Science.gov

Sample records for 3t3 mouse fibroblasts

  1. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  2. Global gene expression profiling of JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts

    PubMed Central

    Hu, Yu-Jie; Imbalzano, Anthony N.

    2016-01-01

    Emerging evidence suggests Jumonji domain-containing proteins are epigenetic regulators in diverse biological processes including cellular differentiation and proliferation. RNA interference-based analyses combined with gene expression profiling can effectively characterize the cellular functions of these enzymes. We found that the depletion of Jumonji domain-containing protein 6 (JMJD6) and its paralog protein Jumonji domain-containing protein 4 (JMJD4) individually by small hairpin RNAs (shRNAs) slowed cell proliferation of mouse NIH3T3 fibroblasts. We subsequently performed gene expression profiling on both JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts using the Affymetrix GeneChip Mouse Exon 1.0 ST Array. Here we report the gene profiling datasets along with the experimental procedures. The information can be used to further investigate how JMJD6 and JMJD4 affect gene expression and cellular physiology. PMID:27071056

  3. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells

    PubMed Central

    Henein, Alexandra E.; Hanlon, Geoffrey W.; Cooper, Callum J.; Denyer, Stephen P.; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 109 pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  4. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells.

    PubMed

    Henein, Alexandra E; Hanlon, Geoffrey W; Cooper, Callum J; Denyer, Stephen P; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 10(9) pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  5. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress.

    PubMed

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-06-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser(166)) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser(15)) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  6. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress

    PubMed Central

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-01-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser166) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser15) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  7. Alpha B-crystallin expression in mouse NIH 3T3 fibroblasts: glucocorticoid responsiveness and involvement in thermal protection.

    PubMed Central

    Aoyama, A; Fröhli, E; Schäfer, R; Klemenz, R

    1993-01-01

    alpha B-crystallin, a major soluble protein of vertebrate eye lenses, is a small heat shock protein which transiently accumulates in response to heat shock and other kinds of stress in mouse NIH 3T3 fibroblasts. Ectopic expression of an alpha B-crystallin cDNA clone renders NIH 3T3 cells thermoresistant. alpha B-crystallin accumulates in response to the synthetic glucocorticoid hormone dexamethasone. Dexamethasone-treated NIH 3T3 cells become thermoresistant to the same extent as they accumulate alpha B-crystallin. A cell clone in which alpha B-crystallin is superinduced upon heat shock acquires augmented thermotolerance. Expression of the ras oncogene causes a rapid but transient accumulation of alpha B-crystallin within 1 day. Later, sustained ras oncogene expression suppresses the dexamethasone-mediated alpha B-crystallin accumulation. Thus, oncogenic transformation triggered by the ras oncogene interferes with hormone-mediated accumulation of alpha B-crystallin and concomitant acquisition of thermoresistance. Other known heat shock proteins do not accumulate in response to ectopic alpha B-crystallin expression or to dexamethasone treatment. These results indicate that alpha B-crystallin can protect NIH 3T3 fibroblasts from thermal shock. Images PMID:8441415

  8. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  9. Mechanisms of vitamin K transport and metabolism in Swiss 3T3 mouse fibroblasts

    SciTech Connect

    Canfield, L.M.; Townsend, A.F.; Hibbs, D.B.

    1986-03-01

    Transport of vitamin K into isolated fibroblasts was followed using /sup 3/H vitamin K/sub 1/. The initial rate is saturable by 5 min. at 25..mu..M vitamin K with a Km(app) of 10..mu..M and V/sub max/ of 50 pmols/min/10/sup 6/ cells. Kinetics of uptake are biphasic with a second slower rate ensuing after 10 minutes. Insensitivity of the initial rate of uptake to FCCP or ouabain indicates an ATP-independent transport mechanism. Specificity of transport is shown by competition of uptake of /sup 3/H vitamin K by unlabelled vitamin and strong (>90%) inhibition of the initial rate by equimolar concentrations of the vitamin K analog, Chloro-K. In addition, following uptake, both vitamins K/sub 1/ and K/sub 2/ are metabolized to their respective epoxides. Vitamin K/sub 1/ epoxide is also transported into fibroblasts and metabolized to the parent quinone in a Warfarin-sensitive reaction. Following alkaline hydrolysis of isolated intracellular protein, the vitamin K-dependent amino acid, gamma carboxyglutamic acid (gla) was detected. It is concluded that vitamin K is specifically transported into fibroblasts and metabolized via the classical pathway described in liver with the concomitant production of vitamin K-dependent proteins.

  10. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  11. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  12. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia. PMID:27435857

  13. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    PubMed

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  14. Dehydrodiconiferyl Alcohol Isolated from Cucurbita moschata Shows Anti-adipogenic and Anti-lipogenic Effects in 3T3-L1 Cells and Primary Mouse Embryonic Fibroblasts*

    PubMed Central

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-01-01

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  15. Vitronectin absorbed on nanoparticles mediate cell viability/proliferation and uptake by 3T3 Swiss albino mouse fibroblasts: in vitro study.

    PubMed

    Rosso, F; Marino, G; Grimaldi, A; Cafiero, G; Chiellini, E; Chiellini, F; Barbarisi, M; Barbarisi, A

    2013-01-01

    We study the interaction of 3T3 Swiss albino mouse fibroblasts with polymeric nanoparticles (NPs) and investigate cellular behaviour in terms of viability/cytotoxicity, cell cycle, NPs uptake, MAP kinase (ERK1/2), and focal adhesion kinase (FAK) activation. After incubation of NPs with cell culture media, western blot analysis showed that Vitronectin is retained by NPs, while Fibronectin is not detected. From cytotoxicity studies (MTT and BrdU methods) an LD50 of about 1.5 mg/mL results for NPs. However, NPs in the range 0.01-0.30 mg/mL are able to trigger a statistically significant increase in proliferation and cell cycle progression in dose and time depending manner. Also, biochemical evaluation of ERK1/2 and FAK clearly shows an increasing phosphorylation in a dose and time depending manner. Finally, we found by transmission electron microscopy that NPs are internalised by cells. Competitively blocking VN-integrin receptors with echistatin (1 μg/mL) results in a decrease of viability/proliferation, cell cycle progression, cellular uptake, and FAK/ERK activation showing the involvement of Vitronectin receptors in signal transduction. In conclusion, our results show that cell surface NPs interactions are mediated by absorbed plasma proteins (i.e., Vitronectin) that represent an external stimuli, switched to the nucleus by FAK enzyme, which in turn modulate fibroblasts viability/proliferation. PMID:23710450

  16. HSP110 expression is induced by cadmium exposure but is dispensable for cell survival of mouse NIH3T3 fibroblasts.

    PubMed

    Ridley, Wakako; Nishitai, Gen; Matsuoka, Masato

    2010-05-01

    The effects of cadmium exposure on the expression of HSP110 were examined in mouse NIH3T3 fibroblasts. Following exposure to cadmium chloride, the level of HSP110 and HSP70 proteins increased after 3h and remained elevated at 24h. Similarly, their mRNA levels increased markedly in response to cadmium exposure. Treatment with 10μM mercury chloride, another toxic metal compound, also induced expression of HSP110; however, HSP110 expression was not induced in cells exposed to the same concentration of manganese chloride, zinc chloride, or lead chloride for 6 or 24h. Silencing of HSP110 expression using short-interference RNA did not affect cadmium-induced cellular damage. These results show that cadmium exposure induces the expression of high molecular weight chaperone HSP110 as well as the well-known HSP70, but indicate that HSP110 does not play a major role in cell survival following cadmium exposure. PMID:21787611

  17. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  18. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Johnson, Renjith P; Uthaman, Saji; John, Johnson V; Heo, Min Seon; Park, In Kyu; Suh, Hongsuk; Kim, Il

    2014-09-01

    In order to develop efficient and nontoxic gene delivery vectors, a series of biocompatible block copolymers, poly[(2-hydroxyethyl methacrylate)40 -block-(L-lysine)n ] (n = 40, 80, 120, 150), are prepared by combining an atom transfer radical polymerization of 2-hydroxyethyl methacrylate with a ring-opening polymerization of N(ϵ) -(carbobenzoxy)-L-lysine N-carboxyanhydride. The block copolymers are successfully condensed with plasmid DNA (pDNA) into nanosized (<200 nm) polyplexes. As a representative sample, p(HEMA)40 -b-p(lys)150 is utilized to confirm the effective cellular and nuclear uptake of pDNA. The polymer/pDNA polyplexes exhibit very low cytotoxicity and enhanced transfection activity by being easily taken up into mouse embryonic fibroblast cell line (NIH 3T3). Thus, the chimeric block copolymers provide a means for developing versatile nonviral gene vectors harboring the ideal requirements of low cytotoxicity, good stability, and high transfection efficiency for gene therapy. PMID:24862905

  19. Pharmaco-Phylogenetic Investigation of Methyl Gallate Isolated from Acacia nilotica (L.) Delile and Its Cytotoxic Effect on NIH3T3 Mouse Fibroblast.

    PubMed

    Mishra, Rohit K; Ramakrishna, M; Mishra, Vani; Pathak, Ashutosh; Rajesh, S; Sharma, Shivesh; Pandey, Avinash C; Nageswara Rao, G; Dikshit, Anupam

    2016-01-01

    Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries. PMID:26813302

  20. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    SciTech Connect

    Stępnik, Maciej; Arkusz, Joanna; Smok-Pieniążek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzińska, Jolanta; De Jong, Wim H.; Rydzyński, Konrad

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows

  1. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  2. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  3. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  4. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

    PubMed Central

    Kim, Woo Kyoung; Kang, Nam E; Kim, Myung Hwan

    2013-01-01

    3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes. PMID:23766875

  5. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  6. Identification of cytoprotective constituents of the flower buds of Tussilago farfara against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells.

    PubMed

    Kang, Unwoo; Park, Jiyoung; Han, Ah-Reum; Woo, Mi Hee; Lee, Je-Hyun; Lee, Sang Kook; Chang, Tong-Shin; Woo, Hyun Ae; Seo, Eun Kyoung

    2016-04-01

    A new cytoprotective compound, 1-[(4S)-3,4-dihydro-4-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl]-ethanone (1) was isolated from the flower buds of Tussilago farfara L. (Compositae), together with eight known compounds, 3,4-dicaffeoyl isoquinic acid (2), trans-cinnamic acid (3), 4-hydroxyacetophenone (4), 4,5-dicaffeoylquinic acid methyl ester (5), 3,5-dicaffeoylquinic acid methyl ester (6), 4-hydroxybenzoic acid (7), isoquercetrin (8), and ligucyperonol (9). Compounds 2-4 were found in this plant for the first time. The isolates 1-9, were tested for their cytoprotective activities against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells. Among them, 1 and 3 showed significant cytoprotective activities as determined by MTT assay and lactate dehydrogenase leakage, indicating their possibility as the potent cytoprotective agents. The structure of 1 was determined by spectroscopic data analysis including 1D- and 2D-NMR experiments, and its absolute configuration was elucidated by a circular dichroism. PMID:26983826

  7. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    SciTech Connect

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  8. The effects of ascorbic acid and iron co-supplementation on the proliferation of 3T3 fibroblasts.

    PubMed

    Collis, C S; Yang, M; Peach, S J; Diplock, A T; Rice-Evans, C

    1996-07-01

    Exposure of 3T3 fibroblasts to FeII reveals a concentration-dependent inhibition of cell proliferation compared to control cells, the apparent threshold for this iron-mediated effect being 5 microM FeII. The inhibition of cell proliferation was accompanied by an enhancement of total malondialdehyde (MDA) levels (as detected directly by hplc) in the cells at higher iron concentrations. The co-supplementation of FeII with varying concentrations of ascorbic acid over the range 5 microM to 240 microM had no significant effect on the threshold for iron toxicity or lipid peroxidation. These results show that there is neither a significant exacerbation of the pro-oxidant effect of FeII nor any protective effect of ascorbate when cultures of 3T3 mouse fibroblasts are exposed to co-supplementation regimes of iron with ascorbic acid. PMID:8814446

  9. Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts.

    PubMed Central

    Moutsatsos, I K; Wade, M; Schindler, M; Wang, J L

    1987-01-01

    Proliferating 3T3 mouse fibroblasts contain higher levels of the lectin carbohydrate-binding protein 35 (CBP35) than do quiescent cultures of the same cells. An immunofluorescence study was carried out with a rabbit antiserum directed against CBP35 to map the cellular fluorescence distribution in a large population of cells under different growth conditions. This cytometric analysis showed that the lectin is predominantly localized in the nucleus of the proliferating cells. In quiescent 3T3 cultures, the majority of the cells lost their nuclear staining and underwent a general decrease in the overall fluorescence intensity. Stimulation of serum-starved quiescent 3T3 cells by the addition of serum resulted in an increase in the level of CBP35. The percentage of cells showing distinct punctate intranuclear staining reached a maximum at about the same time as the onset of the first S-phase of the cell cycle. All of these results suggest that CBP35 may be a protein whose presence in the nucleus, in discrete punctate distribution, is coordinated with the proliferation state of the cell. Images PMID:3306680

  10. The Depletion of Nuclear Glutathione Impairs Cell Proliferation in 3t3 Fibroblasts

    PubMed Central

    Markovic, Jelena; Mora, Nancy J.; Broseta, Ana M.; Gimeno, Amparo; de-la-Concepción, Noelia; Viña, José; Pallardó, Federico V.

    2009-01-01

    Background Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate. Principal Findings We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM) and buthionine sulfoximine (BSO), and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation. Conclusions Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle. PMID:19641610

  11. Reduction of 3T3 Fibroblast Adhesion on SS316L by Methyl-Terminated SAMs

    PubMed Central

    Raman, Aparna; Gawalt, Ellen S.

    2010-01-01

    Inhibiting the non-specific adhesion of cells and proteins to biomaterials such as stents, catheters and guide wires is an important interfacial issue that needs to be addressed in order to reduce surface-related implant complications. Medical grade stainless steel 316L was used as a model system to address this issue. To alter the interfacial property of the implant, self assembled monolayers of long chain phosphonic acids with −CH3, −COOH, −OH tail groups were formed on the native oxide surface of medical grade stainless steel 316L. The effect of varying the tail groups on 3T3 fibroblast adhesion was investigated. The methyl terminated phosphonic acid significantly prevented cell adhesion however presentation of hydrophilic tail groups at the interface did not significantly reduce cell adhesion when compared to the control stainless steel 316L. PMID:21461313

  12. Viscoelastic analysis of high molecular weight, alkali-denatured DNA from mouse 3T3 cells.

    PubMed Central

    Uhlenhopp, E L

    1975-01-01

    Alkaline lysates of mouse 3T3 cells showed viscoelastic properties characteristic of very large molecules of single-stranded DNA. The viscoelastic retardation time and the sensitivity to low doses of nitrogen mustard and of X-irradiation suggest a molecular weight in excess of 10-10 daltons. Contact-inhibited cells yielded larger single strands than actively growing cells. PMID:235335

  13. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  14. Mitogenic stimuli and phosphatidylinositol (PI) turnover in cultured 3T3 fibroblasts

    SciTech Connect

    Kohler, C.; Petersen, R.

    1986-03-01

    The hydrolysis of PI and polyphosphoinositides by phopholipase C is an early and rapid response to cell activation by a variety of neurotransmitters, hormones, growth factors and pharmacological agonists. The authors have examined the role of PI turnover and the generation of second messengers (diacylglycerol and inositol trisphosphate) in the mitogenic response of cultured Balb/c and Swiss 3T3 cells to polypeptide growth factors. Cells were prelabelled with /sup 3/H inositol for 18-20 hours, washed and suspended in Herpes + Li/sup +/ buffer, and stimulated with platelet-derived growth factor (PDGF), vasopressin, insulin, and other growth factors. PI turnover was measured as the increase in total inositol phosphate (IP) production. IP1, IP2, and IP3 were characterized by sequential elution from a Dowex column. Partially purified PDGF produced a 2-4 fold stimulation of total IP production. This was seen as early as 30 seconds after stimulation and increased for up to 1-2 hours. Balb/c cells were more sensitive than Swiss cells to the mitogenic and PI effects of PDGF. Other mitogenic stimuli had differential effects on PI turnover. Vasopressin (4-400 ng/ml) markedly stimulated PI turnover (3-6 fold) in Swiss, but not Balb/c cells. Insulin (100 ng/ml - 10 ..mu..g/ml) increased total IP to a greater degree in Balb/c cells. Epidermal growth factor (10 ng/ml - 10 ..mu..g/ml) had no effect on PI turnover and fibroblast growth factor (10 ng/ml - 10 ..mu..g/ml) only stimulated at the higher concentrations in Swiss cells. Thrombin (1U/ml - 10 U/ml) produced a 1.5 - 2 fold stimulation in Balb/c cells. Thus, various polypeptide growth factors have differential effects on PI turnover depending on their mitogenic potential and the effector cell type.

  15. Sustained calcium influx activated by basic fibroblast growth factor in Balb-c 3T3 fibroblasts.

    PubMed Central

    Munaron, L; Distasi, C; Carabelli, V; Baccino, F M; Bonelli, G; Lovisolo, D

    1995-01-01

    1. We have investigated the ionic events elicited in Balb-c 3T3 fibroblasts by basic fibroblast growth factor (bFGF), a peptide that binds to membrane receptors with tyrosine kinase activity and has a mitogenic action on many cell types. The peptide (0.2-100 ng ml-1) caused the appearance of an inward current, as observed in whole-cell patch-clamp experiments at a holding potential of -50 mV, that could last for tens of minutes and had a peak density of 4.6 +/- 2.6 pA pF-1. The reversal potential was 18.8 +/- 16.7 mV. 2. The current was reversibly abolished by removal of bFGF from the external bath. Inhibition of low-affinity FGF receptors had no effect on the activation of the inward current; it was completely abolished when cells were pre-incubated with tyrphostin or 5'-methylthioadenosine (MTA), two inhibitors of the tyrosine kinase activity of the high-affinity FGF receptors. The inward current was not activated by the emptying of internal calcium stores, as tested with 200 nM thapsigargin. 3. Values of peak current density comparable to control ones were obtained when either all Na+ ions or all Ca2+ ions were removed from the external solution; when both ions were completely removed, no inward current could be observed. The inward current was not affected by 2 microM nifedipine, and was reversibly blocked by the imidazole derivative SK&F 96365-A. 4. Measurements of free intracellular calcium concentration ([Ca2+]i) with the dye fura-2 showed that bFGF elicited sustained increases in [Ca2+]i that were completely dependent on external calcium and on the presence of the agonist and could last more than 1 h. 5. Single channel currents (conductance 7.9 pS) in response to bFGF stimulation could be recorded in the cell-attached configuration with 100 mM CaCl2 in the pipette. When the resting potential was brought near to 0 mV by external perfusion in a high-K+ solution, Vrev was about 0 mV. 6. We conclude that in Balb-c 3T3 cells bFGF induces an inward current that

  16. Sustained calcium influx activated by basic fibroblast growth factor in Balb-c 3T3 fibroblasts.

    PubMed

    Munaron, L; Distasi, C; Carabelli, V; Baccino, F M; Bonelli, G; Lovisolo, D

    1995-05-01

    1. We have investigated the ionic events elicited in Balb-c 3T3 fibroblasts by basic fibroblast growth factor (bFGF), a peptide that binds to membrane receptors with tyrosine kinase activity and has a mitogenic action on many cell types. The peptide (0.2-100 ng ml-1) caused the appearance of an inward current, as observed in whole-cell patch-clamp experiments at a holding potential of -50 mV, that could last for tens of minutes and had a peak density of 4.6 +/- 2.6 pA pF-1. The reversal potential was 18.8 +/- 16.7 mV. 2. The current was reversibly abolished by removal of bFGF from the external bath. Inhibition of low-affinity FGF receptors had no effect on the activation of the inward current; it was completely abolished when cells were pre-incubated with tyrphostin or 5'-methylthioadenosine (MTA), two inhibitors of the tyrosine kinase activity of the high-affinity FGF receptors. The inward current was not activated by the emptying of internal calcium stores, as tested with 200 nM thapsigargin. 3. Values of peak current density comparable to control ones were obtained when either all Na+ ions or all Ca2+ ions were removed from the external solution; when both ions were completely removed, no inward current could be observed. The inward current was not affected by 2 microM nifedipine, and was reversibly blocked by the imidazole derivative SK&F 96365-A. 4. Measurements of free intracellular calcium concentration ([Ca2+]i) with the dye fura-2 showed that bFGF elicited sustained increases in [Ca2+]i that were completely dependent on external calcium and on the presence of the agonist and could last more than 1 h. 5. Single channel currents (conductance 7.9 pS) in response to bFGF stimulation could be recorded in the cell-attached configuration with 100 mM CaCl2 in the pipette. When the resting potential was brought near to 0 mV by external perfusion in a high-K+ solution, Vrev was about 0 mV. 6. We conclude that in Balb-c 3T3 cells bFGF induces an inward current that

  17. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts

    PubMed Central

    Bandala, Cindy; Terán-Melo, Juan Luis; Anaya-Ruiz, Maricruz; Mejía-Barradas, Cesar Miguel; Domínguez-Rubio, Rene; la Garza-Montano, Paloma De; Alfaro-Rodríguez, Alfonso; Lara-Padilla, Eleazar

    2015-01-01

    Aim: BoNTA is used in the treatment of ophthalmological disorders, muscular hyperactivity and pain. In recent years it has been described that BoNTA reduces cellular viability and induces apoptosis in prostate cells lines. Studies about the effect of BoNTA are no well known. There have been studies about the effect of BoNTA on the expression levels of collagenase in fibroblasts, but not on its morphological impact on these cells. The aim of this study was to determine the effect of BoNTA on the morphology and viability of the 3T3 fibroblast cell line. Material and methods: The 3T3 fibroblast cell line was cultured and the experimental group received 10 U BoNTA added to a 0.9% sterile saline solution in a reconstituted vial. The control group received saline solution only. Cultured cells were observed and photographed at 5, 10, 15 and 20 h. Cell viability was evaluated by means of the trypan blue test, and cell proliferation with the Proliferation Assay kit (PROMEGA). Results: The application of BoNTA to 3T3 fibroblast cells induced morphological changes, such as a loss of normal fibroblast morphology. Additionally, we observed the cytoplasmic retraction and spread phenomena. The nuclei showed other important changes with Giemsa staining. Conclusion: The results indicate that BoNTA induced a loss of spindle form, increase in cytoplasmic vesicles, and the presence of nuclear vesicles (compacted chromatin surrounded by a nuclear envelope). This suggests an apoptotic process and decreased cell viability. Further studies are needed to explore the mechanisms of these alterations. PMID:26464704

  18. Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2009-04-01

    The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

  19. Persistent induction of cyclooxygenase in p60 sup v-src -transformed 3T3 fibroblasts

    SciTech Connect

    Han, Jiawen; Sadowski, H.; Young, D.A.; Macara, I.G. )

    1990-05-01

    A BALB/c 3T3 cell line infected with the temperature-sensitive Rous sarcoma virus strain LA90 has been used to investigate early, p60{sup v-src}-dependent changes in gene expression (protein synthesis). Giant two-dimensional electrophoresis, which can resolve >3,000 polypeptides from ({sup 35}S)methionine-labeled cell lysates, was used to detect the induction of a p72-74 (72-74 kDa) doublet (pI 7.5) after activation of p60{sup v-src} at 35{degree}C. Antiserum against cyclooxygenase (prostaglandin synthase or prostaglandin endoperoxide synthase) specifically immunoprecipitated the p72-74 doublet. The p72-74 doublet was also induced by platelet-derived growth factor and by phorbol 12-myristate 13-acetate and was elevated in an NIH 3T3 cell line transformed by wild-type src. Activation of p60{sup v-src} caused a persistant increase in p72-74, whereas the effect of the growth factor was transient. These dissimilar kinetics of induction were paralleled by changes in cyclooxygenase activity. Although induction of this enzyme may not be directly involved in transformation, the data support the view that oncogenic transformation may result, not from expression of transformation-specific genes, but from persistent changes in the expression of genes normally induced only transiently during passage from the G{sub 0} stage of the cell cycle.

  20. Long-term exposure of 3T3 fibroblast cells to endocrine disruptors alters sensitivity to oxidative injury.

    PubMed

    Nishimura, Yuka; Nakai, Yasuyoshi; Tanaka, Aiko; Nagao, Tetsuji; Fukushima, Nobuyuki

    2014-07-01

    When Swiss 3T3 fibroblasts were exposed to bisphenol A (BPA) or nonylphenol (NP) within a range of 0.1-100 nM for 30-45 days, increased resistance to oxidative injury was found. Western blot analysis indicated concomitant increased expression of bcl-2 protein and reduced histone methylation levels in cells after BPA or NP exposure. Using a heterologous expression system, both chemicals could stimulate G protein-coupled receptor 30 (GPR30), a transmembrane estrogen receptor predominantly expressed in 3T3 cells, at lower concentrations, which gave increased survival. Taken together, these results suggest that BPA or NP exposure might cause alterations in cellular activity against oxidative stress, possibly through GPR30. PMID:24604882

  1. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  2. Growth hormone promoted tyrosyl phosphorylation of growth hormone receptors in murine 3T3-F442A fibroblasts and adipocytes

    SciTech Connect

    Foster, C.M.; Shafer, J.A.; Rozsa, F.W.; Wang, X.; Lewis, S.D.; Renken, D.A.; Natale, J.E.; Schwartz, J.; Carter-Su, C.

    1988-01-12

    Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. /sup 125/I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained in M/sub r/ 134,000 /sup 125/I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of fibroblast form. O-Phosphotyrosine prevented /sup 125/I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with (/sup 32/P)P/sub i/, GH was shown to stimulate formation of a /sup 32/P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. These observations provide strong evidence that binding of GH to its receptor stimulates phosphorylation of tyrosyl residues in the GH receptor.

  3. Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts.

    PubMed

    Struzik, Justyna; Szulc-Dąbrowska, Lidia; Winnicka, Anna; Niemiałtowski, Marek

    2015-10-01

    Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development. PMID:26232502

  4. Evidence that downregulation of hexose transport limits intracellular glucose in 3T3-L1 fibroblasts

    SciTech Connect

    Whitesell, R.R.; Regen, D.M.; Pelletier, D.; Abumrad, N.A. )

    1990-10-01

    Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of ({sup 14}C)methylglucose and D-({sup 14}C)glucose with (1) L-({sup 3}H)glucose as an extracellular marker together with the ({sup 14}C)glucose or ({sup 14}C)methylglucose in the substrate mixture, (2) sampling times as short as 2 s, (3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and (4) nonlinear regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose.

