that there still is a considerable demand for quality improvements of the previously mentioned parameters. The practical application and the potential for improvement of the geometrical accuracy of laser beam sintered parts by using a dual beam concept was proven. An innovative beam guiding and forming concept, similar to the previously mentioned patented beam guiding system, was developed and built with the goal to improve the process parameters governing mechanical properties as well as geometrical accuracy. Further reaching

  12. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory

    PubMed Central

    Slankster, Eryn E.; Chase, Jillian M.; Jones, Lauren A.; Wendell, Douglas L.

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  13. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory.

    PubMed

    Slankster, Eryn E; Chase, Jillian M; Jones, Lauren A; Wendell, Douglas L

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  14. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    SciTech Connect

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-11-16

    through the design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).

  15. Rapid detection of CWD PrP: comparison of tests designed for the detection of BSE or scrapie.

    PubMed

    Blasche, T; Schenck, E V; Balachandran, A; Miller, M W; Langenberg, J; Frölich, K; Steinbach, F

    2012-10-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) mainly affecting cervids in North America. The accumulation of an abnormal form of host-encoded prion protein (PrP(CWD) ) in the CNS and lymphoid tissues is characteristic of the disease and known to be caused by pathogenic prion proteins (PrP(res) ), which are thought to be transmitted mainly by contact with body fluids, such like saliva. Species known to be naturally infected by CWD include Rocky Mountain elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus). Recently, large-scale disease eradication or control programs have been attempted to curtail the spread of disease. But reports of diseased free-ranging and farmed cervids in many locations in the USA and Canada are still continuing. The goal of this study was to find sensitive rapid test systems that are reliably able to detect CWD-associated PrP(CWD) in cervids, thereby reviewing an important control tool in case the disease spreads further and reaches Europe. Seven tests, originally developed for the detection of other TSE diseases such as Scrapie and bovine spongiform encephalopathy, including two Western blots, four enzyme-linked immunosorbent assays (ELISAs), and one lateral flow device, were included in this study. All seven tests evaluated were able to detect pathogenic prion proteins (PrP(CWD) ) in Northern American infected animals and distinguish physiologic prion protein (PrP(c) ) in brainstem (obex region) and lymph node samples from North American and European cervids, respectively. However, the specificity and sensitivity of the tests differed significantly. Highly sensitive tests for the detection of prion proteins are an important tool both for the design of effective disease surveillance and control strategies and the safety of the food chain. Thus, this study contributes to the emergency preparedness against CWD. PMID:22212828

  16. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles

    PubMed Central

    Shah, S. I.; Li, W.; Huang, C.-P.; Jung, O.; Ni, C.

    2002-01-01

    The metallorganic chemical vapor deposition method was successfully used to synthesize pure TiO2 and Nd3+-, Pd2+-, Pt4+-, and Fe3+-doped TiO2 nanoparticles. Polycrystalline TiO2 structure was verified with x-ray diffraction, which showed typical characteristic anatase reflections without any separate dopant-related peaks. Transmission electron microscopy observations confirmed the existence of homogeneously distributed 22 ± 3 nm TiO2 nanoparticles. The particle size remained the same for the doped samples. The doping level of transition metals was kept at ≈1 atomic percent, which was determined by x-ray photoelectron spectra and energy dispersive x-ray spectroscopy. The effects of different types of dopants on the photocatalytic activity were revealed by the degradation of 2-chlorophenols with an UV light source. The photocatalytic efficiency was remarkably enhanced by the introduction of Pd2+ and Nd3+. Nd3+-doped TiO2 showed the largest enhancement. However, Pt4+ changed the 2-chlorophenol degradation rate only slightly, and Fe3+ was detrimental to this process. These effects were related to the position of the dopants in the nanoparticles and the difference in their ionic radii with respect to that of Ti4+. PMID:11880607

  17. Magnetic ordering of hyperfine-coupled nuclear and 4f-electron moments in the clathrate compound Pr3Pd20Ge6

    NASA Astrophysics Data System (ADS)

    Iwakami, O.; Namisashi, Y.; Abe, S.; Matsumoto, K.; Ano, G.; Akatsu, M.; Mitsumoto, K.; Nemoto, Y.; Takeda, N.; Goto, T.; Kitazawa, H.

    2014-09-01

    Complex ac susceptibility, χ =χ'-iχ'', measurements of the clathrate compound Pr3Pd20Ge6 were performed in static fields up to 10 mT for H ∥[001] and at temperatures down to 500 μK. Praseodymium (Pr) nuclear magnetic moments at the 8c site, where quadrupole moments of 4f electrons order at TQ1=250 mK, were found to order antiferromagnetically at 9 mK, as shown by a peak in χ' and a substantial increase in thermal relaxation time. The large enhancement factor (1+K8c) obtained by calculation of the hyperfine-enhanced nuclear susceptibility of Pr at the 8c site accounts for the high transition temperature of Pr nuclear magnetic moments and the large χ' below 30 mK. From analysis of the crystalline electric field and the mean-field approximation, we conclude that a χ peak at 77 mK can be ascribed to an antiferromagnetic ordering of magnetic moments of 4f electrons at the 4a site. We found that nuclear and f-electron moments order separately on two sublattices in this compound. The temperature and magnetic field dependence of χ' and χ'' between 30 and 60 mK are discussed in terms of dissipation phenomena.

  18. Rapid, Real-time Methane Detection in Ground Water Using a New Gas-Water Equilibrator Design

    NASA Astrophysics Data System (ADS)

    Ruybal, C. J.; DiGiulio, D. C.; Wilkin, R. T.; Hargrove, K. D.; McCray, J. E.

    2014-12-01

    Recent increases in unconventional gas development have been accompanied by public concern for methane contamination in drinking water wells near production areas. Although not a regulated pollutant, methane may be a marker contaminant for others that are less mobile in groundwater and thus may be detected later, or at a location closer to the source. In addition, methane poses an explosion hazard if exsolved concentrations reach 5 - 15% volume in air. Methods for determining dissolved gases, such as methane, have evolved over 60 years. However, the response time of these methods is insufficient to monitor trends in methane concentration in real-time. To enable rapid, real-time monitoring of aqueous methane concentrations during ground water purging, a new gas-water equilibrator (GWE) was designed that increases gas-water mass exchange rates of methane for measurement. Monitoring of concentration trends allows a comparison of temporal trends between sampling events and comparison of baseline conditions with potential post-impact conditions. These trends may be a result of removal of stored casing water, pre-purge ambient borehole flow, formation physical and chemical heterogeneity, or flow outside of well casing due to inadequate seals. Real-time information in the field can help focus an investigation, aid in determining when to collect a sample, save money by limiting costs (e.g. analytical, sample transport and storage), and provide an immediate assessment of local methane concentrations. Four domestic water wells, one municipal water well, and one agricultural water well were sampled for traditional laboratory analysis and compared to the field GWE results. Aqueous concentrations measured on the GWE ranged from non-detect to 1,470 μg/L methane. Some trends in aqueous methane concentrations measured on the GWE were observed during purging. Applying a paired t-test comparing the new GWE method and traditional laboratory analysis yielded a p-value 0

  19. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  20. Rapid trajectory design in the Earth-Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Bosanac, Natasha; Haapala, Amanda; Howell, Kathleen C.; Folta, David C.

    2016-09-01

    Upcoming missions and prospective design concepts in the Earth-Moon system extensively leverage multi-body dynamics that may facilitate access to strategic locations or reduce propellant usage. To incorporate these dynamical structures into the mission design process, Purdue University and the NASA Goddard Flight Space Center have initiated the construction of a trajectory design framework to rapidly access and compare solutions from the circular restricted three-body problem. This framework, based upon a 'dynamic' catalog of periodic and quasi-periodic orbits within the Earth-Moon system, can guide an end-to-end trajectory design in an ephemeris model. In particular, the inclusion of quasi-periodic orbits further expands the design space, potentially enabling the detection of additional orbit options. To demonstrate the concept of a 'dynamic' catalog, a prototype graphical interface is developed. Strategies to characterize and represent periodic and quasi-periodic information for interactive trajectory comparison and selection are discussed. Two sample applications for formation flying near the Earth-Moon L2 point and lunar space infrastructures are explored to demonstrate the efficacy of a 'dynamic' catalog for rapid trajectory design and validity in higher-fidelity models.

  1. 77 FR 6781 - Opportunity for Designation in the Topeka, KS; Cedar Rapids, IA; Minot, ND; and Cincinnati, OH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ...The designations of the official agencies listed below will end on June 30, 2012. We are asking persons or governmental agencies interested in providing official services in the areas presently served by these agencies to submit an application for designation. In addition, we are asking for comments on the quality of services provided by the following designated agencies: Kansas Grain......

  2. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H.; Heuze, F.E.; Butler, M.W.

    1996-09-01

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  3. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111).

    PubMed

    Dix, Sean T; Scott, Joseph K; Getman, Rachel B; Campbell, Charles T

    2016-07-01

    Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation of n-butane to 1-butanol with O2 over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed at 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C-H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O2 pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O2 was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by

  4. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  5. Small Project Rapid Integration and Test Environment (SPRITE) An Innovation Space for Small Projects Design, Development, Integration, and Test

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rackoczy, John; Heater, Daniel; Sanders, Devon; Tashakkor, Scott

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  6. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    SciTech Connect

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature of 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs

  7. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    PubMed

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. PMID:24997974

  8. Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for (19)F MRI.

    PubMed

    Jiang, Zhong-Xing; Liu, Xin; Jeong, Eun-Kee; Yu, Yihua Bruce

    2009-01-01

    Getting FIT: A bispherical (19)F imaging tracer, (19)FIT, was designed and synthesized. (19)FIT is advantageous over perfluorocarbon-based (19)F imaging agents, as it is not retained in the organs and does not require complex formulation procedures. Imaging agents such as (19)FIT can lead to (19)F magnetic resonance imaging (MRI) playing an important role in drug therapy, analogous to the role played by (1)H MRI in disease diagnosis. PMID:19475598

  9. CIDAR MoClo: Improved MoClo Assembly Standard and New E. coli Part Library Enable Rapid Combinatorial Design for Synthetic and Traditional Biology.

    PubMed

    Iverson, Sonya V; Haddock, Traci L; Beal, Jacob; Densmore, Douglas M

    2016-01-15

    Multipart and modular DNA part libraries and assembly standards have become common tools in synthetic biology since the publication of the Gibson and Golden Gate assembly methods, yet no multipart modular library exists for use in bacterial systems. Building upon the existing MoClo assembly framework, we have developed a publicly available collection of modular DNA parts and enhanced MoClo protocols to enable rapid one-pot, multipart assembly, combinatorial design, and expression tuning in Escherichia coli. The Cross-disciplinary Integration of Design Automation Research lab (CIDAR) MoClo Library is openly available and contains promoters, ribosomal binding sites, coding sequence, terminators, vectors, and a set of fluorescent control plasmids. Optimized protocols reduce reaction time and cost by >80% from that of previously published protocols. PMID:26479688

  10. Rapid communication: Computational simulation and analysis of a candidate for the design of a novel silk-based biopolymer.

    PubMed

    Golas, Ewa I; Czaplewski, Cezary

    2014-09-01

    This work theoretically investigates the mechanical properties of a novel silk-derived biopolymer as polymerized in silico from sericin and elastin-like monomers. Molecular Dynamics simulations and Steered Molecular Dynamics were the principal computational methods used, the latter of which applies an external force onto the system and thereby enables an observation of its response to stress. The models explored herein are single-molecule approximations, and primarily serve as tools in a rational design process for the preliminary assessment of properties in a new material candidate. PMID:24723330

  11. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy.

    PubMed

    Li, Jihua; Hsu, Yuchun; Luo, En; Khadka, Ashish; Hu, Jing

    2011-08-01

    The fracture or defect of the mandibular condyle is one of the serious complications during angle-reduction ostectomy. Reconstruction of such defects also is a daunting task. The case report describes a method based on computer-aided design/computer-aided manufacturing (CAD/CAM) and rapid prototyping nanoscale hydroxyapatite/polyamide (n-HA/PA) for individual design, fabrication, and implantation of a mandibular condyle. A 27-year-old woman with a square-shaped face who had previously undergone mandibular angle reduction reported with malocclusion, deviated mouth, collapse of the right side of the face, and masticatory problems. The reason for the problems was the unintended removal of the condyle during the ostectomy procedure. Using computed tomography (CT) data, a biomimetic n-HA/PA scaffold, and CAD/CAM for rapid prototyping by three-dimensional (3D) printing, a perfect-fitting condylar implant was fabricated. A surgical guide system also was developed to reproduce the procedures accurately so a perfect fit could be obtained during surgery. The patient ultimately regained reasonable jaw contour and appearance, as well as appreciable temporomandibular joint (TMJ) function. PMID:20972567

  12. Engineering Transcriptional Regulator Effector Specificity Using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor.

    PubMed

    de los Santos, Emmanuel L C; Meyerowitz, Joseph T; Mayo, Stephen L; Murray, Richard M

    2016-04-15

    The pursuit of circuits and metabolic pathways of increasing complexity and robustness in synthetic biology will require engineering new regulatory tools. Feedback control based on relevant molecules, including toxic intermediates and environmental signals, would enable genetic circuits to react appropriately to changing conditions. In this work, variants of qacR, a tetR family repressor, were generated by computational protein design and screened in a cell-free transcription-translation (TX-TL) system for responsiveness to a new targeted effector. The modified repressors target vanillin, a growth-inhibiting small molecule found in lignocellulosic hydrolysates and other industrial processes. Promising candidates from the in vitro screen were further characterized in vitro and in vivo in a gene circuit. The screen yielded two qacR mutants that respond to vanillin both in vitro and in vivo. While the mutants exhibit some toxicity to cells, presumably due to off-target effects, they are prime starting points for directed evolution toward vanillin sensors with the specifications required for use in a dynamic control loop. We believe this process, a combination of the generation of variants coupled with in vitro screening, can serve as a framework for designing new sensors for other target compounds. PMID:26262913

  13. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines

    PubMed Central

    Schmid-Burgk, Jonathan L.; Schmidt, Tobias; Gaidt, Moritz M.; Pelka, Karin; Latz, Eicke; Ebert, Thomas S.

    2014-01-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. PMID:25186908

  14. FROM REQUIREMENTS CAPTURE TO SILICON: A MODEL-DRIVEN SYSTEMS ENGINEERING APPROACH TO RAPID DESIGN, PROTOTYPING AND DEVELOPMENT USED IN THE OAK RIDGE NATIONAL LABORATORY'S COGNITIVE RADIO PROGRAM

    SciTech Connect

    Buckner, Mark A; Kaldenbach, Brian J; Nory, Nakhaee; Moore, Michael Roy; Bouldin, Donald; Mills, Jonathan

    2008-01-01

    The performance and complexity of the signal processing hardware accessible to SDR/CR/RADAR designers has quickly out-paced the available design tools. The advances in Digital Signal Processors (DSP) both fixed- and floating-point, Field Programmable Gate Arrays (FPGA), and multicore processors have enabled rapid prototyping and deployment of platforms that can be dynamically reconfigured in the field to implement a variety of SDR/CR/RADAR waveforms. Until recently the process of creating waveforms meant starting with high-level mathematical models and simulations and then creating production quality code that can operate on this variety of specialized hardware using either hand coding or vendor specific tools, which are typically limited to single processor solutions. This paper discusses an integrated model-driven design process and tool-flow used in ORNL's Cognitive Radio Program. It describes how the process and tool-flow are used on a variety of SDR and CR projects and in the development of a software-defined RADAR environment simulator. It describes how, from a single Simulink model, a single deadlock free real-time multiprocessor application is created and executed on a network of heterogeneous processors. We also describe recent progress on extending the process/tool-flow to design digital ASICs and our plans for future extensions. We close by highlighting the benefits being realized from applying this design flow to SDR/CR/RADAR projects at ORNL: (1) a significant reduction in the time required to develop, prototype, implement and test SDR/CR/RADAR waveforms, (2) increased reusability/retargetabilty of SDR/CR/RADAR designs and signal processing library components, (3) the ability to quickly port SDR/CR/RADAR waveforms to different hardware systems and processor types, (4) improvements in documentation, and (5) traceability of system components back to original requirements.

  15. Design and evaluation of specific PCR primers for rapid and reliable identification of Staphylococcus xylosus strains isolated from dry fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Parente, Eugenio; Villani, Francesco

    2003-11-01

    Rapid and reliable identification of Staphylococcus xylosus was achieved by species-specific PCR assays. Two sets of primers, targeting on xylulokinase (xylB) and 60 kDa heat-shock protein (hsp60) genes of S. xylosus, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 27 reference strains of the DSM collection, representing 23 different species of the Staphylococcus genus and 3 species of the Kocuria genus. Moreover, 90 wild strains isolated from different fermented dry sausages were included in the analysis. By using primers xylB-F and xylB-R the expected PCR fragment was obtained only when DNA from S. xylosus was used. By contrast, amplification performed by using primers xylHs-F and xylHs-R produced a single PCR fragment, of the expected length, when DNA from S. xylosus, S. haemolyticus, S. intermedius and S. kloosii were used as template. Nevertheless, AluI digestion of the xylHs-F/xylHs-R PCR fragment allowed a clear differentiation of these 4 species. The rapidity (about 4 h from DNA isolation to results) and reliability of the PCR procedures established suggests that the method may be profitably applied for specific detection and identification of S. xylosus strains. PMID:14666989

  16. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    SciTech Connect

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; Chubar, O.; Li, Qiang

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate and optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.

  17. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    DOE PAGESBeta

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; Chubar, O.; Li, Qiang

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less

  18. Optimization of the simultaneous determination of imatinib and its major metabolite, CGP74588, in human plasma by a rapid HPLC method using D-optimal experimental design.

    PubMed

    Golabchifar, Ali-Akbar; Rouini, Mohammad-Reza; Shafaghi, Bijan; Rezaee, Saeed; Foroumadi, Alireza; Khoshayand, Mohammad-Reza

    2011-10-15

    A simple, rapid and specific HPLC method has been developed and validated for the simultaneous determination of imatinib, a tyrosine kinase inhibitor, and its major metabolite, CGP74588, in human plasma. The optimization of the HPLC procedure involved several variables, of which the influences of each was studied. After a series of preliminary-screening experiments, the composition of the mobile phase and the pH of the added buffer solution were set as the investigated variables, while the resolution between imatinib and CGP74588 peaks, the retention time and the imatinib peak width were chosen as the dependent variables. Applying D-optimal design, the optimal chromatographic conditions for the separation were defined. The method proved to show good agreement between the experimental data and predictive values throughout the studied parameter range. The optimum assay conditions were achieved with a Chromolith™ Performance RP-8e 100 mm × 4.6 mm column and a mixture of methanol/acetonitrile/triethylamine/diammonium hydrogen phosphate (pH 6.25, 0.048 mol L(-1)) (20:20:0.1:59.9, v/v/v/v) as the mobile phase at a flow rate of 2 mL min(-1) and detection wavelength of 261 nm. The run time was less than 5 min, which is much shorter than the previously optimized methods. The optimized method was validated according to FDA guidelines to confirm specificity, linearity, accuracy and precision. PMID:21962649

  19. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in the First Year of a Two Year Investigation

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2016-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS)1 was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I we learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx.100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The current work within the Phase II NIAC effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a unique MSFC test chamber, 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Further down select of a wire deployment and control approach from those narrowed down in the Phase I effort. This paper will document the findings to date (June, 2016) of the above focused areas.

  20. Rational design of a novel azoimine appended maleonitrile-based Salen chemosensor for rapid naked-eye detection of copper(II) ion in aqueous media.

    PubMed

    Rezaeian, Khatereh; Khanmohammadi, Hamid; Arab, Vajihe

    2015-12-01

    Achieving specific selectivity and high sensitivity for the colorimetric recognition of copper(II) ions in aqueous media over a complex background of potentially competing metal ions is inherently challenging in sensor development. Thus, a novel azo-azomethine receptor (L) based on the combination of 2-amino-3-(5-bromo-2-hydroxybenzylamino)maleonitrile and azo-coupled salicylaldehyde scaffold has been designed and synthesized for the naked-eye and rapid detection of Cu(2+) ion at trace level in a wide pH range. Accordingly, the devised chemosensor distinguished Cu(2+) from other metal ions by distinct color change from light yellow to light brown without any expensive equipment. The binding stoichiometry between Cu(2+) and L has been investigated using Job's plot and MALDI-TOF mass analysis. Remarkably, the current sensor can detect Cu(2+) ions even at 1.07 μM level, which is lower than the World Health Organization (WHO) permissible level (30 μM) in drinking water. Furthermore, sensor L was successfully utilized in the preparation of test strips for the detection of copper(II) ions from aqueous environment. PMID:26184468

  1. Development and validation of a rapid ultra-high performance liquid chromatography method for the assay of benzalkonium chloride using a quality-by-design approach.