  5. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.

    PubMed

    Li, Yang; Li, Zheng; Shi, Lei; Zhao, Chenxu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-07-01

    Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo. PMID:27155393

  6. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  7. High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts

    PubMed Central

    Angius, Fabrizio; Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Banni, Sebastiano; Collu, Maria; Accossu, Simonetta; Madeddu, Clelia; Serpe, Roberto; Batetta, Barbara

    2015-01-01

    High density lipoproteins (HDLs) play a crucial role in removing excess cholesterol from peripheral tissues. Although their concentration is lower during conditions of high cell growth rate (cancer and infections), their involvement during cell proliferation is not known. To this aim, we investigated the replicative cycles in synchronised Swiss 3T3 fibroblasts in different experimental conditions: i) contact-inhibited fibroblasts re-entering cell cycle after dilution; ii) scratch-wound assay; iii) serum-deprived cells induced to re-enter G1 by FCS, HDL or PDGF. Analyses were performed during each cell cycle up to quiescence. Cholesterol synthesis increased remarkably during the replicative cycles, decreasing only after cells reached confluence. In contrast, cholesteryl ester (CE) synthesis and content were high at 24 h after dilution and then decreased steeply in the successive cycles. Flow cytometry analysis of DiO-HDL, as well as radiolabeled HDL pulse, demonstrated a significant uptake of CE-HDL in 24 h. DiI-HDL uptake, lipid droplets (LDs) and SR-BI immunostaining and expression followed the same trend. Addition of HDL or PDGF partially restore the proliferation rate and significantly increase SR-BI and pAKT expression in serum-deprived cells. In conclusion, cell transition from G0 to G1/S requires CE-HDL uptake, leading to CE-HDL/SR-BI pathway activation and CEs increase into LDs. PMID:26640042

  8. High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts.

    PubMed

    Angius, Fabrizio; Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Banni, Sebastiano; Collu, Maria; Accossu, Simonetta; Madeddu, Clelia; Serpe, Roberto; Batetta, Barbara

    2015-01-01

    High density lipoproteins (HDLs) play a crucial role in removing excess cholesterol from peripheral tissues. Although their concentration is lower during conditions of high cell growth rate (cancer and infections), their involvement during cell proliferation is not known. To this aim, we investigated the replicative cycles in synchronised Swiss 3T3 fibroblasts in different experimental conditions: i) contact-inhibited fibroblasts re-entering cell cycle after dilution; ii) scratch-wound assay; iii) serum-deprived cells induced to re-enter G1 by FCS, HDL or PDGF. Analyses were performed during each cell cycle up to quiescence. Cholesterol synthesis increased remarkably during the replicative cycles, decreasing only after cells reached confluence. In contrast, cholesteryl ester (CE) synthesis and content were high at 24 h after dilution and then decreased steeply in the successive cycles. Flow cytometry analysis of DiO-HDL, as well as radiolabeled HDL pulse, demonstrated a significant uptake of CE-HDL in 24 h. DiI-HDL uptake, lipid droplets (LDs) and SR-BI immunostaining and expression followed the same trend. Addition of HDL or PDGF partially restore the proliferation rate and significantly increase SR-BI and pAKT expression in serum-deprived cells. In conclusion, cell transition from G0 to G1/S requires CE-HDL uptake, leading to CE-HDL/SR-BI pathway activation and CEs increase into LDs. PMID:26640042

  9. Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

    PubMed Central

    Yusein-Myashkova, Shazie; Ugrinova, Iva; Pasheva, Evdokia

    2016-01-01

    The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be “rescued” and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect. [BMB Reports 2016; 49(2): 99-104] PMID:24325815

  10. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  11. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    PubMed Central

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  12. Differentially Expressed Proteins in Nitric Oxide-Stimulated NIH/3T3 Fibroblasts: Implications for Inhibiting Cancer Development

    PubMed Central

    Shim, Dong Hwi

    2015-01-01

    Purpose Recent evidence shows that nitric oxide (NO) may exhibit both pro-cancer and anti-cancer activities. The present study aimed to determine the differentially expressed proteins in NO-treated NIH/3T3 fibroblasts in order to investigate whether NO induces proteins with pro-cancer or anti-cancer effects. Materials and Methods The cells were treated with 300 µM of an NO donor 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18) for 12 h. The changed protein patterns, which were separated by two-dimensional electrophoresis using pH gradients of 4-7, were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. Results Seventeen differentially expressed proteins were identified in NOC-18-treated cells. Nine proteins [vinculin protein, keratin 19, ubiquitous tropomodulin, F-actin capping protein (α1 subunit), tropomyosin 3, 26S proteasome-associated pad1 homolog, T-complex protein 1 (ε subunit) NG-dimethylarginine dimethylaminohydrolase, and heat shock protein 90] were increased and eight proteins (heat shock protein 70, glucosidase II, lamin B1, calreticulin, nucleophosmin 1, microtubule-associated protein retinitis pigmentosa/end binding family member 1, 150 kD oxygen-regulated protein precursor, and heat shock 70-related protein albino or pale green 2) were decreased by NOC-18 in the cells. Thirteen proteins are related to the suppression of cancer cell proliferation, invasion, and metastasis while two proteins (heat shock protein 90 and NG-dimethylarginine dimethylaminohydrolase) are related to carcinogenesis. The functions of 150 kD oxygen-regulated protein precursor and T-complex protein 1 (ε subunit) are unknown in relation to carcinogenesis. Conclusion Most proteins differentially expressed by NOC-18 are involved in inhibiting cancer development. PMID:25684010

  13. Hindered Diffusion of Inert Tracer Particles in the Cytoplasm of Mouse 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Luby-Phelps, Katherine; Castle, Philip E.; Lansing Taylor, D.; Lanni, Frederick

    1987-07-01

    Using fluorescence recovery after photobleaching, we have studied the diffusion of fluorescein-labeled, size-fractionated Ficoll in the cytoplasmic space of living Swiss 3T3 cells as a probe of the physical chemical properties of cytoplasm. The results reported here corroborate and extend the results of earlier experiments with fluorescein-labeled, size-fractionated dextran: diffusion of nonbinding particles in cytoplasm is hindered in a size-dependent manner. Extrapolation of the data suggests that particles larger than 260 angstrom in radius may be completely nondiffusible in the cytoplasmic space. In contrast, diffusion of Ficoll in protein solutions of concentration comparable to the range reported for cytoplasm is not hindered in a size-dependent manner. Although we cannot at present distinguish among several physical chemical models for the organization of cytoplasm, these results make it clear that cytoplasm possesses some sort of higher-order intermolecular interactions (structure) not found in simple aqueous protein solutions, even at high concentration. These results also suggest that, for native cytoplasmic particles whose smallest radial dimension approaches 260 angstrom, size may be as important a determinant of cytoplasmic diffusibility as binding specificity. This would include most endosomes, polyribosomes, and the larger multienzyme complexes.

  14. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    NASA Astrophysics Data System (ADS)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  15. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

  16. Contact-stimulated proliferation of cultured mouse epidermal cells by 3T3 feeder layers: inhibition of proliferation by 12-O-tetradecanoylphorbol-13-acetate (TPA)

    SciTech Connect

    Miller, D.R.; Hamby, K.M.; Slaga, T.J.

    1982-07-01

    Mouse epidermal cells can be subcultured at 31/sup 0/C onto an irradiated BALB/c 3T3 clone A31 feeder layer. A31 cells (supposedly derived from embryonic fibroblasts) were found to be specifically required for the optimal production of keratinizing epidermal colonies in secondary culture. This effect was not transmitted through the medium nor by the culture surface, since A31 cells plated on one end of a flask did not stimulate epidermal cell proliferation at the other end, even if the other end had previously held A31 cells. Epidermal cell contact with metabolizing A31 cells was probably necessary for the effect; fixed or freeze-thawed A31 cells were ineffective. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate, recently shown to interfere with contact-mediated transfer of label (metabolic cooperation) between Swiss 3T3 cells and cells of an established epidermal line in vitro, also blocked epidermal colony formation. The A31-epidermal cell interaction is apparently not a typical mesenchymal-epithelial interaction, since the basement membrane would prevent this contact in intact skin.

  17. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed Central

    Barnes, D W; Colowick, S P

    1977-01-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  18. Stimulation of sugar uptake and thymidine incorporation in mouse 3T3 cells by calcium phosphate and other extracellular particles.

    PubMed

    Barnes, D W; Colowick, S P

    1977-12-01

    Evidence is presented that the marked stimulation of sugar uptake and thymidine incorporation by addition of extra Ca2+ to stationary phase mouse 3T3 cells in culture is phosphate dependent and due to the action of the calcium phosphate precipitate formed in the medium. The cells are similarly stimulated by a variety of particulate materials, including calcium pyrophosphate, barium sulfate, kaolin, and polystrene beads. The precipitate effects on sugar uptake are of the same magnitude as those seen with certain hormones (insulin, epidermal growth factor) or with fresh 10% calf serum. The effect of barium sulfate on thymidine incorporation is also of the same magnitude as seen with these hormones, but much less than half that found with fresh calf serum. The stimulation by barium sulfate or hormones of thymidine incorporation is not phosphate dependent. PMID:202958

  19. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  20. Overexpression of the short form of the growth hormone receptor in 3T3-L1 mouse preadipocytes

    SciTech Connect

    Bick, T.; Frick, G.P.; Leonard, D.

    1994-12-31

    In rodents, the gene for the growth hormone receptor (GHR) gives rise to two mRNA transcripts encoding two proteins: a larger membrane spanning receptor (GHR{sub L}) and a smaller isoform, GHR{sub S} that consists of the extracellular domain and a unique hydrophillic carboxyl terminus. We examined the hypothesis that GHR{sub S} may contribute to cellular binding of GH and play a role in growth hormone (GH) signaling. Rat cDNA encoding GHR{sub S} was ligated into the mammalian expression vector pcDNA-I/neo and stably transfected into mouse 3T3-L1 preadipocytes which have endogenous GH receptors and, when differentiated into adipocytes, have the biochemical machinery to express the various GH effects. Sixteen of 24 neomycin resistant clones secreted at least twice as much GHR{sub s} in the growth medium as cells transfected with the vector alone, and in nine of these, GH binding was increased 2- to 4-fold. The amount of GHR{sub L} in extracts of these cells was unchanged, indicating that increased binding could not be accounted for by effects on formation or degradation of GHR{sub L}. The transfected cDNA for GHR{sub S} directs the synthesis of a 50 kDa protein. We conclude that GHR{sub S} contributes to GH binding and may therefore be a functional receptor. In addition, overexpression of GHR{sub S} in 3T3-L1 cells altered cell function in the absence of GH. 20 refs., 4 figs.

  1. Phosphorylation at Ser729 specifies a Golgi localisation for protein kinase C epsilon (PKCepsilon) in 3T3 fibroblasts.

    PubMed

    Xu, Tian-Rui; He, Guiyuan; Dobson, Kath; England, Karen; Rumsby, Martin

    2007-09-01

    We demonstrate that GFP-PKCepsilon concentrates at a perinuclear site in living fibroblasts and that cell passage induces rapid translocation of PKCepsilon to the periphery where it appears to colocalise with F-actin. When newly passaged cells have adhered and are proliferating again, GFP-PKCepsilon returns to its perinuclear site. GFP-PKCepsilon co-localises with wheat germ agglutinin suggesting that it is associated with the Golgi at the perinuclear site. In support, PKCepsilon is detected in a Golgi-enriched fraction in pre-passage cells but is lost from the fraction after passage. PKCepsilon at the perinuclear Golgi site is phosphorylated at Ser729 but cell passage induces the loss of the phosphate at this site as reported previously [England et al. (2001) J. Biol. Chem. 276, 10437-10442]. PKCepsilon S729A, S729E and S729T mutants, which are not recognised by a specific antiphosphoPKCepsilon (Ser729) antibody, do not concentrate at a perinuclear/Golgi site in proliferating fibroblasts. This suggests that both phosphorylation and serine rather than threonine are needed at position 729 to locate PKCepsilon at its perinuclear/Golgi site. Phorbol ester induced translocation of PKCepsilon to the nucleus also requires dephosphorylation at Ser729; after translocation nuclear PKCepsilon lacks a phosphate at Ser729. Sulphation and secretion of glycosaminoglycan (GAG) chains from fibroblasts increases on passage and returns to basal as cells proliferate showing that cell passage influences secretory events at the Golgi. The results indicate that Ser729 phosphorylation plays a role in determining PKCepsilon localisation in fibroblasts. PMID:17611075

  2. S6 kinase in quiescent Swiss mouse 3T3 cells is activated by phosphorylation in response to serum treatment

    SciTech Connect

    Ballou, L.M.; Siegmann, M.; Thomas, G. )

    1988-10-01

    To investigate the role of phosphorylation in the activation of S6 kinase, the enzyme was isolated from {sup 32}P-labeled Swiss mouse 3T3 cells before and after stimulation with serum. The kinase activity was followed through several purification steps, and a radioactive protein of M{sub r} 70,000 was obtained from the stimulated cells. This band was not detected in resting cells. The M{sub r} 70,000 protein exhibited the same size upon NaDodSO{sub 4}/PAGE as the homogeneous kinase, and it comigrated with the in vitro autophosphorylated form of the enzyme. Treatment of the in vivo-labeled material with phosphatase 2A led to a loss of kinase activity concomitant with a release of {sup 32}P{sub i} from the M{sub r} 70,000 protein. The partially dephosphorylated protein migrated faster during PAGE, displaying distinct species of M{sub r} 69,000 and 68,000. Most importantly, phospho amino acid analysis of the labeled S6 kinase showed only phosphoserine and phosphothreonine. These results argue that the S6 kinase is phosphorylated at multiple sites in vivo and that it is activated by serine/threonine phosphorylation.

  3. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts.

    PubMed Central

    Fu, X; Kamps, M P

    1997-01-01

    The E2a-Pbx1 oncoprotein contains the transactivation domain of E2a joined to the DNA-binding homeodomain (HD) of Pbx1. In mice, E2a-Pbx1 transforms T lymphoblasts and fibroblasts and blocks myeloblast differentiation. Pbx1 and E2a-Pbx1 bind DNA as heterodimers with other HD proteins whose expression is tissue specific. While the transactivation domain of E2a is required for all forms of transformation, DNA binding by the Pbx1 HD is essential for blocking myeloblast differentiation but dispensable for fibroblast or T-lymphoblast transformation. These properties suggest (i) that E2a-Pbx1 causes cellular transformation by activating gene transcription, (ii) that transcription of E2a-Pbx1 target genes is normally regulated by ubiquitous Pbx proteins and tissue-specific partners, and (iii) that DNA-binding mutants of E2a-Pbx1 activate a subset of all gene targets. To test these predictions, genes induced in NIH 3T3 fibroblasts by E2a-Pbx1 were identified and examined for tissue- and stage-specific expression and their differential abilities to be upregulated by E2a-Pbx1 in NIH 3T3 fibroblasts and myeloblasts and by a DNA-binding mutant of E2a-Pbx1 in NIH 3T3 cells. Of 12 RNAs induced by E2a-Pbx1, 4 encoded known proteins (a J-C region of the immunoglobulin kappa light chain, natriuretic peptide receptor C, mitochondrial fumarase, and the 3',5'-cyclic nucleotide phosphodiesterase, PDE1A) and 5 encoded new proteins related to angiogenin, ion channels, villin, epidermal growth factor repeat proteins, and the human 2.19 gene product. Expression of many of these genes was tissue specific or developmentally regulated, and most were not expressed in fibroblasts, indicating that E2a-Pbx1 can induce ectopic expression of genes associated with lineage-specific differentiation. PMID:9032278

  4. Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors.

    PubMed

    Inokawa, Akira; Inuzuka, Tatsutoshi; Takahara, Terunao; Shibata, Hideki; Maki, Masatoshi

    2016-01-01

    PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation. PMID:26677203

  5. Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors

    PubMed Central

    Inokawa, Akira; Inuzuka, Tatsutoshi; Takahara, Terunao; Shibata, Hideki; Maki, Masatoshi

    2015-01-01

    PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation. PMID:26677203

  6. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts.

    PubMed

    Robinson, Michael A; Graham, Daniel J; Castner, David G

    2012-06-01

    Proper display of three-dimensional time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data of complex, nonflat samples requires a correction of the data in the z-direction. Inaccuracies in displaying three-dimensional ToF-SIMS data arise from projecting data from a nonflat surface onto a 2D image plane, as well as possible variations in the sputter rate of the sample being probed. The current study builds on previous studies by creating software written in Matlab, the ZCorrectorGUI (available at http://mvsa.nb.uw.edu/), to apply the z-correction to entire 3D data sets. Three-dimensional image data sets were acquired from NIH/3T3 fibroblasts by collecting ToF-SIMS images, using a dual beam approach (25 keV Bi(3)(+) for analysis cycles and 20 keV C(60)(2+) for sputter cycles). The entire data cube was then corrected by using the new ZCorrectorGUI software, producing accurate chemical information from single cells in 3D. For the first time, a three-dimensional corrected view of a lipid-rich subcellular region, possibly the nuclear membrane, is presented. Additionally, the key assumption of a constant sputter rate throughout the data acquisition was tested by using ToF-SIMS and atomic force microscopy (AFM) analysis of the same cells. For the dried NIH/3T3 fibroblasts examined in this study, the sputter rate was found to not change appreciably in x, y, or z, and the cellular material was sputtered at a rate of approximately 10 nm per 1.25 × 10(13) ions C(60)(2+)/cm(2). PMID:22530745

  7. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    PubMed Central

    2012-01-01

    Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712–3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174

  8. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

    PubMed Central

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea PMID:26833256

  9. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea. PMID:26833256

  10. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  11. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts.

    PubMed

    Marmorato, Patrick; Ceccone, Giacomo; Gianoncelli, Alessandra; Pascolo, Lorella; Ponti, Jessica; Rossi, François; Salomé, Murielle; Kaulich, Burkhard; Kiskinova, Maya

    2011-11-30

    The effect of the concentration of cobalt ferrite (CoFe(2)O(4)) nanoparticles (NPs) on their intracellular location and distribution has been explored by synchrotron radiation X-ray and fluorescence microscopy (SR-XRF) monitoring the evolution of NPs elemental composition as well. In cells exposed to low concentrations of CoFe(2)O(4) NPs, the NPs preferentially segregate in the perinuclear region preserving their initial chemical content. At concentrations exceeding 500 μM the XRF spectra indicate the presence of Co and Fe also in the nuclear region, accompanied by sensible changes in the cellular morphology. The increase of the Co/Fe ratio measured in the nuclear compartment indicates that above certain concentrations the CoFe(2)O(4) NPs intracellular distribution could be accompanied by biodegradation resulting in Co accumulation in the nucleus. PMID:21925252

  12. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  13. The protective effects of guaraná extract (Paullinia cupana) on fibroblast NIH-3T3 cells exposed to sodium nitroprusside.

    PubMed

    Bittencourt, L S; Machado, D C; Machado, M M; Dos Santos, G F F; Algarve, T D; Marinowic, D R; Ribeiro, E E; Soares, F A A; Barbisan, F; Athayde, M L; Cruz, I B M

    2013-03-01

    The antioxidant effects of the hydro-alcoholic guaraná extract (Paullinia cupana var. sorbilis Mart.) on nitric oxide (NO) and other compounds generated from the degradation of sodium nitroprusside (SNP) in an embryonic fibroblast culture (NIH-3T3 cells) were evaluated. The guaraná bioactive compounds were initially determined by high-performance liquid chromatography: caffeine=12.240 mg/g, theobromine=6.733 mg/g and total catechins=4.336 mg/g. Cells were exposed to 10 μM SNP during a 6 h period because the cells exhibited >90% mortality at this concentration. Guaraná was added to the cultures in five concentrations (0.5, 1, 5, 10 and 20 mg/mL). The guaraná antioxidant effect was evaluated by viability assays, biochemical oxidation [lipid peroxidation, catalase and superoxide dismutase (SOD) activity] and genotoxicity (DNA Comet assay) analysis. Additionally, oxidative stress was evaluated by a 2,7-dihydrodichlorofluorescein diacetate fluorescence assay. Guaraná reverted the SNP toxicity mainly at lower concentrations (<5 mg), which decreased cell mortality, lipid peroxidation, DNA damage and cell oxidative stress as well as increased the SOD levels. These results demonstrate that guaraná has an antioxidant effect on NO metabolism in situations with higher cellular NO levels. PMID:23220610

  14. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells.

    PubMed

    Mahto, Sanjeev Kumar; Park, Chansik; Yoon, Tae Hyun; Rhee, Seog Woo

    2010-06-01

    With the widespread use of quantum dots (QDs), the likelihood of exposure to QDs has been assumed to have increased substantially. Recently, QDs have been employed in numerous biological and medical applications. However, there is a lack of toxicological data pertaining to QDs. In this study, we aimed to investigate the cytocompatibility of surface-modified CdSe/ZnSe QDs for BALB/3T3 fibroblast cells. The ligands used for surface modification are mercaptopropionic acid (MPA) and Gum arabic (GA)/tri-n-octylphosphine oxide (TOPO). Cells were exposed to different concentrations of QDs followed by illustrative cytotoxicity analyses. Furthermore, we used a confocal microscope to assess intracellular uptake of QDs. Confocal images showed that MPA-coated QDs were distributed inside the cytoplasmic region of cells. In contrast, GA/TOPO-coated QDs were not found inside cells. MPA-coated QDs were highly cytocompatible, whereas GA/TOPO-coated QDs were toxic to the cells. Cells treated with GA/TOPO-coated QDs showed altered morphology, decreased viability, significant concentrations of intracellular free cadmium, detectable reactive oxygen species (ROS) formation, depolymerized cytoskeleton, and irregular-shaped nuclei. This study suggests that surface modification by ligands plays a significant role in the prevention of cytotoxicity of QDs. PMID:20362659

  15. Characterization of a bombesin receptor on Swiss mouse 3T3 cells by affinity cross-linking

    SciTech Connect

    Sinnett-Smith, J.; Zachary, I.; Rozengurt, E.

    1988-12-01

    We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups.

  16. Functional proteomic analysis of long-term growth factor stimulation and receptor tyrosine kinase coactivation in Swiss 3T3 fibroblasts.

    PubMed

    Nagano, Kohji; Akpan, Akunna; Warnasuriya, Gayathri; Corless, Steven; Totty, Nick; Yang, Alice; Stein, Robert; Zvelebil, Marketa; Stensballe, Allan; Burlingame, Al; Waterfield, Michael; Cramer, Rainer; Timms, John F; Naaby-Hansen, Søren

    2012-12-01

    In Swiss 3T3 fibroblasts, long-term stimulation with PDGF, but not insulin-like growth factor 1 (IGF-1) or EGF, results in the establishment of an elongated migratory phenotype, characterized by the formation of retractile dendritic protrusions and absence of actin stress fibers and focal adhesion complexes. To identify receptor tyrosine kinase-specific reorganization of the Swiss 3T3 proteome during phenotypic differentiation, we compared changes in the pattern of protein synthesis and phosphorylation during long-term exposure to PDGF, IGF-1, EGF, and their combinations using 2DE-based proteomics after (35)S- and (33)P-metabolic labeling. One hundred and five differentially regulated proteins were identified by mass spectrometry and some of these extensively validated. PDGF stimulation produced the highest overall rate of protein synthesis at any given time and induced the most sustained phospho-signaling. Simultaneous activation with two or three of the growth factors revealed both synergistic and antagonistic effects on protein synthesis and expression levels with PDGF showing dominance over both IGF-1 and EGF in generating distinct proteome compositions. Using signaling pathway inhibitors, PI3K was identified as an early site for signal diversification, with sustained activity of the PI3K/AKT pathway critical for regulating late protein synthesis and phosphorylation of target proteins and required for maintaining the PDGF-dependent motile phenotype. Several proteins were identified with novel PI3K/Akt-dependent synthesis and phosphorylations including eEF2, PRS7, RACK-1, acidic calponin, NAP1L1, Hsp73, and fascin. The data also reveal induction/suppression of key F-actin and actomyosin regulators and chaperonins that enable PDGFR to direct the assembly of a motile cytoskeleton, despite simultaneous antagonistic signaling activities. Together, the study demonstrates that long-term exposure to different growth factors results in receptor tyrosine kinase

  17. Results of the L5178Y mouse lymphoma assay and the Balb/3t3 cell in vitro transformation assay for eight phthalate esters.

    PubMed

    Barber, E D; Cifone, M; Rundell, J; Przygoda, R; Astill, B D; Moran, E; Mulholland, A; Robinson, E; Schneider, B

    2000-01-01

    Eight phthalate esters, with alcohol chain lengths of 1-11 carbon atoms and with various degrees of branching, were tested in vitro in the L5178Y mouse lymphoma mammalian cell mutation assay and in the Balb/3T3 cell transformation assay. The tests were performed as part of a voluntary testing agreement between the Chemical Manufacturers Association's Phthalate Esters Panel and the United States Environmental Protection Agency (US EPA). The esters tested were: dimethyl phthalate (DMP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di-¿n-hexyl, n-octyl, n-decyl¿ phthalate (610P), di-isononyl phthalate (DINP), di-¿heptyl, nonyl, undecyl¿ phthalate (711P), di-isodecyl phthalate (DIDP) and di-undecyl phthalate (DUP). Both DMP and DBP were found to produce significant increases in the mutant frequency in the mouse lymphoma assay in the presence but not in the absence of an Aroclor-induced rat liver activation system (S-9). Ester 610P gave equivocal results in the mouse lymphoma assay in the presence and absence of rat liver S-9. There was no indication of mutagenic potential for any of the other test materials in the mouse lymphoma assay, and none of the test materials increased transformation frequency in the Balb/3T3 cell transformation assay. Aldehyde metabolites of the de-esterified alcohols are postulated to play a role in the positive results for DMP and DBP. PMID:10641018

  18. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  19. cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ.

    PubMed

    Sakuma, Satoru; Nishioka, Yuki; Imanishi, Ryohta; Nishikawa, Kenji; Sakamoto, Hirotada; Fujisawa, Junji; Wada, Koichiro; Kamisaki, Yoshinori; Fujimoto, Yohko

    2010-09-01

    Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation. PMID:20838573

  20. The left half of the XMRV retrovirus is present in an endogenous retrovirus of NIH/3T3 Swiss mouse cells.

    PubMed

    Mendoza, Ramon; Vaughan, Andrew E; Miller, A Dusty

    2011-09-01

    Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus found in association with human prostate cancer and chronic fatigue syndrome, although these associations are controversial. XMRV shows at most 94% identity to known mouse retroviruses. Here we used XMRV-specific PCR to search for a more closely related source of XMRV in mice. While we could not find a complete copy, we did find a 3,600-bp region of XMRV in an endogenous retrovirus present in NIH/3T3 cells. These results show that XMRV has clear ancestors in mice and highlight another possible source of contamination in PCR assays for XMRV. PMID:21697491

  1. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.

    PubMed

    Addison, W N; Nelea, V; Chicatun, F; Chien, Y-C; Tran-Khanh, N; Buschmann, M D; Nazhat, S N; Kaartinen, M T; Vali, H; Tecklenburg, M M; Franceschi, R T; McKee, M D

    2015-02-01

    Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the

  2. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts.

    PubMed

    Rousseau, Marthe; Pereira-Mouriès, Lucilia; Almeida, Maria José; Milet, Christian; Lopez, Evelyne

    2003-05-01

    Nacre or mother of pearl is a calcified structure that forms the lustrous inner layer of some shells. We studied the biological activity of the water-soluble matrix (WSM) extracted from powdered nacre from the shell of the pearl oyster, Pinctada maxima, on the MC3T3-E1 pre-osteoblast cell line from mouse calvaria. This cell line has the ability to differentiate into osteoblasts and to mineralize in the presence of beta-glycerophosphate and ascorbic acid. Cell proliferation and alkaline phosphatase activity were measured as markers of osteoblast differentiation, and mineralization was analyzed. These studies revealed that WSM stimulates osteoblast differentiation and mineralization by day 6 instead of the 21-day period required for cells grown in normal mineralizing media. We compared the activity of WSM with that of dexamethasone on this cell line. WSM can inhibit alkaline phosphatase (ALP) activity and the activity of dexamethasone on MC3T3-E1 cells. This study shows that nacre WSM could speed up the differentiation and mineralization of this cell line more effectively than dexamethasone. PMID:12781967

  3. Ca/sup 2 +/-mobilizing actions of platelet-derived growth factor differ from those of bombesin and vasopressin in Swiss 3T3 mouse cells

    SciTech Connect

    Lopez-Rivas, A.; Mendoza, S.A.; Nanberg, E.; Sinnett-Smith, J.; Rozengurt, E.

    1987-08-01

    Addition of the mitogenic peptides bombesin and vasopressin to quiescent Swiss 3T3 mouse cells increased the cytosolic Ca/sup 2 +/ concentration without any measurable delay. In contrast, there was a significant lag period (16 +/- 1.2 s) before platelet-derived growth factor (PDGF) increased cytosolic Ca/sup 2 +/ concentration. This lag was not diminished at high concentrations of either porcine or human PDGF. Similar results were obtained in 3T3 cells loaded with quin-2 or fura-2. The differences in the effects of bombesin, vasopressin, and PDGF on Ca/sup 2 +/ movements were also substantiated by measurements of /sup 45/Ca/sup 2 +/ efflux and of cellular /sup 45/Ca/sup 2 +/ content. Activation of protein kinase C by phorbol esters inhibited Ca/sup 2 +/ mobilization induced by either bombesin or vasopressin. In contrast, phorbol esters had no effect on PDGF-induced cytosolic Ca/sup 2 +/ concentration increase or acceleration of /sup 45/Ca/sup 2 +/ efflux. Finally, bombesin and vasopressin caused a rapid increase in the production of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate, whereas PDGF, even at a saturating concentration, exerted only a small effect. These results indicate that the signal transduction pathway activated by PDGF that lead to Ca/sup 2 +/ mobilization can be distinguished form those utilized by bombesin and vasopressin.

  4. Study of oleanolic acid on the estrodiol production and the fat production of mouse preadipocyte 3T3-L1 in vitro.

    PubMed

    Wan, Qian; Lu, Hua; Liu, Xia; Yie, Shangmian; Xiang, Junbei; Yao, Zouying

    2015-01-01

    The women during the menopause period have an increased tendency for the obesity, which represents the more fat production than during the premenopausal period. Although this is not beneficial overall, it could provide a compensatory source for the estrogen production for the menopausal women. So it would be meaningful to find an agent that could inhibit the fat production while does not disturb the total estrogen production by fat tissues. In the present study, the effect of oleanolic acid (OA) on the fat production and the total estrogen production of the differentiating mouse preadipocyte 3T3-L1 as well as the mechanisms behind those effects were preliminarily investigated. The cell line 3T3-L1 was chosen as the model cell because it is usually used for the research about the obesity. During the induced differentiation of 3T3-L1 cells, cells were intervened continuously with OA. The fat production was determined with the oil red staining assay and the total estrogen production was measured with the ELISA assay. Finally, the expression patterns for important genes of the fat production and the estrogen production were studied, respectively with the real-time fluorescence quantitative PCR (qPCR). The results showed that for the differentiating 3T3-L1 cells, OA could significantly inhibit the fat production and did not disturb the total estrogen production significantly. In the mechanism studies, OA was found to significantly down-regulate ACC, the key gene for fat synthesis, which could explain the inhibitory effect of OA on the fat production; OA was also found to significantly up-regulate CYP11A1, CYP17, CYP19, the key genes for the estrogen synthesis and significantly down-regulate CYP1A1, the key gene for the estrogen decomposition, which preliminarily explained the lack of the effect of OA on the total estrogen production. In conclusion, OA was found able to inhibit the fat production while maintaining the total estrogen level and the mechanisms for the above

  5. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    PubMed

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event. PMID:3543375

  6. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    PubMed

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  7. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    PubMed Central

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  8. Cell-free Embryonic Stem Cell Extract-Mediated Derivation of Multi-potent Stem Cells from NIH3T3 Fibroblasts for Functional and Anatomical Ischemic Tissue Repair

    PubMed Central

    Rajasingh, Johnson; Lambers, Erin; Hamada, Hiromichi; Bord, Evelyn; Thorne, Tina; Goukassian, Ilona; Krishnamurthy, Prasanna; Rosen, Kenneth M.; Ahluwalia, Deepali; Zhu, Yan; Qin, Gangjian; Losordo, Douglas W.; Kishore, Raj

    2008-01-01

    The oocyte-independent source for the generation of pluripotent stem cells is one of the ultimate goals in regenerative medicine. We report that upon exposure to mouse ES cell (ESC) extracts, reversibly permeabilized NIH3T3 cells undergo de-differentiation followed by stimulus-induced re-differentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 control and ESC extract treated NIH3T3 cells including the re-activation of ESC specific transcripts. Epigenetically, ESC extracts induced CpG de-methylation of Oct4 promoter, hyper-acetylation of histones 3 and 4 and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically-induced hind limb ischemia (HLI) or acute myocardial infarction (AMI) transplantation of reprogrammed NIH3T3 cells significantly improved post-injury physiological functions and showed anatomical evidence of engraftment and trans-differentiation into skeletal muscle, endothelial cell and cardiomyocytes. These data provide evidence for the generation of functional multi-potent stem like cells from terminally differentiated somatic cells without the introduction of retroviral mediated trans-genes or ESC fusion. PMID:18483406

  9. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity.

    PubMed

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  10. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  11. A Comparison of B16 Melanoma Cells and 3T3 Fibroblasts Concerning Cell Viability and ROS Production in the Presence of Melatonin, Tested Over a Wide Range of Concentrations.

    PubMed

    Bonmati-Carrion, Maria Angeles; Alvarez-Sánchez, Nuria; Hardeland, Rüdiger; Madrid, Juan Antonio; Rol, Maria Angeles

    2013-01-01

    Melatonin is a pleiotropic molecule with many cellular and systemic actions, including chronobiotic effects. Beneficial effects are widely documented concerning the treatment of neoplastic diseases in vivo as well as reductions in viability of cultured cells from melanoma, one of the most aggressive cancers in humans. However, studies of its effects on non-tumor cells in vitro have not focused on viability, except for experiments aiming to protect against oxidotoxicity or other toxicological insults. Furthermore, there is no agreement on the range of effective melatonin concentrations in vitro, and the mechanisms that reduce cell viability have remained unclear. Tumor cell-specific increases in the production of reactive oxygen and nitrogen species (ROS/RNS) may provide a possible explanation. Our aim was to analyze the potential inhibition of tumor (B16 melanoma 4A5) and non-tumor cell (3T3 Swiss albino) viability using a wide range of melatonin concentrations (10-11-10-2 M), and to determine whether intracellular ROS enhancement was involved in this process. In the absence of fetal bovine serum (FBS), low melatonin concentrations (10-9-10-5 M) reduced the proliferation of melanoma cells with no effect in fibroblasts, whereas, in the presence of FBS, they had no effect or even increased the proliferation of both fibroblast and melanoma cells. Melatonin concentrations in the upper millimolar range increased ROS levels and reduced the viability of both cell types, but more markedly so in non-tumor cells. Thus, low melatonin concentrations reduce proliferation in this specific melanoma cell line, whereas high concentrations affect the viability of both tumor (B16 4A5 melanoma) and non-tumor (3T3 fibroblasts) cells. Increased ROS levels in both lines indicate a role for ROS production in the reduction of cell viability at high-but not low-melatonin concentrations, although the mechanism of action still remains to be elucidated. PMID:23434670

  12. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  13. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    SciTech Connect

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. )

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  14. The β-SiC Nanowires (~100 nm) Induce Apoptosis via Oxidative Stress in Mouse Osteoblastic Cell Line MC3T3-E1

    PubMed Central

    Xie, Weili; Xie, Qi; Jin, Meishan; Huang, Xiaoxiao; Zhang, Xiaodong; Shao, Zhengkai; Wen, Guangwu

    2014-01-01

    Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification (β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700°C. β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of β-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, β-SiC nanowires may have limitations as medical material. PMID:24967352

  15. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Mei, Gang; Zou, Zhenlv; Fu, Su; Xia, Liheng; Zhou, Jian; Zhang, Yongtao; Tuo, Yonghua; Wang, Zhao; Jin, Dan

    2014-01-01

    Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway. PMID:24733069

  16. Diacylglycerol stimulates DNA synthesis and cell division in mouse 3T3 cells: role of Ca2+-sensitive phospholipid-dependent protein kinase.

    PubMed Central

    Rozengurt, E; Rodriguez-Pena, A; Coombs, M; Sinnett-Smith, J

    1984-01-01

    The synthetic diacylglycerol 1-oleoyl-2-acetylglycerol competes directly with [3H]phorbol 12,13-dibutyrate for common binding sites in monolayer cultures of Swiss 3T3 cells and rapidly stimulates the phosphorylation of a Mr 80,000 cellular protein that has recently been shown to reflect the activation of protein kinase C in intact cells. Thus, this diacylglycerol provided a useful tool to determine whether exogenously added diacylglycerols can mimic the potent tumor promoter phorbol ester in eliciting DNA synthesis and cell division in quiescent cells. We found that OAG acts synergistically with insulin and other growth factors to stimulate reinitiation of cell proliferation, and several lines of evidence indicate that OAG shares with phorbol esters a common pathway of mitogenic action via stimulation of protein kinase C activity in intact 3T3 cells. The findings support the hypothesis that diacylglycerols represent endogenous analogs of phorbol esters and raise the possibility that diacylglycerols generated in the plasma membrane could act as a mitogenic signal for quiescent cells. Images PMID:6237364

  17. T24 HRAS transformed NIH/3T3 mouse cells (GhrasT-NIH/3T3) in serial tumorigenic in vitro/in vivo passages give rise to increasingly aggressive tumorigenic cell lines T1-A and T2-A and metastatic cell lines T3-HA and T4-PA.

    PubMed

    Ray, Durwood B; Merrill, Gerald A; Brenner, Frederic J; Lytle, Laurie S; Lam, Tan; McElhinney, Aaron; Anders, Joel; Rock, Tara Tauber; Lyker, Jennifer Kier; Barcus, Scott; Leslie, Kara Hust; Kramer, Jill M; Rubenstein, Eric M; Pryor Schanz, Karen; Parkhurst, Amy J; Peck, Michelle; Good, Kimberly; Granath, Kristi Lemke; Cifra, Nicole; Detweiler, Jessalee Wantz; Stevens, Laura; Albertson, Richard; Deir, Rachael; Stewart, Elisabeth; Wingard, Katherine; Richardson, Micah Rose; Blizard, Sarah B; Gillespie, Lauren E; Kriley, Charles E; Rzewnicki, Daniel I; Jones, David H

    2016-01-01

    Cancer cells often arise progressively from "normal" to "pre-cancer" to "transformed" to "local metastasis" to "metastatic disease" to "aggressive metastatic disease". Recent whole genome sequencing (WGS) and spectral karyotyping (SKY) of cancer cells and tumorigenic models have shown this progression involves three major types of genome rearrangements: ordered small step-wise changes, more dramatic "punctuated evolution" (chromoplexy), and large catastrophic steps (chromothripsis) which all occur in random combinations to generate near infinite numbers of stochastically rearranged metastatic cancer cell genomes. This paper describes a series of mouse cell lines developed sequentially to mimic this type of progression. This starts with the new GhrasT-NIH/Swiss cell line that was produced from the NIH/3T3 cell line that had been transformed by transfection with HRAS oncogene DNA from the T24 human bladder carcinoma. These GhrasT-NIH/Swiss cells were injected s.c. into NIH/Swiss mice to produce primary tumors from which one was used to establish the T1-A cell line. T1-A cells injected i.v. into the tail vein of a NIH/Swiss mouse produced a local metastatic tumor near the base of the tail from which the T2-A cell line was established. T2-A cells injected i.v. into the tail vein of a nude NIH/Swiss mouse produced metastases in the liver and one lung from which the T3-HA (H=hepatic) and T3-PA (P=pulmonary) cell lines were developed, respectively. T3-HA cells injected i.v. into a nude mouse produced a metastasis in the lung from which the T4-PA cell line was established. PCR analysis indicated the human T24 HRAS oncogene was carried along with each in vitro/in vivo transfer step and found in the T2-A and T4-PA cell lines. Light photomicrographs indicate that all transformed cells are morphologically similar. GhrasT-NIH/Swiss cells injected s.c. produced tumors in 4% of NIH/Swiss mice in 6-10 weeks; T1-A cells injected s.c. produced tumors in 100% of NIH/Swiss mice in 7

  18. Vasoactive intestinal peptide synergistically stimulates DNA synthesis in mouse 3T3 cells: Role of cAMP, Ca sup 2+ , and protein kinase C

    SciTech Connect

    Zurier, B.B.; Kozma, M.; Sinnett-Smith, J.; Rozengurt, E. )

    1988-05-01

    Vasoactive intestinal peptide synergistically stimulated initiation of DNA synthesis in Swiss 3T3 cells. The peptide stimulated ({sup 3}H)thymidine incorporation in the presence of insulin and either forskolin or an inhibitor of cAMP phosphodiesterase in a concentration-dependent manner. Half-maximal effect was obtained at 1 nM. At mitogenic concentrations, VIP stimulated a marked accumulation (eightfold) of cAMP. In contrast to other growth-promoting neuropeptides, VIP did not induce an increase in cytosolic free Ca{sup 2+} or the activation of protein kinase C. The authors conclude that neuropeptides can modulate long-term cell proliferation through multiple signaling pathways.

  19. Expression of Caveolin-1 reduces cellular responses to TGF-{beta}1 through down-regulating the expression of TGF-{beta} type II receptor gene in NIH3T3 fibroblast cells

    SciTech Connect

    Lee, Eun Kyung; Lee, Youn Sook; Han, In-Oc; Park, Seok Hee . E-mail: parks@skku.edu

    2007-07-27

    Transcriptional repression of Transforming Growth Factor-{beta} type II receptor (T{beta}RII) gene has been proposed to be one of the major mechanisms leading to TGF-{beta} resistance. In this study, we demonstrate that expression of Caveolin-1 (Cav-1) gene in NIH3T3 fibroblast cells down-regulates the expression of T{beta}RII gene in the transcriptional level, eventually resulting in the decreased responses to TGF-{beta}. The reduced expression of T{beta}RII gene by Cav-1 appeared to be due to the changes of the sequence-specific DNA binding proteins to either Positive Regulatory Element 1 (PRE1) or PRE2 of the T{beta}RII promoter. In addition, Cav-1 expression inhibited TGF-{beta}-mediated cellular proliferation and Plasminogen Activator Inhibitor (PAI)-1 gene expression as well as TGF-{beta}-induced luciferase activity. Furthermore, the inhibition of endogeneous Cav-1 by small interfering RNA increased the expression of T{beta}RII gene. These findings strongly suggest that expression of Cav-1 leads to the decreased cellular responsiveness to TGF-{beta} through down-regulating T{beta}RII gene expression.

  20. Localization of tropomyosin in mouse embryo fibroblasts.

    PubMed

    Jorgensen, A O; Subrahmanyan, L; Kalnins, V I

    1975-04-01

    Antiserum to chick skeletal muscle tropomyosin was used to localize tropomyosin in mouse embryo fibroblasts by the indirect fluorescein labeled antibody technique. Specific staining was observed cytoplasmic fibers, which extended out into the cell processes. The staining pattern in these cells is similar to that previously described by others for actin. This observation suggests that in fibroblasts tropomyosin, like actin, is localized in fibers in the cytoplasm. PMID:50726

  1. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function.

    PubMed

    Waldman, Maayan; Bellner, Lars; Vanella, Luca; Schragenheim, Joseph; Sodhi, Komal; Singh, Shailendra P; Lin, Daohong; Lakhkar, Anand; Li, Jiangwei; Hochhauser, Edith; Arad, Michael; Darzynkiewicz, Zbigniew; Kappas, Atallah; Abraham, Nader G

    2016-07-15

    Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation. PMID:27224420

  2. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts.

    PubMed Central

    Takuwa, N; Takuwa, Y

    1997-01-01

    It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase. PMID:9271412

  3. Isolation of 1-monomethylphosphoinositol 4,5-bisphosphate (a product of methanolysis of inositol 1,2-(cyclic)-4,5-trisphosphate) from Swiss mouse 3T3 cells

    SciTech Connect

    Lips, D.L.; Bross, T.E.; Majerus, P.W.

    1988-01-01

    We have noted two previously undescribed inositol polyphosphates in neutral methanol extracts from Swiss mouse 3T3 cells that were grown in (/sup 3/H)inositol and stimulated with platelet-derived growth factor. They have been identified as 1-monomethylphosphoinositol 4,5-bisphosphate and 1-monomethylphosphoinositol 4-phosphate by comparison to a synthesized standard using HPLC chromatography, paper electrophoresis, and enzymatic dephosphorylation with inositol polyphosphate 5-phosphomonoesterase and intestinal alkaline phosphatase. We propose that these compounds are formed by methanolysis of inositol 1,2-(cyclic)-4,5-trisphosphate and inositol 1,2-(cyclic)-4-bisphosphate present in the cells. Inositol cyclic phosphates did not react with neutral methanol in the absence of the cells, which are required for the methanolysis reaction. These findings suggest a role for inositol cyclic phosphates as reactive compounds that are added to as yet unidentified cellular acceptors.

  4. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.

    PubMed

    Purnama, Agung; Hermawan, Hendra; Champetier, Serge; Mantovani, Diego; Couet, Jacques

    2013-11-01

    Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts - magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe-35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe-35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml(-1) of Fe-35 Mn powder, 0.25 mg ml(-1) of pure Mn powder or 5 mg ml(-1) of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe-35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe-35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe-35 Mn alloy and may help in the appraisal of its potential for DMM applications. PMID:23499988

  5. Desensitization of prostaglandin F2 alpha-stimulated inositol phosphate generation in NIH-3T3 fibroblasts transformed by overexpression of normal c-Ha-ras-1, c-Ki-ras-2 and c-N-ras genes.

    PubMed Central

    Black, F M; Wakelam, M J

    1990-01-01

    The stimulation of inositol phosphate generation in control and ras-gene-transformed NIH-3T3 cells by prostaglandin F2 alpha (PGF2 alpha) was investigated. Compared with the control cells, a desensitization of the response was observed in cells transformed by the overexpression of N-, Ha-, or Ki-ras genes. This desensitization was without effect upon the concentration causing half-maximal effect (EC50), dissociation constant (Kd) or number of PGF2 alpha receptors. Inhibition of PG synthesis was without effect upon desensitization, demonstrating that the effect was not agonist-induced. Desensitization could be induced in NIH-3T3 cells by culturing under conditions where the cells were all in the exponential growth phase, or by a 12 h exposure to a C-kinase-activating phorbol ester. These results suggest that desensitization of certain agonist-induced inositol phospholipid responses in ras-transformed cells is a consequence of increased cell proliferation and associated amplification in C-kinase activity and is an indirect consequence of transformation by ras. PMID:2187437

  6. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes.

    PubMed Central

    Brown, N F; Hill, J K; Esser, V; Kirkland, J L; Corkey, B E; Foster, D W; McGarry, J D

    1997-01-01

    The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used

  7. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    PubMed Central

    Ayyad, Seif-Eldin N.; Abdel-Lateff, Ahmed; Basaif, Salim A.; Shier, Thomas

    2011-01-01

    Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D (1H and 13C) and 2D (COSY, HMQC and HMBC) NMR (Nuclear Magnetic Resonance Spectrometry) and ESI-MS (Eelectrospray Ionization Mass Spectrometry) spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3) and virally transformed form (KA3IT). Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1) and cucurbitacin B (2), had been obtained. Compounds 1 and 2 showed (showed potent inhibitory activities toward NIH3T3 and KA31T with IC50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B) showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug. PMID:22022168

  8. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells.

    PubMed Central

    Wu, J; Issa, J P; Herman, J; Bassett, D E; Nelkin, B D; Baylin, S B

    1993-01-01

    Abnormal regional increases in DNA methylation, which have potential for causing gene inactivation and chromosomal instability, are consistently found in immortalized and tumorigenic cells. Increased DNA methyltransferase activity, which is also a characteristic of such cells, is a candidate to mediate these abnormal DNA methylation patterns. We now show that, in NIH 3T3 mouse fibroblasts, constitutive overexpression of an exogenous mouse DNA methyltransferase gene results in a marked increase in overall DNA methylation which is accompanied by tumorigenic transformation. These transformation changes can also be elicited by dexamethasone-inducible expression of an exogenous DNA methyltransferase gene. Our findings provide strong evidence that the increase in DNA methyltransferase activity associated with tumor progression could be a key step in carcinogenesis and provide a model system that can be used to further study this possibility. Images Fig. 1 Fig. 2 PMID:8415627

  9. Modulation of Cell-Substrate Adhesion by Arachidonic Acid: Lipoxygenase Regulates Cell Spreading and ERK1/2-inducible Cyclooxygenase Regulates Cell Migration in NIH-3T3 Fibroblasts

    PubMed Central

    Stockton, Rebecca A.; Jacobson, Bruce S.

    2001-01-01

    Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the cell spreading and cell migration stages. During the adhesion of NIH-3T3 cells to fibronectin, two functionally and kinetically distinct phases of arachidonic acid release take place. An initial transient arachidonate release occurs during cell attachment to fibronectin, and is sufficient to signal the cell spreading stage after its oxidation by 5-lipoxygenase to leukotrienes. A later sustained arachidonate release occurs during and after spreading, and signals the subsequent migration stage through its oxidation to prostaglandins by newly synthesized cyclooxygenase-2. In signaling migration, constitutively expressed cyclooxygenase-1 appears to contribute ∼25% of prostaglandins synthesized compared with the inducible cyclooxygenase-2. Both the second sustained arachidonate release, and cyclooxygenase-2 protein induction and synthesis, appear to be regulated by the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK)1/2. The initial cell attachment-induced transient arachidonic acid release that signals spreading through lipoxygenase oxidation is not sensitive to ERK1/2 inhibition by PD98059, whereas PD98059 produces both a reduction in the larger second arachidonate release and a blockade of induced cyclooxygenase-2 protein expression with concomitant reduction of prostaglandin synthesis. The second arachidonate release, and cyclooxygenase-2 expression and activity, both appear to be required for cell migration but not for the preceding stages of attachment and spreading. These data suggest a bifurcation in the arachidonic acid adhesion

  10. Effects of different forms of chitosan on intercellular junctions of mouse fibroblasts in vitro.

    PubMed

    Uslu, B; Biltekin, B; Denir, S; Özbaş-Turan, S; Arbak, S; Akbuğa, J; Bilir, A

    2016-01-01

    Chitosan is a linear polysaccharide that has many biomedical applications. We compared the effects of chitosan, in both solution and membranous form, on intercellular adhesion of Swiss 3T3 mouse fibroblasts. Cells were grown as spheroidal cell cultures. Some control cell spheroids were cultured without chitosan and two experimental groups were cultured with chitosan. Chitosan in solution was used for one experimental group and chitosan in membranous form was used for the other. For each group, intercellular adhesion was investigated on days 5 and 10 of culture. Transmission electron microscopy revealed well-defined cellular projections that were more prominent in cells exposed to either membranous or solution forms of chitosan than to the chitosan-free control. Immunocytochemical staining of ICAM-1 and e-cadherin was used to determine the development of intercellular junctions. Compared to the weakly stained control, strong reactions were observed in both chitosan exposed groups at both 5 and 10 days. Cells were treated with 5-bromo-2-deoxyuridine (BrdU) and incubated with anti-BrdU primary antibody to assess proliferation. Both the solution and membranous forms of chitosan increased proliferation at both 5 and 10 days. Cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The MTT assay indicated high cell viability; maximum viability was obtained with the solution form of chitosan at day 5. Chitosan exposure increased the number of intercellular junctions and showed a significant proliferative effect on 3T3 mouse fibroblasts. PMID:26523482

  11. Cloning and Stable Expression of cDNA Coding For Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1, CD31) in NIH-3T3 Cell Line

    PubMed Central

    Salehi-Lalemarzi, Hamed; Shanehbandi, Dariush; Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Baradaran, Behzad; Movassaghpour, Ali Akbar; Kazemi, Tohid

    2015-01-01

    Purpose: PECAM-1 (CD31) is a glycoprotein expressed on endothelial and bone marrow precursor cells. It plays important roles in angiogenesis, maintenance and integration of the cytoskeleton and direction of leukocytes to the site of inflammation. We aimed to clone the cDNA coding for human CD31 from KG1a for further subcloning and expression in NIH-3T3 mouse cell line. Methods: CD31 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 2235 bp specific band was aligned completely to human CD31 reference sequence in NCBI database. Transient and stable expression of human CD31 on transfected NIH-3T3 mouse fibroblast cells was achieved (23% and 96%, respectively) as shown by flow cytometry. Conclusion: Due to murine origin of NIH-3T3 cell line, CD31-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD31, with no need for purification of recombinant proteins. PMID:26236664

  12. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    PubMed

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells. PMID:24665905

  13. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  14. Defining the identity of mouse embryonic dermal fibroblasts.