    PubMed

    Mallik, Rangan; Raman, Srividya; Liang, Xiaoli; Grobin, Adam W; Choudhury, Dilip

    2015-09-25

    A rapid robust reversed-phase UHPLC method has been developed for the analysis of total benzalkonium chloride in preserved drug formulation. A systematic Quality-by-Design (QbD) method development approach using commercial, off the shelf software (Fusion AE(®)) has been used to optimize the column, mobile phases, gradient time, and other HPLC conditions. Total benzalkonium chloride analysis involves simple sample preparation. The method uses gradient elution from an ACE Excel 2 C18-AR column (50mm×2.1mm, 2.0μm particle size), ammonium phosphate buffer (pH 3.3; 10mM) as aqueous mobile phase and methanol/acetonitrile (85/15, v/v) as the organic mobile phase with UV detection at 214nm. Using these conditions, major homologs of the benzalkonium chloride (C12 and C14) have been separated in less than 2.0min. The validation results confirmed that the method is precise, accurate and linear at concentrations ranging from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The recoveries ranged from 99% to 103% at concentrations from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The validation results also confirmed the robustness of the method as predicted by Fusion AE(®). PMID:26316034

  2. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    NASA Astrophysics Data System (ADS)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10‑4 and 1 × 10‑3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10‑4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  3. Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Shin, Yeun-Kyung; Song, Jae-Young

    2016-02-01

    The avian influenza A virus causes respiratory infections in animal species. It can undergo genomic recombination with newly obtained genetic material through an interspecies transmission. However, the process is an unpredictable event, making it difficult to predict the emergence of a new pandemic virus and distinguish its origin, especially when the virus is the result of multiple infections. Therefore, identifying a novel influenza is entirely dependent on sequencing its whole genome. Occasionally, however, it can be time-consuming, costly, and labor-intensive when sequencing many influenza viruses. To compensate for the difficulty, we developed a rapid, cost-effective, and simple multiplex RT-PCR to identify the viral genomic segments. As an example to evaluate its performance, H3N8 equine influenza virus (EIV) was studied for the purpose. In developing this protocol to amplify the EIV eight-segments, a series of processes, including phylogenetic analysis based on different influenza hosts, in silico analyses to estimate primer specificity, coverage, and variation scores, and investigation of host-specific amino acids, were progressively conducted to reduce or eliminate the negative factors that might affect PCR amplification. Selectively, EIV specific primers were synthesized with dual priming oligonucleotides (DPO) system to increase primer specificity. As a result, 16 primer pairs were selected to screen the dominantly circulating H3N8 EIV 8 genome segments: PA (3), PB2 (1), PA (3), NP (3), NA8 (2), HA3 (1), NS (1), and M (2). The diagnostic performance of the primers was evaluated with eight sets composing of four segment combinations using viral samples from various influenza hosts. The PCR results suggest that the multiplex RT-PCR has a wide range of applications in detection and diagnosis of newly emerging EIVs. Further, the proposed procedures of designing multiplex primers are expected to be used for detecting other animal influenza A viruses. PMID

  4. Effectiveness of Trivalent Inactivated Influenza Vaccine in Children Estimated by a Test-Negative Case-Control Design Study Based on Influenza Rapid Diagnostic Test Results

    PubMed Central

    Yamaguchi, Yoshio; Tomidokoro, Yuka; Sekiguchi, Shinichiro; Mitamura, Keiko; Fujino, Motoko; Shiro, Hiroyuki; Komiyama, Osamu; Taguchi, Nobuhiko; Nakata, Yuji; Yoshida, Naoko; Narabayashi, Atsushi; Myokai, Michiko; Sato, Masanori; Furuichi, Munehiro; Baba, Hiroaki; Fujita, Hisayo; Sato, Akihiro; Ookawara, Ichiro; Tsunematsu, Kenichiro; Yoshida, Makoto; Kono, Mio; Tanaka, Fumie; Kawakami, Chiharu; Kimiya, Takahisa; Takahashi, Takao; Iwata, Satoshi

    2015-01-01

    We assessed vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza in children 6 months to 15 years of age in 22 hospitals in Japan during the 2013–14 season. Our study was conducted according to a test-negative case-control design based on influenza rapid diagnostic test (IRDT) results. Outpatients who came to our clinics with a fever of 38°C or over and had undergone an IRDT were enrolled in this study. Patients with positive IRDT results were recorded as cases, and patients with negative results were recorded as controls. Between November 2013 and March 2014, a total of 4727 pediatric patients (6 months to 15 years of age) were enrolled: 876 were positive for influenza A, 66 for A(H1N1)pdm09 and in the other 810 the subtype was unknown; 1405 were positive for influenza B; and 2445 were negative for influenza. Overall VE was 46% (95% confidence interval [CI], 39–52). Adjusted VE against influenza A, influenza A(H1N1)pdm09, and influenza B was 63% (95% CI, 56–69), 77% (95% CI, 59–87), and 26% (95% CI, 14–36), respectively. Influenza vaccine was not effective against either influenza A or influenza B in infants 6 to 11 months of age. Two doses of influenza vaccine provided better protection against influenza A infection than a single dose did. VE against hospitalization influenza A infection was 76%. Influenza vaccine was effective against influenza A, especially against influenza A(H1N1)pdm09, but was much less effective against influenza B. PMID:26317334

  5. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    PubMed

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds. PMID:25480510

  6. Rapid small lot manufacturing

    SciTech Connect

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  7. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  8. Design and Implementation of a Low-Cost Uav-Based Multi-Sensor Payload for Rapid-Response Mapping Applications

    NASA Astrophysics Data System (ADS)

    Sakr, M.; Lari, Z.; El-Sheimy, N.

    2016-06-01

    The main objective of this paper is to investigate the potential of using Unmanned Aerial Vehicles (UAVs) as a platform to collect geospatial data for rapid response applications, especially in hard-to-access and hazardous areas. The UAVs are low-cost mapping vehicles, and they are easy to handle and deploy in-field. These characteristics make UAVs ideal candidates for rapid-response and disaster mitigation scenarios. The majority of the available UAV systems are not capable of real-time/near real-time data processing. This paper introduces a low-cost UAV-based multi-sensor mapping payload which supports real-time processing and can be effectively used in rapid-response applications. The paper introduces the main components of the system, and provides an overview of the proposed payload architecture. Then, it introduces the implementation details of the major building blocks of the system. Finally, the paper presents our conclusions and the future work, in order to achieve real-time/near real-time data processing and product delivery capabilities.

  9. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  10. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  11. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments.

    PubMed

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-07-01

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. PMID:27154272

  12. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments

    PubMed Central

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-01-01

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. PMID:27154272

  13. Rapid weight loss

    MedlinePlus

    ... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...

  14. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  15. Design and application of two rapid screening techniques for isolation of Mn(IV) reduction-deficient mutants of Shewanella putrefaciens

    SciTech Connect

    Burnes, B.S.; Mulberry, M.J.; DiChristina, T.J.

    1998-07-01

    Chemical mutagenesis procedures and two newly developed rapid plate assays were used to identify two Mn(IV) reduction-deficient (Mnr) mutants of Shewanella putrefaciens. All eleven members of a set of previously isolated Fe(III) reduction-deficient (Fer) mutants displayed Mnr-positive phenotypes on the plate assays and were also capable of anaerobic growth on Mn(IV) as the sole terminal electron acceptor. The inability of S. putrefaciens 200 to form anaerobic colonies on Mn(IV)-supplemented solid medium [most likely due to limiting local Mn(IV) concentrations or to toxic effects associated with elevated levels of produced Mn(II)] necessitated the development of alternate plate-assay-based screening methods.

  16. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping

    PubMed Central

    Kwon, Soon-Yong; Kim, Ki-Beom; Chung, Kyu-Rhim; Kim (Sunny), Seong-Hun

    2014-01-01

    The availability of 3D dental model scanning technology, combined with the ability to register CBCT data with digital models, has enabled the fabrication of orthognathic surgical CAD/CAM designed splints, customized brackets, and indirect bonding systems. In this study, custom lingual orthodontic appliances were virtually designed by merging 3D model images with lateral and posterior-anterior cephalograms. By exporting design information to 3D CAD software, we have produced a stereolithographic prototype and converted it into a cobalt-chrome alloy appliance as a way of combining traditional prosthetic investment and cast techniques. While the bonding procedure of the appliance could be reinforced, CAD technology simplified the fabrication process by eliminating the soldering phase. This report describes CAD/CAM fabrication of the complex anteroposterior lingual bonded retraction appliance for intrusive retraction of the maxillary anterior dentition. Furthermore, the CAD/CAM method eliminates the extra step of determining the lever arm on the lateral cephalograms and subsequent design modifications on the study model. PMID:24899895

  17. Examining the Use of First Principles of Instruction by Instructional Designers in a Short-Term, High Volume, Rapid Production of Online K-12 Teacher Professional Development Modules

    ERIC Educational Resources Information Center

    Mendenhall, Anne M.

    2012-01-01

    Merrill (2002a) created a set of fundamental principles of instruction that can lead to effective, efficient, and engaging (e[superscript 3]) instruction. The First Principles of Instruction (Merrill, 2002a) are a prescriptive set of interrelated instructional design practices that consist of activating prior knowledge, using specific portrayals…

  18. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  19. Right-Rapid-Rough

    NASA Technical Reports Server (NTRS)

    Lawrence, Craig

    2003-01-01

    IDEO (pronounced 'eye-dee-oh') is an international design, engineering, and innovation firm that has developed thousands of products and services for clients across a wide range of industries. Its process and culture attracted the attention of academics, businesses, and journalists around the world, and are the subject of a bestselling book, The Art of Innovation by Tom Kelley. One of the keys to IDEO's success is its use of prototyping as a tool for rapid innovation. This story covers some of IDEO's projects, and gives reasons for why they were successful.

  20. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  1. Combined rapid (TUBEX) test for typhoid-paratyphoid A fever based on strong anti-O12 response: design and critical assessment of sensitivity.

    PubMed

    Yan, Meiying; Tam, Frankie C H; Kan, Biao; Lim, Pak Leong

    2011-01-01

    Rapid diagnostics can be accurate but, often, those based on antibody detection for infectious diseases are unwittingly underrated for various reasons. Herein, we described the development of a combined rapid test for two clinically-indistinguishable bacterial diseases, typhoid and paratyphoid A fever, the latter fast emerging as a global threat. By using monoclonal antibodies (mAbs) to bacterial antigens of known chemical structures as probes, we were able to dissect the antibody response in patients at the level of monosaccharides. Thus, a mAb specific for a common lipopolysaccharide antigen (O12) found in both the causative organisms was employed to semi-quantify the amounts of anti-O12 antibodies present in both types of patients in an epitope-inhibition particle-based (TUBEX) immunoassay. This colorimetric assay detected not only anti-O12 antibodies that were abundantly produced, but also, by steric hindrance, antibodies to an adjoining epitope (O9 or O2 in the typhoid or paratyphoid bacillus, respectively). Sensitivity and, particularly, reaction intensities, were significantly better than those obtained using an anti-O9 or anti-O2 mAb-probe in the examination of paired sera from 22 culture-confirmed typhoid patients (sensitivity, 81.8% vs 75.0%) or single sera from 36 culture-confirmed paratyphoid patients (52.8% vs 28.6), respectively. Importantly, sensitivity was better (97.1% for typhoid, 75.0% for paratyphoid) if allowance was made for the absence of relevant antibodies in certain specimens as determined by an independent, objective assay (ELISA)--such specimens might have been storage-denatured (especially the older paratyphoid samples) or procured from non-responders. Benchmarking against ELISA, which revealed high concordance between the two tests, was useful and more appropriate than comparing with culture methods as traditionally done, since antibody tests and culture target slightly different stages of these diseases. Paired sera analysis was

  2. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  3. Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors.

    PubMed

    Fayaz, S M; Rajanikant, G K

    2015-12-01

    Necroptosis, a programmed necrosis pathway, is witnessed in diverse human diseases and is primarily regulated by receptor-interacting serine/threonine protein kinase 1 (RIPK1) and RIPK3. Ablation or inhibition of these individual proteins, or both, has been shown to be protective in various in vitro and in vivo disease models involving necroptosis. In this study, we propose an effective and rapid virtual screening strategy to identify multitarget inhibitors of both RIPK1 and RIPK3. It involves ensemble pharmacophore-based screening (EPS) of a compound database, post-EPS filtration (PEPSF) of the ligand hits, and multiple dockings. Structurally diverse inhibitors were identified through ensemble pharmacophore features, and the speed of this process was enhanced by filtering out the compounds containing cross-features. The stability of these inhibitors with both of the proteins was verified by means of molecular dynamics (MD) simulation. Graphical Abstract A generalized workflow employed in this study. Subsequent utilization of EPS and PEPSF might lead to reduced computational time and load. PMID:26589407

  4. Ce{sub 2}PdIn{sub 8}, Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19}—members of homological series based on AuCu{sub 3}- and PtHg{sub 2}-type structural units

    SciTech Connect

    Tursina, A.; Nesterenko, S.; Seropegin, Y.; Noël, H.; Kaczorowski, D.

    2013-04-15

    Crystal structures of three members of a unique homological series with the general formula Ce{sub m}Pd{sub n}In{sub 3m+2n} based on the AuCu{sub 3} and PtHg{sub 2} structure types were studied by single-crystal X-ray diffraction. The compounds crystallize with space group P4/mmm (Z=1) and the lattice parameters: a=4.6900(9) Å, c=12.185(6) Å for Ce{sub 2}PdIn{sub 8}, a=4.6846(8) Å, c=16.846(8) Å for Ce{sub 3}PdIn{sub 11}, and a=4.70120(10) Å, c=29.1359(4) Å for Ce{sub 5}Pd{sub 2}In{sub 19}. The crystal structures of Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} represent new types. The three structures constitute of [CeIn{sub 3}] cuboctahedra layers and [PdIn{sub 2}] rectangular polyhedra layers, alternating along the tetragonal c-axis in accordance with the m:n proportion. The magnetic and electrical transport properties of the novel compounds Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} were investigated down to 1.72 K. Both indides are Curie–Weiss paramagnets due to the presence of fairly well localized 4f electrons of trivalent cerium ions. The electrical resistivity of both materials is dominated over an extended temperature range by strong spin–flip Kondo interactions with the characteristic temperature scale of 20–30 K. - Graphical abstract: TOC Figure Crystal structures of Ce{sub 3}PdIn{sub 11}, Ce{sub 2}PdIn{sub 8}, and Ce{sub 5}Pd{sub 2}In{sub 19}. Highlights: ► Large section of Ce–Pd–In phase diagram was examined. ► Three distinct ternary phases were identified, two of them for the first time. ► Crystal structures of two novel compounds constitute new structure types. ► The determined crystal structures show close mutual relationship. ► Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} are paramagnetic Kondo lattices.

  5. Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Kalkhan, M.A.; Stafford, E.J.; Stohlgren, T.J.

    2007-01-01

    Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m x 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m x 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. ?? 2007 The Authors.

  6. CPV modelling with Solcore: An extensible modelling framework for the rapid computational simulation and evaluation of solar cell designs and concepts

    NASA Astrophysics Data System (ADS)

    Führer, Markus; Farrell, Daniel; Ekins-Daukes, Nicholas

    2013-09-01

    Computer modelling can reduce the costs of CPV solar cell development by allowing the evaluation of designs without physical device growth. We present solcore, a powerful multi-tier modelling framework for simulation of nano-structured solar cells, written in the open source, popular, and approachable programming language Python. Capabilities include modules for materials (parameterisation, database), 1D arbitrary potential Schrödinger equation solver and absorption calculator, kṡp band structure solver, spectral irradiance model and database, and multijunction quantum efficiency and IV calculators.

  7. Malaria rapid diagnostic kits: quality of packaging, design and labelling of boxes and components and readability and accuracy of information inserts

    PubMed Central

    2011-01-01

    Background The present study assessed malaria RDT kits for adequate and correct packaging, design and labelling of boxes and components. Information inserts were studied for readability and accuracy of information. Methods Criteria for packaging, design, labelling and information were compiled from Directive 98/79 of the European Community (EC), relevant World Health Organization (WHO) documents and studies on end-users' performance of RDTs. Typography and readability level (Flesch-Kincaid grade level) were assessed. Results Forty-two RDT kits from 22 manufacturers were assessed, 35 of which had evidence of good manufacturing practice according to available information (i.e. CE-label affixed or inclusion in the WHO list of ISO13485:2003 certified manufacturers). Shortcomings in devices were (i) insufficient place for writing sample identification (n = 40) and (ii) ambiguous labelling of the reading window (n = 6). Buffer vial labels were lacking essential information (n = 24) or were of poor quality (n = 16). Information inserts had elevated readability levels (median Flesch Kincaid grade 8.9, range 7.1 - 12.9) and user-unfriendly typography (median font size 8, range 5 - 10). Inadequacies included (i) no referral to biosafety (n = 18), (ii) critical differences between depicted and real devices (n = 8), (iii) figures with unrealistic colours (n = 4), (iv) incomplete information about RDT line interpretations (n = 31) and no data on test characteristics (n = 8). Other problems included (i) kit names that referred to Plasmodium vivax although targeting a pan-species Plasmodium antigen (n = 4), (ii) not stating the identity of the pan-species antigen (n = 2) and (iii) slight but numerous differences in names displayed on boxes, device packages and information inserts. Three CE labelled RDT kits produced outside the EC had no authorized representative affixed and the shape and relative dimensions of the CE symbol affixed did not comply with the Directive 98/79/EC

  8. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  9. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  10. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  11. Rational Design of α-Fe2O3/Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants.

    PubMed

    Zhang, Lili; Bao, Zhiwei; Yu, Xinxin; Dai, Peng; Zhu, Jin; Wu, Mingzai; Li, Guang; Liu, Xiansong; Sun, Zhaoqi; Chen, Changle

    2016-03-01

    α-Fe2O3/reduced graphene oxide (α-Fe2O3/rGO) composites are rationally designed and prepared to integrate organic pollutants detection and their photocatalytic degradation. Specifically, the composites are used as the substrate for surface-enhanced Raman scattering (SERS) to detect rhodamine 6G (R6G). Repeatable strong SERS signals could be obtained with R6G concentration as low as 10(-5) M. In addition, the substrate exhibits self-cleaning properties under solar irradiation. Compared with pure α-Fe2O3 and α-Fe2O3/rGO mechanical mixtures, the α-Fe2O3/rGO composites show much higher photocatalytic activity and much greater Raman enhancement factor. After 10 cycling measurements, the photodegradation rate of R6G could be maintained at 90.5%, indicating high stability of the photocatalyst. This study suggests that the α-Fe2O3/rGO composites would serve both as recyclable SERS substrate and as excellent visible light photocatalyst. PMID:26907977

  12. [Rapid PCR authentication Lonicera japanica].

    PubMed

    Jiang, Chao; Hou, Jing-Yi; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Jin, Yan

    2014-10-01

    To simply and rapid authenticate Lonicera japanica. Rapid allele-specific PCR primer was designed base on trnL-trnF 625 G/T Single nucleotide polymorphism and the PCR reaction systems including annealing temperature was optimized; optimized results were performed to authenticate L. japanica and its 9 adulterants. When 100 x SYBR Green I was added in the PCR product of 87 degrees C initial denatured 1 min; 87 degrees C denatured 5 s, 68 degrees C annealing 5 s, 30 cycle; L. japanica visualize strong green fluorescence under 365 nm UV lamp whereas adulterants without. The results indicate rapid allele-specific PCR could authenticate L. japanica and its adulterants rapidly and simply. PMID:25612418

  13. Interlaboratory standardization of the sandwich enzyme-linked immunosorbent assay designed for MATS, a rapid, reproducible method for estimating the strain coverage of investigational vaccines.

    PubMed

    Plikaytis, Brian D; Stella, Maria; Boccadifuoco, Giuseppe; DeTora, Lisa M; Agnusdei, Mauro; Santini, Laura; Brunelli, Brunella; Orlandi, Luca; Simmini, Isabella; Giuliani, Marzia; Ledroit, Morgan; Hong, Eva; Taha, Muhamed-Kheir; Ellie, Kim; Rajam, Gowrisankar; Carlone, George M; Claus, Heike; Vogel, Ulrich; Borrow, Ray; Findlow, Jamie; Gilchrist, Stefanie; Stefanelli, Paola; Fazio, Cecilia; Carannante, Anna; Oksnes, Jan; Fritzsønn, Elisabeth; Klem, Anne-Marie; Caugant, Dominique A; Abad, Raquel; Vázquez, Julio A; Rappuoli, Rino; Pizza, Mariagrazia; Donnelly, John J; Medini, Duccio

    2012-10-01

    The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or "relative potency" (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified. PMID:22875603

  14. Ultrasound-assisted magnetic dispersive solid-phase microextraction: A novel approach for the rapid and efficient microextraction of naproxen and ibuprofen employing experimental design with high-performance liquid chromatography.

    PubMed

    Ghorbani, Mahdi; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein

    2016-03-01

    A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound-assisted magnetic dispersive solid-phase microextraction. Magnetic ethylendiamine-functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett-Burman screening design was used to study the main variables affecting the microextraction process, and the Box-Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1-500 and 0.3-650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples. PMID:27027588

  15. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  16. PUBLISHER'S NOTE: Rapid Communications Rapid Communications

    NASA Astrophysics Data System (ADS)

    Miller, Tom

    2009-09-01

    As part of a general review of Superconductor Science and Technology, we have been examining the scope for Rapid Communications (RAPs). We recognize these articles make up an important part of the journal representing the latest state-of-the-art research in superconductivity. To reflect this, we have devised a new scope for this article type: 'Rapid Communications. The journal offers open access to outstanding short articles (no longer than 5 journal pages or 4500 words including figures) reporting new and timely developments in superconductivity and its applications. These articles should report very substantial new advances in superconductivity to the readers of Superconductor Science and Technology, but are not expected to meet any requirement of 'general interest'. RAPs will be processed quickly (average receipt to online publication for RAPs is around 60 days) and are permanently free to read in the electronic journal. Authors submitting a RAP should provide reasons why the work is urgent and requires rapid publication. Each RAP will be assessed for suitability by our Reviews and Rapid Communications Editor before full peer review takes place.' The essential points are: They should report very substantial new advances in superconductivity and its application; They must be no longer than 5 journal pages long (approx. 4500 words); Average publication time for a Rapid Communication is 60 days; They are free to read. As mentioned in the previous publisher's announcement (2009 Supercond. Sci. Technol. 22 010101), each submitted Rapid Communication must come with a letter justifying why it should be prioritized over regular papers and will be pre-assessed by our Reviews and Rapid Communications Editor. In addition, we will work with the authors of any Rapid Communication to promote and raise the visibility of the work presented in it. We will be making further changes to the journal in the near future and we write to you accordingly. Thank you for your kind

  17. Development of a Decision Aid for Cardiopulmonary Resuscitation Involving Intensive Care Unit Patients' and Health Professionals' Participation Using User-Centered Design and a Wiki Platform for Rapid Prototyping: A Research Protocol

    PubMed Central

    Heyland, Daren Keith; Ebell, Mark H; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; Légaré, France; Archambault, Patrick Michel

    2016-01-01

    Background Cardiopulmonary resuscitation (CPR) is an intervention used in cases of cardiac arrest to revive patients whose heart has stopped. Because cardiac arrest can have potentially devastating outcomes such as severe neurological deficits even if CPR is performed, patients must be involved in determining in advance if they want CPR in the case of an unexpected arrest. Shared decision making (SDM) facilitates discussions about goals of care regarding CPR in intensive care units (ICUs). Patient decision aids (DAs) are proven to support the implementation of SDM. Many patient DAs about CPR exist, but they are not universally implemented in ICUs in part due to lack of context and cultural adaptation. Adaptation to local context is an important phase of implementing any type of knowledge tool such as patient DAs. User-centered design supported by a wiki platform to perform rapid prototyping has previously been successful in creating knowledge tools adapted to the needs of patients and health professionals (eg, asthma action plans). This project aims to explore how user-centered design and a wiki platform can support the adaptation of an existing DA for CPR to the local context. Objective The primary objective is to use an existing DA about CPR to create a wiki-based DA that is adapted to the context of a single ICU and tailorable to individual patient’s risk factors while employing user-centered design. The secondary objective is to document the use of a wiki platform for the adaptation of patient DAs. Methods This study will be conducted in a mixed surgical and medical ICU at Hôtel-Dieu de Lévis, Quebec, Canada. We plan to involve all 5 intensivists and recruit at least 20 alert and oriented patients admitted to the ICU and their family members if available. In the first phase of this study, we will observe 3 weeks of daily interactions between patients, families, intensivists, and other allied health professionals. We will specifically observe 5 dyads of

  18. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.

    PubMed

    Yoon, Ki Young; Park, Chul Woo; Byeon, Jeong Hoon; Hwang, Jungho

    2010-03-01

    We proposed a rapid method to estimate the efficacies of air controlling devices in situ using ATP bioluminescence in combination with an inertial impactor. The inertial impactor was designed to have 1 mum of cutoff diameter, and its performance was estimated analytically, numerically, and experimentally. The proposed method was characterized using Staphylococcus epidermidis, which was aerosolized with a nebulizer. The bioaerosol concentrations were estimated within 25 min using the proposed method without a culturing process, which requires several days for colony formation. A linear relationship was obtained between the results of the proposed ATP method (RLU/m(3)) and the conventional culture-based method (CFU/m(3)), with R(2) 0.9283. The proposed method was applied to estimate the concentration of indoor bioaerosols, which were identified as a mixture of various microbial species including bacteria, fungi, and actinomycetes, in an occupational indoor environment, controlled by mechanical ventilation and an air cleaner. Consequently, the proposed method showed a linearity with the culture-based method for indoor bioaerosols with R(2) 0.8189, even though various kinds of microorganisms existed in the indoor air. The proposed method may be effective in monitoring the changes of relative concentration of indoor bioaerosols and estimating the effectiveness of air control devices in indoor environments. PMID:20143821

  19. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26879248

  20. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  1. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.; Shu, Huidy; Haman, Aissa; Sejvar, James J.; Miller, Bruce L.