    PubMed

    Budnick, Isadore; Hamburg-Shields, Emily; Chen, Demeng; Torre, Eduardo; Jarrell, Andrew; Akhtar-Zaidi, Batool; Cordovan, Olivia; Spitale, Rob C; Scacheri, Peter; Atit, Radhika P

    2016-08-01

    Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:27265328

  15. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  16. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts

    SciTech Connect

    Cheng, S.Y.

    1983-05-01

    The binding and internalization of 3,3'-(/sup 125/I) 5-triiodo-L-thyronine ((/sup 125/I)T3) was studied in cultured Swiss 3T3-4 mouse fibroblasts. At 0 C, the binding of T3 to cells is saturable, reversible, and stereospecific. These results together with those of earlier fluorescence studies using rhodamine-labeled T3 demonstrate the presence of specific plasma membrane T3 receptors. At 37 C, the uptake of T3 reached a steady state after 1 h, and approximately 57 fmol T3 were specifically taken up by 10(6) cells. In other cell lines, 7, 19, and 201 fmol T3 were specifically taken up by Chinese hamster ovary cells (subclone 10001), Kirsten sarcoma virus-transformed NIH 3T3 mouse fibroblasts, and nontransformed NIH 3T3 mouse fibroblasts, respectively. Incorporation of T3 into nuclei followed similar kinetics and accounted for approximately 9% of the total cellular uptake. Equilibrium binding studies of T3 to isolated nuclei showed one class of binding sites with an apparent association constant of 5 X 10(9) M-1 and a binding capacity of 16 fmol/100 micrograms DNA. At 37 C, the internalization of T3 was nearly totally blocked by antimycin A or rotenone, inhibitors of oxidative phosphorylation. These results indicate that the uptake of T3 is an energy-dependent process. In the presence of bacitracin or monodansylcadaverine, substances that inhibit the receptor-mediated endocytosis of alpha 2-macroglobulin, the cellular uptake of T3 as well as the nuclear incorporation of T3 were inhibited in a concentration-dependent manner. The half-maximal inhibitory concentrations for the cellular uptake of T3 were 90 and 660 microM for monodansylcadaverine and bacitracin, respectively; for nuclear incorporation, they were 70 and 350 microM for monodansylcadaverine and bacitracin, respectively. These results indicate that receptor-mediated endocytotic uptake of T3 is a physiologically significant pathway.

  17. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  18. The Effect of Gynostemma pentaphyllum Extract on Mouse Dermal Fibroblasts

    PubMed Central

    Lobo, Sara Nadia; Qi, Yu Qing; Liu, Quan Zhong

    2014-01-01

    Background. The objective of this paper is to demonstrate the effect of Gynostemma pentaphyllum extract on mouse dermal fibroblasts. Recent studies have shown that this plant may possess great antioxidant properties, which can be very beneficial in combating oxidative stress. Methods. Gynostemma pentaphyllum extract was prepared and mouse dermal fibroblasts were obtained and cultured as per our laboratory protocols. Twelve samples of cells were cultured under the same conditions and both negative and positive controls were established. Induction of oxidative stress was carried out using ultraviolet C (UVC) light. Viable cell count was carried out, using microscopy. The analysis of the overall results was processed using SPSS version 16.0. Results. Statistical analysis showed strong positive correlation between the concentration of Gynostemma pentaphyllum and the mean duration of cell viability (rs = 1), with a high level of statistical significance (P < 0.01). Likewise, strong positive correlation existed between trials of cell viability (rs = 0.988–1), with statistical significance (P < 0.01). Conclusion. Gynostemma pentaphyllum extract prolongs viability of mouse dermal fibroblasts damaged by UVC light-induced oxidative stress. The results show the potential benefits of this extract on dermal cell aging. PMID:24729883

  19. The Effect of Gynostemma pentaphyllum Extract on Mouse Dermal Fibroblasts.

    PubMed

    Lobo, Sara Nadia; Qi, Yu Qing; Liu, Quan Zhong

    2014-01-01

    Background. The objective of this paper is to demonstrate the effect of Gynostemma pentaphyllum extract on mouse dermal fibroblasts. Recent studies have shown that this plant may possess great antioxidant properties, which can be very beneficial in combating oxidative stress. Methods. Gynostemma pentaphyllum extract was prepared and mouse dermal fibroblasts were obtained and cultured as per our laboratory protocols. Twelve samples of cells were cultured under the same conditions and both negative and positive controls were established. Induction of oxidative stress was carried out using ultraviolet C (UVC) light. Viable cell count was carried out, using microscopy. The analysis of the overall results was processed using SPSS version 16.0. Results. Statistical analysis showed strong positive correlation between the concentration of Gynostemma pentaphyllum and the mean duration of cell viability (rs = 1), with a high level of statistical significance (P < 0.01). Likewise, strong positive correlation existed between trials of cell viability (rs = 0.988-1), with statistical significance (P < 0.01). Conclusion. Gynostemma pentaphyllum extract prolongs viability of mouse dermal fibroblasts damaged by UVC light-induced oxidative stress. The results show the potential benefits of this extract on dermal cell aging. PMID:24729883

  20. The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts

    PubMed Central

    Atit, Radhika P.; Crowe, Maria J.; Greenhalgh, David G.; Wenstrup, Richard J.; Ratner, Nancy

    2010-01-01

    Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/− wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/− skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/− fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/− fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas. PMID:10383727

  1. Transcriptional profiling of immortalized and K-ras-transformed mouse fibroblasts upon PKA stimulation by forskolin in low glucose availability.

    PubMed

    Chiaradonna, Ferdinando; Pirola, Yuri; Ricciardiello, Francesca; Palorini, Roberta

    2016-09-01

    Forskolin (FSK) induces activation of protein kinase A (PKA). This activation protects specifically some cancer cells from death induced by glucose starvation. Cell effects upon FSK treatment prompted us to investigate in detail the physiological role of PKA in the activation of pro-survival mechanisms in glucose starvation. In this regard we performed a microarray analysis of normal NIH3T3 and transformed NIH3T3-K-ras mouse fibroblasts cultured at 1 mM glucose and daily treated or not with 10 μM FSK until 72 h of growth, when the samples were collected. The microarray is deposited into Gene Expression Omnibus under Series GSE68266. The microarray data revealed that the activation of PKA regulates the expression of genes involved in metabolic, stress-response and pro-survival processes, like glutamine metabolism, autophagy and unfolded protein response, preventing cancer cell death in glucose starvation. Altogether these findings suggest that PKA activation, by inducing a complex transcriptional program, leads to cancer survival in nutrient stress, a typical feature of developing tumor. These transcriptional data, identifying this important role of PKA, will be useful to identify novel target in cancer therapy. PMID:27486565

  2. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  3. A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor.

    PubMed

    Quarles, L D; Hartle, J E; Siddhanti, S R; Guo, R; Hinson, T K

    1997-03-01

    The presence of a cation-sensing mechanism in osteoblasts is suggested by the ability of specific cations to stimulate osteoblastic proliferation in culture and to induce de novo bone formation in some experimental models. Our study examines whether extracellular cations stimulate osteoblasts through the recently identified G protein-coupled calcium receptor (CaR). We found that CaR agonists, calcium (Ca2+), gadolinium (Gd3+), aluminum (Al3+), and neomycin, stimulated DNA synthesis in murine-derived MC3T3-E1 preosteoblasts, whereas magnesium (Mg2+), nickel (Ni2+), cadmium (Cd2+), and zinc (Zn2+) had no effect. With the exception of Mg2+, the cation specificities and apparent affinities were similar to that reported for CaR. CaR agonists also stimulated DNA synthesis in C3HT10(1/2) fibroblasts, but not in mesangial PVG, CHO, hepatic HTC, COS-7 cells, or malignant transformed ROS17/2.8 and UMR-106 osteoblasts. In addition, similar to other growth factors, CaR agonists activated transcription of a serum response element luciferase reporter construct (SRE-Luc) stably transfected into MC3T3-E1 osteoblasts, but had no effect on SRE-Luc transfected into CHO and COS-7 cells. We were unable to detect CaR expression by Northern analysis using a mouse CaR-specific probe or to amplify CaR mRNA by reverse transcribed polymerase chain reaction in MC3T3-E1 osteoblasts. These findings suggest that an extra-cellular cation-sensing mechanism is present in murine-derived osteoblasts that is functionally similar to but molecularly distinct from CaR. PMID:9076582

  4. Genetic Reconstitution of Functional Acetylcholine Receptor Channels in Mouse Fibroblasts

    NASA Astrophysics Data System (ADS)

    Claudio, Toni; Green, W. N.; Hartman, Deborah S.; Hayden, Deborah; Paulson, Henry L.; Sigworth, F. J.; Sine, Steven M.; Swedlund, Anne

    1987-12-01

    Foreign genes can be stably integrated into the genome of a cell by means of DNA-mediated gene transfer techniques, and large quantities of homogenous cells that continuously express these gene products can then be isolated. Such an expression system can be used to study the functional consequences of introducing specific mutations into genes and to study the expressed protein in the absence of cellular components with which it is normally in contact. All four Torpedo acetylcholine receptor (AChR) subunit complementary DNA's were introduced into the genome of a mouse fibroblast cell by DNA-mediated gene transfer. A clonal cell line that stably produced high concentrations of correctly assembled cell surface AChR's and formed proper ligand-gated ion channels was isolated. With this new expression system, recombinant DNA, biochemical, pharmacological, and electrophysiological techniques were combined to study Torpedo AChR's in a single intact system. The physiological and pharmacological profiles of Torpedo AChR's expressed in mouse fibroblast cells differ in some details from those described earlier, and may provide a more accurate reflection of the properties of this receptor in its natural environment.

  5. Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX.

    PubMed

    Patel, Kunal; Sundara Raj, Behin; Chen, Yan; Lou, Xia

    2016-04-01

    Hollow silica nanoparticles of two sizes with and without a folic acid targeting ligand were synthesized. Fickian diffusion of the antitumor drug doxorubicin hydrochloride (DOX) was demonstrated by the produced nanoparticles, achieving a cumulative release of 73% and 45% for 215 nm and 430 nm particles respectively over a period of 500 h. The hollow silica nanoparticles presented a time and dose dependent toxicity, selective to human epithelial colorectal adenocarcinoma (Caco2) cells, over mouse embryonic fibroblast (3T3) cells. At 24h Caco2 cell viability was reduced to 66% using pure hollow silica at a concentration of 50 μg mL(-1), while that of 3T3 cells remained at 94% under the same conditions. The selective cytotoxicity of hollow silica nanoparticles was further enhanced by conjugation of folic acid and incorporation of DOX: at 24h and an equivalent DOX concentration of 0.5 μg mL(-1), viable Caco2 cells were reduced to 45% while 3T3 cells were reduced to 83%. Interestingly the equivalent dose of free DOX was more toxic to 3T3 than to Caco2 cells, reducing the 3T3 viability to 72% and the Caco2 viability to 80%, which is likely due to the presence of the p-glycoprotein pumps in Caco2 cells. Folic acid conjugation served to enhance the viability of both cell lines in this work. Careful optimization of the folate content should further improve the cell specificity of the hollow silica nanoparticles, thus providing a viable targeting platform for cancer therapy. PMID:26764104

  6. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation.

    PubMed

    Lengner, Christopher J; Lepper, Christoph; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2004-09-01

    Cartilage formation is an intricate process that requires temporal and spatial organization of regulatory factors in order for a mesenchymal progenitor cell to differentiate through the distinct stages of chondrogenesis. Gene function during this process has best been studied by analysis of in vivo cartilage formation in genetically altered mouse models. Mouse embryonic fibroblasts (MEFs) isolated from such mouse models have been widely used for the study of growth control and DNA damage response. Here, we address the potential of MEFs to undergo chondrogenic differentiation. We demonstrate for the first time that MEFs can enter and complete the program of chondrogenic differentiation ex vivo, from undifferentiated progenitor cells to mature, hypertrophic chondrocytes. We show that chondrogenic differentiation can be induced by cell-cell contact or BMP-2 treatment, while in combination, these conditions synergistically enhance chondrocyte differentiation resulting in the formation of 3-dimensional (3-D) cartilaginous tissue ex vivo. Temporal expression profiles of pro-chondrogenic transcription factors Bapx1 and Sox9 and cartilaginous extracellular matrix (ECM) proteins Collagen Type II and X (Coll II and Coll X) demonstrate that the in vivo progression of chondrocyte maturation is recapitulated in the MEF model system. Our findings establish the MEF as a powerful tool for the generation of cartilaginous tissue ex vivo and for the study of gene function during chondrogenesis. PMID:15254959

  7. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells.

    PubMed

    Adhikari, Ananta Raj; Geranpayeh, Tanya; Chu, Wei Kan; Otteson, Deborah C

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1×10(12) to 1×10(14) ions/cm(2)), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. PMID:26706518

  8. Prolonged Induction Activates Cebpα Independent Adipogenesis in NIH/3T3 Cells

    PubMed Central

    Shao, Hsiao-Yun; Hsu, Hsue-Yin; Wu, Kuan-Sju; Hee, Siow-Wey; Chuang, Lee-Ming; Yeh, Jih-I

    2013-01-01

    Background 3T3-L1 cells are widely used to study adipogenesis and insulin response. Their adipogenic potential decreases with time in the culture. Expressing exogenous genes in 3T3-L1 cells can be challenging. This work tries to establish and characterize an alternative model of cultured adipocytes that is easier to work with than the 3T3-L1 cells. Methodology/Principal Findings Induced cells were identified as adipocytes based on the following three characteristics: (1) Accumulation of triglyceride droplets as demonstrated by oil red O stain. (2) Transport rate of 2-deoxyglucose increased after insulin stimulation. (3) Expression of fat specific genes such as Fabp4 (aP2), Slc2a4 (Glut4) and Pparg (PPARγ). Among the cell lines induced under different conditions in this study, only NIH/3T3 cells differentiated into adipocytes after prolonged incubation in 3T3-L1 induction medium containing 20% instead of 10% fetal bovine serum. Rosiglitazone added to the induction medium shortened the incubation period from 14 to 7 days. The PI3K/AKT pathway showed similar changes upon insulin stimulation in these two adipocytes. C/EBPα mRNA was barely detectable in NIH/3T3 adipocytes. NIH/3T3 adipocytes induced in the presence of rosiglitazone showed higher 2-deoxyglucose transport rate after insulin stimulation, expressed less Agt (angiotensinogen) and more PPARγ. Knockdown of C/EBPα using shRNA blocked 3T3-L1 but not NIH/3T3 cell differentiation. Mouse adipose tissues from various anatomical locations showed comparable levels of C/EBPα mRNA. Conclusions/Significance NIH/3T3 cells were capable of differentiating into adipocytes without genetic engineering. They were an adipocyte model that did not require the reciprocal activation between C/EBPα and PPARγ to differentiate. Future studies in the C/EBPα independent pathways leading to insulin responsiveness may reveal new targets to diabetes treatment. PMID:23326314

  9. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    PubMed

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3. PMID:23066647

  10. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    PubMed Central

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  11. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts.

    PubMed

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin; Morishita, Kazuhiro; Ichikawa, Tomonaga; Jessberger, Rolf; Fukui, Yasuhisa

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. PMID:26103139

  12. Novel ATP-binding heat-inducible protein of Mr = 37,000 that is sensitive to transformation in BALB/3T3 cells

    SciTech Connect

    Nakai, A.; Hirayama, C.; Ohtsuka, K.; Hirayoshi, K.; Nagata, K. )

    1990-06-01

    Using affinity chromatography on ATP-agarose, we have identified a major ATP-binding protein in Nonidet P-40 extracts of avian and mammalian cells labeled with (35S)methionine. After washing ATP-agarose beads with high-ionic-strength buffer (0.4 M NaCl), the 37-kD protein was shown to be one of the major ATP-binding proteins while p72 and grp78, which are members of the hsp70 family, also bound to ATP-agarose. This protein consisted of several spots on two-dimensional gel electrophoresis. The isoelectric point of the most basic spot was approximately 9.2 in chick embryo fibroblasts, whereas it was about 8.8 in mouse 3T3 cells. The identities of these proteins in mouse and chick cells were confirmed by peptide mapping. After heat-shock treatment of BALB/3T3 cells, the major heat-shock protein, hsp70, was shown to be induced very rapidly after heat shock and was recovered in the ATP-binding fraction. Besides hsp70, a 37-kD protein was also found to be induced by heat shock. This protein was drastically induced by treating the cells with alpha,alpha'-dipyridyl, an iron chelating reagent, but not with sodium arsenite, calcium ionophore, or tunicamycin. The synthesis and the total amount of this ATP-binding protein increased in mouse 3T3 cells transformed by simian virus 40, methylcholanthrene, or activated c-Ha-ras oncogene compared to their normal counterparts. The incorporation of (32P)orthophosphate was not detected in either normal or transformed cells. These studies established that a major ATP-binding protein of Mr = 37,000 is a heat-inducible protein and that the synthesis of this protein is regulated by malignant transformation.

  13. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    PubMed

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. PMID:27612743

  14. Subcellular distribution of glucocorticoid receptors in mouse fibroblasts.

    PubMed

    Middlebrook, J L; Wong, M D; Ishii, D N; Aronow, L

    1975-01-14

    Mouse fibroblasts contain a macromolecular binding component (receptor) which binds glucocorticoids specifically and with high affinity. This study shows that there are three different cellular forms of bound receptor and that it is experimentally possible to markedly alter the subcellular distribution of these three forms. Cells incubated with (3H)triamcinolone acetonide were broken after hypotonic shock and a 7000g hypotonic supernatant was obtained; the pellet was extracted with 0.3 M KCl, yielding a nuclear extract; the remaining pellet was resuspended in water, sonicated, and assayed for "nuclear residual" (i.e., nonextractable) radioactivity. If whole cells are incubated at 0 degrees in a growth medium, almost all of the bound steroid is located in the hypotonic supernatant fraction. Incubation at 37 degrees produces a shift of the steroid-bound macromolecule into the nuclear extractable form, while omission of glucose and addition of KCN at 37 degrees markedly increase the nuclear residual form at the expense of both the nuclear-extractable and supernatant forms. Since DNase treatment of chromatin liberates a soluble steroid-receptor complex, we believe that the nuclear residual form may be steroid-receptor complex tightly bound to chromatin. We propose a model suggesting that an energy-requiring process is required to generate free receptor from the chromatin complex to complete the normal cellular recycling system. PMID:162830

  15. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity

    PubMed Central

    Singhal, Prabhat K.; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C.; Fukumura, Dai; Jain, Rakesh K.; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  16. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity.

    PubMed

    Singhal, Prabhat K; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C; Fukumura, Dai; Jain, Rakesh K; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  17. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  18. Insulin regulation of protein biosynthesis in differentiated 3T3 adipocytes. Regulation of glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Alexander, M.; Curtis, G.; Avruch, J.; Goodman, H.M.

    1985-10-05

    The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, the authors focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and (TVS) methionine incorporation into GAPDH protein increased 5-fold. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.

  19. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential.

    PubMed

    Ponti, Jessica; Broggi, Francesca; Mariani, Valentina; De Marzi, Laura; Colognato, Renato; Marmorato, Patrick; Gioria, Sabrina; Gilliland, Douglas; Pascual Garcìa, César; Meschini, Stefania; Stringaro, Annarita; Molinari, Agnese; Rauscher, Hubert; Rossi, François

    2013-03-01

    In this work we investigated the toxicological effects of nude and chemically functionalised (-NH(2), -OH and -COOH groups) multiwall carbon nanotubes (mwCNTs) using immortalised mouse fibroblasts cell line (Balb/3T3) as in vitro model, alternative to the use of animals, to assess basal cytotoxicity, carcinogenic potential, genotoxicity and cell interaction of nanomaterials (NM). Combining in vitro tests such as cell transformation assay and micronucleus with physicochemical and topological analysis, we obtained results showing no cytotoxicity and genotoxicity. Carcinogenic potential and mwCNTs interaction with cells were instead evident. We stressed the importance that different toxicological end points have to be considered when studying NM, therefore, assays able to detect long-term effects, such as carcinogenicity, must be taken into account together with a panel of tests able to detect more immediate effects like basal cytotoxicity or genotoxicity. PMID:22279961

  20. Instability of endogenous MRP/proliferin transcripts in the nucleus of mouse embryo fibroblasts contrasts with their stability when produced during transient transfections.

    PubMed

    Malyankar, U M; Rittling, S R; Denhardt, D T

    1996-02-01

    The mitogen regulated protein/proliferin (MRP/PLF) gene is transcribed in primary mouse embryo fibroblasts (MEFs), but the pre-mRNA is not properly converted into a stable cytoplasmic mRNA and instead is rapidly degraded, apparently in the nucleus [Malyankar et al. (1994): Proc Natl Acad Sci USA 91:335-359]. In 3T3 cells derived from the MEFs by the standard 3T3 immortalization protocol, stable MRP/PLF mRNA is produced. We show here that the processing of intron sequences is similar in the two cell types and that some of the MRP/PLF transcripts are polyadenylated in the MEFs. We also document the production of stable MRP/PLF mRNA generated by transcription of various plasmid constructs containing different portions of the MRP/PLF3 gene after calcium phosphate-mediated transfection into the MEFs. We conclude that the inability of the MRP/PLF mRNA to accumulate in the MEFs is unlikely to result solely from a single localized sequence in the primary transcript (or the mRNA) that causes it to be subject to rapid breakdown; possibly export of the mRNA from the MEF nucleus is defective or some aspect of the transcriptional process marks the transcript for degradation. PMID:8655630

  1. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  2. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution.

    PubMed

    Atkins, Stephen J; Lentz, Stephen I; Fernando, Roshini; Smith, Terry J

    2015-12-01

    A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors. PMID:26389690

  3. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  4. STAT5A expression in Swiss 3T3 cells promotes adipogenesis in vivo in an athymic mice model system.

    PubMed

    Stewart, William C; Pearcy, Lisa A; Floyd, Z Elizabeth; Stephens, Jacqueline M

    2011-09-01

    Many studies from our laboratories and others have shown that STAT5 expression and activity are increased during adipogenesis of murine and human adipocytes. Ectopic expression of STAT5A in fibroblasts or preadipocytes can confer or enhance adipogenesis. To determine whether STAT5A also plays a role in adipogenesis in vivo, we injected athymic mice with Swiss 3T3 cells expressing an empty pBABE retrovirus, Swiss cells expressing a pBABE retrovirus-containing STAT5A, or 3T3-F442A preadipocytes. Athymic mice injected with either 3T3-F442A cells or Swiss 3T3 cells expressing STAT5A resulted in fat pad formation at the site of injection. However, mice injected with Swiss cells containing the parent retroviral vector did not have any observable fat pads. An analysis of the ectopic fat pads obtained from the Swiss 3T3 STAT5A mice revealed abundant expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin. The protein levels of both of these fat cell markers were comparable to expression levels in epididymal fat pads. These results demonstrate that STAT5A can promote adipogenesis in vivo in this model system which supports a role of this transcription factor in adipocyte development in the whole animal. PMID:21494231

  5. Ultrasound associated uptake of chitosan nanoparticles in MC3T3-E1 cells

    NASA Astrophysics Data System (ADS)

    Wu, Junyi

    Chitosan is a natural linear polysaccharide that has been well known for its applications in drug delivery system due to its unique physicochemical and biological properties. However, challenges still remain for it to become a fully realized therapeutic agent. In this study, we investigated the uptake of chitosan nanoparticles (CNP) under the ultrasound stimulation, using a model cell culture system (MC3T3-E1 mouse pre-osteoblasts). The CNP were fabricated by an ionic gelation method and were lyophilized prior to characterization and delivery to cells. Particle size and zeta potential were measured using Dynamic Light Scattering (DLS); the efficiency of chitosan complexation was measured using the ninhydrin assay. Cytotoxicity was examined by neutral red assay within 48 hours after delivery. The effect of ultrasound (US) on the efficiency of nanoparticle delivery to the MC3T3-E1 cells was examined at 1MHz and at either 1 or 2 W/cm2. Fluorescein isothiocyanate (FITC)-conjugated-CNP were used to visualize the internalized particles within the cytosol. The uptake of FITC-CNP exhibits a dose and time dependent effect, a strong FITC fluorescence was detected at the concentration of 500microg/mL under fluorescence microscope. Ultrasound assisted uptake of FITC-CNP performed a significant positive effect at 2W/cm2 with 60s of ultrasound exposure time. CNP displayed a slightly decrease in cell viability from 25microg/mL to 100microg/mL, while higher concentration of CNP facilitates the proliferation of MC3T3-E1 cells. Less than 10% of reduction in cell viability was observed for US at 1W/cm2 and 2W/cm2 with 30s and 60s of exposure time, which suggest a mild effect of US to MC3T3-E1 cell line.

  6. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  7. Vinculin expression in MC3T3-E1 cells in response to mechanical stimulus

    PubMed Central

    Cora-Cruz, J.J.; Diffoot-Carlo, N.; Sundaram, P.A.

    2015-01-01

    Loading frequency is known to influence the expression of the focal adhesions of the adherent cells. A small cyclical tensile force was transmitted to mouse pre-osteoblast MC3T3-E1 cells through PDMS substrates of varying stiffness. Changes in cell behavior with respect to proliferation and characteristics of focal adhesions were quantified through immunofluorescence labeling of vinculin. Amount of inactive vinculin was higher on substrates subjected to cyclic stimulation when compared with the results of the static substrates, whereas the number and area of focal adhesion points underwent a reduction. Inactive vinculin appears as a cloud in the cytoplasm in the vicinity of the nucleus. PMID:26858974

  8. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    SciTech Connect

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.

  9. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  10. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  11. Bombesin stimulation of DNA synthesis and cell division in cultures of Swiss 3T3 cells.

    PubMed Central

    Rozengurt, E; Sinnett-Smith, J

    1983-01-01

    Bombesin is shown to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations the peptide markedly enhances the ability of fresh serum to stimulate DNA synthesis in confluent and quiescent cultures of these cells. In the presence of a low concentration (3.5%) of serum, bombesin stimulates 3T3 cell proliferation. In serum-free medium, bombesin induces DNA synthesis in the absence of any other added growth factor; half-maximal effect is obtained at 1 nM. The mitogenic effect of bombesin is dependent on dose and time, is mimicked by litorin, and is markedly potentiated by insulin, colchicine, platelet-derived growth factor, and fibroblast-derived growth factor. These mitogens increase the maximal response elicited by bombesin and decrease the bombesin concentration required to produce half-maximal effect (from 1 nM to 0.3 nM). In contrast, vasopressin, phorbol esters, or cAMP increasing agents fail to enhance the maximal level of DNA synthesis induced by bombesin. Bombesin and litorin may provide useful model peptides for studies on the mechanism(s) by which extracellular ligands control cell proliferation. PMID:6344074

  12. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  13. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells.

    PubMed Central

    Koenig, B B; Cook, J S; Wolsing, D H; Ting, J; Tiesman, J P; Correa, P E; Olson, C A; Pecquet, A L; Ventura, F; Grant, R A

    1994-01-01

    The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs. Images PMID:8065329

  14. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    PubMed

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  15. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  16. Occurrence and control of sporadic proliferation in growth arrested Swiss 3T3 feeder cells.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2015-01-01

    Growth arrested Swiss mouse embryonic 3T3 cells are used as feeders to support the growth of epidermal keratinocytes and several other target cells. The 3T3 cells have been extensively subcultured owing to their popularity and wide distribution in the world and, as a consequence selective inclusion of variants is a strong possibility in them. Inadvertently selected variants expressing innate resistance to mitomycin C may continue to proliferate even after treatment with such growth arresting agents. The failure of growth arrest can lead to a serious risk of proliferative feeder contamination in target cell cultures. In this study, we passaged Swiss 3T3 cells (CCL-92, ATCC) by different seeding densities and incubation periods. We tested the resultant cultures for differences in anchorage-independent growth, resumption of proliferation after mitomycin C treatment and occurrence of proliferative feeder contaminants in an epidermal keratinocyte co-culture system. The study revealed subculture dependent differential responses. The cultures of a particular subculture procedure displayed unique cell size distribution and disintegrated completely in 6 weeks following mitomycin C treatment, but their repeated subculture resulted in feeder regrowth as late as 11 weeks after the growth arrest. In contrast, mitomycin C failed to inhibit cell proliferation in cultures of the other subculture schemes and also in a clone that was established from a transformation focus of super-confluent culture. The resultant proliferative feeder cells contaminated the keratinocyte cultures. The anchorage-independent growth appeared in late passages as compared with the expression of mitomycin C resistance in earlier passages. The feeder regrowth was prevented by identifying a safe subculture protocol that discouraged the inclusion of resistant variants. We advocate routine anchorage-independent growth assay and absolute confirmation of feeder disintegration to qualify feeder batches and

  17. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts

    PubMed Central

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R.; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah−/−) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  18. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts.

    PubMed

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  19. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  20. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  1. Layer-by-Layer assembled growth factor reservoirs for steering the response of 3T3-cells.

    PubMed

    Naves, Alliny F; Motay, Marvin; Mérindol, Rémi; Davi, Christiane P; Felix, Olivier; Catalani, Luiz H; Decher, Gero

    2016-03-01

    Layer-by-Layer (LbL) assemblies of heparin (Hep) and chitosan (Chi) were prepared for use as reservoirs for acidic and basic fibroblast growth factors (aFGFs and bFGFs, respectively). The effects of the architecture and composition of the reservoirs on the viability and proliferation of NIH-3T3 fibroblast cells were studied under starvation conditions. The reservoir stability was monitored by ellipsometry. The aFGF and bFGF loadings were determined using a dissipation-enhanced quartz crystal microbalance (QCM-D). Stability and release assays were performed in a phosphate buffer at physiological conditions. The results demonstrated that the amount of aFGF and bFGF loaded into and released from LbL reservoirs composed of 3 and 6 layer pairs could be controlled. Cell culture assays in low serum culture medium (LSCM) demonstrated that incorporating very small amounts of aFGF and bFGF into the (Hep/Chi)n multilayers significantly improved the proliferation of the NIH-3T3 fibroblasts. The cells did not proliferate on (Hep/Chi)n assemblies prepared in the absence of FGF under identical conditions. The LbL reservoirs were highly effective for the long-term storage (up to 9 months) of aFGF and bFGF. This work demonstrates the potential of LbL reservoirs for use as biomaterial coatings. PMID:26700236

  2. D-Arg1,D-Phe5,D-Trp7,9,Leu11 substance P, a neuropeptide antagonist, blocks binding, Ca2(+)-mobilizing, and mitogenic effects of endothelin and vasoactive intestinal contractor in mouse 3T3 cells

    SciTech Connect

    Fabregat, I.; Rozengurt, E. )

    1990-10-01

    Endothelin (ET1) and vasoactive intestinal contractor (VIC) stimulate quiescent Swiss 3T3 cells to resume DNA synthesis acting synergistically with epidermal growth factors (EGF) and other mitogens. The peptide (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P has been identified as a broad spectrum neuropeptide antagonist which blocks the binding and biological effects of the Ca2(+)-mobilizing neuropeptides bombesin, vasopressin, and bradykinin. In the present study we show that (D-Arg1,D-Phe5,D-Trp7,9,Leu11) substance P also acts as an ET1/VIC antagonist as judged by the following criteria: (a) inhibition of specific 125I-labelled ET1 binding to a ET1/VIC receptor in a competitive and dose-dependent manner; (b) blocking of the rapid increase in the cytosolic Ca2+ concentration promoted by ET1 or VIC; and (c) inhibition of DNA synthesis stimulated by VIC in the presence of EGF. The inhibitory effects of (D-Arg1,D-Phe5,D-Trp7,9,Leu 11) substance P on Ca2+ mobilization and DNA synthesis were reversed by increasing the concentration of VIC. This is the first time that a peptide structurally unrelated to ET1 or VIC is shown to block the binding and mitogenic effects of peptides of the endothelin family.

  3. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  4. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. PMID:26965683

  5. Bovine Collagen Peptides Compounds Promote the Proliferation and Differentiation of MC3T3-E1 Pre-Osteoblasts

    PubMed Central

    Liu, JunLi; Zhang, Bing; Song, ShuJun; Ma, Ming; Si, ShaoYan; Wang, YiHu; Xu, BingXin; Feng, Kai; Wu, JiGong; Guo, YanChuan

    2014-01-01

    Objective Collagen peptides (CP) compounds, as bone health supplements, are known to play a role in the treatment of osteoporosis. However, the molecular mechanisms of this process remain unclear. This study aimed to investigate the effects of bovine CP compounds on the proliferation and differentiation of MC3T3-E1 cells. Methods Mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells were treated with bovine CP compounds. Cell proliferation was analyzed by MTT assays and the cell cycle was evaluated by flow cytometry scanning. Furthermore, MC3T3-E1 cell differentiation was analyzed at the RNA level by real-time PCR and at the protein level by western blot analysis for runt-related transcription factor 2 (Runx2), a colorimetric p-nitrophenyl phosphate assay for alkaline phosphatase (ALP), and ELISA for osteocalcin (OC). Finally, alizarin red staining for mineralization was measured using Image Software Pro Plus 6.0. Results Cell proliferation was very efficient after treatment with different concentrations of bovine CP compounds, and the best concentration was 3 mg/mL. Bovine CP compounds significantly increased the percentage of MC3T3-E1 cells in G2/S phase. Runx2 expression, ALP activity, and OC production were significantly increased after treatment with bovine CP compounds for 7 or 14 days. Quantitative analyses with alizarin red staining showed significantly increased mineralization of MC3T3-E1 cells after treatment with bovine CP compounds for 14 or 21 days. Conclusions Bovine CP compounds increased osteoblast proliferation, and played positive roles in osteoblast differentiation and mineralized bone matrix formation. Taking all the experiments together, our study indicates a molecular mechanism for the potential treatment of osteoarthritis and osteoporosis. PMID:24926875

  6. Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system.

    PubMed

    Kramer, Adam H; Joos-Vandewalle, Julia; Edkins, Adrienne L; Frost, Carminita L; Prinsloo, Earl

    2014-01-24

    Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors. PMID:24388983

  7. Segmenting time-lapse phase contrast images of adjacent NIH 3T3 cells.

    PubMed

    Chalfoun, J; Kociolek, M; Dima, A; Halter, M; Cardone, A; Peskin, A; Bajcsy, P; Brady, M

    2013-01-01

    We present a new method for segmenting phase contrast images of NIH 3T3 fibroblast cells that is accurate even when cells are physically in contact with each other. The problem of segmentation, when cells are in contact, poses a challenge to the accurate automation of cell counting, tracking and lineage modelling in cell biology. The segmentation method presented in this paper consists of (1) background reconstruction to obtain noise-free foreground pixels and (2) incorporation of biological insight about dividing and nondividing cells into the segmentation process to achieve reliable separation of foreground pixels defined as pixels associated with individual cells. The segmentation results for a time-lapse image stack were compared against 238 manually segmented images (8219 cells) provided by experts, which we consider as reference data. We chose two metrics to measure the accuracy of segmentation: the 'Adjusted Rand Index' which compares similarities at a pixel level between masks resulting from manual and automated segmentation, and the 'Number of Cells per Field' (NCF) which compares the number of cells identified in the field by manual versus automated analysis. Our results show that the automated segmentation compared to manual segmentation has an average adjusted rand index of 0.96 (1 being a perfect match), with a standard deviation of 0.03, and an average difference of the two numbers of cells per field equal to 5.39% with a standard deviation of 4.6%. PMID:23126432

  8. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    SciTech Connect

    Frost, S.C.; Baly, D.L.; Cushman, S.W.; Lane, M.D.; Simpson, I.A.

    1986-05-01

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-(1-/sup 14/C)- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a /sup 3/H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter.

  9. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  10. Substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro

    SciTech Connect

    Woll, P.J.; Rozengurt, E. )

    1988-03-01

    In the search for a more potent bombesin antagonist, the authors found (D-Arg{sup 1},D-Phe{sup 5},D-Trp{sup 7,9},Leu{sup 11})substance P to be effective in mouse fibroblasts and to inhibit the growth of small cell lung cancer, a tumor that secretes bombesin-like peptides that may act as autocrine growth factors. In murine Swiss 3T3 cells, substance P proved to be a bombesin antagonist as judged by the following criteria: (i) inhibition of DNA synthesis induced by gastrin-releasing peptide and other bombesin-like peptides; (ii) inhibition of {sup 125}I-labeled gastrin-releasing peptide binding to the bombesin/gastrin-releasing peptide receptor; (iii) reduction in cross-linking of the M{sub r} 75,000-85,000 protein putatively a component of the bombesin/gastrin-releasing peptide receptor; (iv) blocking of early cellular events that precede mitogenesis-calcium mobilization and inhibition of epidermal growth factor binding. Substance P also inhibits mitogenesis induced by vasopressin but not that induced by a variety of other mitogens. Both antagonists reversibly inhibited the growth of small cell lung cancer in vitro in a concentration-dependent manner. Peptide antagonists could, therefore, have far-reaching therapeutic implications.

  11. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers

    PubMed Central

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  12. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    PubMed

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes. PMID:27196306

  13. Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts

    SciTech Connect

    Andersen, K.B.

    1985-04-15

    The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.

  14. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  15. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Cao, Ning; Jiang, Xingshan; Xie, Shusen; Xiong, Shuyuan

    2008-06-01

    Collagen remodeling and transplanted autologous fibroblast metabolic states in mouse dermis after cellular injection are investigated using multimode nonlinear optical imaging. Our findings show that the technique can image the progress of collagen remodeling in mouse dermis. It can also image transplanted autologous fibroblasts in their collagen matrix environment in the dermis, because of metabolic activity. It was also found that the approach can provide two-photon ratiometric redox fluorometry based on autologous fibroblast fluorescence from reduced nicotinamide adenine dinucleotide coenzyme and oxidized flavoproteins for sensing the autologous fibroblast metabolic state. These results show that the multimode nonlinear optical imaging technique may have potential in a clinical setting as an in vivo diagnostic and monitoring system for cellular therapy in plastic surgery.

  16. Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

    PubMed Central

    Lodillinsky, Catalina; Langle, Yanina; Guionet, Ariel; Góngora, Adrián; Baldi, Alberto; Sandes, Eduardo O.; Casabé, Alberto; Eiján, Ana María

    2010-01-01

    Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy. PMID:21042580

  17. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  18. Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts.

    PubMed Central

    Levi-Schaffer, F; Segal, V; Shalit, M

    1991-01-01

    We investigated the effects of interleukin-2 (IL-2), interleukin-3 (IL-3) and interleukin-4 (IL-4) on mouse and rat peritoneal mast cells (MC) co-cultured with 3T3 fibroblasts (MC/3T3). The continuous presence of these cytokines for 7-9 days in the culture media was neither toxic nor caused proliferation of MC, as determined by the stability of MC numbers in culture. Long-term incubation of mouse MC/3T3 with IL-2 (100 U/ml), IL-3 (50 U/ml), IL-4 (50 U/ml) or a mixture of IL-3 and IL-4 (25 U/ml) induced an increase in basal histamine release of 79.3 +/- 19.0%, 41.0 +/- 17.3%, 25.2 +/- 10.4% and 30.2 +/- 3.2%, respectively, over control cells incubated with medium alone. When rat MC/3T3 were incubated for 7 days with the various interleukins an enhancement in histamine release similar to that observed with mouse MC/3T3 was found. Preincubation (1 hr) of rat MC/3T3 with interleukins prior to immunological activation with anti-IgE antibodies enhanced histamine release. The highest effect was observed with IL-3 + IL-4 (60.4 +/- 10.8% increase) followed by IL-2 (51.5 +/- 4.5%), IL-4 (28.6 +/- 10.3%) and IL-3 (13.2 +/- 4.2%). This study demonstrates that when mouse and rat peritoneal MC are cultured with fibroblasts in the presence of interleukins they do not proliferate, suggesting that they preserve their connective tissue type MC phenotype. Moreover, interleukins display a pro-inflammatory effect on these cells by enhancing both basal and anti-IgE-mediated histamine release. PMID:2016117

  19. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  20. The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability.

    PubMed

    Yeh, Elizabeth S; Lew, Brian O; Means, Anthony R

    2006-01-01

    During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis. PMID:16223725

  1. Effect of Fibroblast Co-culture on In Vitro Maturation and Fertilization of Mouse Preantral Follicles

    PubMed Central

    Heidari, Mahmoud; Malekshah, Abbasali Karimpour; Parivar, Kazem; Khanbabaei, Ramezan; Rafiei, Alireza

    2011-01-01

    Background The aim of this study was to evaluate fibroblast co-culture on in vitro maturation and fertilization of prepubertal mouse preantral follicles. Materials and Methods The ovaries of 12-14 day old mice were dissected and 120-150 μm intact preantral follicles with one or two layers of granulosa cells, and round oocytes were cultured individually in α-minimal essential medium (α-MEM) supplemented with 5% fetal bovine serum (FBS), 100 mIU/ml recombinant follicle stimulating hormone, 1% insulin, transferrin, selenium mix, 100 μg/ml penicillin and 50 μg/ml streptomycin as base medium for 12 days. A total number of 226 follicules were cultured under two conditions: i) base medium as control group (n=113); ii) base medium co-cultured with mouse embryonic fibroblast (MEF) (n=113). Follicular diameters, alone, in addition to other factors were analyzed by student’s t-test and chi-square test, respectively. Results The co-culture group showed significant differences (p<0.05) in growth rate (days 4, 6 and 8 of the culture period) and survival rate. However, there was no significant difference in antrum formation, ovulation rate and embryonic development of released oocytes. There were significant differences (p<0.05) in the estradiol and progesterone secretion at all days between the co-culture and control groups. Conclusion Fibroblast co-culture increased survival rate and steroid production of preantral follicles by promoting granulosa cell proliferation. PMID:24917917

  2. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  3. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  4. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells - a murine acute myelomonocytic leukemia cell line - we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. PMID:25911323

  5. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs. PMID:16786167

  6. Compartmentalized Ras Proteins Transform NIH 3T3 Cells with Different Efficiencies▿ †

    PubMed Central

    Cheng, Chiang-Min; Li, Huiling; Gasman, Stéphane; Huang, Jian; Schiff, Rachel; Chang, Eric C.

    2011-01-01

    Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively. PMID:21189290

  7. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    PubMed Central

    El-Sayed, Ahmed Kamel; Zhang, Zhentao; Zhang, Lei; Liu, Zhiyong; Abbott, Louise C.; Zhang, Yani; Li, Bichun

    2014-01-01

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations. PMID:25437916

  8. Neuronal and astrocyte dysfunction diverges from embryonic fibroblasts in the Ndufs4fky/fky mouse.

    PubMed

    Bird, Matthew J; Wijeyeratne, Xiaonan W; Komen, Jasper C; Laskowski, Adrienne; Ryan, Michael T; Thorburn, David R; Frazier, Ann E

    2014-01-01

    Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells. PMID:25312000

  9. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC ; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  10. EGF raises cytosolic Ca sup 2+ in A431 and Swiss 3T3 cells by a dual mechanism

    SciTech Connect

    Pandiella, A.; Malgaroli, A.; Meldolesi, J.; Vicentini, L.M. )

    1987-05-01

    The changes in Ca{sup 2+} homeostasis and phosphoinositide hydrolysis induced by EGF were studied in human epidermoid carcinoma A431 cells both when attached to a substratum and after detachment and suspension. The cytosolic Ca{sup 2+} concentration was measured by the conventional fluorimetric technique, using the specific probe, quin2, as well as by a new microscopic technique in which single cells are investigated after loading with another probe, fura-2. EGF applied in the complete, Ca{sup 2+}-containing medium caused a rapid rise in the cytosolic {sup 45}Ca{sup 2+} concentration, that remained elevated for several minutes. In Ca{sup 2+}-free, EGTA-containing medium, part of this response persisted, as revealed by quin2 results in suspended cells and microscopic results with fura-2. These results, as well as additional microscopic fura-2 results in Swiss 3T3 fibroblasts, demonstrate that the Ca{sup 2+} signal elicited by EGF is due to two components: redistribution from an intracellular store and stimulated influx across the plasmalemma. This latter process was not detected in 3T3 cells treated with either PDGF or bombesin. It is therefore suggested that the {sup 45}Ca{sup 2+} influx effect of EGF is under the control of a separate, as yet unidentified mechanism.

  11. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.

    PubMed

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of the three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  12. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors

    PubMed Central

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2015-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system, and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction, and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  13. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  14. Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts.

    PubMed

    Kim, Sung Min; Kim, Jong-Wan; Kwak, Tae Hwan; Park, Sang Woong; Kim, Kee-Pyo; Park, Hyunji; Lim, Kyung Tae; Kang, Kyuree; Kim, Jonghun; Yang, Ji Hun; Han, Heonjong; Lee, Insuk; Hyun, Jung Keun; Bae, Young Min; Schöler, Hans R; Lee, Hoon Taek; Han, Dong Wook

    2016-07-01

    The viral vector-mediated overexpression of the defined transcription factors, Brn4/Pou3f4, Sox2, Klf4, and c-Myc (BSKM), could induce the direct conversion of somatic fibroblasts into induced neural stem cells (iNSCs). However, viral vectors may be randomly integrated into the host genome thereby increasing the risk for undesired genotoxicity, mutagenesis, and tumor formation. Here we describe the generation of integration-free iNSCs from mouse fibroblasts by non-viral episomal vectors containing BSKM. The episomal vector-derived iNSCs (e-iNSCs) closely resemble control NSCs, and iNSCs generated by retrovirus (r-iNSCs) in morphology, gene expression profile, epigenetic status, and self-renewal capacity. The e-iNSCs are functionally mature, as they could differentiate into all the neuronal cell types both in vitro and in vivo Our study provides a novel concept for generating functional iNSCs using a non-viral, non-integrating, plasmid-based system that could facilitate their biomedical applicability. PMID:27189941

  15. Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts

    PubMed Central

    Ulakcsai, Zsófia; Bagaméry, Fruzsina; Vincze, István; Szökő, Éva; Tábi, Tamás

    2015-01-01

    Aim To study the effect of resveratrol on survival and caspase 3 activation in non-transformed cells after serum deprivation. Methods Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation and lactate dehydrogenase release were assayed as cell viability measure by using their fluorogenic substrates. The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling pathways was also examined. Results Serum deprivation of primary fibroblasts induced significant activation of caspase 3 within 3 hours and reduced cell viability after 24 hours. Resveratrol dose-dependently prevented caspase activation and improved cell viability with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 µM. It also reduced the already up-regulated caspase 3 activity when it was added to the cell culture medium after 3 hour serum deprivation, suggesting its rescue effect. Among the major signaling pathways, p38 kinase was critical for the protective effect of resveratrol which was abolished completely in the presence of p38 inhibitor. Conclusion Resveratrol showed protective effect against cell death in a rather high dose. Involvement of p38 kinase in this effect suggests the role of mild stress in its cytoprotective action. Furthermore due to its rescue effect, resveratrol may be used not only for prevention, but also treatment of age-related degenerative diseases, but in the higher dose than consumed in conventional diet. PMID:25891866

  16. Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into "osteocyte-like" cells.

    PubMed

    Alvares, Keith; Ren, Yinshi; Feng, Jian Q; Veis, Arthur

    2016-01-01

    P16 is an acidic phosphoprotein important in both sea urchin embryonic spicule development and transient mineralization during embryogenesis, syncytium formation, and mineralization in mature urchin tooth. Anti-P16 has been used to localize P16 to the syncytial membranes and the calcite mineral. Specific amino acid sequence motifs in P16 are similar to sequences in DSPP, a protein common to all vertebrate teeth, and crucial for their mineralization. Here, we examine the effect of P16 on vertebrate fibroblastic NIH3T3 cells and osteoblastic MC3T3 cells. Transfection of NIH3T3 cells with P16 cDNA resulted in profound changes in the morphology of the cells. In culture, the transfected cells sent out long processes that contacted processes from neighboring cells forming networks or syncytia. There was a similar change in morphology in cultured osteoblastic MC3T3 cells. In addition, the MC3T3 developed numerous dendrites as found in osteocytes. Importantly, there was also a change in the expression of the osteoblast and osteocyte specific genes. MC3T3 cells transfected with P16 showed an 18-fold increase in expression of the osteocyte specific Dentin matrix protein (DMP1) gene, accompanied by decreased expression of osteoblast specific genes: Bone sialoprotein (BSP), osteocalcin (OCN), and β-catenin decreased by 70%, 64%, and 68 %, respectively. Thus, invertebrate urchin P16 with no previously known analog in vertebrates was able to induce changes in both cell morphology and gene expression, converting vertebrate-derived osteoblast-like precursor cells to an "osteocyte-like" phenotype, an important process in bone biology. The mechanisms involved are presently under study. PMID:26581835

  17. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Chakrabarti, Swarup K; Cole, Banumathi K; Wen, Yeshao; Keller, Susanna R; Nadler, Jerry L

    2009-09-01

    Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15-lipoxygenase (12/15-LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15-LO in adipocytes have not been evaluated. We found that 12/15-LO mRNA was dramatically upregulated in white epididymal adipocytes of high-fat fed mice. 12/15-LO was poorly expressed in 3T3-L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15-LO in vitro. When 3T3-L1 adipocytes were treated with the 12/15-LO products, 12-hydroxyeicosatetranoic acid (12(S)-HETE) and 12-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and IL-12p40, was upregulated whereas anti-inflammatory adiponectin gene expression was downregulated. 12/15-LO products also augmented c-Jun N-terminal kinase 1 (JNK-1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin-stimulated 3T3-L1 adipocytes exhibited decreased IRS-1(Tyr) phosphorylation, increased IRS-1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15-LO product. Taken together, our data suggest that 12/15-LO products create a proinflammatory state and impair insulin signaling in 3T3-L1 adipocytes. Because 12/15-LO expression is upregulated in visceral adipocytes by high-fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15-LO plays a role in promoting inflammation and insulin resistance associated with obesity. PMID:19521344

  18. [Envelope protein of Jaagsiekte sheep retrovious expressed in NIH3T3 cells promotes cell proliferation].

    PubMed

    DU, Fangyuan; Chen, Dayong; Zhang, Yufei; Sun, Xiaolin; Guo, Wenqing; Liu, Shuying

    2016-09-01

    Objective To explore the influence of the exogenous Jaagsiekte sheep retrovious (exJSRV) envelope protein (Env) on NIH3T3 cell proliferation. Methods A recombinant plasmid pcDNA4/myc-His/exJSRV- env carrying exJSRV- env gene was constructed, and then the correctness of the recombinant plasmid was identified by PCR, restriction enzyme digestion and sequencing. The recombinant plasmid pcDNA4/myc-His/exJSRV- env was transiently transfected into NIH3T3 cells by Lipofectamine(TM) LTX. After the transfection of the recombinant plasmid, the expression of exJSRV- env was detected by reverse transcription PCR and Western blotting. The effect of Env on cell proliferation was investigated by CCK-8 assay and plate colony formation assay. Results The recombinant eukaryotic expression plasmid containing exJSRV- env was successfully constructed as identified by PCR, restriction enzyme identification and sequencing. After the recombinant plasmid was transiently transfected into NIH3T3 cells, reverse transcription PCR and Western blotting showed the expression of exJSRV- env , and Env promoted NIH3T3 cell proliferation significantly. Conclusion JSRV Env was expressed successfully in the NIH3T3 cells and promoted the proliferation of NIH3T3 cells. PMID:27609573

  19. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. PMID:27157327

  20. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  1. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  2. Alterations in insulin binding accompanying differentiation of 3T3-L1 preadipocytes.