    2009-01-01

    In contrast with more common dementing conditions that typically develop over years, rapidly progressive dementias can develop subacutely over months, weeks, or even days and be quickly fatal. Because many rapidly progressive dementias are treatable, it is paramount to evaluate and diagnose these patients quickly. This review summarizes recent advances in the understanding of the major categories of RPD and outlines efficient approaches to the diagnosis of the various neurodegenerative, toxic-metabolic, infectious, autoimmune, neoplastic, and other conditions that may progress rapidly. PMID:18668637

  2. Rapidly Adaptable Instrumentation Tester (RAIT)

    SciTech Connect

    Vargo, Timothy D.

    1999-06-07

    Emerging technologies in the field of "Test & Measurement" have recently enabled the development of the Rapidly Adaptable Instrumentation Tester (RAIT). Based on software developed with LabVIEW®, the RAIT design enables quick reconfiguration to test and calibrate a wide variety of telemetry systems. The consequences of inadequate testing could be devastating if a telemetry system were to fail during an expensive flight mission. Supporting both open-bench testing as well as automated test sequences, the RAIT has significantly lowered total time required to test and calibrate a system. This has resulted in an overall lower per unit testing cost than has been achievable in the past.

  3. A rapid-learning health system.

    PubMed

    Etheredge, Lynn M

    2007-01-01

    Private- and public-sector initiatives, using electronic health record (EHR) databases from millions of people, could rapidly advance the U.S. evidence base for clinical care. Rapid learning could fill major knowledge gaps about health care costs, the benefits and risks of drugs and procedures, geographic variations, environmental health influences, the health of special populations, and personalized medicine. Policymakers could use rapid learning to revitalize value-based competition, redesign Medicare's payments, advance Medicaid into national health care leadership, foster national collaborative research initiatives, and design a national technology assessment system. PMID:17259191

  4. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  5. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  6. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  7. Rapid Cycling and Its Treatment

    MedlinePlus

    ... may be rapid, ultra-rapid or ultradian cycling. Biological rhythm disturbances: This theory proposes that people with rapid cycling have daily biological rhythms that are out of sync with typical “ ...

  8. Navigate the Digital Rapids

    ERIC Educational Resources Information Center

    Lindsay, Julie; Davis, Vicki

    2010-01-01

    How can teachers teach digital citizenship when the digital landscape is changing so rapidly? How can teachers teach proper online social interactions when the students are outside their classroom and thus outside their control? Will encouraging students to engage in global collaborative environments land teachers in hot water? These are the…

  9. Rapid Prototyping in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  10. AFRPL Rapid Indexing System.

    ERIC Educational Resources Information Center

    Beltran, Alfred A.

    A modified Keyword Out of Context (KWOC) system was developed to gain rapid control over more than 8,000 scattered, unindexed documents. This was the first step in providing the technical information support required by Air Force Rocket Propulsion Laboratory scientists and engineers. Implementation of the KWOC system, computer routines, and…

  11. Rapid Prototyping of Composite Structures

    NASA Technical Reports Server (NTRS)

    Colton, Jonathan S.

    1998-01-01

    This progress report for the project Rapid Production of Composite Structures covers the period from July 14, 1997 to June 30, 1998. It will present a short overview of the project, followed by the results to date and plans for the future. The goal of this research is to provide a minimum 100x reduction in the time required to produce arbitrary, laminated products without the need for a separate mold or an autoclave. It will accomplish this by developing the science underlying the rapid production of composite structures, specifically those of carbon fiber-epoxy materials. This scientific understanding will be reduced to practice in a demonstration device that will produce a part on the order of 12" by 12" by 6". Work in the past year has focussed on developing an understanding of the materials issues and of the machine design issues. Our initial goal was to use UV cureable resins to accomplish full cure on the machine. Therefore, we have centered our materials work around whether or not UV cureable resins will work. Currently, the answer seems to be that they will not work, because UV light cannot penetrate the carbon fibers, and because no "shadow" curing seems to occur. As a result, non-UV cureable resins are being investigated. This has resulted in a change in the machine design focus. We are now looking into a "dip and place" machine design, whereby a prepreg layer would have one side coated with a curing agent, and then would be placed onto the previous layer. This would lead to cure at the interface, but not to the top of the layer. The formulation of the resins to accomplish this task at room or slightly elevated temperatures is being investigated, as is the machine design needed to apply the curing agent and then cure or partially cure the part. A final, out-of-autoclave, post-cure may be needed with this strategy, as final cure on the machine may not be possible, as it was for the initial UV cure strategy. The remainder of this report details the progress

  12. IFSAR for the Rapid Terrain Visualization Demonstration

    SciTech Connect

    BURNS,BRYAN L.; EICHEL,PAUL H.; HENSLEY JR.,WILLIAM H.; KIM,THEODORE J.

    2000-10-31

    The Rapid Terrain Visualization Advanced Concept Technology Demonstration (RTV-ACTD) is designed to demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies. The primary sensor for this mission is an interferometric synthetic aperture radar (IFSAR) designed at Sandia National Laboratories. This paper will outline the design of the system and its performance, and show some recent flight test results. The RTV IFSAR will meet DTED level III and IV specifications by using a multiple-baseline design and high-accuracy differential and carrier-phase GPS navigation. It includes innovative near-real-time DEM production on-board the aircraft. The system is being flown on a deHavilland DHC-7 Army aircraft.

  13. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  14. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  15. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  16. Rapidly refuelable fuel cell

    DOEpatents

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  17. Rapid Detection of Pathogens

    SciTech Connect

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  18. Utilizing Rapid Prototyping for Architectural Modeling

    ERIC Educational Resources Information Center

    Kirton, E. F.; Lavoie, S. D.

    2006-01-01

    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of…

  19. A Rapid and Quantitative Recombinase Activity Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present here a comparison between the recombinase systems FLP-FRT and Cre-loxP. A transient excision based dual luciferase expression assay is used for its rapid and repeatable nature. The detection system was designed within an intron to remove the remaining recombinase recognition site and no...

  20. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.

    2016-01-01

    Purpose of Review This article presents a practical and informative approach to the evaluation of a patient with a rapidly progressive dementia (RPD). Recent Findings Prion diseases are the prototypical causes of RPD, but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis. Aside from prion diseases, the most common causes of RPD are atypical presentations of other neurodegenerative disorders, curable disorders including autoimmune encephalopathies, as well as some infections, and neoplasms. Numerous recent case reports suggest dural arterial venous fistulas sometimes cause RPDs. Summary RPDs, in which patients typically develop dementia over weeks to months, require an alternative differential than the slowly progressive dementias that occur over a few years. Because of their rapid decline, patients with RPDs necessitate urgent evaluation and often require an extensive workup, typically with multiple tests being sent or performed concurrently. Jakob-Creutzfeldt disease, perhaps the prototypical RPD, is often the first diagnosis many neurologists consider when treating a patient with rapid cognitive decline. Many conditions other than prion disease, however, including numerous reversible or curable conditions, can present as an RPD. This chapter discusses some of the major etiologies for RPDs and offers an algorithm for diagnosis. PMID:27042906

  1. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  2. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  3. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  4. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  5. Rapid diagnosis of typhoid fever.

    PubMed

    Kalhan, R; Kaur, I; Singh, R P; Gupta, H C

    1998-01-01

    A Reverse Passive Haemagglutination Test (RPHA) was designed for the detection of Salmonella typhi antigen and rapid diagnosis of typhoid fever. Two per cent fresh sheep RBC's were coated with 32 micrograms/ml of immunoglobulin. The minimal detectable level of the antigen was 1250 micrograms/ml. Cross reactions were observed with the samples of patients suffering from Salmonella paratyphi A and pseudomonas infections. The RPHA established was used for the detection of S. typhi antigen in culture broths from 100 patients with clinically suspected typhoid fever with culture and/or widal positive, 50 patients with septicemia caused by bacteria other than S. typhi and 50 normal, afebrile healthy controls. It was found that the sensitivity and specificity of this assay was 70% and 92% respectively. PMID:10773905

  6. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  7. Rapidly Progressing Chagas Cardiomyopathy.

    PubMed

    Hollowed, John; McCullough, Matthew; Sanchez, Daniel; Traina, Mahmoud; Hernandez, Salvador; Murillo, Efrain

    2016-04-01

    Chagas disease, caused by the parasiteTrypanosoma cruzi, can cause a potentially life-threatening cardiomyopathy in approximately 10-40% of afflicted individuals. The decline in cardiac function characteristically progresses over the course of many years. We report a case of Chagas disease in which the patient experienced an atypical rapid deterioration to severe cardiomyopathy over the course of 16 months. This case argues the need for increased routine surveillance for patients with confirmedT. cruziinfection, who are determined to be at high-risk for worsening cardiomyopathy. PMID:26856912

  8. Rapid prototype and test

    SciTech Connect

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  9. REM. Rapid Eye Mount

    SciTech Connect

    Molinari, E.; Vergani, S.D.; Zerbi, F. M.; Covino, S.; Chincarini, G.

    2004-09-28

    REM is a robotic fast moving telescope designed to immediately point and observe in optical and IR the GRBs detected by satellites. Its immediate data gathering capabilities and its accurate astrometry will issue early alerts for the VLT.

  10. Preliminary Component Integration Utilizing Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.

    2001-01-01

    One of the most costly errors committed during the development of an element to be used in the space industry is the lack of communication between design and manufacturing engineers. A very important tool that should be utilized in the development stages by both design and manufacturing disciplines is rapid prototyping. Communication levels are intensified with the injection of functional models that are generated from a drawing. At the Marshall Space Flight Center, this discipline is utilized on a more frequent basis as a manner by which hardware may be tested for design and material compatibility.

  11. Rapid mineralocorticoid receptor trafficking.

    PubMed

    Gekle, M; Bretschneider, M; Meinel, S; Ruhs, S; Grossmann, C

    2014-03-01

    The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor that physiologically regulates water-electrolyte homeostasis and controls blood pressure. The MR can also elicit inflammatory and remodeling processes in the cardiovascular system and the kidneys, which require the presence of additional pathological factors like for example nitrosative stress. However, the underlying molecular mechanism(s) for pathophysiological MR effects remain(s) elusive. The inactive MR is located in the cytosol associated with chaperone molecules including HSP90. After ligand binding, the MR monomer rapidly translocates into the nucleus while still being associated to HSP90 and after dissociation from HSP90 binds to hormone-response-elements called glucocorticoid response elements (GREs) as a dimer. There are indications that rapid MR trafficking is modulated in the presence of high salt, oxidative or nitrosative stress, hypothetically by induction or posttranslational modifications. Additionally, glucocorticoids and the enzyme 11beta hydroxysteroid dehydrogenase may also influence MR activation. Because MR trafficking and its modulation by micro-milieu factors influence MR cellular localization, it is not only relevant for genomic but also for nongenomic MR effects. PMID:24252381

  12. Rapid Decisions From Experience

    PubMed Central

    Zeigenfuse, Matthew D.; Pleskac, Timothy J.; Liu, Taosheng

    2014-01-01

    In many everyday decisions, people quickly integrate noisy samples of information to form a preference among alternatives that offer uncertain rewards. Here, we investigated this decision process using the Flash Gambling Task (FGT), in which participants made a series of choices between a certain payoff and an uncertain alternative that produced a normal distribution of payoffs. For each choice, participants experienced the distribution of payoffs via rapid samples updated every 50 ms. We show that people can make these rapid decisions from experience and that the decision process is consistent with a sequential sampling process. Results also reveal a dissociation between these preferential decisions and equivalent perceptual decisions where participants had to determine which alternatives contained more dots on average. To account for this dissociation, we developed a sequential sampling rank-dependent utility model, which showed that participants in the FGT attended more to larger potential payoffs than participants in the perceptual task despite being given equivalent information. We discuss the implications of these findings in terms of computational models of preferential choice and a more complete understanding of experience-based decision making. PMID:24549141

  13. A Corrosion Control Manual for Rail Rapid Transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)

    1982-01-01

    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.

  14. Rapid shallow breathing index.

    PubMed

    Karthika, Manjush; Al Enezi, Farhan A; Pillai, Lalitha V; Arabi, Yaseen M

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  15. rapidMCR

    SciTech Connect

    2011-11-04

    rapidMCR is a user friendly software package that includes automatic preprocessing, analysis, and viewing of hyperspectral image data sets. Currently, this software package specifically preprocesses and analyzes hyperspectral fluorescence image data sets that have been created on Sandia hyperspectral imaging microscopes; however, this software can be modified to include spectroscopic image data sets from other (non-Sandia developed) instruments as well. This software relies on using prior information about the spectroscopic image data sets by conducting a rigorous characterization of the instrument. By characterizing the instrument for noise and artifacts, we can implement our algorithms to account for the effects specific to a particular instrument. This allows us to automate the data preprocessing while improving the analysis results.

  16. rapidMCR

    Energy Science and Technology Software Center (ESTSC)

    2011-11-04

    rapidMCR is a user friendly software package that includes automatic preprocessing, analysis, and viewing of hyperspectral image data sets. Currently, this software package specifically preprocesses and analyzes hyperspectral fluorescence image data sets that have been created on Sandia hyperspectral imaging microscopes; however, this software can be modified to include spectroscopic image data sets from other (non-Sandia developed) instruments as well. This software relies on using prior information about the spectroscopic image data sets by conductingmore » a rigorous characterization of the instrument. By characterizing the instrument for noise and artifacts, we can implement our algorithms to account for the effects specific to a particular instrument. This allows us to automate the data preprocessing while improving the analysis results.« less

  17. Solid state rapid thermocycling

    SciTech Connect

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  18. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Mathew W. (Inventor)

    2011-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  19. Rapid mercury assays

    SciTech Connect

    Szurdoki, S.; Kido, H.; Hammock, B.D.

    1996-10-01

    We have developed rapid assays with the potential of detecting mercury in environmental samples. our methods combine the simple ELISA-format with the selective, high affinity complexation of mercuric ions by sulfur-containing ligands. The first assay is based on a sandwich chelate formed by a protein-bound ligand immobilized on the wells of a microliter plate, mercuric ion of the analyzed sample, and another ligand conjugated to a reporter enzyme. The second assay involves competition between mercuric ions and an organomercury-conjugate to bind to a chelating conjugate. Several sulfur containing chelators (e.g., dithiocarbamates) and organomercurials linked to macromolecular carriers have been investigated in these assay formats. The assays detect mercuric ions in ppb/high ppt concentrations with high selectivity.

  20. Rapid shallow breathing index

    PubMed Central

    Karthika, Manjush; Al Enezi, Farhan A.; Pillai, Lalitha V.; Arabi, Yaseen M.

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  1. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  2. Library reuse in a rapid development environment

    NASA Technical Reports Server (NTRS)

    Uhde, JO; Weed, Daniel; Gottlieb, Robert; Neal, Douglas

    1995-01-01

    The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new 'rapid development' software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.

  3. Library reuse in a rapid development environment

    SciTech Connect

    Uhde, J.; Weed, D.; Gottlieb, R.; Neal, D.

    1995-09-01

    The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new `rapid development` software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.

  4. Precise autofocusing microscope with rapid response

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Jiang, Sheng-Hong

    2015-03-01

    The rapid on-line or off-line automated vision inspection is a critical operation in the manufacturing fields. Accordingly, this present study designs and characterizes a novel precise optics-based autofocusing microscope with a rapid response and no reduction in the focusing accuracy. In contrast to conventional optics-based autofocusing microscopes with centroid method, the proposed microscope comprises a high-speed rotating optical diffuser in which the variation of the image centroid position is reduced and consequently the focusing response is improved. The proposed microscope is characterized and verified experimentally using a laboratory-built prototype. The experimental results show that compared to conventional optics-based autofocusing microscopes, the proposed microscope achieves a more rapid response with no reduction in the focusing accuracy. Consequently, the proposed microscope represents another solution for both existing and emerging industrial applications of automated vision inspection.

  5. Aerodynamics inside a rapid compression machine

    SciTech Connect

    Mittal, Gaurav; Sung, Chih-Jen

    2006-04-15

    The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstrated to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)

  6. Rapid Response Skills Training

    ERIC Educational Resources Information Center

    Kelley-Winders, Anna Faye

    2008-01-01

    Mississippi Gulf Coast Community College's (MGCCC) long-term commitment to providing workforce training in a post-Katrina environment became a catalyst for designing short-term flexible educational opportunities. Providing nationally recognized skills training for the recovery/rebuilding of communities challenged the college to develop innovative,…

  7. A rapid, precise, reciprocating-movement color filter system

    NASA Technical Reports Server (NTRS)

    Phillipps, P. G.; Epstein, P.; Donovan, G.; Lawhite, E.

    1972-01-01

    Unit was designed for moving color filters in and out of position in less than 46 ms. System may be used to record previously derived colors on photorecorder or to scan different color or wavelength components of rapidly passing scene, as in aerial reconnaissance. Rapid, precise reciprocating movement may be useful in purely mechanical and chemical applications.

  8. Open architecture for rapid deployment of capability

    NASA Astrophysics Data System (ADS)

    Glassman, Jacob

    2016-05-01

    Modern warfare has drastically changed from conventional to non-conventional and from fixed threats to dynamic ones over the past several decades. This unprecedented fundamental shift has now made our adversaries and their weapons more nebulous and ever changing. Our current acquisition system however is not suited to develop, test and deploy essential capability to counter these dynamic threats in time to combat them. This environment requires a new infrastructure in our system design to rapidly adopt capabilities that we do not currently plan for or even know about. The key to enabling this rapid implementation is Open Architecture in acquisition. The DoD has shown it can rapidly prototype capabilities such as unmanned vehicles but has severely struggled in moving from the prototyping to deployment. A major driver of this disconnect is the lack of established infrastructure to employ said capability such as launch and recovery systems and command and control. If we are to be successful in transitioning our rapid capability to the warfighter we must implement established well defined interfaces and enabling technologies to facilitate the rapid adoption of capability so the warfighter has the tools to effectively counter the threat.

  9. The Rapid Transient Surveyor

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and < 0.16″ in the near infrared leading to an increase of the infrared point-source sensitivity against the sky background by a factor of ~9, crucial for efficient near-infrared spectroscopy.RTS will allow us to map the dark matter distribution in the z < 0.1 local universe with ten times better accuracy and precision than previous experiments. ATLAS will discover several thousand SNIae per year, measuring SNIa peak brightness, and decline rates, while RTS will measure reddening by dust, confirm SN type and

  10. Rapid detection of bacteria in foods and biological fluids

    NASA Technical Reports Server (NTRS)

    Fealey, R. D.; Renner, W.

    1973-01-01

    Simple and inexpensive apparatus, called "redox monitoring cell," rapidly detects presence of bacteria. Bacteria is detected by measuring drop in oxygen content in test solution. Apparatus consists of vial with two specially designed electrodes connected to sensitive voltmeter.

  11. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    SciTech Connect

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  12. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  13. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  14. Problems of rapid growth.

    PubMed

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries. PMID:12336527

  15. Rapid prototyping applications at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.

  16. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  17. Rapid mixing kinetic techniques.

    PubMed

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution. PMID:23729251

  18. Rapid Typing of Coxiella burnetii

    PubMed Central

    Georgia, Shalamar M.; Kachur, Sergey; Birdsell, Dawn N.; Hilsabeck, Remy; Gates, Lauren T.; Samuel, James E.; Heinzen, Robert A.; Kersh, Gilbert J.; Keim, Paul; Massung, Robert F.; Pearson, Talima

    2011-01-01

    Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels) among multispacer sequence typing (MST) loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies. PMID:22073151

  19. Rapid Optimization Library

    SciTech Connect

    Denis Rldzal, Drew Kouri

    2014-05-13

    ROL provides interfaces to and implementations of algorithms for gradient-based unconstrained and constrained optimization. ROL can be used to optimize the response of any client simulation code that evaluates scalar-valued response functions. If the client code can provide gradient information for the response function, ROL will take advantage of it, resulting in faster runtimes. ROL's interfaces are matrix-free, in other words ROL only uses evaluations of scalar-valued and vector-valued functions. ROL can be used to solve optimal design problems and inverse problems based on a variety of simulation software.

  20. Rapid Optimization Library

    Energy Science and Technology Software Center (ESTSC)

    2014-05-13

    ROL provides interfaces to and implementations of algorithms for gradient-based unconstrained and constrained optimization. ROL can be used to optimize the response of any client simulation code that evaluates scalar-valued response functions. If the client code can provide gradient information for the response function, ROL will take advantage of it, resulting in faster runtimes. ROL's interfaces are matrix-free, in other words ROL only uses evaluations of scalar-valued and vector-valued functions. ROL can be used tomore » solve optimal design problems and inverse problems based on a variety of simulation software.« less

  1. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation. PMID:24516460

  2. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus)

    PubMed Central

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation. PMID:24516460

  3. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; Hirsh, Robert

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  4. Rapid guiding center calculations

    SciTech Connect

    White, R.B.; Boozer, A.H. |

    1995-04-01

    Premature loss of high energy particles, and in particular fusion alpha particles, is very deleterious in a fusion reactor. Because of this it is necessary to make long-time simulations, on the order of the alpha particle slowing down time, with a number of test particles sufficient to give predictions with reasonable statistical accuracy. Furthermore it is desirable to do this for a large number of equilibria with different characteristic magnetic field ripple, to best optimize engineering designs. In addition, modification of the particle distribution due to magnetohydrodynamic (MHD) modes such as the saw tooth mode present in the plasma can be important, and this effect requires additional simulation. Thus the large number of necessary simulations means any increase of computing speed in guiding center codes is an important improvement in predictive capability. Previous guiding center codes using numerical equilibria such as ORBIT evaluated the local field strength and ripple magnitude using Lagrangian interpolation on a grid. Evaluation of these quantities four times per time step (using a fourth order Runge-Kutta routine) constitutes the major computational effort of the code. In the present work the authors represent the field quantities through an expansion in terms of pseudo-cartesian coordinates formed from the magnetic coordinates. The simplicity of the representation gives four important advantages over previous methods.

  5. Effective rapid airframe suppression evaluation (ERASE)

    NASA Astrophysics Data System (ADS)

    Engelhardt, Michel

    1993-08-01

    This paper presents an analytical method to effectively and rapidly evaluate the impact of airframe suppression on electro-optical/infrared (E-O/IR) system lock-on range. This method is known as the Effective Rapid Airframe Suppression Evaluation (ERASE). It can be used to perform tradeoff analyses with respect to IR suppression systems and evaluate the impact of these systems on E-O/IR systems. This paper discusses a new set of dimensionless equations and how these equations are used to evaluate changes in airframe area, temperature, emissivity, and reflectivity (as a function of earthshine, solar reflections, and skyshine). Since the ERASE code has been formulated as a rapid computational tool (capable of generating over 1000 design variations in minutes), it is ideal for performing design tradeoffs against airframe shaping, thermal control systems, and diffuse reflectivity/emissivity control. Results from the ERASE code are presented using Grumman's System for IR Evaluation/Contrast Generator Code (SIRE/CONGEN) as input.