    PubMed Central

    Reed, B C; Kaufmann, S H; Mackall, J C; Student, A K; Lane, M D

    1977-01-01

    Expression of the adipocyte phenotype by differentiating 3T3-L1 preadipocytes occurs upon exposure of the cells to insulin. Differentiation-linked changes in 125I-labeled insulin binding to 3T3-L1 cells were monitored and compared with those in nondifferentiating 3T3-C2 controls treated similarly. Without chronic insulin treatment, 3T3-L1 cells failed to express the adipocyte phenotype but maintained a level of 25,000-35,000 insulin-binding sites per cell. Treatment of 3T3-L1 cells with insulin resulted in an initial suppression of insulin binding followed by a 12-fold increase that paralleled the appearance of differentiated cells. A maximum of 170,000 insulin-binding sites per cell was attained for a population in which greater than 75% of the cells had differentiated. The increase of insulin receptor level appears to be differentiation-dependent and is not a general response of cells to the culture conditions. 3T3-C2 cells maintained in the presence of insulin for 30 days exhibited the undifferentiated phenotype and suppressed levels of insulin binding (35,000 sites per cell). The binding capacity of 3T3-L1 cells for epidermal growth factor remained unchanged between 25,000 and 40;000 sites per cell and was independent of the state of differentiation. Thus, induction by insulin in receptor-specific changes. Insulin receptors increase in number but epidermal growth factor receptors remain constant. PMID:303773

  3. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/ZFP36) family proteins bind and destabilize AU-rich element-containing mRNAs encoding cytokines such as vascular endothelial growth factor (VEGF). Little is known about the expression and insulin-regulation of TTP family and related genes in adipocytes. We analyzed the relative ...

  4. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. PMID:25878062

  5. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts.

    PubMed

    Ding, Ye; Chen, Jie; Okon, Imoh Sunday; Zou, Ming-Hui; Song, Ping

    2016-02-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-β-galactosidase (SA-β-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence. PMID:26718972

  6. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  7. Epac, not PKA catalytic subunit, is required for 3T3-L1 preadipocyte differentiation.

    PubMed

    Ji, Zhenyu; Mei, Fang C; Cheng, Xiaodong

    2010-01-01

    Cyclic AMP plays a critical role in adipocyte differentiation and maturation. However, it is not clear which of the two intracellular cAMP receptors, exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor or protein kinase A/cAMP-dependent protein kinase, is essential for cAMP-mediated adipocyte differentiation. In this study, we utilized a well-defined adipose differentiation model system, the murine preadipocyte line 3T3-L1, to address this issue. We showed that knocking down Epac expression in 3T3-L1 cells using lentiviral based small hairpin RNAs down-regulated peroxisome proliferator-activated receptor gamma expression and dramatically inhibited adipogenic conversion of 3T3-L1 cells while inhibiting PKA catalytic subunit activity by two mechanistically distinct inhibitors, heat stable protein kinase inhibitor and H89, had no effect on 3T3-L1 adipocyte differentiation. Moreover, cAMP analog selectively activating Epac was not able to stimulate adipogenic conversion. Our study demonstrated that while PKA catalytic activity is dispensable, activation of Epac is necessary but not sufficient for adipogenic conversion of 3T3-L1 cells. PMID:20036887

  8. Zinc deprivation impairs growth factor-stimulated calcium influx into murine 3T3 cells associated with decreased cell proliferation.

    PubMed

    O'Dell, Boyd L; Browning, Jimmy D

    2011-06-01

    Zinc plays a critical role in growth, a process that depends primarily on cell proliferation. Murine fibroblasts, Swiss 3T3 cells, were used to explore the hypothesis that a critical role of zinc in cell proliferation relates to its function in calcium influx. Cells were deprived of zinc by an impermeant chelator, diethylenetriaminepentaacetate (0.6 mmol/L), and low-calcium status was achieved by using a low- (<5 μmol/L) calcium medium. Cells were stimulated by a composite of growth factors (GF): platelet-derived GF, insulin-like GF-I, and epidermal GF. GF stimulation of cell proliferation was assessed by the incorporation of tritiated thymidine and calcium influx by the increase in fluorescence of cells loaded with Fluo-4. Proliferation was dependent on both zinc and calcium and they interacted in this process. GF stimulated an immediate sharp increase in intracellular calcium, indicative of internal calcium release, which peaked within 1 min and decreased to an elevated plateau, a pattern typical of a store-operated calcium channel. The sustained calcium influx of zinc-deprived cells was markedly lower than that of supplemented cells. Verapamil, a calcium channel blocker, also depressed both cell proliferation and calcium influx. In summary, zinc deficiency impaired GF-stimulated calcium influx into murine fibroblasts in association with decreased cell proliferation. PMID:21508206

  9. The molecular mechanism regulating the autonomous circadian expression of Topoisomerase I in NIH3T3 cells.

    PubMed

    Yang, Fang; Nakajima, Yoshihiro; Kumagai, Megumi; Ohmiya, Yoshihiro; Ikeda, Masaaki

    2009-02-27

    To identify whether Topoisomerase I (TopoI) has autonomous circadian rhythms regulated by clock genes, we tested mouse TopoI (mTopoI) promoter oscillation in NIH3T3 cells using a real-time monitoring assay and TopoI mRNA oscillations using real-time RT-PCR. Analysis of the mTopoI promoter region with Matlnspector software revealed two putative E-box (E1 and E2) and one DBP/E4BP4-binding element (D-box). Luciferase assays indicated that mTopoI gene expression was directly regulated by clock genes. The real-time monitoring assay showed that E-box and D-box response elements participate in the regulation of the circadian expression of mTopoI. Furthermore, a gel-shift assay showed that E2 is a direct target of the BMAL1/CLOCK heterodimer and DBP binds to the putative D-site. These results indicate that TopoI is expressed in an autonomous circadian rhythm in NIH3T3 cells. PMID:19138663

  10. Panax notoginseng stimulates alkaline phosphatase activity, collagen synthesis, and mineralization in osteoblastic MC3T3-E1 cells.

    PubMed

    Ji, Zhe; Cheng, Yizhao; Yuan, Puwei; Dang, Xiaoqian; Guo, Xiong; Wang, Weizhuo

    2015-10-01

    Total Panax notoginseng saponin (PNS) has been extensively used to treat a variety of diseases, such as bone fractures, soft tissue injuries, etc. In this study, mouse calvaria-original osteoblastic MC3T3-E1 cells were cultured in various concentrations of PNS (0.005-5 mg/mL) during the period (1, 5, 14, and 23 d). At the endpoint, the osteogenic capacity of MC3T3-E1 cells was investigated by measuring the alkaline phosphatase (ALP) activity, the deposited calcium, and the expression of osteogenic-related markers, including bone collagen type 1 (Col1) and osteocalcin (OCN). Compared with all groups in each period, the most pronounced effect was observed at the concentration range between 0.05 and 0.5 mg/mL (P < 0.05) and the cell proliferation with PNS treatment was found during the whole osteogenic period. Moreover, cellular ALP activity with PNS was increased during 7, 14, and 21 d and cell mineralization with PNS was enhanced in 14 and 21 d. Furthermore, the differentiation markers Col1 and OCN increased in the PNS-treated cells. Our work suggests that PNS may stimulate the osteogenesis process which contains osteoblastic proliferation, differentiation, and mineralization by increasing cellular ALP activity, extracellular matrix mineralization, and osteoblast-associated molecules in the osteoblasts. PMID:25904074

  11. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  12. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  13. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: I. Normal fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Analysis of electron microscopic radioautographs revealed a maximum labeling with /sup 3/H-proline of rough endoplasmic reticulum (RER) at 3 minutes, Golgi saccules 1 and 2 at 10 minutes, Golgi saccules type 3 at 20 minutes, and presecretory and secretory granules at 30 minutes. Labeling of the extra-cellular collagen matrix occurred at 30 minutes and increased with time. These observations suggest that pro-a-chains of collagen in periodontal ligament fibroblasts are synthesized in the RER and transported to the Golgi apparatus within 10 minutes. These chains then undergo parallel alignment in Golgi saccules type 2 and form segment-long-spacing-like crystallites in Golgi saccules type 3 between 10 and 20 minutes. The peak labeling of presecretory granules and mature secretory granules in small amounts at 30 minutes and the rapid increase in labeling of extracellular collagen matrix which begins at 30 minutes, indicates that the formation of secretory granules requires approximately 30 minutes and that a rapid system of secretory granule translocation exists in periodontal ligament fibroblasts. This evidence further supports the previously published morphologic evidence for a microtubule-dependent system of collagen secretion in periodontal ligament fibroblasts (Cho and Garant, 1981b).

  14. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion

    PubMed Central

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-01-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  15. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.

    PubMed

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-06-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  16. Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    PubMed Central

    Huang, Enyi; Bi, Yang; Jiang, Wei; Luo, Xiaoji; Yang, Ke; Gao, Jian-Li; Gao, Yanhong; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Liu, Xing; Li, Mi; Hu, Ning; Liu, Hong; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Shen, Jikun; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Luo, Jinyong; He, Bai-Cheng; Wang, Huicong; Reid, Russell R.; Luu, Hue H.; Haydon, Rex C.; Yang, Li; He, Tong-Chuan

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications. PMID:22384246

  17. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro

    PubMed Central

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2014-01-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 μM PD-98059 and 10 μM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a ~10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport. PMID:16144964

  18. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro.

    PubMed

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2006-02-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 microM PD-98059 and 10 microM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a approximately 10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport. PMID:16144964

  19. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts

    PubMed Central

    Liang, Qiuli; Benavides, Gloria A.; Vasilopulos, Athanasios; Gius, David; Darley-Usmar, Victor; Zhang, Jianhua

    2014-01-01

    Synopsis Sirtuin 3 (Sirt3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival but the role of Sirt3 is unclear. To examine this, we used Sirt3 knockout (KO) mouse embryonic fibroblast cells, and found that under basal conditions, Sirt3 KO cells exhibited increased autophagy flux compared to Wildtype (WT) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR, and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3 KO cells did not affect LC3-I and LC3-II levels, indicating the Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3 KO cells compared to WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine, exacerbated cell death in both WT and Sirt3 KO cells, and by 3-methyadenine exacerbated cell death in Sirt3 KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics. PMID:23767918

  20. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells.

    PubMed

    Rasmussen, Line Jee Hartmann; Müller, Helene Steenkær Holm; Jørgensen, Bente; Pedersen, Stine Falsig; Hoffmann, Else Kay

    2015-01-15

    The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process. PMID:25377086

  1. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  2. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease

    PubMed Central

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K.; Izumi, Tadahide

    2015-01-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. PMID:25645679

  3. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.

    PubMed

    Ahmed, Ijaz; Ponery, Abdul S; Nur-E-Kamal, Alam; Kamal, Jabeen; Meshel, Adam S; Sheetz, Michael P; Schindler, Melvin; Meiners, Sally

    2007-07-01

    Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates. PMID:17294137

  4. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed

    Byrne, G I

    1976-09-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  5. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed Central

    Byrne, G I

    1976-01-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  6. SILAC based protein profiling data of MKK3 knockout mouse embryonic fibroblasts.

    PubMed

    Srivastava, Anup; Shinn, Amanda S; Lam, TuKiet T; Lee, Patty J; Mannam, Praveen

    2016-06-01

    This data article reports changes in the phospho and total proteome of MKK3 knock out (MKK3(-) (/) (-)) mouse embryonic fibroblasts (MEFs). The dataset generated highlights the changes at protein level which can be helpful for understanding targets of the MAP kinase signaling pathway. Data was collected after TiO2-based phosphopeptide enrichment of whole cell lysate at baseline condition with bottom-up SILAC-based LC MS/MS quantitative mass spectrometry. We report all the proteins and peptides identified and quantified in MKK3(-/-) and WT MEFs. The altered pathways in MKK3(-/-) MEFs were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.7) and Ingenuity Pathway Analysis (IPA) and are presented as a table and graph, respectively. The data reported here is related to the published work [1]. All the associated mass spectrometry data has been deposited in the Yale Protein Expression Database (YPED) with the web-link to the data: http://yped.med.yale.edu/repository/ViewSeriesMenu.do;jsessionid=6A5CB07543D8B529FAE8C3FCFE29471D?series_id=5044&series_name=MMK3+Deletion+in+MEFs. PMID:26977448

  7. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  8. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  9. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  10. Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells

    PubMed Central

    Wu, Sean M.

    2012-01-01

    The induction of pluripotency in somatic cells by transcription factor overexpression has been widely regarded as one of the major breakthroughs in stem cell biology within this decade. The generation of these induced pluripotent stem cells (iPSCs) has enabled investigators to develop in vitro disease models for biological discovery and drug screening, and in the future, patient-specific therapy for tissue or organ regeneration. While new technologies for reprogramming are continually being discovered, the availability of iPSCs from different species is also increasing rapidly. Comparison of iPSCs across species may provide new insights into key aspects of pluripotency and early embryonic development. iPSCs from large animals may enable the generation of genetically-modified large animal models or potentially transplantable donor tissues or organs. In this unit, we describe the procedure for the generation of iPSCs from mouse, rat, pig and human fibroblasts. We focus on lenti- and retroviral infection as the main platform for pluripotent transcription factor overexpression since these reagents are widely-available and remain the most efficient way to generate iPSC colonies. We hope to illustrate the basic process for iPSC generation in these four species in such a way that would enable the lowering of the entry barrier into iPSC biology by new investigators. PMID:22237859

  11. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.

    PubMed

    Zheng, Jie; Choi, Kyung-Ah; Kang, Phil Jun; Hyeon, Solji; Kwon, Suhyun; Moon, Jai-Hee; Hwang, Insik; Kim, Yang In; Kim, Yoon Sik; Yoon, Byung Sun; Park, Gyuman; Lee, JangBo; Hong, SungHoi; You, Seungkwon

    2016-07-15

    The generation of induced neural stem cells (iNSCs) from somatic cells using defined factors provides new avenues for basic research and cell therapies for various neurological diseases, such as Parkinson's disease, Huntington's disease, and spinal cord injuries. However, the transcription factors used for direct reprogramming have the potential to cause unexpected genetic modifications, which limits their potential application in cell therapies. Here, we show that a combination of four chemical compounds resulted in cells directly acquiring a NSC identity; we termed these cells chemically-induced NSCs (ciNSCs). ciNSCs expressed NSC markers (Pax6, PLZF, Nestin, Sox2, and Sox1) and resembled NSCs in terms of their morphology, self-renewal, gene expression profile, and electrophysiological function when differentiated into the neuronal lineage. Moreover, ciNSCs could differentiate into several types of mature neurons (dopaminergic, GABAergic, and cholinergic) as well as astrocytes and oligodendrocytes in vitro. Taken together, our results suggest that stably expandable and functional ciNSCs can be directly reprogrammed from mouse fibroblasts using a combination of small molecules without any genetic manipulation, and will provide a new source of cells for cellular replacement therapy of neurodegenerative diseases. PMID:27207831

  12. Pol β associated complex and base excision repair factors in mouse fibroblasts.

    PubMed

    Prasad, Rajendra; Williams, Jason G; Hou, Esther W; Wilson, Samuel H

    2012-12-01

    During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an 'affinity-capture' procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3'-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3'-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3'-blocked intermediate. PMID:23042675

  13. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  14. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment.

    PubMed

    Quintana, Lluís; Muiños, Teresa Fernández; Genove, Elsa; Del Mar Olmos, María; Borrós, Salvador; Semino, Carlos E

    2009-01-01

    Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine. PMID:19025338

  15. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro.

    PubMed

    Popov, Anton L; Popova, Nelly R; Selezneva, Irina I; Akkizov, Azamat Y; Ivanov, Vladimir K

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. PMID:27524035

  16. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes.

    PubMed

    Shinjo, Takanori; Iwashita, Misaki; Yamashita, Akiko; Sano, Tomomi; Tsuruta, Mitsudai; Matsunaga, Hiroaki; Sanui, Terukazu; Asano, Tomoichiro; Nishimura, Fusanori

    2016-08-19

    Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes. PMID:27311858

  17. GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion.

    PubMed

    Zhu, Pei; Yuen, Jacky M L; Sham, Kathy W Y; Cheng, Christopher H K

    2013-11-01

    G-protein-coupled estrogen receptor 1 (GPER) mediates non-genomic signaling of estrogenic events. Here we showed for the first time that Gper/GPER is expressed in Swiss 3T3 mouse embryo preadipocytes 3T3-L1, and that Gper/GPER is up-regulated during differentiation of the cells induced by monocyte differentiation-inducing (MDI) cocktail. Activation of GPER by the natural ligand 17β-estradiol (E2), and the specific agonist G1, was shown to inhibit lipid accumulation in 3T3-L1 cells, while such inhibition was reversed upon knockdown of GPER using specific siRNA. GPER was also found to mediate perturbation of mitotic clonal expansion (MCE) in these cells by inhibiting cell cycle arrest during MDI cocktail-induced differentiation. Persistent activation of cell cycle regulating factors cyclin-dependant kinase (CDK) 4, CDK6 and cyclin D1, and phosphorylation of retinoblastoma (Rb) protein at serine 795 was observed in the G1-treated cells. Taken together, our results indicate that E2-GPER signaling leads to an inhibition of adipogenesis in 3T3-L1 cells via perturbation of MCE. PMID:23871778

  18. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells.

    PubMed

    Yang, Li-Hung; Chen, Tzer-Ming; Yu, Sung-Tsai; Chen, Yen-Hui

    2007-09-01

    Olanzapine is a second-generation atypical antipsychotic drug (AAPD). Major side effects of olanzapine are weight gain and development of diabetes mellitus, which are risk factors of cardiovascular diseases. The possible causes of metabolic adverse effects are known as poor satiety and increased food intake due to blockade of receptors such as 5-HT(2C) in CNS. In this study, we examine the effect of olanzapine on peripheral adipogenesis using cultured 3T3-L1 cell model. Olanzapine increased triacylglyceride (TG) accumulation during 3T3-L1 preadipocyte differentiation to mature adipocyte phenotype. TG accumulation was accompanied by overexpression of fatty acid synthase and adiponectin that are the downstream genes of sterol regulatory element binding protein-1 (SREBP-1), one of the key transcription factors in lipid homeostasis. We further consisted that mostly SREBP-1 and at a lesser extent peroxisome proliferator-activated receptor gamma (PPAR-gamma), but not CCAAT/enhancer binding protein-alpha (C/EBP-alpha), were overexpressed and activated in 3T3-L1 adipocytes exposed to olanzapine. Furthermore, we showed that olanzapine enhanced the activity of SRE-1-containing LDLR promoter in transfected 3T3-L1 adipocytes and HepG2 cells. Taken together, olanzapine may cause body weight gain not only through influencing CNS receptors, but also affecting the peripheral adipogenesis regulated by SREBP-1. PMID:17651982

  19. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

    PubMed Central

    Lee, Kyung-Hee; Song, Jia-Le; Park, Eui-Seong; Ju, Jaehyun; Kim, Hee-Young; Park, Kun-Young

    2015-01-01

    The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-γ, CCAAT/enhance-binding protein (C/EBP)-α, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-γ, C/EBP-α, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes. PMID:26770918

  20. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Kang, Jung Won; Nam, Dongwoo; Kim, Kun Hyung; Huh, Jeong-Eun; Lee, Jae-Dong

    2013-01-01

    This study was conducted to explore the antiadipogenic effect and possible mechanism of Gambisan on 3T3-L1 cells. For quality control, Gambisan was standardized by HPLC and the standard compounds ephedrine, epigallocatechin-3-gallate, and caffeine were screened. Cultured 3T3-L1 cells that had been induced to differentiate were treated with various concentrations of Gambisan or its major component extracts (Ephedra intermedia Schrenk, Atractylodes lancea DC., and Thea sinensis L.) for 72 hours for MTT assay to determine cell viability or 10 days for LDH assay, triglyceride assay, DNA content measurement, Oil red O staining, RT-PCR, and western blot. Gambisan significantly inhibited adipogenesis in 3T3-L1 cells by reducing triglyceride contents and lipid accumulation in a dose-dependent manner without obvious cytotoxicity. Viability and DNA content in 3T3-L1 cells treated with Gambisan were significantly higher than cells treated with the major component extracts at every concentration. The anti-adipogenic effects of Gambisan appeared to be mediated by a significant downregulation of the expression of lipoprotein lipase mRNA and PPARγ, C/EBPα, and SREBP-1 protein apart from the expression of hormone-sensitive lipase. Gambisan could act as a possible therapeutic agent for obesity. However, further studies including in vivo assays and clinical trials are needed to confirm the efficacy, safety and mechanisms of the antiobesity effects of Gambisan. PMID:24069055

  1. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  2. Antiadopogenic effects of rice hull smoke extract in 3T3-L1 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 pre-adipocyte cells. At concentrations of 0.1% and 0.5% RHSE, MDI-induced cells were shown to reduce their cellular lipid content by about 72% and 88%, respectively, compared to ...

  3. Effect of quinupristin/dalfopristin on 3T3 and Eahy926 cells in vitro in comparison to other antimicrobial agents with the potential to induce infusion phlebitis.

    PubMed

    Kruse, Matthias; Kilic, Bülent; Flick, Burkhard; Stahlmann, Ralf

    2007-06-01

    Infusion phlebitis is a common clinical problem that is observed with some antimicrobial agents, when being administered intravenously. In this study, cultured murine fibroblasts and immortalised human endothelial cells were exposed to three antibiotics at clinically relevant concentrations to assess their toxic potential in two established cytotoxicity assays. BALB/c 3T3 fibroblasts and Eahy926 endothelial cells were exposed to quinupristin/dalfopristin (QD), erythromycin and levofloxacin at increasing concentrations. For assessment of cytotoxicity the cells were incubated with neutral red (NR) or stained with crystal violet (CV). Measurements were done by photometry. At the concentration range tested QD and erythromycin showed a concentration-dependent cytotoxic effect in both cell cultures. In 3T3 cells the half-maximal effect concentration (EC50) was 20 mg/l for QD and 340 mg/l for erythromycin in the NR uptake test and 12 and 200 mg/l, respectively, in the CV assay. In Eahy926 cells the EC50 was 50 mg/l for QD and 880 mg/l for erythromycin in the NR uptake test and 40 and 750 mg/l, respectively, in the CV assay. No EC50 could be established in both cell types for levofloxacin. Eahy926 cells were less sensitive to cytotoxic stimuli than 3T3 fibroblasts. Cytotoxic effects in both cell cultures occurred in the following order: QD > erythromycin > levofloxacin. This ranking correlates well with the frequency of local adverse effects observed with the infusion of these antibiotics in patients. Thus, these in vitro assays may serve as an estimate for the prediction of local tolerability of antibiotics when administered parenterally. PMID:17119926

  4. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  5. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. PMID:27194636

  6. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  7. Induction of pyruvate carboxylase apoenzyme and holoenzyme in 3T3-L1 cells during differentiation

    PubMed Central

    Freytag, Svend O.; Utter, Merton F.

    1980-01-01

    The specific activity of pyruvate carboxylase [pyruvate:carbon-dioxide ligase (ADP-forming); EC 6.4.1.1] in 3T3-L1 cells increases approximately 20-fold when these cells differentiate to an adipocyte-like form [Mackall, J. C. & Lane, M. D. (1977) Biochem. Biophys. Res. Commun. 79, 720-725]. A specific antibody to the purified rat liver enzyme quantitatively precipitated pyruvate carboxylase from 3T3-L1 crude homogenates. Use of this immunological technique permitted us to demonstrate that the increase in pyruvate carboxylase activity is due to an increase in the intracellular concentration of the enzyme. The content of pyruvate carboxylase in differentiated 3T3-L1 cells is sufficiently high (1-2% of total protein) that the increase in this large protein (subunit Mr = 130,000) can be visualized when 3T3-L1 crude extracts are subjected to electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. When 3T3-L1 cells differentiated in the presence of avidin, they contained less than 5% of the pyruvate carboxylase activity of cells that differentiated in the absence of avidin. However, the immunoprecipitable pyruvate carboxylase content of the avidin-treated cells was essentially the same as that of cells that differentiated without avidin. Full activity of the enzyme was rapidly restored in the avidin-treated cells upon the addition of excess biotin. The recovery of activity was closely correlated with the incorporation of [14C]biotin into immunoprecipitable pyruvate carboxylase. The rapidity with which the activity was restored and the insensitivity of the process to inhibitors of protein synthesis strongly suggest that the apoenzyme of pyruvate carboxylase accumulates during differentiation in the presence of avidin. Images PMID:6929488

  8. Murine Embryonic Fibroblast Cell Lines Differentiate into Three Mesenchymal Lineages to Different Extents: New Models to Investigate Differentiation Processes

    PubMed Central

    Dastagir, Khaled; Lazaridis, Andrea; Jahn, Sabrina; Maurer, Viktor; Strauß, Sarah; Dastagir, Nadjib; Radtke, Christine; Kampmann, Andreas; Bucan, Vesna; Vogt, Peter M.

    2014-01-01

    Abstract Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as “feeder cells.” Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation. PMID:25068630

  9. Murine embryonic fibroblast cell lines differentiate into three mesenchymal lineages to different extents: new models to investigate differentiation processes.

    PubMed

    Dastagir, Khaled; Reimers, Kerstin; Lazaridis, Andrea; Jahn, Sabrina; Maurer, Viktor; Strauß, Sarah; Dastagir, Nadjib; Radtke, Christine; Kampmann, Andreas; Bucan, Vesna; Vogt, Peter M

    2014-08-01

    Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as "feeder cells." Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation. PMID:25068630

  10. Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site.

    PubMed

    Miyamoto, Yasunori; Tanabe, Mio; Date, Kimie; Sakuda, Kanoko; Sano, Kotone; Ogawa, Haruko

    2016-04-01

    Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site. PMID:26979432

  11. A new lectin in red kidney beans called PvFRIL stimulates proliferation of NIH 3T3 cells expressing the Flt3 receptor.

    PubMed

    Moore, J G; Fuchs, C A; Hata, Y S; Hicklin, D J; Colucci, G; Chrispeels, M J; Feldman, M

    2000-07-26

    A new legume lectin has been identified by its ability to specifically stimulate proliferation of NIH 3T3 fibroblasts expressing the Flt3 tyrosine kinase receptor. The lectin was isolated from conditioned medium harvested from human peripheral blood mononuclear cells activated to secrete cytokines by a crude red kidney bean extract containing phytohemagglutinin (PHA). Untransfected 3T3 cells and 3T3 cells transfected with the related Fms tyrosine kinase receptor do not respond to this lectin, which we called PvFRIL (Phaseolus vulgaris Flt3 receptor-interacting lectin). When tested on cord blood mononuclear cells enriched for Flt3-expressing progenitors, purified PvFRIL fractions maintained a small population of cells that continued to express CD34 after 2 weeks in suspension cultures containing IL3. These cultures did not show the effects of IL3's strong induction of proliferation and differentiation (high cell number and exhausted medium); instead, low cell number at the end of the culture period resulted in persistence of cells in the context of cell death. These observations led to the hypothesis that PvFRIL acts in a dominant manner to preserve progenitor viability and prevent proliferation and differentiation. PMID:10913819

  12. Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase.

    PubMed Central

    Kawamura, M; Jensen, D F; Wancewicz, E V; Joy, L L; Khoo, J C; Steinberg, D

    1981-01-01

    Differentiation of 3T3-L1 fibroblasts to adipocyte-like cells was accompanied by a 19-fold increase in neutral triglyceride lipase activity, a 12-fold increase in diglyceride lipase activity, a 10-fold increase in monoglyceride lipase activity, and a 280-fold increase in cholesterol esterase activity. In contrast, acid acylhydrolase activities did not increase during differentiation. The rate of glycerol release from unstimulated intact cells increased by more than 1 order of magnitude upon differentiation. Isoproterenol (1 microM) and 1-methyl-3-isobutylxanthine (0.1 mM) further stimulated this rate of glycerol release 3-fold. The neutral triglyceride lipase activity in cell-free preparations of differentiated cells was activated 105% by cyclic AMP-dependent protein kinase. Neutral cholesterol esterase, diglyceride lipase, and monoglyceride lipase were also activated (117%, 10%, and 37+, respectively) by cyclic AMP-dependent protein kinase. In contrast, protein kinase had no effect on any of the four lysosomal acid acylhydrolase activities. Thus, hormone-sensitive lipase, the most characteristic and functionally important enzyme of adipose tissue, has been characterized in differentiated 3T3-L1 cells. The 3T3-L1 cell should be a valuable model system in which to study regulation of hormone-sensitive lipase, particularly its long-term regulation. PMID:6262767

  13. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  14. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  15. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    PubMed Central

    Yamamoto, Ryohei; Umetsu, Makio; Yamamoto, Mizuki; Matsuyama, Satoshi; Takenaka, Shigeo; Ide, Hiroshi; Kubo, Kihei

    2015-01-01

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3′-OH and 5′-deoxyribose phosphate (5′-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5′-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. PMID:25724755

  16. The Effect of Bovine Parathyroid Hormone Withdrawal on MC3T3-E1 Cell Proliferation and Phosphorus Metabolism

    PubMed Central

    Li, Sijia; Cui, Tongxia; Li, Zhonghe; Zhang, Bin; Li, Zhuo; Wu, Jianxiong; Liang, Xinling; Lin, Zheng; Shi, Wei

    2015-01-01

    Hypocalcemia and hypophosphatemia are common complications after parathyroidectomy (PTX). Sudden removal of high circulating levels of parathyroid hormone (PTH) causes decreased osteoclastic resorption resulting in a decreased bone remodeling space. These phenomena are likely due to an increased influx of calcium and phosphorus into bone. However, there are currently no data to support this hypothesis. In this study, we found that PTX significantly reduced levels of PTH, calcium and phosphate. Compared with preoperative levels, after 1 year, postoperative PTH, calcium and phosphate levels were 295.6 ± 173.7 pg/mL (P < 0.05), 86.62 ± 15.98 mg/dL (P < 0.05) and 5.56 ± 2.03 mg/dL (P < 0.05), respectively. We investigated continuous bovine PTH administration as well as withdrawal of bovine PTH stimulation in the mouse osteoblast precursor cell line MC3T3-E1. MC3T3-E1 cells were cultured with continuous bovine PTH treatment for 20 days or with transient bovine PTH treatment for 10 days. High doses of continuous bovine PTH exposure strongly reduced cell proliferation, alkaline phosphatase activity and the number of mineralized calcium nodules. However, withdrawal of bovine PTH (100 ng/mL) significantly increased the number of mineralized calcium nodules and caused a rapid decline in calcium and phosphorus content of culture medium. In conclusion, continuous exposure to bovine PTH inhibited osteoblast differentiation and reduced the formation of mineralized nodules. However, this inhibition was removed and mineralized nodule formation resumed with withdrawal of bovine PTH. According to the results of our clinical examinations and in vitro experiments, we hypothesize that the sudden removal of high levels of PTH may cause an increased influx of calcium and phosphorus into bone after PTX. PMID:25775025

  17. The effect of bovine parathyroid hormone withdrawal on MC3T3-E1 cell proliferation and phosphorus metabolism.

    PubMed

    Liu, Shuangxin; Zhu, Weiping; Li, Sijia; Cui, Tongxia; Li, Zhonghe; Zhang, Bin; Li, Zhuo; Wu, Jianxiong; Liang, Xinling; Lin, Zheng; Shi, Wei

    2015-01-01

    Hypocalcemia and hypophosphatemia are common complications after parathyroidectomy (PTX). Sudden removal of high circulating levels of parathyroid hormone (PTH) causes decreased osteoclastic resorption resulting in a decreased bone remodeling space. These phenomena are likely due to an increased influx of calcium and phosphorus into bone. However, there are currently no data to support this hypothesis. In this study, we found that PTX significantly reduced levels of PTH, calcium and phosphate. Compared with preoperative levels, after 1 year, postoperative PTH, calcium and phosphate levels were 295.6 ± 173.7 pg/mL (P < 0.05), 86.62 ± 15.98 mg/dL (P < 0.05) and 5.56 ± 2.03 mg/dL (P < 0.05), respectively. We investigated continuous bovine PTH administration as well as withdrawal of bovine PTH stimulation in the mouse osteoblast precursor cell line MC3T3-E1. MC3T3-E1 cells were cultured with continuous bovine PTH treatment for 20 days or with transient bovine PTH treatment for 10 days. High doses of continuous bovine PTH exposure strongly reduced cell proliferation, alkaline phosphatase activity and the number of mineralized calcium nodules. However, withdrawal of bovine PTH (100 ng/mL) significantly increased the number of mineralized calcium nodules and caused a rapid decline in calcium and phosphorus content of culture medium. In conclusion, continuous exposure to bovine PTH inhibited osteoblast differentiation and reduced the formation of mineralized nodules. However, this inhibition was removed and mineralized nodule formation resumed with withdrawal of bovine PTH. According to the results of our clinical examinations and in vitro experiments, we hypothesize that the sudden removal of high levels of PTH may cause an increased influx of calcium and phosphorus into bone after PTX. PMID:25775025

  18. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  19. Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes.

    PubMed

    Sun, Quancai; Qi, Weipeng; Yang, Jeremy J; Yoon, Kyong Sup; Clark, John M; Park, Yeonhwa

    2016-06-01

    Emerging evidence suggests that organochlorine, organophosphorus and neonicotinoid insecticide exposure may be linked to the development of obesity and type 2 diabetes. However, there is no knowledge of the potential influence of fipronil, which belongs to the phenylpyrazole chemical family, on obesity. Thus, the goal of this study was to determine the role of fipronil in adipogenesis using 3T3-L1 adipocytes. Fipronil treatment, at 10 μM, increased fat accumulation in 3T3-L1 adipocytes as well as promoted key regulators of adipocyte differentiation (CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ), and key regulators of lipogenesis (acetyl-CoA carboxylase and fatty acid synthase). The activation of AMPKα with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) abolished effects of fipronil on increased adipogenesis. These results suggest that fipronil alters adipogenesis and results in increased lipid accumulation through a AMPKα-mediated pathway. PMID:27103584

  20. Expression of Nanog gene promotes NIH3T3 cell proliferation

    SciTech Connect

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu . E-mail: jwdai@genetics.ac.cn

    2005-12-16

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion.

  1. Recommended protocol for the BALB/c 3T3 cell transformation assay.

    PubMed

    Sasaki, Kiyoshi; Bohnenberger, Susanne; Hayashi, Kumiko; Kunkelmann, Thorsten; Muramatsu, Dai; Phrakonkham, Pascal; Poth, Albrecht; Sakai, Ayako; Salovaara, Susan; Tanaka, Noriho; Thomas, B Claire; Umeda, Makoto

    2012-04-11

    The present protocol has been developed for the BALB/c 3T3 cell transformation assay (CTA), following the prevalidation study coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and reported in this issue (Tanaka et al. [16]). Based upon the experience gained from this effort and as suggested by the Validation Management Team (VMT), some acceptance and assessment criteria have been refined compared to those used during the prevalidation study. The present protocol thus describes cell culture maintenance, the dose-range finding (DRF) experiment and the transformation assay, including cytotoxicity and morphological transformation evaluation. Use of this protocol and of the associated photo catalogue included in this issue (Sasaki et al. [17]) is recommended for the future conduct of the BALB/c 3T3 CTA. PMID:22212201

  2. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  3. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.

    PubMed

    Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

    2010-11-01

    Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149  kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptors γ) during adipocyte differentiation, and induced the expression of PPARγ target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPARγ and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPARγ ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPARγ transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes. PMID:21031614

  4. Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3-L1 cells.

    PubMed Central

    Mercier, N; Moldes, M; El Hadri, K; Fève, B

    2001-01-01

    Semicarbazide-sensitive amine oxidase (SSAO) is an amine oxidase related to the copper-containing amine oxidase family. The tissular form of SSAO is located at the plasma membrane, and is mainly expressed in vascular smooth muscle cells and adipocytes. Recent studies have suggested that SSAO could activate glucose transport in fat cells. In the present work, we investigated the potential role of a chronic SSAO activation on adipocyte maturation of the 3T3-L1 pre-adipose cell line. Exposure of post-confluent 3T3-L1 pre-adipocytes to methylamine, a physiological substrate of SSAO, promoted adipocyte differentiation in a time- and dose-dependent manner. This effect could be related to SSAO activation, since it was antagonized in the presence of the SSAO inhibitor semicarbazide, but not in the presence of the monoamine oxidase inhibitor pargyline. In addition, methylamine-induced adipocyte maturation was mimicked by 3T3-L1 cell treatment with other SSAO substrates. Finally, the large reversion of methylamine action by catalase indicated that hydrogen peroxide generated by SSAO was involved, at least in part, in the modulation of adipocyte maturation. Taken together, our results suggest that SSAO may contribute to the control of adipose tissue development. PMID:11513731

  5. Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes

    PubMed Central

    Lee, Joomin; Kim, Ah-Ra; Lee, Jae-Joon

    2016-01-01

    The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with 25 μg/mL or 100 μg/mL HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts. PMID:26954122

  6. Effect of Mangiferin and Mahanimbine on Glucose Utilization in 3T3-L1 cells

    PubMed Central

    Kumar, B Dinesh; Krishnakumar, K; Jaganathan, Saravana Kumar; Mandal, Mahitosh

    2013-01-01

    Background: Stem barks of Mangifera indica contain a rich content of mangiferin (xanthone glucoside), whereas Murraya koenigii leaves contain rich sources of mahanimbine (carbazole alkaloid) and used traditionally for the treatment of diabetes. Objective: To investigate the effects of mangiferin (xanthone glucoside) and mahanimbine (carbazole alkaloid) on glucose utilization in 3T3-L1 cells. Materials and Methods: Mangiferin was isolated from stem barks of Mangifera indica and mahanimbine was isolated from Murraya koenigii leaves. These isolated compounds were subjected to MTT assay and glucose utilization test with 3T3-L1 cells. Results: Treatment of the 3T3-L1 cells with mangiferin and mahanimbine increased the glucose utilization in a dose-dependent manner. At a concentration of 1 mM, mangniferin showed 2-fold increase in glucose utilization compared with untreated control. In case of mahanimbine, the observed effect at 1 mM was almost equivalent to positive control (insulin at 1 μM). Moreover, MTT assay showed that both of these compounds were less toxic at a concentration of 1 mM (nearly 75% cells are viable). Conclusion: The present results indicated that these natural products (mangiferin and mahanimbine) exhibited potential ethnomedical uses in management of diabetes. PMID:23661997

  7. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells.

    PubMed Central

    Yeh, W C; Bierer, B E; McKnight, S L

    1995-01-01

    Differentiating 3T3-L1 cells express an immunophilin early during the adipocyte conversion program as described in this issue [Yeh, W.-C., Li, T.-K., Bierer, B. E. & McKnight, S. L. (1995) Proc. Natl. Acad. Sci. USA 92, 11081-11085]. The temporal expression profile of this protein, designated FK506-binding protein (FKBP) 51, is concordant with the clonal-expansion period undertaken by 3T3-L1 cells after exposure to adipogenic hormones. Having observed FKBP51 synthesis early during adipogenesis, we tested the effects of three immunosuppressive drugs--cyclosporin A, FK506, and rapamycin--on the terminal-differentiation process. Adipocyte conversion was not affected by either cyclosporin A or FK506 and yet was significantly reduced by rapamycin at drug concentrations as low as 10 nM. Clonal expansion was impeded in drug-treated cultures, as was the accumulation of cytoplasmic lipid droplets normally seen late during differentiation. Rapamycin treatment likewise inhibited the expression of CCAAT/enhancer binding protein alpha, a transcription factor required for 3T3-L1 cell differentiation. All three of these effects were reversed by high FK506 concentrations, indicating that the operative inhibitory event was mediated by an immunophilin-rapamycin complex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479942

  8. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  9. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Ukita, Mayumi; Yamaguchi, Taihiko; Ohata, Noboru; Tamura, Masato

    2016-06-01

    Sclerostin, a secreted protein encoded by the Sost gene, is produced by osteocytes and is inhibited by osteoblast differentiation and bone formation. Recently, a functional association between bone and fat tissue has been suggested, and a correlation between circulating sclerostin levels and lipid metabolism has been reported in humans. However, the effects of sclerostin on adipogenesis remain unexplored. In the present study, we examined the role of sclerostin in regulating adipocyte differentiation using 3T3-L1 preadipocytes. In these cells, sclerostin enhanced adipocyte-specific gene expression and the accumulation of lipid deposits. Sclerostin also upregulated CCAAT/enhancer binding protein β expression but not cell proliferation and caspase-3/7 activities. Sclerostin also attenuated canonical Wnt3a-inhibited adipocyte differentiation. Recently, the transcriptional modulator TAZ has been involved in the canonical Wnt signaling pathway. Sclerostin reduced TAZ-responsive transcriptional activity and TAZ-responsive gene expression. Transfection of 3T3-L1 cells with TAZ siRNA increased the lipid deposits and adipogenic gene expression. These results show that sclerostin upregulates adipocyte differentiation in 3T3-L1 cells, suggesting a possible role for the osteocyte-derived sclerostin as a regulator of fat metabolism and as a reciprocal regulator of bone and adipose tissues metabolism. J. Cell. Biochem. 117: 1419-1428, 2016. © 2015 Wiley Periodicals, Inc. PMID:26553151

  10. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    PubMed Central

    Liou, Chian-Jiun; Lai, Xuan-Yu; Chen, Ya-Ling; Wang, Chia-Ling; Wei, Ciao-Han; Huang, Wen-Chung

    2015-01-01

    Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway. PMID:26413119

  11. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity. PMID:25802547

  12. Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes.

    PubMed

    Lee, Joomin; Kim, Ah-Ra; Lee, Jae-Joon

    2016-09-01

    The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with 25 μg/mL or 100 μg/mL HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts. PMID:26954122

  13. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: II. Colchicine-treated fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Colchicine administered intravenously depolymerized microtubules and disrupted the normal organization of the Golgi apparatus in periodontal ligament fibroblasts. Radioautography with /sup 3/H-proline indicated that collagen secretion was completely inhibited during a period of approximately 4 hours following the onset of the colchicine effect. During this period of secretory inhibition, labeled collagen precursors were present within a variety of dense bodies, primarily located in a juxtanuclear location replacing the normal Golgi complex. The time course of /sup 3/H-proline labeling from 2 to 8 hours suggested that small, newly formed dense bodies fused to form larger dense bodies and pleomorphic structures (zebra bodies), within which collagen precursors appeared to undergo partial polymerization. Autophagosomes, many labeled with /sup 3/H-proline, also increased in number after colchicine administration. A gradual decline in /sup 3/H-proline label occurred from 4 to 24 hours, presumably due to exocytosis of dense bodies or by the digestion of labeled collagen precursors within autophagosomes. These results support the concept that an intact microtubular network is essential for the organized transport of collagen precursors, from the rough endoplasmic reticulum to the Golgi apparatus, and the eventual transport and exocytosis of collagen secretory granules.

  14. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy

    PubMed Central

    Fritsch, Anja; Loeckermann, Stefan; Kern, Johannes S.; Braun, Attila; Bösl, Michael R.; Bley, Thorsten A.; Schumann, Hauke; von Elverfeldt, Dominik; Paul, Dominik; Erlacher, Miriam; Berens von Rautenfeld, Dirk; Hausser, Ingrid; Fässler, Reinhard; Bruckner-Tuderman, Leena

    2008-01-01

    Dystrophic epidermolysis bullosa (DEB) is a severe skin fragility disorder associated with trauma-induced blistering, progressive soft tissue scarring, and increased risk of skin cancer. DEB is caused by mutations in type VII collagen. In this study, we describe the generation of a collagen VII hypomorphic mouse that serves as an immunocompetent animal model for DEB. These mice expressed collagen VII at about 10% of normal levels, and their phenotype closely resembled characteristics of severe human DEB, including mucocutaneous blistering, nail dystrophy, and mitten deformities of the extremities. The oral blistering experienced by these mice resulted in growth retardation, and repeated blistering led to excessive induction of tissue repair, causing TGF-β1–mediated contractile fibrosis generated by myofibroblasts and pseudosyndactyly in the extremities. Intradermal injection of WT fibroblasts resulted in neodeposition of collagen VII and functional restoration of the dermal-epidermal junction. Treated areas were also resistant to induced frictional stress. In contrast, untreated areas of the same mouse showed dermal-epidermal separation following induced stress. These data demonstrate that fibroblast-based treatment can be used to treat DEB in a mouse model and suggest that this approach may be effective in the development of clinical therapeutic regimens for patients with DEB. PMID:18382769

  15. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

    PubMed

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs. PMID:26938987

  16. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts

    PubMed Central

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs. PMID:26938987

  17. The Effects of Fibroblast Co-Culture and Activin A on in vitro Growth of Mouse Preantral Follicles

    PubMed Central

    Karimpour Malekshah, Abbasali; Heidari, Mahmoud; Parivar, Kazem; Azami, Nasrin Sadat

    2014-01-01

    Background: This study was conducted to evaluate fibroblast co-culture and Activin A on in vitro maturation and fertilization of mouse preantral follicles. Methods: The ovaries from 12-14-day-old mice were dissected, and 120-150 μm preantral follicles were cultured individually in α-MEM as based medium for 12 days. A total number of 456 follicles were cultured in four conditions: (i) base medium as control group (n = 113), (ii) base medium supplemented with 30 ng/ml Activin A (n = 115), (iii) base medium co-cultured with mouse embryonic fibroblast (n = 113), and (iv) base medium supplemented with 30 ng/ml Activin A and co-cultured with fibroblast (n = 115). Rate of growth, survivability, antrum formation, ovulation, embryonic development and steroid production were evaluated. Analysis of Variance and Duncan test were applied for analyzing. Results: Both co-culture and co-culture + Activin A groups showed significant difference (P<0.05) in growth (on days 4, 6, and 8 of culture period) and survival rates. However, there was no significant difference in antrum formation, ovulation rate, and embryonic development of ovulated oocytes. There were significant differences (P<0.05) in the estradiol production on days 8, 10, and 12 between co-culture + Activin A and the control group. Progesterone production also was significant (P<0.05) in co-culture + Activin A group on days 6, 8, 10, and 12 compared to control group. Conclusion: Fibroblast co-culture and Activin A promoted growth and survivability of preantral follicles. However, simultaneous use of them was more efficient. PMID:24375163

  18. EPAS1 promotes adipose differentiation in 3T3-L1 cells.

    PubMed

    Shimba, Shigeki; Wada, Taira; Hara, Shuntaro; Tezuka, Masakatsu

    2004-09-24

    Adipose differentiation is regulated by several transcription factors, such as the CAAT/enhancer-binding protein family and peroxisome proliferator activator (PPAR) gamma2. Several recent studies have shown that the basic helix-loop-helix-PAS superfamily is also involved in the regulation of adipose differentiation. In this study, we investigated the roles played by EPAS1 (endothelial PAS domain protein 1) in adipogenesis. EPAS1, also referred to as hypoxia-inducible factor 2alpha, is a transcription factor known to play essential roles in catecholamine homeostasis, vascular remodeling, and the maintenance of reactive oxygen species, and so forth. During adipose differentiation in 3T3-L1 cells, the level of EPAS1 mRNA began to increase 6 days after the induction, and EPAS1 was highly expressed in differentiated cells. To examine whether EPAS1 is involved in adipogenesis, we first isolated stable clones from 3T3-L1 cells in which we could induce the expression of an EPAS1 C-terminal deletion mutant (designated EPAS1-(1-485)) with the insect hormone. The induction of EPAS1-(1-485) allowed the cells to accumulate only minimum amounts of intracellular lipid droplets. Consistent with the morphological observations, a minimum amount of aP2 and PPARgamma2 mRNA was induced in the EPAS1-(1-485) cells. We then examined whether or not EPAS1 was able to promote adipogenesis in NIH 3T3 cells, a relatively nonadipogenic cell line. Overexpression of EPAS1 in NIH 3T3 cells induced a significant amount of lipid accumulation compared with that of the control cells in the presence of the PPARgamma ligand. The results were also confirmed by measuring the expression of adipocyte-related genes. Adenovirus-mediated EPAS1-(1-485) expression resulted in the reduction of basal and insulin-dependent glucose transport in 3T3-L1 adipocytes. The mechanism involved the transcriptional regulation of GLUT1, GLUT4, and IRS3 expression by EPAS1. Taken together, these results suggest that EPAS1 plays

  19. Cellular Transformation of Mouse Embryo Fibroblasts in the Absence of Activator E2Fs

    PubMed Central

    Gupta, Tushar; Sáenz Robles, Maria Teresa

    2015-01-01

    ABSTRACT The E2F family of transcription factors, broadly divided into activator and repressor E2Fs, regulates cell cycle genes. Current models indicate that activator E2Fs are necessary for cell cycle progression and tumorigenesis and are also required to mediate transformation induced by DNA tumor viruses. E2Fs are negatively regulated by the retinoblastoma (RB) family of tumor suppressor proteins, and virus-encoded oncogenes disrupt the RB-E2F repressor complexes. This results in the release of activator E2Fs and induction of E2F-dependent genes. In agreement, expression of large tumor T antigens (TAg) encoded by polyomaviruses in mammalian cells results in increased transcriptional levels of E2F target genes. In addition, tumorigenesis induced by transgenic expression of simian virus 40 (SV40) TAg in choroid plexus or intestinal villi requires at least one activator E2F. In contrast, we show that SV40 TAg-induced transformation in mouse embryonic fibroblasts is independent of activator E2Fs. This work, coupled with recent studies showing that proliferation in stem and progenitor cells is independent of activator E2Fs, suggests the presence of parallel pathways governing cell proliferation and tumorigenesis. IMPORTANCE The RB-E2F pathway is altered in many cancers and is also targeted by DNA tumor viruses. Viral oncoprotein action on RBs results in the release of activator E2Fs and upregulation of E2F target genes; thus, activator E2Fs are considered essential for normal and tumorigenic cell proliferation. However, we have observed that SV40 large T antigen can induce cell proliferation and transformation in the absence of activator E2Fs. Our results also suggest that TAg action on pRBs regulates both E2F-dependent and -independent pathways that govern proliferation. Thus, specific cell proliferation pathways affected by RB alterations in cancer may be a factor in tumor behavior and response to therapy. PMID:25717106

  20. Effects of N-acetyl-L-cysteine and glutathione on antioxidant status of human serum and 3T3 fibroblasts.

    PubMed Central

    Hong, Sae-Yong; Yang, Jong-Oh; Lee, Eun-Young; Lee, Zee-Won

    2003-01-01

    The effectiveness of several sulfhydryl compounds in the treatment of paraquat intoxication has been previously tested based on their antioxidant ability. However, practical guidelines for their clinical use remain to be determined. As a preliminary pharmacokinetic study on sulfhydryl compounds, we attempted to establish the optimal concentration of N-acetyl-L-cysteine, glutathione, superoxide dismutase, and catalase. We measured the antioxidant effect of these antioxidants in normal pooled plasma and on intracellular reactive oxygen species (ROS) induced by paraquat. N-acetyl-L-cysteine begins to suppress the production of ROS in plasma at concentrations as low as 5 mM, with the suppression being maximal at 40 mM. In the same way, glutathione increased the total antioxidant status in plasma at concentrations of 5-40 mM in a dose-dependent manner. Complete suppression of ROS in plasma induced by exposure to 500 micro M paraquat for 40 min was observed when using 40 mM N-acetyl-L-cysteine and 5 mM glutathione. These concentrations are comparable with 50 units of catalase, which reduced ROS at concentrations of 5-100 units. Further pharmacokinetic study into the systemic administration of these antioxidants is necessary, using effective concentrations of 5-40 mM for both N-acetyl-L-cysteine and glutathione, and 1-50 units of catalase. PMID:14555815

  1. Characterization of sample preparation methods of NIH/3T3 fibroblasts for ToF-SIMS analysis

    PubMed Central

    Robinson, Michael A; Castner, David G

    2013-01-01

    The information that is obtained from single cells during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis is influenced by the method that was used to prepare the cells. The removal of extracellular media before analysis is necessary, but the rinsing technique should not damage the plasma membrane of the cell. The presence of intracellular salts reduced the secondary ion yield an average of 2.6-fold during Bi3+/C60++ depth profiles. Chemical fixation followed by rinsing removed a majority of the intracellular salts, “recovering” the positive secondary ion yields. The formaldehyde-fixation process removed a majority of the intracellular Cl-, but other key anions were not removed in significant amounts. The data presented here is consistent the anion neutralization mechanism largely responsible for the lower ion yields. All of the organic secondary ions that were detected in the freeze-dried cells were also detected in the formaldehyde-fixed cells, suggesting that the fixation process did not remove any molecular species to an extent that is detectable by ToF-SIMS. Compared to freeze dried cells, well preserved, frozen-hydrated cells showed little increase, or a decreased yield, for most low mass ions, but an increased yield for larger mass fragments. This is consistent with a reduced damage cross section at cryogenic analysis temperatures, although proton donation from water and reduction the salt effects in the presence of water likely also play roles. Numerous ions detected from the frozen-hydrated cells were not detected from the freeze dried cells, however many of these ions were attributed to chemical combinations of water, salts and the ammonium acetate rinsing solution. PMID:24706128

  2. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    PubMed

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  3. The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 Cells

    PubMed Central

    Yu, Bangning; Cook, Carla

    2009-01-01

    Abstract Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  4. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  5. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells.