  6. Rapid DOTS expansion in India.

    PubMed Central

    Khatri, G. R.; Frieden, Thomas R.

    2002-01-01

    Since late 1998 the coverage of the DOTS strategy in India has been expanded rapidly. In both 2000 and 2001 the country probably accounted for more than half the global increase in the number of patients treated under DOTS and by early 2002 more than a million patients were being treated in this way in India. As a result, nearly 200 000 lives were saved. The lessons learnt relate to the importance of the following elements of the programme: (1) getting the science right and ensuring technical excellence; (2) building commitment and ensuring the provision of funds and flexibility in their utilization; (3) maintaining focus and priorities; (4) systematically appraising each area before starting service delivery; (5) ensuring an uninterrupted drug supply; (6) strengthening the established infrastructure and providing support for staff; (7) supporting the infrastructure required in urban areas; (8) ensuring full-time independent technical support and supervision, particularly during the initial phases of implementation; (9) monitoring intensively and giving timely feedback; and (10) continuous supervision. Tuberculosis (TB) control still faces major challenges in India. To reach its potential, the control programme needs to: continue to expand so as to cover the remaining half of the country, much of which has a weaker health infrastructure than the areas already covered; increase its reach in the areas already covered so that a greater proportion of patients is treated; ensure sustainability; improve the patient-friendliness of services; confront TB associated with human immunodeficiency virus (HIV) infection. It is expected that HIV will increase the number of TB cases by at least 10% and by a considerably higher percentage if HIV becomes much more widespread. India's experience shows that DOTS can achieve high case-detection and cure rates even with imperfect technology and often with an inadequate public health infrastructure. However, this can only happen if the

  7. Relatively Inexpensive Rapid Prototyping of Small Parts

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    2003-01-01

    Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room-temperature-curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

  8. GRAT--genome-scale rapid alignment tool.

    PubMed

    Kindlund, Ellen; Tammi, Martti T; Arner, Erik; Nilsson, Daniel; Andersson, Björn

    2007-04-01

    Modern alignment methods designed to work rapidly and efficiently with large datasets often do so at the cost of method sensitivity. To overcome this, we have developed a novel alignment program, GRAT, built to accurately align short, highly similar DNA sequences. The program runs rapidly and requires no more memory and CPU power than a desktop computer. In addition, specificity is ensured by statistically separating the true alignments from spurious matches using phred quality values. An efficient separation is especially important when searching large datasets and whenever there are repeats present in the dataset. Results are superior in comparison to widely used existing software, and analysis of two large genomic datasets show the usefulness and scalability of the algorithm. PMID:17292508

  9. A Wire Crossed-Loop-Resonator for Rapid Scan EPR

    PubMed Central

    Rinard, George A.; Quine, Richard W.; Biller, Joshua R.; Eaton, Gareth R.

    2011-01-01

    A crossed-loop (orthogonal mode) resonator (CLR) was constructed of fine wire to achieve design goals for rapid scan in vivo EPR imaging at VHF frequencies (in practice, near 250 MHz). This application requires the resonator to have a very open design to facilitate access to the animal for physiological support during the image acquisition. The rapid scan experiment uses large amplitude magnetic field scans, and sufficiently large resonator and detection bandwidths to record the rapidly-changing signal response. Rapid-scan EPR is sensitive to RF/microwave source noise and to baseline changes that are coherent with the field scan. The sensitivity to source noise is a primary incentive for using a CLR to isolate the detected signal from the RF source noise. Isolation from source noise of 44 and 47 dB was achieved in two resonator designs. Prior results showed that eddy currents contribute to background problems in rapid scan EPR, so the CLR design had to minimize conducting metal components. Using fine (AWG 38) wire for the resonators decreased eddy currents and lowered the resonator Q, thus providing larger resonator bandwidth. Mechanical resonances at specific scan frequencies are a major contributor to rapid scan backgrounds. PMID:21603086

  10. Can China afford rapid aging?

    PubMed

    Jiang, Quanbao; Yang, Shucai; Sánchez-Barricarte, Jesús J

    2016-01-01

    China's rapid aging has caused widespread concern, but it seems that the situations and consequences of rapid aging are not adequately acknowledged. This study analyzed the problem of ageing in China from the aspects of elderly people's health status, income source, daily care, suicide, the weak social security system in terms of pension, health expenses, and long-term care costs as well as incoming accelerating ageing process in China. All these factors indicate that it is difficult for China to afford the issue of a rapidly aging population. PMID:27478724

  11. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  12. Rapid Prototyping of Distributed User Interfaces

    NASA Astrophysics Data System (ADS)

    Massó, José Pascual Molina; Vanderdonckt, Jean; López, Pascual González; Fernández-Caballero, Antonio; Pérez, María Dolores Lozano

    This paper introduces a software tool for rapid prototyping of interactive systems whose user interfaces could be distributed according to four axes defined in a design space: type of computing platform, amount of interaction surfaces, type of interaction surface, and type of user interface. This software is based on a virtual toolkit for rendering the user interfaces in a virtual world depicting the real world in which the distribution occurs. The virtual toolkit consists of a layer for rendering a concrete user interface specified in a user interface description language. This paper presents its extension to modeling the external environment in terms of the design space so as to render the context of use in which the user interfaces are distributed. For each axis, a pair of functions enables exploring the axis in decreasing and increasing order so as to explore various situations of distribution, axis by axis, or in a combined way. As the interfaces resulting from this rendering are truly executable ones, this system provides designers with an acceptable means for generating ideas about how a user interface can be distributed in a context of use, and helps to evaluate the quality of a solution at an early design stage. Four representative situations located on the design space are implemented and discussed: distribution in a multi-platform context, distribution of the workplace, ubiquitous computing, and ambient intelligence, thus proving the coverage of the design space and the capabilities of the whole system

  13. Rapid diagnostic tests for malaria

    PubMed Central

    Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-01-01

    Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438

  14. A corrosion control manual for rail rapid transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.

    1982-01-01

    In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.

  15. Rapid prototyping and the human factors engineering process.

    PubMed

    Beevis, D; Denis, G S

    1992-06-01

    Rapid prototyping or 'virtual prototyping' of human-machine interfaces offers the possibility of putting the human operator 'in the loop' without the effort and cost associated with conventional man-in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with conventional systems development techniques. It is not clear, however, exactly how rapid prototyping could be used in relation to conventional human factors engineering analyses. Therefore, an investigation of the use of the VAPS virtual prototyping system was carried out in five organizations. The results show that a variety of task analysis approaches can be used to initiate rapid prototyping. Overall, it appears that rapid prototyping facilitates an iterative approach to the development of the human-machine interface, and that is most applicable to the early stages of systems development, rather than to detailed design. PMID:15676861

  16. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  17. Rapidly solidified titanium alloys by melt overflow

    SciTech Connect

    Gaspar, T.A.; Bruce, T.J. Jr.; Hackman, L.E.; Brasmer, S.E.; Dantzig, J.A.; Baeslack, W.A. III.

    1989-09-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  18. Rapid multi-flexible-body maneuvering experiments

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1988-01-01

    Progress at the NASA Langley Research Center in the area of rapid multiple-flexible-body maneuvering experiments is described. The experiments are designed to verify theoretical analyses using control theory for the control of flexible structures. The objective of the maneuvering experiments is to demonstrate slewing of flexible structures in multiple axes while simultaneously suppressing vibration to have acceptable motion at the end of the maneuver. The status of some research activities oriented primarily to the experimental methods for control of flexible structures is presented.

  19. Recognition system rapid application prototyping tool

    NASA Astrophysics Data System (ADS)

    Mills, Stuart A.; Karins, James P.; Dydyk, Robert B.

    1997-03-01

    The recognition system rapid application prototyping tool (RSRAPT) was developed to evaluate various potential configurations of miniature ruggedized optical correlator (MROC) modules and to rapidly assess the feasibility of their use within systems such as missile seekers. RSRAPT is a simulation environment for rapidly prototyping, developing, and evaluating recognition systems that incorporate MROC technology. It is designed to interface to OLE compliant Windows applications using standard OLE interfaces. The system consists of nine key functional elements: sensor, detection, segmentation, pre-processor, filter selection, correlator, post-processor, identifier, and controller. The RSRAPT is a collection of object oriented server components, a client user interface and a recognitions system image and image sensor database. The server components are implemented to encapsulate processes that are typical to any optical-correlator based pattern recognition system. All the servers are implemented as Microsoft component object model objects. In addition to the system servers there are two key 'helper servers.' The first is the image server, which encapsulates all 'images'. This includes gray scale images and even complex images. The other supporting server is the filter generation server. This server trains the system on user data by calculating filters for user selected image types. The system hosts a library of standard image processing routines such as convolution, edge operators, clustering algorithms, median filtering, morphological operators such as erosion and dilation, connected components, region growing, and adaptive thresholding. In this paper we describe the simulator and show sample results from diverse applications.

  20. Rapid methods and automation in dairy microbiology.

    PubMed

    Vasavada, P C

    1993-10-01

    The importance of microbiology to the dairy industry has been demonstrated by recent outbreaks of foodborne illness associated with consumption of milk and dairy products that had been contaminated with pathogenic organisms or toxins. Undesirable microorganisms constitute the primary hazard to safety, quality, and wholesomeness of milk and dairy foods. Consequently, increased emphasis has been placed on the microbiological analysis of milk and dairy products designed to evaluate quality and to ensure safety and regulatory compliance. The focus of dairy microbiology, however, remains largely on conventional methods: plate counts, most probable numbers, and dye reduction tests. These methods are slow, tedious, intensive in their requirements for material and labor, and often not suitable for assessing the quality and shelf-life of perishable dairy foods. With the exception of coliforms, Salmonella, and Staphylococcus aureus, isolation and characterization of various organisms occurring in milk and milk products are seldom a part of the routine microbiological analysis in the dairy industry. Recent emphasis on the programs based on HACCP (Hazard Analysis and Critical Control Points) for total quality management in the dairy industry and increased demand for microbiological surveillance of products, process, and environment have led to increased interest in rapid methods and automation in microbiology. Several methods for rapid detection, isolation, enumeration, and characterization of microorganisms are being adapted by the dairy industry. This presentation reviews rapid methods and automation in microbiology for microbiological analysis of milk and dairy products. PMID:8227634

  1. JPSS CGS Tools For Rapid Algorithm Updates

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process NPOESS Preparatory Project, Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. Under NPOESS, Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization was responsible for the algorithms that produce the EDRs, including their quality aspects. For JPSS, that responsibility has transferred to NOAA's Center for Satellite Applications & Research (STAR). As the Calibration and Validation (Cal/Val) activities move forward following both the NPP launch and subsequent JPSS and DWSS launches, rapid algorithm updates may be required. Raytheon and

  2. Appendix B: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional processes often produce systems which are obsolete before they are fielded. This paper explores some of the reasons for this, and provides a vision of how we can do better. This vision is based on our explorations in improved processes and system/software engineering tools.

  3. Appendix C: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools.

  4. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    NASA Astrophysics Data System (ADS)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  5. USDC based rapid penetrator of packed soil

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2006-01-01

    Environment protection requires more testing and analysis tools. To detect buried chemical containers or other objects embedded in soil and avoid possible damages of them, a penetrator of packed soil operated using low pushing force was developed. The design was based on a novel driving mechanism of the ultrasonic/sonic driller/corer (USDC) device developed in the NDEAA lab at JPL [Bar-Cohen et al 2001, Bao et al 2003]. In the penetrator, a small free-flying mass is energized by a piezoelectric transducer and impacts a rod probe on its shoulder at frequencies of hundreds times per second. The impacts help the probe to penetrate the packed soil rapidly. A great reduction of the needed pushing force for penetration was achieved. The details of the design of the prototype penetrator and the results of performance tests are presented.

  6. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  7. Programming for Design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Structures under stress are designed much more rapidly -- allowing for remarkable increases in productivity -- since NASTRAN (for NASA Structural Analysis) has become available. The versatile computer program, written originally to help design more efficient space vehicles, finds additional applications each year.

  8. Review, Selection and Installation of a Rapid Prototype Machine

    NASA Technical Reports Server (NTRS)

    McEndree, Caryl

    2008-01-01

    The objective of this paper is to impress upon the reader the benefits and advantages of investing in rapid prototyping (additive manufacturing) technology thru the procurement of one or two new rapid prototyping machines and the creation of a new Prototype and Model Lab at the Kennedy Space Center (KSC). This new resource will be available to all of United Space Alliance, LLC (USA), enabling engineers from around the company to pursue a more effective means of communication and design with our co-workers, and our customer, the National Aeronautics and Space Administration (NASA). The Rapid Protoyping/3D printing industry mirrors the transition the CAD industry made several years ago, when companies were trying to justify the expenditure of converting to a 3D based system from a 2D based system. The advantages of using a 3D system seemed to be outweighed by the cost it would take to convert not only legacy 2D drawings into 3D models but the training of personnel to use the 3D CAD software. But the reality was that when a 3D CAD system is employed, it gives engineers a much greater ability to conceive new designs and the ability to engineer new tools and products much more effectively. Rapid Prototyping (RP) is the name given to a host of related technologies that are used to fabricate physical objects directly from Computer Aided Design (CAD) data sources. These methods are generally similar to each other in that they add and bond materials in a layer wise-fashion to form objects, instead of machining away material. The machines used in Rapid Prototyping are also sometimes referred to as Rapid Manufacturing machines due to the fact that some of the parts fabricated in a RP machine can be used as the finished product. The name "Rapid Prototyping" is really a misnomer. It is much more than prototypes and it is not always rapid.

  9. HRR length and velocity decision regions for rapid target identification

    NASA Astrophysics Data System (ADS)

    Hussain, Moayyed A.

    1999-09-01

    Effective theater defense requires rapid target identification with ground sensors. Modern radar performs target recognition and target imaging tasks, in addition to conventional tasks of detection and tracking. New processing techniques, like stepped frequency waveforms and RF hardware are now becoming available and will soon result in lower- cost high resolution rate. Additional feature extraction, namely length and velocity obtained from tracker can be used to design an efficient and a rapid ID after a preliminary recognition is performed. Prior information of these features for critical set of targets can be used to design decision regions for a given SNR value.

  10. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  11. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  12. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Black Hills-Rapid City Intrastate Air... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region....

  13. An application generator for rapid prototyping of Ada real-time control software

    NASA Technical Reports Server (NTRS)

    Johnson, Jim; Biglari, Haik; Lehman, Larry

    1990-01-01

    The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.

  14. Integration of rapid prototyping into product development

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Sandia National Laboratories is a vertically multi-disciplined research and development laboratory with a long history of designing and developing d electro-mechanical products in the national interest. Integrating new technologies into the prototyping phase of our development cycle is necessary to reduce the cycle time from initial design to finished product. The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with relative speed and production-like quality. Issues of accuracy, feature definition, and surface finish continue to drive research and development of these processes. Sandia uses Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal product development efforts. The primary use of SL and SLS is to produce patterns for investment casting in support of a Sandia managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. Also presented will be several examples of prototype parts manufactured using SL and SLS with a focus on application, accuracy, surface and feature definition.

  15. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  16. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  17. Design thinking.

    PubMed

    Brown, Tim

    2008-06-01

    In the past, design has most often occurred fairly far downstream in the development process and has focused on making new products aesthetically attractive or enhancing brand perception through smart, evocative advertising. Today, as innovation's terrain expands to encompass human-centered processes and services as well as products, companies are asking designers to create ideas rather than to simply dress them up. Brown, the CEO and president of the innovation and design firm IDEO, is a leading proponent of design thinking--a method of meeting people's needs and desires in a technologically feasible and strategically viable way. In this article he offers several intriguing examples of the discipline at work. One involves a collaboration between frontline employees from health care provider Kaiser Permanente and Brown's firm to reengineer nursing-staff shift changes at four Kaiser hospitals. Close observation of actual shift changes, combined with brainstorming and rapid prototyping, produced new procedures and software that radically streamlined information exchange between shifts. The result was more time for nursing, better-informed patient care, and a happier nursing staff. Another involves the Japanese bicycle components manufacturer Shimano, which worked with IDEO to learn why 90% of American adults don't ride bikes. The interdisciplinary project team discovered that intimidating retail experiences, the complexity and cost of sophisticated bikes, and the danger of cycling on heavily trafficked roads had overshadowed people's happy memories of childhood biking. So the team created a brand concept--"Coasting"--to describe a whole new category of biking and developed new in-store retailing strategies, a public relations campaign to identify safe places to cycle, and a reference design to inspire designers at the companies that went on to manufacture Coasting bikes. PMID:18605031

  18. Rapid diagnosis of Legionnaires' disease.

    PubMed Central

    White, A.; Kohler, R. B.; Wheat, L. J.; Sathapatayavongs, B.; Winn, W. C.; Girod, J. C.; Edelstein, P. H.

    1982-01-01

    An enzyme linked immunosorbent assay was developed to detect urinary antigen excreted by patients with Legionnaires' disease. Of 47 patients tested, antigen was detected in 39. Antigen was not detected in any of 178 urine specimens from patients with other pulmonary, bacteremic, or urinary tract infections after performance of a quick and simple confirmatory test. The assay required more time to perform than a previously described radioimmunoassay but was of equivalent sensitivity and specificity and did not require expensive equipment of contact with radioactive reagents. We conclude that enzyme linked immunosorbent assay is a rapid, sensitive, and specific means for rapidly diagnosing Legionnaires' disease which can be performed in clinical laboratories unwilling or unable to use radioisotopes. PMID:7048694

  19. A rapidly growing lid lump

    PubMed Central

    Koay, Su-Yin; Lee, Richard M H; Hugkulstone, Charles; Rodrigues, Ian Aureliano Stephen

    2014-01-01

    A 97-year-old woman presented with a 5-month history of a rapidly growing, painless, left upper eyelid lesion. Examination revealed a large vascularised, ulcerated nodule on the left upper lid, causing significant ptosis. Wide local excision of the lesion was performed and the wound was left to heal by secondary intention. Histology and immunohistochemistry of the lesion confirmed a diagnosis of Merkel cell carcinoma, a rare primary malignancy of the eyelid which has significant morbidity and mortality. Although uncommon, this diagnosis should always be considered in any patient with a rapidly growing lid lump. In view of the patient's age, known dementia and family wishes, the patient was managed conservatively, with no further investigations performed. She was due to be followed up in clinic on a regular basis, but has since died from other causes. PMID:25123568

  20. Rapid Prototyping of Patterned Multifunctional Nanostructures

    SciTech Connect

    FAN,HONGYOU; LU,YUNFENG; LOPEZ,GABRIEL P.; BRINKER,C. JEFFREY

    2000-07-18

    The ability to engineer ordered arrays of objects on multiple length scales has potential for applications such as microelectronics, sensors, wave guides, and photonic lattices with tunable band gaps. Since the invention of surfactant templated mesoporous sieves in 1992, great progress has been made in controlling different mesophases in the form of powders, particles, fibers, and films. To date, although there have been several reports of patterned mesostructures, materials prepared have been limited to metal oxides with no specific functionality. For many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary to define both form and function on several length scales. In addition, the patterning strategies utilized so far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. The authors present a series of new methods of producing patterns within seconds. Combining sol-gel chemistry, Evaporation-Induced Self-Assembly (EISA), and rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates, they form hierarchically organized silica structures that exhibit order and function on multiple scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale, mono-sized pores are organized into 1-, 2-, or 3-dimensional networks, providing size-selective accessibility from the gas or liquid phase, and on the macroscale, 2-dimensional arrays and fluidic or photonic systems may be defined. These rapid patterning techniques establish for the first time a link between computer-aided design and rapid processing of self-assembled nanostructures.

  1. Rapid synthesis of beta zeolites

    SciTech Connect

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  2. Patient specific ankle-foot orthoses using rapid prototyping

    PubMed Central

    2011-01-01

    Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898

  3. Rapid assessment of assignments using plagiarism detection software.

    PubMed

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection. PMID:22024673

  4. Rapid Sampling from Sealed Containers

    SciTech Connect

    Johnston, R.G.; Garcia, A.R.E.; Martinez, R.K.; Baca, E.T.

    1999-02-28

    The authors have developed several different types of tools for sampling from sealed containers. These tools allow the user to rapidly drill into a closed container, extract a sample of its contents (gas, liquid, or free-flowing powder), and permanently reseal the point of entry. This is accomplished without exposing the user or the environment to the container contents, even while drilling. The entire process is completed in less than 15 seconds for a 55 gallon drum. Almost any kind of container can be sampled (regardless of the materials) with wall thicknesses up to 1.3 cm and internal pressures up to 8 atm. Samples can be taken from the top, sides, or bottom of a container. The sampling tools are inexpensive, small, and easy to use. They work with any battery-powered hand drill. This allows considerable safety, speed, flexibility, and maneuverability. The tools also permit the user to rapidly attach plumbing, a pressure relief valve, alarms, or other instrumentation to a container. Possible applications include drum venting, liquid transfer, container flushing, waste characterization, monitoring, sampling for archival or quality control purposes, emergency sampling by rapid response teams, counter-terrorism, non-proliferation and treaty verification, and use by law enforcement personnel during drug or environmental raids.

  5. Ada and the rapid development lifecycle

    NASA Technical Reports Server (NTRS)

    Deforrest, Lloyd; Gref, Lynn

    1991-01-01

    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.

  6. Robot Engine: rapid product development path

    NASA Astrophysics Data System (ADS)

    Sert, Buelent

    1993-05-01

    Using the Robot Engine framework Denning has developed four new products in four distinctly different markets in less than three years. The Robot Engine concept reduced development time by more than half and assured a better chance of success in developing these new products. Similar to the personal computer industry, the mobile robotic industry has the potential to make it possible for a number of independent payload developers to design and sell useful devices compatible with the navigation system by utilizing the Robot Engine concept. This paper will review the basic modular mechanical, hardware, and software components, and the basic integration challenges for rapid prototyping of robotic products. Human interface, vehicle control, navigation, and sensory data fusion/arbitration will be discussed within this framework.

  7. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  8. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  9. Operations analysis of gravity assisted rapid transit

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Gravity assisted rapid transit (GART) with 6 percent grades before and after each station are compared with conventional systems in terms of energy consumption, run time, line capacity and schedule stability under abnormal circumstances. Parametric analyses of run times and energy consumption include the impact of alternate accelerating and braking levels. The capcity analysis uses a network simulation program to determine the location and severity of all signal delays. Based on results of initial simulations, the block design was revised to eliminate bottlenecks in normal operations. The systems are then compared at headways of 80 to 180 seconds. One month of incidence reports of a modern operating transit system are reviewed to determine the failures to be simulated. The impact of failures resulting in station delays (30 to 360 seconds), speed limit reduction (20 mph and 30 mph to one or more trains), vehicle performance (75 percent acceleration) are compared at scheduled headway of 90 to 180 seconds.

  10. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  11. Designing dc Inductors With Airgaps

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.

    1986-01-01

    Optimal parameters obtained designing near saturation point. New iterative procedure aids design of dc inductors with airgaps in cores. For given core area and length, technique gives design having specified inductance and peak flux density in core, using minimum required copper weight. Executed rapidly on programmable, hand-held calculator. Applications include lightweight inductors for aircraft electronics.

  12. Electronic Design Automation: Integrating the Design and Manufacturing Functions

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Salkowski, Charles

    1997-01-01

    As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.

  13. Rapid thermal processing by stamping

    DOEpatents

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  14. Rapid Prototyping in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim; Moniz, Matt

    2002-01-01

    Describes how technology education majors are using a high-tech model builder, called a fused deposition modeling machine, to develop their models directly from computer-based designs without any machining. Gives examples of applications in technology education. (JOW)

  15. Rapid prototyping of extrusion dies using layer-based techniques

    SciTech Connect

    Misiolek, W.Z.; Winther, K.T.; Prats, A.E.; Rock, S.J.

    1999-02-01

    Extrusion die design and development often requires significant craftsman skill and iterative improvement to arrive at a production-ready die geometry. Constructing the dies used during this iterative process from layers, rather than from one solid block of material, offers unique opportunities to improve die development efficiency when coupled with concepts drawn from the rapid prototyping field. This article presents a proof-of-concept illustrating the potential utility of layer-based extrusion dies for the die design and fabrication process. The major benefits include greater flexibility in the design process, a more efficient, automated fabrication technique, and a means for performing localized die modifications and repairs.

  16. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  17. Rapid actinide-separation methods

    SciTech Connect

    Maxwell, S.L. III

    1997-12-31

    New high-speed actinide-separation methods have been developed by the Savannah River Site Central Laboratory that can be applied to nuclear materials process samples, waste solutions and environmental samples. As part of a reengineering effort to improve efficiencies and reduce operating costs, solvent extraction methods (TTA, Hexone, TBP and TIOA) used for over thirty years in the SRS Central Laboratory were replaced with new rapid extraction column methods able to handle a variety of difficult sample matrices and actinide levels. Significant costs savings were realized and costly mixed-waste controls were avoided by using applied vacuum and 50-100 micron particle-size resins from Eichrom Industries. TEVA Resin{reg_sign}, UTEVA Resin{reg_sign}, and TRU Resin{reg_sign} columns are used with flow rates of approximately two to three milliliters per minute to minimize sample turnaround times. Single-column, dual-column and sequential-cartridge methods for plutonium, uranium, neptunium, americium and curium were developed that enable rapid, cost-effective separations prior to alpha-particle counting, thermal ionization and inductively coupled plasma mass spectrometry, and laser phosphorescence measurements.

  18. Rapid ISS Power Availability Simulator

    NASA Technical Reports Server (NTRS)

    Downing, Nicholas

    2011-01-01

    The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.

  19. Rapid learning: a breakthrough agenda.

    PubMed

    Etheredge, Lynn M

    2014-07-01

    A "rapid-learning health system" was proposed in a 2007 thematic issue of Health Affairs. The system was envisioned as one that uses evidence-based medicine to quickly determine the best possible treatments for patients. It does so by drawing on electronic health records and the power of big data to access large volumes of information from a variety of sources at high speed. The foundation for a rapid-learning health system was laid during 2007-13 by workshops, policy papers, large public investments in databases and research programs, and developing learning systems. Challenges now include implementing a new clinical research system with several hundred million patients, modernizing clinical trials and registries, devising and funding research on national priorities, and analyzing genetic and other factors that influence diseases and responses to treatment. Next steps also should aim to improve comparative effectiveness research; build on investments in health information technology to standardize handling of genetic information and support information exchange through apps and software modules; and develop new tools, data, and information for clinical decision support. Further advances will require commitment, leadership, and public-private and global collaboration. PMID:25006141

  20. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  1. Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing.

    PubMed

    Kim, Heejin; Min, Kyoung-Ik; Inoue, Keita; Im, Do Jin; Kim, Dong-Pyo; Yoshida, Jun-ichi

    2016-05-01

    In chemical synthesis, rapid intramolecular rearrangements often foil attempts at site-selective bimolecular functionalization. We developed a microfluidic technique that outpaces the very rapid anionic Fries rearrangement to chemoselectively functionalize iodophenyl carbamates at the ortho position. Central to the technique is a chip microreactor of our design, which can deliver a reaction time in the submillisecond range even at cryogenic temperatures. The microreactor was applied to the synthesis of afesal, a bioactive molecule exhibiting anthelmintic activity, to demonstrate its potential for practical synthesis and production. PMID:27151864

  2. Rapid solidification of metallic particulates

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.

  3. Rapid facial mimicry in geladas.

    PubMed

    Mancini, Giada; Ferrari, Pier Francesco; Palagi, Elisabetta

    2013-01-01

    Rapid facial mimicry (RFM) is an automatic response, in which individuals mimic others' expressions. RFM, only demonstrated in humans and apes, is grounded in the automatic perception-action coupling of sensorimotor information occurring in the mirror neuron system. In humans, RFM seems to reflect the capacity of individuals to empathize with others. Here, we demonstrated that, during play, RFM is also present in a cercopithecoid species (Theropithecus gelada). Mother-infant play sessions were not only characterized by the highest levels of RFM, but also by the fastest responses. Our findings suggest that RFM in humans have homologous not only in apes, but also in cercopitecoids. Moreover, data point to similarities in the modality in which mother-infant synchronous behaviours are expressed among primates, suggesting a common evolutionary root in the basic elements of mother-infant affective exchanges. PMID:23538990

  4. Rapid adaptation to climate change.

    PubMed

    Hancock, Angela M

    2016-08-01

    In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations. PMID:27463237

  5. Customer-experienced rapid prototyping

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  6. Rapid world modelling for robotics

    SciTech Connect

    Littile, C.Q.; Wilson, C.W.

    1996-04-01

    The ability to use an interactive world model, whether it is for robotics simulation or most other virtual graphical environments, relies on the users ability to create an accurate world model. Typically this is a tedious process, requiring many hours to create 3-D CAD models of the surfaces within a workspace. The goal of this ongoing project is to develop usable methods to rapidly build world models of real world workspaces. This brings structure to an unstructured environment and allows graphical based robotics control to be accomplished in a reasonable time frame when traditional CAD modelling is not enough. To accomplish this, 3D range sensors are deployed to capture surface data within the workspace. This data is then transformed into surface maps, or models. A 3D world model of the workspace is built quickly and accurately, without ever having to put people in the environment.

  7. Moved by a Rapid Transit

    NASA Astrophysics Data System (ADS)

    Bueter, C.

    2013-04-01

    Enticing by virtue of its predictability, historical utility, and spectacle, the transit of Venus is a niche event among astronomical phenomena. Though the value of a transit for scientific purposes is now diminished, the brief appearance of Venus silhouetted against the background of the Sun in 2004 moved the artistic community to celebrate the rare alignment. Artists of all ages combined old traditions with fresh technology to create a 21st-century tapestry of music, sculpture, paintings, glasswork, quilts, sky shows, and digital imagery. A full catalog of transit-related art generated over the centuries would feature the sampling of entries presented here and at the Moved by a Rapid Transit website.

  8. Translational research on rapid steroid actions.

    PubMed

    Wendler, Alexandra; Wehling, Martin

    2010-01-01

    Translational research is a burgeoning science that shows potential to improve the transition of research from bench to bedside. This novel science explores all major aspects of preclinical and clinical issues which are relevant for the success of translational pharmaceutical or medical device/diagnostic innovations. This includes target risk assessment, biomarker evaluation and predictivity grading both for efficacy and toxicity, early human trial design adequate to guide stop/go decisions on grounds of biomarker panels, and biostatistical methods to analyze multiple readout situations and quantify risk projections. Representing a comparably novel science, rapid steroid actions have been recognized to carry potential clinical implications in various fields. Findings in this field have not yet been successfully translated into clinically relevant new medicines except for neurosteroids. A promising compound is the membrane estrogen receptor agonist STX, which may be applicable for estrogen withdrawal symptoms. Nongenomic vitamin D analogs may be useful as antiinflammatory, anticancer or diabetes preventing agents. Further the membrane thyroid receptor agonist tetrac may be useful in cancer treatment. Unfortunately lazaroids (membrane-only active glucocorticoids), which have been clinically tested as neuroprotective agents, had to be abandoned because of lacking clinical efficacy. Yet, the hierarchy of antirheumatic glucocorticoid action in regard to their clinical potency may better correlate with their membrane effects than their ability to bind to the classic glucocorticoid receptor. To improve the translational success of the rapid actions of steroids research, scientists should become familiar with major aspects of translational work and always seek for translational dimensions in their research. PMID:19782096

  9. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  10. RAPID ACCESS INFORMATION SYSTEM (RAINS)

    EPA Science Inventory

    RAINS has been designed to provide you fast, easy, flexible access to the Region's vast stores of environmental, programmatic, and administrative data and information. RAINS will allow users to approach and interact with this information in an integrated, multi-dimensional contex...

  11. 49 CFR 37.47 - Key stations in light and rapid rail systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Key stations in light and rapid rail systems. 37... INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.47 Key stations in light and rapid rail systems. (a) Each public entity that provides designated public transportation by means of a light...

  12. 49 CFR 37.47 - Key stations in light and rapid rail systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Key stations in light and rapid rail systems. 37... INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.47 Key stations in light and rapid rail systems. (a) Each public entity that provides designated public transportation by means of a light...

  13. Teaching Tip: Using Rapid Game Prototyping for Exploring Requirements Discovery and Modeling

    ERIC Educational Resources Information Center

    Dalal, Nikunj

    2012-01-01

    We describe the use of rapid game prototyping as a pedagogic technique to experientially explore and learn requirements discovery, modeling, and specification in systems analysis and design courses. Students have a natural interest in gaming that transcends age, gender, and background. Rapid digital game creation is used to build computer games…

  14. Cyberinfrastructure for Rapid Prototyping Capability

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Kalyanasundaram, A.; Zhuk, I.; Goli, V.

    2007-12-01

    The overall goal of the NASA Rapid Prototyping Capability is to speed the evaluation of potential uses of NASA research products and technologies to improve future operational systems by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The infrastructure to support the RPC is thus expected to provide the capability to rapidly evaluate innovative methods of linking science observations. The RPC infrastructure supports two major categories of experiments (and subsequent analysis): comparing results of a particular model as fed with data coming from different sources, and comparing different models using the data coming from the same source. In spite of being conceptually simple, two use cases in fact entail a significant technical challenge. Enabling RPC experiments requires thus a radical simplification of access to both actual and simulated data, as well as tools for data pre- and post-processing. The tools must be interoperable, allowing the user to create computational workflows with the data seamlessly transferred as needed, including third-party transfers to high-performance computing platforms. In addition, the provenance of the data must be preserved in order to document results of different what-if scenarios and to enable collaboration and data sharing between users. The functionality of the RPC splits into several independent modules such as interactive Web site, data server, tool's interfaces, or monitoring service. Each such module is implemented as an independent portlet. The RPC Portal aggregates the different contents provided by the portlets into a single interface employing a popular GridSphere portlet container. The RPC data access is based on Unidata's THREDDS Data server (TDS) extended to support, among others, interactive creation of containers for new data collections and uploading new data sets, downloading the data either to the user desktop or transferring it to a remote location using

  15. Rapid fabrication of custom patient biopsy guides.

    PubMed

    Rajon, Didier A; Bova, Frank J; Chi, Yueh-Yun; Friedman, William A

    2009-01-01

    Image guided surgery is currently performed using frame-based as well as frameless approaches. In order to reduce the invasive nature of stereotactic guidance as well as to reduce the cost in both equipment and time required within the operating room we investigated the use of rapid prototyping (RP) technology. In our approach we fabricated custom patient specific face-masks and guides that can be applied to the patient during surgery. These guides provide a stereotactic reference for the accurate placement of surgical tools to a pre-planned target along a pre-planned trajectory. While the use of RP machines has previously been shown to be satisfactory for the accuracy standpoint, one of our design criteria, completing the entire built and introduction into the sterile field in less than 120 minutes, was unobtainable. Our primary problems were the fabrication time and the non-resistance of the built material to high-temperature sterilization. In the current study, we have investigated the use of subtractive rapid prototyping (SRP) machines to perform the same quality of surgical guidance while improving the fabrication time and allowing for choosing materials suitable for sterilization. Because SRP technology does not offer the same flexibility as RP in term of prototype shape and complexity, our software program was adapted to provide new guide designs suitable for SRP fabrication. The biopsy guide was subdivided for a more efficient built with the parts being uniquely assembled to form the final guide. The accuracy of the assembly was then assessed using a modified Brown-Roberts-Wells phantom base that allows measuring the position of a biopsy needle introduced into the guide and comparing it with the actual planned target. These tests showed that 1) SRP machines provide an average accuracy of 0.77 mm with a standard deviation of 0.05 mm (plus or minus one image pixel) and 2) SRP allows for fabrication and sterilization within three and a half hours after

  16. POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions.

    PubMed

    Du, Fanfan; Bao, Yinyin; Liu, Bin; Tian, Jiao; Li, Qianbiao; Bai, Ruke

    2013-05-21

    Polyhedral oligomeric silsesquioxane (POSS)-containing red fluorescent nanoparticles were designed and prepared for rapid detection of aqueous fluoride ions by virtue of the fluoride-triggered self-quenching of perylene bisimide dyes in nanoparticle cores. PMID:23575958

  17. Light-Activated Rapid-Response Polyvinylidene-Fluoride-Based Flexible Films.

    PubMed

    Tai, Yanlong; Lubineau, Gilles; Yang, Zhenguo

    2016-06-01

    The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated. PMID:27061392

  18. The Rapid Terrain Visualization interferometric synthetic aperture radar sensor.

    SciTech Connect

    Graham, Robert H.; Hensley, William Heydon, Jr.; Bickel, Douglas Lloyd

    2003-07-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to 'demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies.' This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  19. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  20. Rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas M.

    2012-11-01

    Several global and regional factors contribute to observed sea-level change along any particular coast. Global processes include changes in ocean mass (glacio-eustasy from ice melt), ocean volume (steric effects), viscoelastic land movements (glacioisostatic adjustment GIA), and changes in terrestrial water storage. Regional processes, often connected to steric and glacial changes, include changes in ocean circulation (Meridional Overturning Circulation [MOC]), glacial melting, local GIA, regional subsidence and others. Paleoclimate, instrumental and modeling studies show that combinations of these factors can cause relatively rapid rates of sea-level rise exceeding 3 mm yr-1 over various timescales along particular coasts. This paper discusses patterns and causes of sea-level rise with emphasis on paleoclimatological records. It then addresses the hypothesis of late Holocene (pre-20th century) sea-level stability in light of paleoclimatic evidence, notably from reconstructions of sea-surface temperature and glacial activity, for significant climate and sea-level variability during this time. The practical difficulties of assessing regional sea-level (SL) patterns at submillennial timescales will be discussed using an example from the eastern United States.

  1. Rapid Response Flood Water Mapping

    NASA Technical Reports Server (NTRS)

    Policelli, Fritz; Brakenridge, G. R.; Coplin, A.; Bunnell, M.; Wu, L.; Habib, Shahid; Farah, H.

    2010-01-01

    Since the beginning of operation of the MODIS instrument on the NASA Terra satellite at the end of 1999, an exceptionally useful sensor and public data stream have been available for many applications including the rapid and precise characterization of terrestrial surface water changes. One practical application of such capability is the near-real time mapping of river flood inundation. We have developed a surface water mapping methodology based on using only bands 1 (620-672 nm) and 2 (841-890 nm). These are the two bands at 250 m, and the use of only these bands maximizes the resulting map detail. In this regard, most water bodies are strong absorbers of incoming solar radiation at the band 2 wavelength: it could be used alone, via a thresholding procedure, to separate water (dark, low radiance or reflectance pixels) from land (much brighter pixels) (1, 2). Some previous water mapping procedures have in fact used such single band data from this and other sensors that include similar wavelength channels. Adding the second channel of data (band 1), however, allows a band ratio approach which permits sediment-laden water, often relatively light at band 2 wavelengths, to still be discriminated, and, as well, provides some removal of error by reducing the number of cloud shadow pixels that would otherwise be misclassified as water.

  2. Early detection and rapid response

    USGS Publications Warehouse

    Westbrooks, Randy G.; Eplee, Robert E.

    2011-01-01

    Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.

  3. Rapidly advancing invasive endomyocardial aspergillosis.

    PubMed

    Davutoglu, Vedat; Soydinc, Serdar; Aydin, Abdullah; Karakok, Metin

    2005-02-01

    The exposure to Aspergillus organisms/spores is likely common, but disease caused by tissue invasion with these fungi is uncommon and occurs primarily in the setting of immunosuppression. We report a case of rapidly advancing invasive endomyocardial aspergillosis secondary to prolonged usage of multiple broad-spectrum antibiotics in a nonimmunocompromised host. A 36-year-old cotton textile worker presented to our institution with a 3-month history of weight loss and fatigue. He reported receiving prolonged use of multiple broad-spectrum antibiotic treatment. The echocardiogram demonstrated multiple endomyocardial vegetations and a mass in the left atrium. Myocardial biopsy specimen revealed an invasive endomyocardial aspergillosis. The patient was investigated for immune deficiency including HIV, and this workup was negative. Treatment was started with amphotericin B and heparin for presumed left atrial thrombus. The patient died because of a rupture of mycotic aneurysm that resulted in cerebral hemorrhage. This case illustrates the risk of an invasive fungal infection in a nonimmunocompromised host who is a prolonged user of antibiotics in the setting of environmental exposure of opportunistic invasive fungal infections. PMID:15682058

  4. A rapid DNA digestion system.

    PubMed

    Fu, Lung-Ming; Lin, Che-Hsin

    2007-04-01

    This paper presents a novel microfluidic DNA digestion system incorporating a high performance micro-mixer. Through the appropriate control of fixed and periodic switching DC electric fields, electrokinetic forces are established to mix the DNA and restriction enzyme samples and to drive them through the reaction column of the device. The experimental and numerical results show that a mixing performance of 98% can be achieved within a mixing channel of length 1.6 mm when a 150 V/cm driving voltage and a 5 Hz switching frequency are applied. The relationship between the mixing performance, switching frequency, and main applied electric field is derived. It is found that the optimal switching frequency depends upon the magnitude of the main applied electric field. The successful digestion of lambda-DNA using Eco RI restriction enzyme is demonstrated. The DNA-enzyme reaction is completed within 15 min in the proposed microfluidic system, compared to 50 min in a conventional large-scale system. Hence, the current device provides a valuable tool for rapid lambda-DNA digestion, while its mixer system delivers a simple yet effective solution for mixing problems in the micro-total-analysis-systems field. PMID:17195107

  5. 77 FR 11575 - Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... National Park Service Notice of Inventory Completion: Grand Rapids Public Museum, Grand Rapids, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Grand Rapids Public Museum has completed an... Rapids Public Museum. Repatriation of the human remains and associated funerary objects to the...

  6. Rapid PCR thermocycling using microscale thermal convection.

    PubMed

    Muddu, Radha; Hassan, Yassin A; Ugaz, Victor M

    2011-01-01

    temperature distributions in microscale convective thermocyclers(12). Unexpectedly, we have discovered a subset of complex flow trajectories that are highly favorable for PCR due to a synergistic combination of (1) continuous exchange among flow paths that provides an enhanced opportunity for reagents to sample the full range of optimal temperature profiles, and (2) increased time spent within the extension temperature zone the rate limiting step of PCR. Extremely rapid DNA amplification times (under 10 min) are achievable in reactors designed to generate these flows. PMID:21403639

  7. Rapid prototyping fabrication of focused ultrasound transducers.

    PubMed

    Kim, Yohan; Maxwell, Adam D; Hall, Timothy L; Xu, Zhen; Lin, Kuang-Wei; Cain, Charles A

    2014-09-01

    Rapid prototyping (RP) fabrication techniques are currently widely used in diverse industrial and medical fields, providing substantial advantages in development time and costs in comparison to more traditional manufacturing processes. This paper presents a new method for the fabrication of high-intensity focused ultrasound transducers using RP technology. The construction of a large-aperture hemispherical transducer designed by computer software is described to demonstrate the process. The transducer was conceived as a modular design consisting of 32 individually focused 50.8-mm (2-in) PZT-8 element modules distributed in a 300-mm hemispherical scaffold with a geometric focus of 150 mm. The entire structure of the array, including the module housings and the hemispherical scaffold was fabricated through a stereolithography (SLA) system using a proprietary photopolymer. The PZT elements were bonded to the lenses through a quarter-wave tungsten-epoxy matching layer developed in-house specifically for this purpose. Modules constructed in this manner displayed a high degree of electroacoustic consistency, with an electrical impedance mean and standard deviation of 109 ± 10.2 Ω for the 32 elements. Time-of-flight measurements for individually pulsed modules mounted on the hemispherical scaffold showed that all pulses arrived at the focus within a 350 ns range, indicating a good degree of element alignment. Pressure profile measurements of the fully assembled transducer also showed close agreement with simulated results. The measured focal beam FWHM dimensions were 1.9 × 4.0 mm (1.9 × 3.9 mm simulated) in the transversal and axial directions respectively. Total material expenses associated with the construction of the transducer were approximately 5000 USD (as of 2011). The versatility and lower fabrication costs afforded by RP methods may be beneficial in the development of complex transducer geometries suitable for a variety of research and clinical applications

  8. ATLDB : A Global Data Base Designed for Rapid Digital Image Retrieval. A Preliminary Design

    NASA Astrophysics Data System (ADS)

    Fresneau, A.

    1987-05-01

    ATLDB (Astronomical Target Location Data Base) is developed by A. Fresneau at Stellar Data Center to meet the challenge of managing and utilizing a global digital imagery data base capable of displaying digital images to support the target identification and location functions. ATLDB will investigate the potential of digital discs to store and display in a "video-game" environment computer assisted charts compilations. A one-year feasibility study will survey requirements of advanced systems, analyze future production, formulate concepts for a technology demonstration of digital cartography.

  9. Lattice model for rapidly folding protein-like heteropolymers.

    PubMed Central

    Shrivastava, I; Vishveshwara, S; Cieplak, M; Maritan, A; Banavar, J R

    1995-01-01

    Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state. Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude. The evolutionary implications of our findings are discussed. PMID:7568102

  10. A compulsator driven rapid-fire EM-gun

    SciTech Connect

    Pratap, S.B.; Bird, W.L.

    1984-03-01

    A compulsator-driven railgun is an attractive alternative to the homopolar generator-inductor-switch configuration, especially for repetitive duty. A conceptual design of a rapid-fire EM-gun system is presented. The generator is sized to accelerate a 0.08-kg projectile to 2 to 3 km/s at a 60 pulse-per-second repetition rate. Initial design parameters are discussed, and example current and velocity waveforms are given. The generator is discharged at the proper phase angle to provide a current zero just as the projectile exits the muzzle of the railgun.

  11. Rapid Syndrome Validation Project (RSVP)

    Energy Science and Technology Software Center (ESTSC)

    2004-03-26

    RSVP facilitates the two-way communication between physicians (who are the “sensors” for disease in a community) and public health officials (who are the true “experts” in determining whether or not disease outbreaks are taking place in community). Currently, there is no software product that enables real-time on line reporting to local public health officials, nor timely feedback to clinicians taking care of ill patients. RSVP takes into consideration the cultural differences in the practice ofmore » medicine across the US and internationally, and provides for automated alerting of public health officials in the setting of a potentially serious disease outbreak. In addition, clinicians’ parficipation is immediately rewarded by providing information that is meaningful for the management of their patients. We envision the addition to RSVP of automated statistical analysis of data (currentty being done on a case-by-case basis by hand), including SNL technology based on neural network analysis. Integration of other SNL technology into RSVP will provide added-value, and will dramatically assist public health officials in their quest to identify disease outbreaks as early as possible in an epidemic (even before the actual level of known cases exceeds historical background) based on other parameters such as rapidity of spread of symptoms in a population. In addition, we are developing a parallel system of syndrome surveillance in animals (called "RSVP-A"), in collaboration with Kansas State University. Data from animal disease outbreaks will also be made available to physicians caring for human patients as zoonotic disease may be important in human epidemics.« less

  12. Rapid Syndrome Validation Project (RSVP)

    SciTech Connect

    Caskey, Susan; Ross, Troy

    2004-03-26

    RSVP facilitates the two-way communication between physicians (who are the “sensors” for disease in a community) and public health officials (who are the true “experts” in determining whether or not disease outbreaks are taking place in community). Currently, there is no software product that enables real-time on line reporting to local public health officials, nor timely feedback to clinicians taking care of ill patients. RSVP takes into consideration the cultural differences in the practice of medicine across the US and internationally, and provides for automated alerting of public health officials in the setting of a potentially serious disease outbreak. In addition, clinicians’ parficipation is immediately rewarded by providing information that is meaningful for the management of their patients. We envision the addition to RSVP of automated statistical analysis of data (currentty being done on a case-by-case basis by hand), including SNL technology based on neural network analysis. Integration of other SNL technology into RSVP will provide added-value, and will dramatically assist public health officials in their quest to identify disease outbreaks as early as possible in an epidemic (even before the actual level of known cases exceeds historical background) based on other parameters such as rapidity of spread of symptoms in a population. In addition, we are developing a parallel system of syndrome surveillance in animals (called "RSVP-A"), in collaboration with Kansas State University. Data from animal disease outbreaks will also be made available to physicians caring for human patients as zoonotic disease may be important in human epidemics.

  13. Nanostructured bioluminescent sensor for rapidly detecting thrombin.

    PubMed

    Chen, Longyan; Bao, Yige; Denstedt, John; Zhang, Jin

    2016-03-15

    Thrombin plays a key role in thrombosis and hemostasis. The abnormal level of thrombin in body fluids may lead to different diseases, such as rheumatoid arthritis, glomerulonephritis, etc. Detection of thrombin level in blood and/or urine is one of important methods for medical diagnosis. Here, a bioluminescent sensor is developed for non-invasively and rapidly detecting thrombin in urine. The sensor is assembled through conjugating gold nanoparticles (Au NPs) and a recombinant protein containing Renilla luciferase (pRluc) by a peptide, which is thrombin specific substrate. The luciferase-catalyzed bioluminescence can be quenched by peptide-conjugating Au NPs. In the presence of thrombin, the short peptide conjugating luciferase and Au NPs is digested and cut off, which results in the recovery of bioluminescence due to the release of luciferase from Au NPs. The bioluminescence intensity at 470 nm is observed, and increases with increasing concentration of thrombin. The bioluminescence intensity of this designed sensor is significantly recovered when the thrombin digestion time lasts for 10 min. In addition, a similar linear relationship between luminescence intensity and the concentration of thrombin is found in the range of 8 nM to 8 μM in both buffer and human urine spiked samples. The limit of detection is as low as 80 pM. It is anticipated that our nanosensor could be a promising tool for clinical diagnosis of thrombin in human urine. PMID:26397418

  14. Memory and learning with rapid audiovisual sequences

    PubMed Central

    Keller, Arielle S.; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193

  15. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  16. Memory and learning with rapid audiovisual sequences.

    PubMed

    Keller, Arielle S; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193

  17. YAM- A Framework for Rapid Software Development

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Biesiadecki, Jeffrey

    2006-01-01

    YAM is a software development framework with tools for facilitating the rapid development and integration of software in a concurrent software development environment. YAM provides solutions for thorny development challenges associated with software reuse, managing multiple software configurations, the development of software product-lines, multiple platform development and build management. YAM uses release-early, release-often development cycles to allow developers to incrementally integrate their changes into the system on a continual basis. YAM facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. YAM uses modules and packages to organize and share software across multiple software products. It uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One side-benefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability as well as software reuse. YAM is in use by several mid-size software development teams including ones developing mission-critical software.

  18. A mini-rapid-scan-spectrophotometer.

    PubMed

    Schmidt, Werner

    2004-02-27

    The mini-rapid-scan-spectrophotometer (Mini-RSS) is a scanning single-beam spectrophotometer that has been patented. It is based on a minimum of reflections and involves exclusively mirrors as beam-deflecting components. This way stray light is minimized, which results in an excellent light-throughput, high dynamics, low cost, compactness and rigidity. The Mini-RSS has been designed as a multi-purpose instrument that allows absorption, transmission, reflection, fluorescence and luminescence measurements in a single-beam mode. Its spectral range extends from the UV and visible spectrum to the IR. This provides for the possibility to measure even optically unfavorable, highly turbid or scattering samples that would be otherwise inaccessible to investigations with commercial spectrophotometers. A miniaturized and very sensitive photomultiplier-module (PM) of high dynamics allows in the visible spectral range absorbance measurements that cover up to four OD units. The Mini-RSS is capable of scanning up to 100 spectra per second with a resolution of 12 bit and 500 points. The linear dispersion is currently 5 nm and the stray light level <0.01%. PMID:14980786

  19. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  20. GMTSAR Software for Rapid Assessment of Earthquakes

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Mellors, R. J.; Tong, X.; Wei, M.; Wessel, P.

    2010-12-01

    GMTSAR is an open source (GNU General Public License) InSAR processing system designed for users familiar with Generic Mapping Tools (GMT). The code is written in C and will compile on any computer where GMT and NETCDF are installed. The system has three main components: 1) a preprocessor for each satellite data type (e.g., ERS, Envisat, and ALOS) to convert the native format and orbital information into a generic format; 2) an InSAR processor to focus and align stacks of images, map topography into phase, and form the complex interferogram; 3) a postprocessor, mostly based on GMT, to filter the interferogram and construct interferometric products of phase, coherence, phase gradient, and line-of-sight displacement in both radar and geographic coordinates. GMT is used to display all the products as postscript files and kml-images for Google Earth to be shared rapidly with other investigators. A set of C-shell scripts has been developed for standard 2-pass processing as well as image alignment for stacking and time series. ScanSAR processing is also possible but requires a knowledgeable user. The code was used to quickly process and display mosaics of interferograms from the M8.8 Maule Chile Earthquake as well as the M7.2 El Major-Cucapah Earthquake. Software and test data are available at ftp://topex.ucsd.edu/pub/gmtsar.

  1. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  2. Rapid prototype modeling in a multimodality world

    NASA Astrophysics Data System (ADS)

    Bidaut, Luc; Madewell, John; Yasko, Alan

    2006-03-01

    Introduction: Rapid prototype modeling (RPM) has been used in medicine principally for bones - that are easily extracted from CT data sets - for planning orthopaedic, plastic or maxillo-facial interventions, and/or for designing custom prostheses and implants. Based on newly available technology, highly valuable multimodality approaches can now be applied to RPM, particularly for complex musculo-skeletal (MSK) tumors where multimodality often transcends CT alone. Methods: CT data sets are acquired for primary evaluation of MSK tumors in parallel with other modalities (e.g., MR, PET, SPECT). In our approach, CT is first segmented to provide bony anatomy for RPM and all other data sets are then registered to the CT reference. Parametric information relevant to the tumor's characterization is then extracted from the multimodality space and merged with the CT anatomy to produce a hybrid RPM-ready model. This model - that also accommodates digital multimodality visualization - is then produced on the latest generation of 3D printers, which permits both shapes and colors. Results: Multimodality models of complex MSK tumors have been physically produced on modern RPM equipment. This new approach has been found to be a clear improvement over the previously disconnected physical RPM and digital multimodality visualization. Conclusions: New technical developments keep opening doors to sophisticated medical applications that can directly impact the quality of patient care. Although this early work still deals with bones as base models for RPM, its use to encompass soft tissues is already envisioned for future approaches.

  3. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2011-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  4. Rapid nuclear import of short nucleic acids.

    PubMed

    Kitagawa, Mai; Okamoto, Akimitsu

    2016-10-01

    Exogenous short-chain nucleic acids undergo rapid import into the nucleus. Fluorescence-labeled dT1-13 DNA microinjected into the cytoplasm domain of a HeLa cell was rapidly imported into the nucleus domain within 1min. This is much more rapid than what has been observed for intracellular diffusion of small molecules. In contrast, import of longer nucleic acids with a length of over 30nt into the nucleus was suppressed. PMID:27597250

  5. Rapid Threat Organism Recognition Pipeline

    SciTech Connect

    Williams, Kelly P.; Solberg, Owen D.; Schoeniger, Joseph S.

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has also been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on quality and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.

  6. Rapid Threat Organism Recognition Pipeline

    Energy Science and Technology Software Center (ESTSC)

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has alsomore » been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on quality and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less

  7. Connecting Network Properties of Rapidly Disseminating Epizoonotics

    PubMed Central

    Rivas, Ariel L.; Fasina, Folorunso O.; Hoogesteyn, Almira L.; Konah, Steven N.; Febles, José L.; Perkins, Douglas J.; Hyman, James M.; Fair, Jeanne M.; Hittner, James B.; Smith, Steven D.

    2012-01-01

    Background To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure. Methods Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology) into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’, which focused on infected individuals but did not assess connectivity. Results The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a “20∶80″ pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads. Conclusions Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished

  8. Influence of Partial Combustion on Rapid Pyrolysis of Wood Biomass

    NASA Astrophysics Data System (ADS)

    Yasuda, Hajime; Yamada, Osamu; Kaiho, Mamoru; Shinagawa, Takuya; Matsui, Satoshi; Iwasaki, Toshihiko; Shimada, Sohei

    A batch reactor was made and used in this work. In an actual rapid pyrolyzer/gasifier, each biomass is thrown into high temperature zone in the reactor. In order to simulate the reaction occurred in a fluidized bed rapid pyrolyzer/gasifier, the reactor was designed to inject samples into reaction zone directly and to control the reaction time optionally. Rapid pyrolysis of wood biomasses, such as Konara, bagasse, and EFB (Empty Fruit Bunch), was carried out at 1073K in nitrogen with the reaction time range of 2-20s. Difference in product distribution with varying reaction time was observed apparently among Konara, bagasse, and EFB. The difference in the reactivity among sorts of biomass should be considered even when their elemental composition and/or components ratio are similar. Rapid pyrolysis of wood biomass (Japanese cedar) with small amount of oxygen as gasification agent was also carried out. The amount of product gas was decreased through 1s to 2s and the decreasing rate was higher with increase in the amount of oxygen.

  9. Analyses of rapid estrogen actions on rat ventromedial hypothalamic neurons.

    PubMed

    Kow, Lee-Ming; Pataky, Stefan; Dupré, Christophe; Phan, Anna; Martin-Alguacil, Nieves; Pfaff, Donald W

    2016-07-01

    Rapid estrogen actions are widely diverse across many cell types. We conducted a series of electrophysiological studies on single rat hypothalamic neurons and found that estradiol (E2) could rapidly and independently potentiate neuronal excitation/depolarizations induced by histamine (HA) and N-Methyl-d-Aspartate (NMDA). Now, the present whole-cell patch study was designed to determine whether E2 potentiates HA and NMDA depolarizations - mediated by distinctly different types of receptors - by the same or by different mechanisms. For this, the actions of HA, NMDA, as well as E2, were investigated first using various ion channel blockers and then by analyzing and comparing their channel activating characteristics. Results indicate that: first, both HA and NMDA depolarize neurons by inhibiting K(+) currents. Second, E2 potentiates both HA and NMDA depolarizations by enhancing the inhibition of K(+) currents, an inhibition caused by the two transmitters. Third, E2 employs the very same mechanism, the enhancement of K(+) current inhibition, thus to rapidly potentiate HA and NMDA depolarizations. These data are of behavioral importance, since the rapid E2 potentiation of depolarization synergizes with nuclear genomic actions of E2 to facilitate lordosis behavior, the primary female-typical reproductive behavior. PMID:27017919

  10. Rapid Prototyping of Mobile Learning Games

    ERIC Educational Resources Information Center

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  11. SEARCHING FOR RAPID METHODS IN ENVIRONMENTAL BACTERIOLOGY

    EPA Science Inventory

    The search for rapid methods in sanitary bacteriology is more urgent today than ever before because of increased necessity for processing poorer quality source waters and controlling quality of sewage effluent discharges. Selection of criteria for rapid tests involving either mod...

  12. Set point calculations for RAPID project

    SciTech Connect

    HICKMAN, G.L.

    1999-10-18

    The Respond and Pump in Days (RAPID) project was initiated to pump part of the contents of tank 241-SY-101 into tank 241-SY-102. This document establishes the basis for all set points and ranges used in the RAPID project.

  13. Rapid Detection of Carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Poirel, Laurent; Dortet, Laurent

    2012-01-01

    To rapidly identify carbapenemase producers in Enterobacteriaceae, we developed the Carba NP test. The test uses isolated bacterial colonies and is based on in vitro hydrolysis of a carbapenem, imipenem. It was 100% sensitive and specific compared with molecular-based techniques. This rapid (<2 hours), inexpensive technique may be implemented in any laboratory. PMID:22932472

  14. MDO can help resolve the designer's dilemma. [Multidisciplinary design optimization

    SciTech Connect

    Sobieszczanski-sobieski, Jaroslaw; Tulinius, J.R. Rockwell International Corp., El Segundo, CA )

    1991-09-01

    Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.

  15. MDO can help resolve the designer's dilemma. [multidisciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.

    1991-01-01

    Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.

  16. Rapid laser prototyping of valves for microfluidic autonomous systems

    NASA Astrophysics Data System (ADS)

    Mohammed, M. I.; Abraham, E.; Y Desmulliez, M. P.

    2013-03-01

    Capillary forces in microfluidics provide a simple yet elegant means to direct liquids through flow channel networks. The ability to manipulate the flow in a truly automated manner has proven more problematic. The majority of valves require some form of flow control devices, which are manually, mechanically or electrically driven. Most demonstrated capillary systems have been manufactured by photolithography, which, despite its high precision and repeatability, can be labour intensive, requires a clean room environment and the use of fixed photomasks, limiting thereby the agility of the manufacturing process to readily examine alternative designs. In this paper, we describe a robust and rapid CO2 laser manufacturing process and demonstrate a range of capillary-driven microfluidic valve structures embedded within a microfluidic network. The manufacturing process described allows for advanced control and manipulation of fluids such that flow can be halted, triggered and delayed based on simple geometrical alterations to a given microchannel. The rapid prototyping methodology has been employed with PMMA substrates and a complete device has been created, ready for use, within 2-3 h. We believe that this agile manufacturing process can be applied to produce a range of complex autonomous fluidic platforms and allows subsequent designs to be rapidly explored.

  17. The Mississippi Research Consortium Rapid Prototyping Capability Overview

    NASA Astrophysics Data System (ADS)

    Moorhead, R.; Haupt, T.; Anantharaj, V.; O'Hara, C.; Aanstoos, J.

    2006-12-01

    Mississippi State University and the University of Mississippi, along with several partners, are exploiting a systems engineering approach to develop and deploy a computational Rapid Prototyping Capability (RPC). This RPC will be used to evaluate research results, predominantly measurements and models, to determine appropriate capabilities by which societal benefits can be obtained via routine operational utilization. This RPC will facilitate science experiments that access, process, and assimilate terascale data from distributed and heterogeneous sources by using numerical models that scale from the desktop to high- performance platforms. The science experiments can be rapidly prototyped in order to evaluate the suitability of data, algorithms and models. The RPC experiments are designed to characterize uncertainties involved in the data, models, and decision making process while maintaining scientific rigor through the entire process. This approach helps identify scientific and logistical risks earlier in the process so that they can be appropriately addressed in a timely manner to minimize risk. This talk or poster will focus on (a) the architecture and cyber-infrastructure we are deploying under NASA, NOAA, and Navy funding for rapid prototyping capabilities to support applied research; (b) the integration of model and data frameworks; and (c) RPC concepts for the design and execution of science experiments.

  18. Deconvolution of sinusoidal rapid EPR scans.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-02-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  19. Deconvolution of Sinusoidal Rapid EPR Scans

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans. PMID:21163677

  20. Rapid field application of hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Brauchler, R.; Hu, R.; Hu, L.; Parras, S. J.; Bayer, P.; Dietrich, P.; Ptak, T.

    2013-12-01

    The motivation of this field study is the need for investigation methods that are both rapid and well suited for resolving the spatial distribution of hydraulic properties in aquifers. Therefore, we propose a field strategy for hydraulic tomography that can be analyzed and performed with a similar speed as direct-push profiling. The field implementation is designed in a way that a suite of tomographic measurements can be recorded in one day. We utilize direct-push technology for the well installation and limit the pumping time to 300 s, which permits us to record 30 transient pressure response curves between two wells in one working day. For the inversion, we applied a computationally efficient inversion scheme which is based on the transformation of the ground water flow equation into a form of the eikonal equation. By exploiting the early part of a transient hydraulic pressure response recorded during cross-well tests only short-term pumping tests are required. The main advantages of the inversion scheme are the low computational requirements of eikonal solvers and that no information about the hydraulic boundaries is needed. The short pumping time in combination with the straightforward inversion technique allows for the reconstruction of hydraulic conductivity and specific storage distributions already in the field, which is particularly useful for an adaptive site investigation approach. Additionally, direct-push injection logging is performed at the field site, and the obtained field data is utilized for successful validation of the hydraulic tomograms. We also compare both methods with respect to the necessary requirements, time demand in the field and complexity of interpretation.

  1. Rapid diagnosis of medulloblastoma molecular subgroups

    PubMed Central

    Schwalbe, Ed C.; Lindsey, Janet C.; Straughton, Debbie; Hogg, Twala L.; Cole, Michael; Megahed, Hisham; Ryan, Sarra L.; Lusher, Meryl E.; Taylor, Michael D.; Gilbertson, Richard J.; Ellison, David W.; Bailey, Simon; Clifford, Steven C.

    2011-01-01

    PURPOSE Microarray studies indicate medulloblastoma comprises distinct molecular disease subgroups, which offer potential for improved clinical management. EXPERIMENTAL DESIGN Minimal mRNA expression signatures diagnostic for the Wnt/Wingless (WNT) and Sonic Hedgehog (SHH) subgroups were developed, validated and used to assign subgroup affiliation in 173 tumours from four independent cohorts, alongside a systematic investigation of subgroup clinical and molecular characteristics. RESULTS WNT tumours (12% (21/173)) were diagnosed >5 years of age (peak, 10 years), displayed classic histology, CTNNB1 mutation (19/20), associated chromosome 6 loss and have previously been associated with favourable prognosis. SHH cases (24% (42/173)) predominated in infants (<3 years) and showed an age-dependent relationship to desmoplastic/nodular pathology; all infant desmoplastic/nodular cases (previously associated with a good outcome) were SHH-positive, but these relationships broke down in non-infants. PTCH1 mutations were common (34%; 11/32), but PTCH1 exon1c hypermethylation, chromosome 9q and REN (KCTD11) genetic loss were not SHH-associated, and SMO or SUFU mutation, PTCH1 exon1a or SUFU hypermethylation did not play a role, indicating novel activating mechanisms in the majority of SHH cases. SHH tumours were associated with an absence of COL1A2 methylation. WNT/SHH-independent medulloblastomas (64% (110/173)) showed all histologies, peaked at 3-6 years, and were exclusively associated with chromosome 17p loss. CONCLUSIONS Medulloblastoma subgroups are characterised by distinct genomic, epigenomic and clinico-pathological features, and clinical outcomes. Validated array-independent gene expression assays for the rapid assessment of subgroup affiliation in small biopsies, provide a basis for their routine clinical application, in strategies including molecular disease-risk stratification and delivery of targeted therapeutics. PMID:21325292

  2. Rapid Chemometric Filtering of Spectral Data

    NASA Technical Reports Server (NTRS)

    Beaman, Gregory; Pelletier, Michael; Seshadri, Suresh

    2004-01-01

    A method of rapid, programmable filtering of spectral transmittance, reflectance, or fluorescence data to measure the concentrations of chemical species has been proposed. By programmable is meant that a variety of spectral analyses can readily be performed and modified in software, firmware, and/or electronic hardware, without need to change optical filters or other optical hardware of the associated spectrometers. The method is intended to enable real-time identification of single or multiple target chemical species in applications that involve high-throughput screening of multiple samples. Examples of such applications include (but are not limited to) combinatorial chemistry, flow cytometry, bead assays, testing drugs, remote sensing, and identification of targets. The basic concept of the proposed method is to perform real-time crosscorrelations of a measured spectrum with one or more analytical function(s) of wavelength that could be, for example, the known spectra of target species. Assuming that measured spectral intensities are proportional to concentrations of target species plus background spectral intensities, then after subtraction of background levels, it should be possible to determine target species concentrations from cross-correlation values. Of course, the problem of determining the concentrations is more complex when spectra of different species overlap, but the problem can be solved by use of multiple analytical functions in combination with computational techniques that have been developed previously for analyses of this type. The method is applicable to the design and operation of a spectrometer in which spectrally dispersed light is measured by means of an active-pixel sensor (APS) array. The row or column dimension of such an array is generally chosen to be aligned along the spectral-dispersion dimension, so that each pixel intercepts light in a narrow spectral band centered on a wavelength that is a known function of the pixel position. The

  3. Rapid Disaster Analysis based on SAR Techniques

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Soergel, U.

    2015-03-01

    Due to all-day and all-weather capability spaceborne SAR is a valuable means for rapid mapping during and after disaster. In this paper, three change detection techniques based on SAR data are discussed: (1) initial coarse change detection, (2) flooded area detection, and (3) linear-feature change detection. The 2011 Tohoku Earthquake and Tsunami is used as case study, where earthquake and tsunami events provide a complex case for this study. In (1), pre- and post-event TerraSAR-X images are coregistered accurately to produce a false-color image. Such image provides a quick and rough overview of potential changes, which is useful for initial decision making and identifies areas worthwhile to be analysed further in more depth. In (2), the post-event TerraSAR-X image is used to extract the flooded area by morphological approaches. In (3), we are interested in detecting changes of linear shape as indicator for modified man-made objects. Morphological approaches, e.g. thresholding, simply extract pixel-based changes in the difference image. However, in this manner many irrelevant changes are highlighted, too (e.g., farming activity, speckle). In this study, Curvelet filtering is applied in the difference image not only to suppress false alarms but also to enhance the change signals of linear-feature form (e.g. buildings) in settlements. Afterwards, thresholding is conducted to extract linear-shaped changed areas. These three techniques mentioned above are designed to be simple and applicable in timely disaster analysis. They are all validated by comparing with the change map produced by Center for Satellite Based Crisis Information, DLR.

  4. Rapid Response Risk Assessment in New Project Development

    NASA Technical Reports Server (NTRS)

    Graber, Robert R.

    2010-01-01

    A capability for rapidly performing quantitative risk assessments has been developed by JSC Safety and Mission Assurance for use on project design trade studies early in the project life cycle, i.e., concept development through preliminary design phases. A risk assessment tool set has been developed consisting of interactive and integrated software modules that allow a user/project designer to assess the impact of alternative design or programmatic options on the probability of mission success or other risk metrics. The risk and design trade space includes interactive options for selecting parameters and/or metrics for numerous design characteristics including component reliability characteristics, functional redundancy levels, item or system technology readiness levels, and mission event characteristics. This capability is intended for use on any project or system development with a defined mission, and an example project will used for demonstration and descriptive purposes, e.g., landing a robot on the moon. The effects of various alternative design considerations and their impact of these decisions on mission success (or failure) can be measured in real time on a personal computer. This capability provides a high degree of efficiency for quickly providing information in NASA s evolving risk-based decision environment

  5. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    SciTech Connect

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-07-15

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt {sup 6}Li as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented.

  6. Rapid solution of large-scale systems of equations

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.

  7. Rapid fabrication of ceramic composite tubes using chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.; Besmann, T.M.; Stinton, D.P.; McLaughlin, J.C.; Matlin, W.M.

    1996-06-01

    Ceramic composite tubes can be fabricated with silicon carbide matrix and Nicalon fiber reinforcement using forced flow-thermal gradient chemical vapor infiltration (FCVI). The process model GTCVI is used to design the equipment configuration and to identify conditions for rapid, uniform densification. The initial injector and mandrel design produced radial and longitudinal temperature gradients too large for uniform densification. Improved designs have been evaluated with the model. The most favorable approach utilizes a free-standing preform and an insulated water-cooled gas injector. Selected process conditions are based on the temperature limit of the fiber, matrix stoichiometry and reagent utilization efficiency. Model runs for a tube 12 inches long, 4 inches OD and 1/4 inch wall thickness show uniform densification in approximately 15 hours.

  8. Rapid temporal recalibration is unique to audiovisual stimuli.

    PubMed

    Van der Burg, Erik; Orchard-Mills, Emily; Alais, David

    2015-01-01

    Following prolonged exposure to asynchronous multisensory signals, the brain adapts to reduce the perceived asynchrony. Here, in three separate experiments, participants performed a synchrony judgment task on audiovisual, audiotactile or visuotactile stimuli and we used inter-trial analyses to examine whether temporal recalibration occurs rapidly on the basis of a single asynchronous trial. Even though all combinations used the same subjects, task and design, temporal recalibration occurred for audiovisual stimuli (i.e., the point of subjective simultaneity depended on the preceding trial's modality order), but none occurred when the same auditory or visual event was combined with a tactile event. Contrary to findings from prolonged adaptation studies showing recalibration for all three combinations, we show that rapid, inter-trial recalibration is unique to audiovisual stimuli. We conclude that recalibration occurs at two different timescales for audiovisual stimuli (fast and slow), but only on a slow timescale for audiotactile and visuotactile stimuli. PMID:25200176

  9. Unprecedentedly rapid transport of single-file rolling water molecules

    NASA Astrophysics Data System (ADS)

    Qiu, Tong; Huang, Ji-Ping

    2015-10-01

    The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

  10. Modular, Rapid Propellant Loading System/Cryogenic Testbed

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter, Sr.; Jumper, Kevin

    2012-01-01

    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirements

  11. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Black Hills-Rapid City Intrastate Air Quality Control Region. 81.214 Section 81.214 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions §...

  12. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Black Hills-Rapid City Intrastate Air Quality Control Region. 81.214 Section 81.214 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions §...

  13. A synthetic design environment for ship design

    NASA Technical Reports Server (NTRS)

    Chipman, Richard R.

    1995-01-01

    Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.

  14. Risks and Benefits of Rapid Clozapine Titration

    PubMed Central

    Lochhead, Jeannie D.; Nelson, Michele A.; Schneider, Alan L.

    2016-01-01

    Clozapine is often considered the gold standard for the treatment of schizophrenia. Clinical guidelines suggest a gradual titration over 2 weeks to reduce the risks of adverse events such as seizures, hypotension, agranulocytosis, and myocarditis. The slow titration often delays time to therapeutic response. This raises the question of whether, in some patients, it may be safe to use a more rapid clozapine titration. The following case illustrates the potential risks associated with the use of multiple antipsychotics and rapid clozapine titration. We present the case of a young man with schizophrenia who developed life threatening neuroleptic malignant syndrome (NMS) during rapid clozapine titration and treatment with multiple antipsychotics. We were unable to find another case in the literature of NMS associated with rapid clozapine titration. This case is meant to urge clinicians to carefully evaluate the risks and benefits of rapid clozapine titration, and to encourage researchers to further evaluate the safety of rapid clozapine titration. Rapid clozapine titration has implications for decreasing health care costs associated with prolonged hospitalizations, and decreasing the emotional suffering associated with uncontrolled symptoms of psychosis. Clozapine is considered the most effective antipsychotic available thus efforts should focus on developing strategies that would allow for safest and most efficient use of clozapine to encourage its utilization for treatment resistance schizophrenia. PMID:27403276

  15. Accelerated search for materials with targeted properties by adaptive design

    NASA Astrophysics Data System (ADS)

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ~800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  16. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  17. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  18. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  19. Rapidly solidified metal coatings by peen plating

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1987-01-01

    Specimens of 7075-T6 aluminum alloy were peen plated with rapidly solidified tin-lead and aluminum powders, and the cross-sections of the coated specimens were examined by light and electron microscopy. The properties of the peen plated specimens were also compared with those of shot peened specimens without any coating. It is found that peen plating with rapidly solidified metals improves the fatigue properties of the coated samples to a greater extent than shot peening alone. Specimens of 7075-T6 alloy peen plated with rapidly solidified tin-lead and aluminum exhibited better fatigue resistance than shot peened specimens in both air and salt water.

  20. Theory of hard diffraction and rapidity gaps

    SciTech Connect

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  1. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  2. Zika Spreading Rapidly Through Puerto Rico: CDC

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159430.html Zika Spreading Rapidly Through Puerto Rico: CDC Possibly hundreds ... 2016 FRIDAY, June 17, 2016 (HealthDay News) -- The Zika virus is spreading fast through Puerto Rico, placing ...

  3. A feedforward architecture accounts for rapid categorization

    PubMed Central

    Serre, Thomas; Oliva, Aude; Poggio, Tomaso

    2007-01-01

    Primates are remarkably good at recognizing objects. The level of performance of their visual system and its robustness to image degradations still surpasses the best computer vision systems despite decades of engineering effort. In particular, the high accuracy of primates in ultra rapid object categorization and rapid serial visual presentation tasks is remarkable. Given the number of processing stages involved and typical neural latencies, such rapid visual processing is likely to be mostly feedforward. Here we show that a specific implementation of a class of feedforward theories of object recognition (that extend the Hubel and Wiesel simple-to-complex cell hierarchy and account for many anatomical and physiological constraints) can predict the level and the pattern of performance achieved by humans on a rapid masked animal vs. non-animal categorization task. PMID:17404214

  4. RAPID INFILTRATION WASTEWATER TREATMENT FOR SMALL COMMUNITIES

    EPA Science Inventory

    Rapid infiltration treatment performance of three infiltration basins receiving primary treated municipal wastewater is evaluated for optimum total nitrogen control using a series of manual operational techniques and by remote control computer operation of a sprinkler system. Thr...

  5. Rapid methods for identification of yeasts.

    PubMed Central

    Huppert, M; Harper, G; Sun, S H; Delanerolle, V

    1975-01-01

    Opportunistic infections by yeasts have been implicated as one of the major causes of complications in the compromised patient. Rapid recognition and identification of these yeasts is essential for patient management, but conventional liquid medium methods for completing identification tests are cumbersome and time consuming. Rapid tests have been devised based on modifications of methods commonly used in bacteriology. These rapid methods included tests for carbohydrate and nitrate assimilation, fermentation, and urease production. These were compared with several current methods for accuracy of results, for time to final identification, and for economy of time and reagents. In addition, the usual tests for pseudogerm tube formation, for production of hyphae or pseudohyphae, and for growth temperatures were included. The rapid tests achieved 96% or better accuracy compared with expected results, and 46 species of yeasts were identified in 1 to 2 days compared with the 10 to 14 days required by conventional liquid culture methods. Images PMID:1241586

  6. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate

  7. Design and analysis of a micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Zarei, Nilgoon; Leung, Albert; Jones, John D.

    2012-03-01

    This paper describes the simulation and design of a MEMS thermal gyroscope and optimizing the design for increased sensitivity through the use of the Comsol Multiphysics software package. Two different designs are described, and the effects of working fluid properties are explored. A prototype of this device has been fabricated using techniques for rapid prototyping of MEMS transducers.

  8. Rapid assays for environmental and biological monitoring.

    PubMed

    Szurdoki, F; Jaeger, L; Harris, A; Kido, H; Wengatz, I; Goodrow, M H; Székács, A; Wortberg, M; Zheng, J; Stoutamire, D W; Sanborn, J R; Gilman, S D; Jones, A D; Gee, S J; Choudary, P V; Hammock, B D

    1996-05-01

    Rapid, inexpensive, sensitive, and selective enzyme-linked immunosorbent assays (ELISAs) now are utilized in environmental science. In this laboratory, many ELISAs have been developed for pesticides and other toxic substances and also for their metabolites. Compounds for which ELISAs have recently been devised include insecticides (organophosphates, carbaryl, pyrethroids, and fenoxycarb), herbicides (s-triazines, arylureas, triclopyr, and bromacil), fungicides (myclobutanil), TCDD, and metabolites of naphthalene and toluene. New rapid assays have been developed for mercury. PMID:8642182

  9. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  10. Chemo-enzymatic labeling for rapid assignment of RNA molecules.

    PubMed

    Longhini, Andrew P; LeBlanc, Regan M; Dayie, T Kwaku

    2016-07-01

    Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels. PMID:27090003

  11. Pump Design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A NASA handbook on a general purpose titanium alloy was used by Sundstrand Corporation in design calculation for casting titanium impellers. Information contributed substantially to improved impeller design.

  12. DESIGN INFORMATION ON ROTATING BIOLOGICAL CONTACTORS

    EPA Science Inventory

    The relatively rapid introduction of rotating biological contactors (RBC's) into the United States for municipal wastewater treatment has resulted in the widespread application of a technology with which many design engineers are not intimately familiar. Of necessity, many RBC de...

  13. [Detection of rapid eye movement with rapidly adapting neuronal fuzzy systems in imprecise REM syntax].

    PubMed

    Wallner, F

    1996-04-01

    Both living beings and artificial neuronal networks are capable of 'learning' and behavioural adaptation. But also the fuzzy program designed to detect rapid eye movements (REM) during sleep and described here, can be provided with a self-learning option that provides important information about REM sleep. The algorithm computes REM on the basis of horizontal and vertical EOG. EEG, EMG and actiography signals are employed to optimize the method and eliminate artefacts. In a second step, the fuzzy system learns to detect REM with the aid of a sample data set and a minimal set of syntax rules. From sample data and the actions and reactions of visual scorers, the program extracts additional rules and information, which are then used to build a complete fuzzy structure. Thereafter, the REM detection program optimizes the fuzzy logic structure, independently of visual monitoring, on its own. A direct comparison of the results of the algorithm in a 10-night analysis with those of two experienced visual scorers revealed a better than 95% agreement. Re-analysis with the algorithm showed a 100% concurrence. Complete visual measurement of the eye movements occurring in a single night requires several hours; this compares with only 15 minutes required by the algorithm. PMID:8679911

  14. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies.

    PubMed

    Subburaj, K; Nair, C; Rajesh, S; Meshram, S M; Ravi, B

    2007-10-01

    External ear defects can be corrected by surgery, but this may not be feasible for personal or medical reasons. Reconstructive solutions are a good alternative, but rely on the artistry and availability of the anaplastologist. A semi-automated methodology using computer-aided design (CAD) and rapid prototyping (RP) technologies was developed for auricular prosthesis development, and demonstrated in a real-life case. The correct geometry and position of the prosthesis were ensured by stacking the computed tomography scan images of the contralateral normal ear in reverse order, and joining them using a medical modelling software program. The CAD model of the remnant portion of the defective ear was subtracted from the model of the mirrored contralateral ear, using a haptic CAD system, to obtain the final geometry of the prosthesis. Polymer models were fabricated in RP systems, and used for making a corresponding mould. Medical grade silicone rubber of the appropriate colour was packed into the mould to fabricate the final ear prosthesis and fitted to the deficient side of the patient using medical grade adhesive. The computer-aided methodology gave a high level of accuracy in terms of shape, size and position of the prosthesis, and a significantly shorter lead time compared to the conventional (manual) technique. PMID:17822875

  15. Modeling of rapid direct-contact condensation. Report on phase 1 (Final)

    SciTech Connect

    Wallis, G.B.; Richter, H.J.; Valenzuela, J.A.; Rothe, P.H.

    1985-08-01

    The focus of the study is on rapid direct-contact condensation phenomena, that is, direct-contact condensation situations characterized by extremely high condensation rates and violent mixing at the liquid-vapor interface. Rapid condensation phenomena arise in many industrial processes, but general methods do not presently exist to design effective components or to avoid system-flow instability. A conceptual model and preliminary analysis of rapid condensation are presented, and preliminary, proof-of-concept experiments are described. Some background information and a brief survey of previous work in the area are also provided.

  16. Modeling Nitrogen Losses under Rapid Infiltration Basins

    NASA Astrophysics Data System (ADS)

    Akhavan, M.; Imhoff, P. T.; Andres, A. S.; Finsterle, S.

    2011-12-01

    Rapid Infiltration Basin System (RIBS) is one of the major land treatment techniques used for wastewater treatment and reuse of recovered treated wastewater. In this system, wastewater that is treated using primary, secondary, or advanced treatment techniques is applied at high rates to shallow basins constructed in permeable deposits of soil or sand, with further treatment occurring in soil and the vadose zone before the water recharges groundwater. Because the influent wastewater is usually enriched in nitrogen (N) compounds, there is particular concern that RIBS may contaminant groundwater or nearby surface waters if not designed and operated properly. In most of the new sequenced batch reactor (SBR) wastewater treatment plants, N is found in the form of nitrate in the discharged wastewater, so denitrification (DNF) is the main reaction in N removal. The absence of molecular oxygen is one of the required conditions for DNF. During RIBS operation, application of wastewater is cyclic and typically consists of a flooding period followed by days or weeks of drying. Key operational parameters include the ratio of wetting to drying time and the hydraulic loading rate, which affect water saturation and air content in the vadose zone and as a result have an impact on DNF. Wastewater is typically distributed at a limited number of discharge points in RIBS and basins are not usually completely flooded which result in non-homogeneous distribution of wastewater and unusual surface water flow patterns. For this reason, we couple overland flow within RIBS with subsurface flow to investigate the influence of non-uniform application of wastewater on DNF. No modeling effort has been done for understanding this aspect of RIBS performance previously. TOUGH2/ iTOUGH2, a general-purpose numerical simulation program for multi-phase fluid flow in porous media, is used for modeling fluid movement. Water saturation is used as a surrogate parameter to evaluate oxygen limitations in the

  17. Distributed control system for rapid astronomical transient detection

    NASA Astrophysics Data System (ADS)

    Wren, James A.; Borozdin, Konstantin N.; Brumby, Steven P.; Casperson, Donald E.; Galassi, Mark C.; McGowan, Katherine; Starr, Daniel; Vestrand, W. T.; White, Robert; Wozniak, Przemek

    2002-11-01

    The Rapid Telescope for Optical Response (RAPTOR) program consists of a network of robotic telescopes dedicated to the search for fast optical transients. The pilot project is composed of three observatories separated by approximately 38 kilometers located near Los Alamos, New Mexico. Each of these observatories is composed of a telescope, mount, enclosure, and weather station, all operating robotically to perform individual or coordinated transient searches. The telescopes employ rapidly slewing mounts capable of slewing a 250 pound load 180 degrees in under 2 seconds with arcsecond precision. Each telescope consists of wide-field cameras for transient detection and a narrow-field camera with greater resolution and sensitivity. The telescopes work together by employing a closed-loop system for transient detection and follow-up. Using the combined data from simultaneous observations, transient alerts are generated and distributed via the Internet. Each RAPTOR telescope also has the capability of rapidly responding to external transient alerts received over the Internet from a variety of ground-based and satellite sources. Each observatory may be controlled directly, remotely, or robotically while providing state-of-health and observational results to the client and the other RAPTOR observatories. We discuss the design and implementation of the spatially distributed RAPTOR system.

  18. Two-step rapid sulfur capture. Final report

    SciTech Connect

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  19. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  20. Optimization process in helicopter design

    NASA Technical Reports Server (NTRS)

    Logan, A. H.; Banerjee, D.

    1984-01-01

    In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.

  1. Modified TB rapid test by proteinase K for rapid diagnosis of pleural tuberculosis.

    PubMed

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Yari, Fatemeh; Bahrmand, Ahmadreza

    2016-03-01

    The diagnosis of pleural tuberculosis continues to be a challenge due to the low sensitivity of traditional diagnostic methods. Better and more rapid tests are needed for diagnosis of pleural TB. In this study, pleural fluids were tested with rapid test to determine Mycobacterium tuberculosis (MTB antigen). Affinity chromatography was used to purify specific polyclonal antibodies against MTB antigen. Pleural samples after decontamination were treated with proteinase K. Rapid test for pleural fluids was prepared by specific antibody. Rapid test was performed on 85 pleural fluid patients. The patients had a mean age of 46.55 ± 15.96 years and 38 were men. The performance of rapid test, using proteinase K, was found to be the most impressive: sensitivity 93%, specificity 94%, PPV 90%, and NPV 96% compared with adenosine deaminase test (ADA), PCR, smear, and culture. The present study did demonstrate that modified TB rapid test can substantially improve the diagnosis of extrapulmonary TB. PMID:26693840

  2. When Less Is More in Cognitive Diagnosis: A Rapid Online Method for Diagnosing Learner Task-Specific Expertise

    ERIC Educational Resources Information Center

    Kalyuga, Slava

    2008-01-01

    Rapid cognitive diagnosis allows measuring current levels of learner domain-specific knowledge in online learning environments. Such measures are required for individualizing instructional support in real time, as students progress through a learning session. This article describes 2 experiments designed to validate a rapid online diagnostic…

  3. TOPAZ II Anti-Criticality Device Rapid Prototype

    NASA Astrophysics Data System (ADS)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  4. Autonomous Robotic Refueling System (ARRS) for rapid aircraft turnaround

    NASA Astrophysics Data System (ADS)

    Williams, O. R.; Jackson, E.; Rueb, K.; Thompson, B.; Powell, K.

    An autonomous robotic refuelling system is being developed to achieve rapid aircraft turnaround, notably during combat operations. The proposed system includes a gantry positioner with sufficient reach to position a robotic arm that performs the refuelling tasks; a six degree of freedom manipulator equipped with a remote center of compliance, torque sensor, and a gripper that can handle standard tools; a computer vision system to locate and guide the refuelling nozzle, inspect the nozzle, and avoid collisions; and an operator interface with video and graphics display. The control system software will include components designed for trajectory planning and generation, collision detection, sensor interfacing, sensory processing, and human interfacing. The robotic system will be designed so that upgrading to perform additional tasks will be relatively straightforward.

  5. Rapid steroid hormone actions via membrane receptors.

    PubMed

    Schwartz, Nofrat; Verma, Anjali; Bivens, Caroline B; Schwartz, Zvi; Boyan, Barbara D

    2016-09-01

    Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects. PMID:27288742

  6. Rapid, generalized adaptation to asynchronous audiovisual speech

    PubMed Central

    Van der Burg, Erik; Goodbourn, Patrick T.

    2015-01-01

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. PMID:25716790

  7. Rapid Assessment of Marine Pollution (RAMP).

    PubMed

    Bowen, Robert E; Depledge, Michael H

    2006-01-01

    RAMP embraces the integrated use of methods for the rapid measurement, assessment and access to information on the nature, sources and influences of coastal environmental change. It embraces approaches held in the literature, research and programs of RAMP (Rapid Assessment of Marine Pollution) and the emerging work described as RASE (Rapid Assessment of Socio-Economic Indicators). To protect coastal ecosystems and the health of communities effectively, management infrastructure requires the tools and resources necessary to detect damage to coastal ecosystems and their components, identify causative agents, impose remedial action, and demonstrate that measures have been effective. Pragmatic monitoring and prediction capabilities must also be built to provide further confidence that human impacts are being minimized and that threats to human health have been contained. For most of the world, however, the ability to build such capability is a technical challenge and often cost prohibitive. These constraints point to the need to develop and expand the integrated use of simple, robust, cost-effective environmental assessment procedures. This paper suggests that a system built around the Rapid Assessment of Marine Pollution (RAMP) and the Rapid Assessment of Socio-Economic Indicators (RASE) can, should and in some cases already has been effective in meeting such informational and management needs. PMID:17070861

  8. Rapid, generalized adaptation to asynchronous audiovisual speech.

    PubMed

    Van der Burg, Erik; Goodbourn, Patrick T

    2015-04-01

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. PMID:25716790

  9. Cryptic Population Dynamics: Rapid Evolution Masks Trophic Interactions

    PubMed Central

    Yoshida, Takehito; Ellner, Stephen P; Jones, Laura E; Bohannan, Brendan J. M; Lenski, Richard E; Hairston, Nelson G

    2007-01-01

    Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution. PMID:17803356

  10. Designer microbes for biosynthesis

    PubMed Central

    Quin, Maureen B.; Schmidt-Dannert, Claudia

    2014-01-01

    Microbes have long been adapted for the biosynthetic production of useful compounds. There is increasing demand for the rapid and cheap microbial production of diverse molecules in an industrial setting. Microbes can now be designed and engineered for a particular biosynthetic purpose, thanks to recent developments in genome sequencing, metabolic engineering, and synthetic biology. Advanced tools exist for the genetic manipulation of microbes to create novel metabolic circuits, making new products accessible. Metabolic processes can be optimized to increase yield and balance pathway flux. Progress is being made towards the design and creation of fully synthetic microbes for biosynthetic purposes. Together, these emerging technologies will facilitate the production of designer microbes for biosynthesis. PMID:24646570

  11. Virtual techniques for designing and fabricating a retainer.

    PubMed

    Nasef, Ahmed A; El-Beialy, Amr R; Mostafa, Yehya A

    2014-09-01

    The purpose of this article was to report a procedure for using 3-dimensional cone-beam computed tomography imaging, computer-aided design, computer-aided manufacturing, and rapid prototyping to design and produce a retainer. PMID:25172262

  12. Rapid prototyping of frequency selective surfaces by laser direct-write

    NASA Astrophysics Data System (ADS)

    Mathews, Scott A.; Mirotznik, Mark; Good, Brandon L.; Piqué, Alberto

    2007-02-01

    In this work we describe the use of laser direct-write for the rapid prototyping of frequency selective surfaces. Frequency selective surfaces are generally described by a periodic array of conducting or dielectric features (i.e. crosses, loops, grids, etc.) that when properly designed can pass or reject specific frequency bands of incoming electromagnetic radiation. While simple frequency selective surfaces are relatively straight forward to design and fabricate, operational demands, particularly military, have motivated the design and fabrication of much more complicated patterns. These new designs combine features of significantly different length scales, randomly dithered patterns and combinations of passive and active elements. We will demonstrate how laser direct-write is an ideal tool for the rapid prototyping of these new more complicated frequency selective surface designs. We will present experimental results for devices fabricated using several different laser direct-write processes.

  13. Rapid cloning of any rearranged mouse immunoglobulin variable genes

    SciTech Connect

    Dattamajumdar, A.K.; Jacobson, D.P.; Hood, L.E.; Osman, G.E.

    1996-12-31

    Immunoglobulins (Ig) have been the focus of extensive study for several decades and have become an important research area for immunologists and molecular biologists. The use of polymerase chain reaction (PCR) technology has accelerated the cloning, sequencing, and characterization of genes of the immune system. However, cloning and sequencing the Ig variable (V) genes using the PCR technology has been a challenging task, primarily due to the very diverse nature of Ig V region genes. We have developed a simple, rapid, and reproducible PCR-based technique to clone any rearranged mouse Ig heavy or light chain genes. A close examination of all Ig heavy and light chain V gene families has resulted in the design of 5{prime} and 3{prime} universal primers from regions that are highly conserved across all heavy or light chain V gene families, and the joining or constant regions, respectively. We present our strategy for designing universal primers for Ig V gene families. These primers were able to rapidly amplify the rearranged Ig V genes, belonging to diverse Ig V gene families from very different cell lines, i.e., J558, MOPC-21, 36-60, and a chicken ovalbumin specific B-cell hybridoma. In addition, the present study provides the complete alignment of nucleotide sequences of all heavy and light chain variable gene families. This powerful method of cloning Ig V genes, therefore, allows rapid and precise analysis of B-cell hybridomas, B-cell repertoire, and B-cell ontogeny. 55 refs., 5 figs., 2 tabs.

  14. Rapid algorithm prototyping and implementation for power quality measurement

    NASA Astrophysics Data System (ADS)

    Kołek, Krzysztof; Piątek, Krzysztof

    2015-12-01

    This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart

  15. SIMS: A Hybrid Method for Rapid Conformational Analysis

    PubMed Central

    Gipson, Bryant; Moll, Mark; Kavraki, Lydia E.

    2013-01-01

    Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their structure. Describing the exact details of these conformational changes, however, remains a central challenge for computational biology due the enormous computational requirements of the problem. This has engendered the development of a rich variety of useful methods designed to answer specific questions at different levels of spatial, temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured Intuitive Move Selector (sims), designed to bridge the divide between these two classes, while allowing the benefits of both to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm, borrowed from the field of robotics, in tandem with a well-established protein modeling library. sims can combine precise energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate, analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic conformational exploration. We present three example problems that sims is applied to and demonstrate a rapid solution for each. These include the automatic determination of “active” residues for the hinge-based system Cyanovirin-N, exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy

  16. A new VLSI compatible rapid thermal processing system

    NASA Astrophysics Data System (ADS)

    Aitken, D.; Mehta, S.; Parisi, N.; Russo, C. J.; Schwartz, V.

    Rapid thermal processing (RTP) is increasingly becoming a significant tool to meet the challenge of fabricating miniaturized MOS and bipolar devices. The primary advantages of RTP over conventional furnace annealing include the shorter heat cycle, well-controlled soak times at peak temperatures and the capability to rapidly change anneal ambients, thereby enhancing its flexibility as a process tool. The major applications of RTP in VLSI technology that are presently being pursued include: (i) implant-damage annealing/dopant activation, (ii) silicide formation, (iii) glass reflow, (iv) thin film growth/deposition (oxides, nitrides, oxy-nitrides) and (v) contact alloying. This paper discusses a new rapid thermal processor, RTP-800/8000, recently introduced by Varian. The discussion will include mechanical and electrical design, software, heating process compatibility, process uniformity and repeatability, process setup and noncontact temperature measurement. The heating system consists of a tungsten lamp array surrounded by a highly reflective mirror system designed to provide good temperature uniformity for wafer sizes up to 200 mm. The RTP-8000 has a serial cassette-to-cassette automatic wafer handling system. The RTP-800 possesses a single wafer, operator-assisted wafer handling system. The RTP-800/8000 has an automated multiple gas flow control and also has the optional capability of processing wafers in vacuum. An infrared optical pyrometer measures the wafer temperature from the backside of the wafer. In the RTP-8000, touch screen operation of the menu-driven recipes is easy with user-friendly software. A separate electroluminescent flat panel display provides information for maintenance and servicing and reports the system status. Process information is provided on this display in the RTP-800.

  17. Rapid Prototyping of High Performance Signal Processing Applications

    NASA Astrophysics Data System (ADS)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  18. Rapid-Scan EPR of Immobilized Nitroxides

    PubMed Central

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-01-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  19. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.

  20. Rapid Business Process Discovery (R-BPD)

    NASA Astrophysics Data System (ADS)

    Ghose, Aditya; Koliadis, George; Chueng, Arthur

    Modeling is an important and time consuming part of the Business Process Management life-cycle. An analyst reviews existing documentation and queries relevant domain experts to construct both mental and concrete models of the domain. To aid this exercise, we propose the Rapid Business Process Discovery (R-BPD) framework and prototype tool that can query heterogeneous information resources (e.g. corporate documentation, web-content, code e.t.c.) and rapidly construct proto-models to be incrementally adjusted to correctness by an analyst. This constitutes a departure from building and constructing models toward just editing them. We believe this rapid mixed-initiative modeling will increase analyst productivity by significant orders of magnitude over traditional approaches. Furthermore, the possibility of using the approach in distributed and real-time settings seems appealing and may help in significantly improving the quality of the models being developed w.r.t. being consistent, complete, and concise.

  1. Can Population Genetics Adapt to Rapid Evolution?

    PubMed

    Messer, Philipp W; Ellner, Stephen P; Hairston, Nelson G

    2016-07-01

    Population genetics largely rests on a 'standard model' in which random genetic drift is the dominant force, selective sweeps occur infrequently, and deleterious mutations are purged from the population by purifying selection. Studies of phenotypic evolution in nature reveal a very different picture, with strong selection and rapid heritable trait changes being common. The time-rate scaling of phenotypic evolution suggests that selection on phenotypes is often fluctuating in direction, allowing phenotypes to respond rapidly to environmental fluctuations while remaining within relatively constant bounds over longer periods. Whether such rapid phenotypic evolution undermines the standard model will depend on how many genomic loci typically contribute to strongly selected traits and how phenotypic evolution impacts the dynamics of genetic variation in a population. Population-level sequencing will allow us to dissect the genetic basis of phenotypic evolution and study the evolutionary dynamics of genetic variation through direct measurement of polymorphism trajectories over time. PMID:27185237

  2. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  3. Rapid-scan EPR of immobilized nitroxides.

    PubMed

    Yu, Zhelin; Quine, Richard W; Rinard, George A; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J; Boratyński, Przemysław J; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes. PMID:25240151

  4. Rapid auditory learning of temporal gap detection.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R

    2016-07-01

    The rapid initial phase of training-induced improvement has been shown to reflect a genuine sensory change in perception. Several features of early and rapid learning, such as generalization and stability, remain to be characterized. The present study demonstrated that learning effects from brief training on a temporal gap detection task using spectrally similar narrowband noise markers defining the gap (within-channel task), transfer across ears, however, not across spectrally dissimilar markers (between-channel task). The learning effects associated with brief training on a gap detection task were found to be stable for at least a day. These initial findings have significant implications for characterizing early and rapid learning effects. PMID:27475211

  5. Reengineering the Project Design Process

    NASA Technical Reports Server (NTRS)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  6. Materials Data on Mn3PdN (SG:221) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  7. Materials Data on SmAl3Pd2 (SG:191) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on In3Pd5 (SG:55) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Ga3Pd5 (SG:55) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-03-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Materials Data on Al3Pd5 (SG:55) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-03-08

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  11. Materials Data on Sn3Pd (SG:64) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  12. Materials Data on CeZn3Pd2 (SG:191) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Mn3(P3Pd10)2 (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Zr3Pd4 (SG:148) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Dy3Pd2 (SG:127) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on Gd3Pd2 (SG:127) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on Ho3Pd2 (SG:127) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on Er3Pd2 (SG:127) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Materials Data on V3Pd (SG:223) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  20. Materials Data on Li3Pd (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  1. Materials Data on Y3Si3Pd2 (SG:63) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-18

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  3. A STUDY OF RAPID CAVITY TUNING.

    SciTech Connect

    ZHAO, Y.

    2001-07-12

    An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.

  4. Rapid web development using AJAX and Python

    NASA Astrophysics Data System (ADS)

    Dolgert, A.; Gibbons, L.; Kuznetsov, V.

    2008-07-01

    We discuss the rapid development of a large scale data discovery service for the CMS experiment using modern AJAX techniques and the Python language. To implement a flexible interface capable of accommodating several different versions of the DBS database, we used a 'stack' approach. Asynchronous JavaScript and XML (AJAX) together with an SQL abstraction layer, template engine, code generation tool and dynamic queries provide powerful tools for constructing interactive interfaces to large amounts of data. We show how the use of these tools, with rapid development in a modern scripting language, improved the scalability and usability of the the search interface for different user communities.

  5. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  6. Cast Process Simulation for the Rapid Tooling.

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Jiang, Rui; Liu, Yuan; Yan, Yongnian

    1997-03-01

    A major use for RP (Rapid Prototyping) now is in the foundry industry. It is so called RT (Rapid Tooling). Models are used as patterns for sand and plaster casting or used as sacrificial models in investment casting in the RT. In order to improve casting quality, a cast process simulation program for the RT has been made. This simulation depends on analysis of size accuracy parameters. The result could be came back into the CAD forming program. After that a new CAD data have been adopted in RT process. Then the RT technology could have sufficient accuracy in fabrication. Work supported by the Natural Science Foundation of China (NSFC).

  7. API rapid bioassay procedures for drilling fluids

    SciTech Connect

    Not Available

    1989-01-01

    This study evaluates the applicability of existing rapid toxicity test methods (duration of 2 hours or less) using the sea urchin sperm test and marine luminescent bacteria assay system for testing the toxicity of drilling fluids. The correlation between the results of these two test and the results of 96-hour static acute toxicity tests conducted with mysids was also evaluated, and it was determined that it may be possible to use rapid assays to conservatively predict compliance of drilling fluid with a mysid toxicity limitation.

  8. Instructional authoring by direct manipulation of simulations: Exploratory applications of RAPIDS. RAPIDS 2 authoring manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    RAPIDS II is a simulation-based intelligent tutoring system environment. It is a system for producing computer-based training courses that are built on the foundation of graphical simulations. RAPIDS II simulations can be animated and they can have continuously updating elements.

  9. Integrating Rapid Prototyping into Graphic Communications

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  10. Rapid radiative clearing of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Clarke, Cathie J.; Owen, James E.

    2016-04-01

    The lack of observed transition discs with inner gas holes of radii greater than ˜50 au implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called `thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scalelengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. This less efficient clearing of discs by X-ray driven thermal sweeping leaves open the issue of what mechanism (e.g. far-ultraviolet heating) can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.

  11. DATA ACQUISITION SYSTEM FOR RAPID KINETIC EXPERIMENTS

    EPA Science Inventory

    A data acquisition system has been developed to collect, analyze and store large volumes of rapid kinetic data measured from a stopped-flow spectrophotometer. A digital minicomputer, with an A/D converter, tape drive unit and formatter, analog recorder, oscilloscope, and input/ou...

  12. Rapid purification of fluorescent enzymes by ultrafiltration

    NASA Technical Reports Server (NTRS)

    Benjaminson, M. A.; Satyanarayana, T.

    1983-01-01

    In order to expedite the preparation of fluorescently tagged enzymes for histo-cyctochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.

  13. Rapid purification of fluorescent enzymes by ultrafiltration

    NASA Technical Reports Server (NTRS)

    Benjaminson, M. A.; Satyanarayana, T.

    1983-01-01

    In order to expedite the preparation of fluorescently tagged enzymes for histo/cytochemistry, a previously developed method employing gel column purification was compared with a more rapid modern technique using the Millipore Immersible CX-ultrafilter. Microscopic evaluation of the resulting conjugates showed comparable products. Much time and effort is saved using the new technique.

  14. Rapid Development of Bioinformatics Education in China

    ERIC Educational Resources Information Center

    Zhong, Yang; Zhang, Xiaoyan; Ma, Jian; Zhang, Liang

    2003-01-01

    As the Human Genome Project experiences remarkable success and a flood of biological data is produced, bioinformatics becomes a very "hot" cross-disciplinary field, yet experienced bioinformaticians are urgently needed worldwide. This paper summarises the rapid development of bioinformatics education in China, especially related undergraduate…

  15. Evolution: a rapid flight towards birds.

    PubMed

    Ksepka, Daniel T

    2014-11-01

    Remarkable feathered dinosaur fossils have blurred the lines between early birds and their non-avian dinosaur relatives. Rapid skeletal evolution and decreasing body size along one particular lineage of theropod dinosaurs paved the way for the spectacular radiation of birds. PMID:25517372

  16. Nonglacial rapid climate events: past and future.

    PubMed

    Overpeck, J; Webb, R

    2000-02-15

    The paleoclimate record makes it clear that rapid climate shifts of the 20th century are only a subset of possible climate system behavior that might occur in the absence of glacial conditions, and that climatic surprises could be a challenge for society even in the absence of significant greenhouse warming. PMID:10677461

  17. Rapid visco analysis of food protein pastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein isolate (WPI) powders are used in many formulations to boost nutrients. To predict the pasting behavior of proteins, WPI was tested under varying temperatures, using the Rapid-Visco-Analyzer (RVA), under pasting temperatures from 65 to 75 degrees'C, RVA speeds from 100 to 500 rpm, and ...

  18. Rapid molecular diagnostic tools for avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate and early diagnosis of a foreign animal disease is crucial for rapid control and eradication of an outbreak in a country previously free of the disease. Historically many animal diseases have been controlled based solely on clinical signs of disease. However with avian influenza virus ...

  19. Rapid Antibiotic Resistance Evolution of GASP Mutants

    NASA Astrophysics Data System (ADS)

    Zhang, Qiucen; Kim, Hyunsung; Pourmand, Nader; Austin, Robert

    2012-02-01

    The GASP phenotype in bacteria is due to a mutation which enables the bacteria to grow under high stress conditions where other bacteria stop growing. We probe using our Death Galaxy microenvironment how rapidly the GASP mutant can evolve resistance to mutagenic antibiotics compared to wild-type bacteria, and explore the genomic landscape changes due to the evolution of resistance.

  20. PyTrilinos Rapid Prototyping Package

    Energy Science and Technology Software Center (ESTSC)

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  1. Rapid detection and identification of infectious agents

    SciTech Connect

    Kingsbury, D.T.; Falkow, S.

    1985-01-01

    This book contains papers divided among five sections. Some of the paper titles are: Aspects of Using Nucleic Acid Filter Hybridization to Characterize and Detect Enteroviral RNAs; Rapid Identification of Lesihmania Species using Specific Hybridization of Kinetoplast DNA Sequences; Selection of DNA Probes for use in the Diagnosis of Infectious Disease; and Summary of DNA Probes.

  2. Nonglacial rapid climate events: Past and future

    PubMed Central

    Overpeck, Jonathan; Webb, Robert

    2000-01-01

    The paleoclimate record makes it clear that rapid climate shifts of the 20th century are only a subset of possible climate system behavior that might occur in the absence of glacial conditions, and that climatic surprises could be a challenge for society even in the absence of significant greenhouse warming. PMID:10677461

  3. Chemical fragment arrays for rapid druggability assessment.

    PubMed

    Aretz, J; Kondoh, Y; Honda, K; Anumala, U R; Nazaré, M; Watanabe, N; Osada, H; Rademacher, C

    2016-07-12

    Incorporation of early druggability assessment in the drug discovery process provides a means to prioritize target proteins for high-throughput screening. We present chemical fragment arrays as a method that is capable of determining the druggability of a given target with low protein and compound consumption, enabling rapid decision making during early phases of drug discovery. PMID:26890187

  4. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  5. Cognitive Predictors of Rapid Picture Naming

    ERIC Educational Resources Information Center

    Decker, Scott L.; Roberts, Alycia M.; Englund, Julia A.

    2013-01-01

    Deficits in rapid automatized naming (RAN) have been found to be a sensitive cognitive marker for children with dyslexia. However, there is a lack of consensus regarding the construct validity and theoretical neuro-cognitive processes involved in RAN. Additionally, most studies investigating RAN include a narrow range of cognitive measures. The…

  6. Rapid Cognitive Assessment of Learners' Knowledge Structures

    ERIC Educational Resources Information Center

    Kalyuga, Slava

    2006-01-01

    Traditional assessment methods are not always suitable for diagnosing learners' knowledge structures at different levels of their expertise. This paper describes an alternative schema-based rapid assessment technique and its application in the area of arithmetic word problem solving. The technique is based on an assessment of the extent to which…

  7. Rapid Naming Speed and Chinese Character Recognition

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno

    2008-01-01

    We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…

  8. Rapid cycling with true potato seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid generation cycling via true seed production can increase the efficiency of potato breeding programs and genetics studies. This study was carried out to determine the fruit ripening and seed treatment conditions needed for generating true potato seed (TPS) with a high germination rate in a shor...

  9. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  10. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  11. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  12. NARSTO EPA SS HOUSTON RAPID SPMS DATA

    Atmospheric Science Data Center

    2014-04-25

    NARSTO EPA SS HOUSTON RAPID SPMS DATA Project Title:  NARSTO ... Single-particle Mass Spectrometer Location:  Houston, Texas Spatial Resolution:  Point Measurements ...   Order Data Guide Documents:  Houston SPMS Guide Houston Project Plan  (PDF) Houston ...

  13. Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices.

    PubMed

    Gabardo, C M; Soleymani, L

    2016-06-21

    Rapid prototyping is a critical step in the product development cycle of miniaturized chemical and bioanalytical devices, often categorized as lab-on-a-chip devices, biosensors, and micro-total analysis systems. While high throughput manufacturing methods are often preferred for large-volume production, rapid prototyping is necessary for demonstrating and predicting the performance of a device and performing field testing and validation before translating a product from research and development to large volume production. Choosing a specific rapid prototyping method involves considering device design requirements in terms of minimum feature sizes, mechanical stability, thermal and chemical resistance, and optical and electrical properties. A rapid prototyping method is then selected by making engineering trade-off decisions between the suitability of the method in meeting the design specifications and manufacturing metrics such as speed, cost, precision, and potential for scale up. In this review article, we review four categories of rapid prototyping methods that are applicable to developing miniaturized bioanalytical devices, single step, mask and deposit, mask and etch, and mask-free assembly, and we will focus on the trade-offs that need to be made when selecting a particular rapid prototyping method. The focus of the review article will be on the development of systems having a specific arrangement of conductive or semiconductive materials. PMID:27001624

  14. Auto Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The 1987 Honda Acura Legend Coupe was designed with aid of the NASA-developed NASTRAN computer program. NASTRAN takes an electronic look at a computerized design and predicts how the structure will react under a great many different conditions. Quick and inexpensive, it minimizes trial and error in the design process and makes possible better, lighter, safer structures while affording significant savings in development time. All Honda auto products designed in the 1980's have been analyzed by the NASTRAN program.

  15. Rapid ductile afterslip from coseismic heating

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Meade, B. J.; Savage, H. M.; Rowe, C. D.

    2015-12-01

    Earthquakes are typically followed by months of afterslip, the total of which is generally an order of magnitude smaller than the seismic slip. The classic model for afterslip envisions seismic slip transferring stress to adjacent regions, driving accelerated stable sliding that expands the rupture area. However, a small proportion of earthquakes exhibit unusually large and rapid afterslip in the hours immediately following rupture. Here we present a new model that bridges the transition from seismic to postseismic deformation and may explain these observations of rapid afterslip. Seismic slip produces a significant temperature rise that slowly diffuses into the surrounding material following the cessation of seismic slip. Any process with strong temperature dependence is more sensitive to this heat transient than to the ambient temperatures present during the interseismic period. Coupling the temperature evolution of a fault to a ductile flow law we model postseismic deformation during the heat transient. Our idea of coseismic heating enhancing ductile flow is supported by field observations of micro-shear zones adjacent to psuedotachylyte veins. Enhanced ductility is largely confined to the zone that deformed seismically, making our model equivalent to rapid afterslip. Combining analytic and numerical methods we solve for the total afterslip in terms of the slip rate and fault strength during seismic slip and the ductile flow parameters. Our results are sensitive to the assumed rheology and deforming zone thickness, and while total afterslip is generally small some plausible parameter ranges predict afterslip comparable to or greater than the seismic slip developing over timescales shorter than an hour. We demonstrate that rapid afterslip can drive significant frictional heating, leading to a thermal runaway instability that produces a near total postseismic stress drop. To conclude we investigate the tsunami magnitude that rapid afterslip could produce.

  16. Ship Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Marine Consultants & Designers, Inc. is a leader in development of innovative designs for self unloading bulk cargo carriers. Company also performs engineering services related to design of tankers, tugboats and other forms of marine transportation. In its engineering work, the firm makes extensive use of COSMIC's SHCP, which provides highly accurate results, helps to increase product safety and reliability.

  17. Designing Philosophy

    ERIC Educational Resources Information Center

    Sless, David

    2007-01-01

    Drawing on the everyday experience of collaborative design, and using ordinary language, I examine the nature of design practices and rules, how they come about, and how we use them. I offer some arguments to suggest that our conventional ways of thinking about rules are wrong. I conclude by arguing that the practice of designing and doing…

  18. Automotive Design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Analytical Design Service Corporation, Ann Arbor, MI, used NASTRAN (a NASA Structural Analysis program that analyzes a design and predicts how parts will perform) in tests of transmissions, engine cooling systems, internal engine parts, and body components. They also use it to design future automobiles. Analytical software can save millions by allowing computer simulated analysis of performance even before prototypes are built.

  19. Automated Rapid Prototyping of 3D Ceramic Parts

    NASA Technical Reports Server (NTRS)

    McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.

    2005-01-01

    An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut

  20. Space transportation vehicle design evaluation using saturated designs

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1993-01-01

    An important objective in the preliminary design and evaluation of space transportation vehicles is to find the best values of design variables that optimize the performance characteristic (e.g. dry weight). For a given configuration, the vehicle performance can be determined by the use of complex sizing and performance evaluation computer programs. These complex computer programs utilize iterative algorithms and they are generally too expensive and/or difficult to use directly in multidisciplinary design optimization. An alternative is to use response surface methodology (RSM) and obtain quadratic polynomial approximations to the functional relationships between performance characteristics and design variables. In RSM, these approximation models are then used to determine optimum design parameter values and for rapid sensitivity studies. Constructing a second-order model requires that 'n' design parameters be studied at least at 3 levels (values) so that the coefficients in the model can be estimated. There, 3(n) factorial experiments (point designs or observations) may be necessary. For small values of 'n' such as two or three, this design works well. However, when a large number of design parameters are under study, the number of design points required for a full-factorial design may become excessive. Fortunately, these quadratic polynomial approximations can be obtained by selecting an efficient design matrix using central composite designs (CCD) from design of experiments theory. Each unique point design from the CCD matrix is then conducted using computerized analysis tools (e.g. POST, CONSIZ, etc.). In the next step, least squares regression analysis is used to calculate the quadratic polynomial coefficients from the data. However, in some multidisciplinary applications involving a large number of design variables and several disciplines, the computerized performance synthesis programs may get too time consuming and expensive to run even with the use of