    PubMed

    Masiello, Lisa M; Fotos, Joseph S; Galileo, Deni S; Karin, Norman J

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G-protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1>LPA4>LPA2>LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G-protein-coupled receptor LPA1. PMID:16487757

  6. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    SciTech Connect

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  7. Melatonin Prevents Mitochondrial Damage Induced by Doxorubicin in Mouse Fibroblasts Through Ampk-Ppar Gamma-Dependent Mechanisms

    PubMed Central

    Guven, Celal; Taskin, Eylem; Akcakaya, Handan

    2016-01-01

    Background Doxorubicin (brand name: Adriamycin®) is used to treat solid tissue cancer but it also affects noncancerous tissues. Its mechanism of cytotoxicity is probably related to increased oxidation, mitochondrial dysfunction, and apoptosis. Melatonin is reported to have antiapoptotic and antioxidative effects. The aim of this study was to determine whether melatonin would counteract in vitro cytotoxicity of doxorubicin in mouse fibroblasts and determine the pathway of its action against doxorubicin-induced apoptosis. Material/Methods We measured markers of apoptosis (cytochrome-c, mitochondrial membrane potential, and apoptotic cell number) and oxidative stress (total oxidant and antioxidant status) and calculated oxidant stress index in 4 groups of fibroblasts: controls, melatonin-treated, doxorubicin-treated, and fibroblasts concomittantly treated with a combination of melatonin and doxorubicin. Results Melatonin given with doxorubicin succesfully countered apoptosis generated by doxorubicin alone, which points to its potential as a protective agent against cell death in doxorubicin chemotherapy. This also implies that patients should be receiving doxorubicin treatment when their physiological level of melatonin is at its highest, which is early in the morning. Conclusions This physiological level may not be high enough to overcome doxorubicin-induced oxidative stress, but adjuvant melatonin treatment may improve quality of life. Further research is needed to verify our findings. PMID:26861593

  8. mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts.

    PubMed

    Lambert, Ian Henry; Jensen, Jane Vendelbo; Pedersen, Per Amstrup

    2014-06-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense. PMID:24696147

  9. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*

    PubMed Central

    Qiao, Peng-yan; Li, Fang-fang; Dong, Li-min; Xu, Tao; Xie, Qiu-fei

    2014-01-01

    Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering. PMID:24711359

  10. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  11. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    PubMed Central

    Zhong, Xing; Xiu, Ling-ling; Wei, Guo-hong; Liu, Yuan-yuan; Su, Lei; Cao, Xiao-pei; Li, Yan-bing; Xiao, Hai-peng

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects. Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins. Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezafibrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARα inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or NG-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 μmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast proliferation. Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation. PMID:21499286

  12. Effect of pycnogenol on glucose transport in mature 3T3-L1 adipocytes.

    PubMed

    Lee, Hee-Hyun; Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-08-01

    Pycnogenol, a procyanidins-enriched extract of Pinus maritima bark, possesses antidiabetic properties, which improves the altered parameters of glucose metabolism that are associated with type 2 diabetes mellitus (T2DM). Since the insulin-stimulated antidiabetic activities of natural bioactive compounds are mediated by GLUT4 via the phosphatidylinositol-3-kinase (PI3K) and/or p38 mitogen activated protein kinase (p38-MAPK) pathway, the effects of pycnogenol were examined on the molecular mechanism of glucose uptake by the glucose transport system. 3T3-L1 adipocytes were treated with various concentrations of pycnogenol, and glucose uptake was examined using a non-radioisotope enzymatic assay and by molecular events associated with the glucose transport system using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results show that pycnogenol increased glucose uptake in fully differentiated 3T3-L1 adipocytes and increased the relative abundance of both GLUT4 and Akt mRNAs through the PI3K pathway in a dose dependent manner. Furthermore, pycnogenol restored the PI3K antagonist-induced inhibition of glucose uptake in the presence of wartmannin, an inhibitor of the PI3K. Overall, these results indicate that pycnogenol may stimulate glucose uptake via the PI3K dependent tyrosine kinase pathways involving Akt. Further the results suggest that pycnogenol might be useful in maintaining blood glucose control. PMID:20658573

  13. Poly(L-lactide) crystallization topography directs MC3T3-E1 cells response.

    PubMed

    Li, Wenqiang; Lu, Lu; Jiao, Yanpeng; Zhang, Chaowen; Zhou, Changren

    2016-09-01

    Biomaterial surface topography significantly influences cellular form and function. Using poly(L-lactic acid) films with normal spherulites, banded spherulites, and amorphous surfaces as model substrates, we conducted a systematic assessment of the role for polymer crystallization induced surface morphologies on cell growth and contact guidance. Microscopy and image analysis showed that the MC3T3-E1 cells spread out in a random fashion on the amorphous substrate. At 24 h post-seeding, MC3T3-E1 cells on both types of spherulite surfaces were elongated and aligned along the spherulite radius direction. For the banded spherulite surface with radial stripes and coupling annular grooves, the cell orientation and cell nuclear localization were related to the grooves structure. With increasing time, this orientation preference was weaker. These results demonstrate that the patterning of polymer crystallization structure provide important signals for guiding cells to exhibit characteristic orientation and morphology especially in the early stages of regeneration. PMID:27376548

  14. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells.

    PubMed

    Ishii, Ikumi; Ikeguchi, Yoshihiko; Mano, Hiroshi; Wada, Masahiro; Pegg, Anthony E; Shirahata, Akira

    2012-02-01

    Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis. PMID:21809076

  15. High-affinity receptors for peptides of the bombesin family in Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Rozengurt, E.

    1985-11-01

    Gastrin-releasing peptide (GRP) labeled with /sup 125/I at tyrosine-15 (/sup 125/I-GRP) binds to intact quiescent Swiss 3T3 cells in a specific and saturable manner. Scatchard analysis indicates the presence of a single class of high-affinity binding sites of Kd = 0.5 X 10(-9) M and a value for the number of sites per cell of about 100,000. /sup 125/I-GRP binding was not inhibited by other mitogens for these cells, and cell lines that are mitogenically unresponsive to GRP do not exhibit specific GRP binding. Structure-activity relationships show a close parallel between the ability of a range of GRP-related peptides to both inhibit GRP binding and to stimulate mitogenesis. Further, GRP binding is selectively blocked in a competitive fashion by a novel bombesin antagonist, (D-Arg1, D-Pro2, D-Trp7,9, Leu11) substance P. In addition, this compound selectively inhibits GRP and bombesin-induced mitogenesis. These results demonstrate that the mitogenic response of Swiss 3T3 cells to peptides of the bombesin family is mediated by a class of receptors distinct from those of other mitogens for these cells.

  16. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-01

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. PMID:27264953

  17. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  18. Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-01-01

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

  19. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    SciTech Connect

    Shimada, Koichi; Ikeda, Kyoko; Ito, Koichi

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.

  20. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  1. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway

  2. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    SciTech Connect

    Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M.

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 {mu}g/mL and 100 {mu}g/mL SNP, respectively, although with minor decrease in confluence. IC{sub 50} values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 {mu}g/mL and 449 {mu}g/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC{sub 50} SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with {approx} 1/2 IC{sub 50} concentration of SNP (i.e. 30 {mu}g/mL and 225 {mu}g/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH ({approx} 1.2 fold) and depletion of lipid peroxidation ({approx} 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ({approx} 1.4 fold) and GSH ({approx} 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 {mu}g/mL in primary fibroblasts, 12.5 {mu}g/mL in primary liver cells) than the necrotic concentration (100 {mu}g/mL in primary fibroblasts, 500 {mu}g/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC{sub 50} SNP (resulting in apoptosis

  3. The interaction of /sup 125/I-insulin with cultured 3T3-L1 adipocytes: quantitative analysis by the hypothetical grain method

    SciTech Connect

    Fan, J.Y.; Carpentier, J.L.; Van Obberghen, E.; Blackett, N.M.; Grunfeld, C.; Gorden, P.; Orci, L.

    1983-07-01

    The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when /sup 125/I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, /sup 125/I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.

  4. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Liu, Qing; Kim, Seon Beom; Ahn, Jong Hoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2012-01-01

    To search for anti-diabetic and insulin-sensitising natural products, the effect on adipocyte differentiation was investigated by assessing fat accumulation in 3T3-L1 preadipocytes using Oil Red O staining. Fractionation and separation of n-hexane and CHCl₃ fractions of Morinda officinalis (Rubiaceae) using several chromatographic methods led to the isolation of three anthraquinones, 1,2-dimethoxyanthraquinone (1), alizarin-2-methyl ether (2) and rubiadin-1-methyl ether (3). Among them, alizarin-2-methyl ether (2) showed the strongest enhancing activity, followed by rubiadin-1-methyl ether (3) and 1,2-dimethoxyanthraquinone (1). At a concentration of 100 µM, alizarin-2-methyl ether (2) enhanced adipocyte differentiation by up to 131% (compared to insulin-treated cells). Thus, these compounds could be beneficial in the treatment of diabetes. PMID:22008000

  5. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells.

    PubMed Central

    Sakamuro, D; Furukawa, T; Takegami, T

    1995-01-01

    Clinical evidence suggests that hepatitis C virus (HCV) is etiologically involved in hepatic cancer and liver cirrhosis. To investigate whether the HCV nonstructural protein NS3 has oncogenic activity, NIH 3T3 cells were transfected with an expression vector containing cDNA for the 5'- or 3'-half sequence of the HCV genome segment encoding NS3. Only cells transfected with the 5'-half cDNA rapidly proliferated, lost contact inhibition, grew anchorage independently in soft agar, and formed tumors in nude mice. PCR analysis confirmed the presence of the 5'-half DNA in the transfectants. These results suggest that the 5' region of the HCV genome segment encoding NS3 is involved in cell transformation. PMID:7745741

  6. Prednisolone induces the Wnt signalling pathway in 3T3-L1 adipocytes

    PubMed Central

    Fleuren, Wilco W. M.; Linssen, Margot M. L.; Toonen, Erik J. M.; van der Zon, Gerard C. M.; Guigas, Bruno; de Vlieg, Jacob; Dokter, Wim H. A.; Ouwens, D. Margriet

    2013-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids. PMID:23506355

  7. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells.

    PubMed

    Inoue, Chisato; Kozaki, Tomomi; Morita, Yukiko; Shirouchi, Bungo; Fukami, Katsuya; Shimizu, Kuniyoshi; Sato, Masao; Katakura, Yoshinori

    2015-08-01

    Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood. PMID:25672941

  8. Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay.

    PubMed

    Sighinolfi, G L; Artoni, E; Gatti, A M; Corsi, L

    2016-05-01

    Metal-based nanoparticles (NPs), are currently used in many application fields including consumer products, pharmaceuticals, and biomedical treatments. In spite to their wide applications, an in-depth study of their potential toxic effects is still lacking. The aim of the present research was to investigate the potential initiator or promoter-like activity of different metallic NPs such as gold, iron, cobalt, and cerium using the Balb/3T3 two-stage transformation assay. The results indicated that all the selected metallic NPs, except for cobalt, when used as initiators did not induce any transformation in Balb/3T3 cell line. Moreover, Au and Fe3 O4 NPs, when used in place of the tumor promoter treatment TPA, increased significantly the number of Foci/dish as compared to the MCA treatment alone. The number of Foci/dish was 2.6 for Au NPs and 2.13 for Fe3 O4 ones, similar to those obtained by the positive control treatment (MCA + TPA), whereas 1.27 for MCA treatment alone. On the contrary, CeO2 NPs did not show any difference in the number of Foci/dish, as compared to MCA alone, but it decreased the number of foci by 65% in comparison to the positive control (MCA + TPA). As expected, cobalt NPs showed an increased cytotoxicity and only a few surviving cells were found at the time of analysis showing a number of Foci/dish of 0.13. For the first time, our data clearly showed that Au and Fe3 O4 NPs act as promoters in the two stage transformational assay, suggesting the importance to fully investigate the NPs carcinogenic potential with different models. PMID:25358123

  9. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells

    PubMed Central

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  10. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. PMID:17694516

  11. Oleanolic acid reduces markers of differentiation in 3T3-L1 adipocytes.

    PubMed

    Sung, Hye-Young; Kang, Sang-Wook; Kim, Jung-Lye; Li, Jing; Lee, Eun-Sook; Gong, Ju-Hyun; Han, Seoung Jun; Kang, Young-Hee

    2010-12-01

    Oleanolic acid is a triterpenoid compound that is widely present in vegetables, medicinal herbs, and other plants and has potent antioxidant and antiinflammatory properties. However, the potential of oleanolic acid to offset obesity is not clear. This study tested the hypothesis that oleanolic acid suppresses the differentiation of 3T3-L1 adipocytes by downregulating cellular induction of peroxisome proliferators-activated receptor γ (PPARγ) and cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein α (C/EBPα). The 3T3-L1 adipocytes were cultured and differentiated in Dulbecco modified Eagle medium containing 10% fetal bovine serum for 6 to 8 days in the absence and presence of 1 to 25 μmol/L oleanolic acid according to differentiating protocols. Nontoxic oleanolic acid, at 25 μmol/L or less, dose-dependently attenuated lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. Western blot analysis showed that the induction of PPARγ and C/EBPα was markedly attenuated in differentiated and oleanolic acid-treated adipocytes at their transcriptional messenger RNA levels. Furthermore, this study examined whether oleanolic acid dampened the induction of visfatin, a proinflammatory and visceral fat-specific adipokine expressed in adipocytes. Visfatin expression was inhibited in differentiated adipocytes exposed to a PPARγ inhibitor GW9662. In addition, the visfatin production was significantly repressed in 25 μmol/L oleanolic acid-treated adipocytes, possibly through blocking PPARγ activation. These results demonstrate that oleanolic acid may be a promising agent to disturb adipocyte differentiation and suppress obesity-associated inflammation. PMID:21147366

  12. Sheets of Vertically Aligned BaTiO3 Nanotubes Reduce Cell Proliferation but Not Viability of NIH-3T3 Cells

    PubMed Central

    Giannini, Marianna; Giannaccini, Martina; Sibillano, Teresa; Giannini, Cinzia; Liu, Dun; Wang, Zhigang; Baù, Andrea; Dente, Luciana; Cuschieri, Alfred; Raffa, Vittoria

    2014-01-01

    All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants. PMID:25506693

  13. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  14. QUANTITATIVE ANALYSIS OF THE METABOLISM OF BENZO(A)PYRENE BY TRANSFORMABLE C3H10T1/2CL8 MOUSE EMBRYO FIBROBLASTS

    EPA Science Inventory

    The metabolism of benzo(a)pyrene (B(a)P) to organic-soluble and water-soluble metabolites by transformable C3H10T1/2CL8 mouse embryo fibroblasts was studied as a function of time, B(a)P concentration, and cell density. The total formation of organic-soluble and water-soluble meta...

  15. Adrenal Corticosteroids Enhance Production of Type-C Virus Induced by 5-Iodo-2′-Deoxyuridine from Cultured Mouse Fibroblasts

    PubMed Central

    Paran, M.; Gallo, R. C.; Richardson, L. S.; Wu, A. M.

    1973-01-01

    Induction of RNA “tumor” viruses by 5-iodo-2′-deoxyuridine in mouse fibroblasts is stimulated 5- to 25-fold by glucogenic adrenal corticosteroids. Enhancement of virus production by the hormones is inhibited by low concentration of cordycepin, an inhibitor of poly(A) synthesis. PMID:4134726

  16. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways

    PubMed Central

    Wang, Weizhuo; Li, Fang; Wang, Kunzheng; Cheng, Bin; Guo, Xiong

    2012-01-01

    Several studies have indicated that PAPSS2 (3′-phosphoadenosine-5′-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways. PMID:22916269

  17. The function of cux1 in oxidative dna damage repair is needed to prevent premature senescence of mouse embryo fibroblasts

    PubMed Central

    Ramdzan, Zubaidah M.; Pal, Ranjana; Kaur, Simran; Leduy, Lam; Bérubé, Ginette; Davoudi, Sayeh; Vadnais, Charles; Nepveu, Alain

    2015-01-01

    Despite having long telomeres, mouse embryo fibroblasts (MEFs) senesce more rapidly than human diploid fibroblasts because of the accumulation of oxidative DNA damage. The CUX1 homeodomain protein was recently found to prevent senescence in RAS-driven cancer cells that produce elevated levels of reactive-oxygen species. Here we show that Cux1−/− MEFs are unable to proliferate in atmospheric (20%) oxygen although they can proliferate normally in physiological (3%) oxygen levels. CUX1 contains three domains called Cut repeats. Structure/function analysis established that a single Cut repeat domain can stimulate the DNA binding, Schiff-base formation, glycosylase and AP-lyase activities of 8-oxoguanine DNA glycosylase 1, OGG1. Strikingly and in contrast to previous reports, OGG1 exhibits efficient AP-lyase activity in the presence of a Cut repeat. Repair of oxidative DNA damage and proliferation in 20% oxygen were both rescued in Cux1−/− MEFs by ectopic expression of CUX1 or of a recombinant Cut repeat protein that stimulates OGG1 but is devoid of transcription activation potential. These findings reinforce the causal link between oxidative DNA damage and cellular senescence and suggest that the role of CUX1 as an accessory factor in DNA repair will be critical in physiological situations that generate higher levels of reactive oxygen species. PMID:25682875

  18. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    PubMed Central

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  19. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    PubMed

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  20. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    PubMed

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  1. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's

  2. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine. PMID:25721301

  3. In vitro BALB/3T3 cell transformation assay of nonoxynol-9 and 1,4-dioxane

    SciTech Connect

    Sheu, C.W.; Moreland, F.M.; Lee, J.K.; Dunkel, V.C.

    1988-01-01

    The spermicidal surfactant nonoxynol-9 (Igepal CO-630, GAF Corp.) and a potential impurity, 1,4-dioxane, were tested in the in vitro cell transformation assay using BALB/3T3 cells. Two treatment periods, 48 hr and 13 days, were used. Nonoxynol-9, tested at levels up to 10 /sup +/g/ml, did not induce transformation, whereas dioxane was very active in the induction type II foci in the cultured BALB/3T3 cells.

  4. Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes.

    PubMed

    Kubota, Hiroaki; Kojima-Yuasa, Akiko; Morii, Risako; Huang, Xuedan; Norikura, Toshio; Rho, Sook-Nyung; Matsui-Yuasa, Isao

    2009-01-01

    Obesity, the leading metabolic disease in the world, is a serious health problem in industrialized countries. We investigated the anti-obesity effect of Blumea balsamifera extract on adipocyte differentiation of 3T3-L1 preadipocytes and anti-obesity effect of 3T3-L1 adipocytes. We found that treatment with an extract of Blumea balsamifera suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and adipocytes. Furthermore, Blumea balsamifera extract brought significant attenuation of expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, CCAAT element binding protein (C/EBPs) and leptin, however, induced up-regulation of adiponectin at the protein level in 3T3-L1 preadipocytes and adipocytes. These results suggest that Blumea balsamifera extract may block adipogenesis, at least in part, by decreasing key adipogenic transcription factors in 3T3-L1 preadipocytes and may have antiatherogenic, anti-inflammatory, and antidiabetic effects through up-regulation of adiponectin in 3T3-L1 adipocytes. PMID:19885945

  5. Resistance to oncogenic transformation in revertant R1 of human ras-transformed NIH 3T3 cells

    SciTech Connect

    Kuzumaki, N.; Ogiso, Y.; Oda, A.; Fujita, H.; Suzuki, H.; Sato, C.; Mullauer, L.

    1989-05-01

    A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be retransformed by Kirsten sarcoma virus, DNA from EJ-NIH 3T3 cells, hu-ac-Ha-ras, v-src, v-mos, simian virus 40 large T antigen, or polyomavirus middle T antigen. Somatic cell hybridization studies showed that R1 was not retransformed by fusion with NIH 3T3 cells and suppressed anchorage independence of EJ-NIH 3T3 and hu-ac-Ha-ras gene-transformed rat W31 cells in soft agar. These results suggest that the reversion and resistance to several oncogenes in R1 is due n not to cellular defects in the production of the transformed phenotype but rather to enhancement of cellular mechanisms that suppress oncogenic transformation.

  6. Unstable resistance of G mouse fibroblasts to ecotropic murine leukemia virus infection.

    PubMed Central

    Yoshikura, H; Naito, Y; Moriwaki, K

    1979-01-01

    G mouse cells were resistant to N- and NB-tropic Friend leukemia viruses and to B-tropic WN 1802B. Though the cells were resistant to focus formation by the Moloney isolate of murine sarcoma virus, they were relatively sensitive to helper component murine leukemia virus. To amphotropic murine leukemia virus and to focus formation by amphotropic murine sarcoma virus, G mouse cells were fully permissive. When the cell lines were established starting from the individual embryos, most cell lines were not resistant to the murine leukemia viruses. Only one resistant line was established. Cloning of this cell line indicated that the resistant cells constantly segregated sensitive cells during the culture; i.e., the G mouse cell cultures were probably always mixtures of sensitive and resistant cells. Among the sensitive cell clones, some were devoid of Fv-1 restriction. Such dually permissive cells, and also feral mouse-derived SC-1 cells, retained glucose-6-phosphate dehydrogenase-1 and apparently normal number 4 chromosomes. The loss of Fv-1 restriction in these mouse cells was not brought about by any gross structural changes in the vicinity of Fv-1 on number 4 chromosomes. Images PMID:221667

  7. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts

    PubMed Central

    Zheng, Yonghua; Zhang, Miaomiao; Qian, Mengjia; Wang, Lingyan; Cismasiu, V B; Bai, Chunxue; Popescu, L M; Wang, Xiangdong

    2013-01-01

    Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically (http://www.telocytes.com). Telocytes are distributed through organ stroma forming a three-dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro-angiogenic and stromal-specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up- or down-regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis. PMID:23621815

  8. Appl1 and Appl2 are Expendable for Mouse Development But Are Essential for HGF-Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts.

    PubMed

    Tan, Yinfei; Xin, Xiaoban; Coffey, Francis J; Wiest, David L; Dong, Lily Q; Testa, Joseph R

    2016-05-01

    Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2-/-) mice, much like Appl1-/- mice, are viable and grow normally to adulthood. Intriguingly, when Appl1-/- mice were crossed with Appl2-/- mice, we found that homozygous Appl1;Appl2 double knockout (DKO) animals are also viable and grossly normal with regard to reproductive potential and postnatal growth. Appl2-null and DKO mice were found to exhibit altered red blood cell physiology, with erythrocytes from these mice generally being larger and having a more irregular shape than erythrocytes from wild type mice. Although Appl1/2 proteins have been previously shown to have a very strong interaction with phosphatidylinositol-3 kinase (Pi3k) in thymic T cells, Pi3k-Akt signaling and cellular differentiation was unaltered in thymocytes from Appl1;Appl2 (DKO) mice. However, Appl1/2-null mouse embryonic fibroblasts exhibited defects in HGF-induced Akt activation, migration, and invasion. Taken together, these data suggest that Appl1 and Appl2 are required for robust HGF cell signaling but are dispensable for embryonic development and reproduction. PMID:26445298

  9. Shikonin inhibits fat accumulation in 3T3-L1 adipocytes.

    PubMed

    Lee, Haeyong; Kang, Ryunhwa; Yoon, Yoosik

    2010-03-01

    Shikonin, 5,6-dihydroxyflavone-7-glucuronic acid, is the main ingredient of Lithospermum erythrorhizon Sieb. et Zucc, and was reported to have various biological activities including antiinflammatory, anticancer, antimicrobial and others. This study aimed to elucidate, for the first time, the antiobesity activity of shikonin and its mechanism of action. Shikonin was found to inhibit fat droplet formation and triglyceride accumulation in 3T3-L1 adipocytes. The half inhibitory concentration, IC(50), for the inhibition of triglyceride accumulation was found to be 1.1 microM. The expression of genes involved in lipid metabolism, such as FABP4 and LPL, were significantly inhibited following shikonin treatment. Shikonin also inhibited the ability of PPAR gamma and C/EBP alpha, the major transcription factors of adipogenesis, to bind to their target DNA sequences. The expressions of mRNA and protein of PPAR gamma and C/EBPa were significantly down-regulated following shikonin treatment. Among the upstream regulators of adipogenesis, only SREBP1C was found to be down-regulated by shikonin. The results of this study suggest that shikonin down-regulates the expression of SREBP1C and subsequently the expression of PPAR gamma and C/EBP alpha. Together, these changes result in the down-regulation of lipid metabolizing enzymes and reduced fat accumulation. PMID:19610030

  10. MicroRNA-23a regulates 3T3-L1 adipocyte differentiation.

    PubMed

    Shen, Linyuan; Zhang, Yi; Du, Jingjing; Chen, Li; Luo, Jia; Li, Xuewei; Li, Mingzhou; Tang, Guoqing; Zhang, Shunhua; Zhu, Li

    2016-01-10

    MicroRNAs (miRNAs) are small, non-coding RNAs, which are involved in regulation of a variety of biological processes. Since previous studies regarding the role of miRNAs in the regulation of adipogenic differentiation have shown that miRNA-27a, one member of miRNA-23a∼27a∼24 cluster, could suppress adipogenesis. We now investigated whether miRNA-23a regulates adipogenic differentiation. In the present study, we showed that the expression of miRNA-23a is decreased during the process of adipogenic differentiation. Over-expression of miRNA-23a decreased lipid accumulation and triglyceride content in 3T3-L1 adipocytes. Our results also demonstrated that miRNA-23a decreases mRNA levels of adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis and fatty acid transport. These findings suggested miRNA-23a to be a new type of adipogenic depressor and to play an important role in regulating adipocyte differentiation. PMID:26415879

  11. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells.

    PubMed

    Lee, Ok-Hwan; Seo, Dong-Ho; Park, Cheon-Seok; Kim, Young-Cheul

    2010-01-01

    Puerarin, a major isoflavone glycoside from Kudzu root (Pueraria lobata), has been reported to exert antihyperglycemic and antioxidant effects and thus have pharmacological actions in the treatment of diabetes and cardiovascular diseases. We investigated the effects of puerarin on the changes of key gene expression associated with adipocyte differentiation and insulin sensitivity and link to cellular antioxidant response pathways. Puerarin treatment significantly enhanced differentiation of 3T3-L1 preadipocytes accompanying increased lipid accumulation and glucose-6-phosphate dehydrogenase (G6PDH) activity. At a molecular level, puerarin upregulated mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, an adipocyte-specific fatty acid binding protein (aP2) and GLUT4. Puerarin also caused a significant increase in mRNA level of adiponectin, an important insulin-sensitizing adipocytokine that is downregulated in insulin-resistant and diabetic states. In addition, treatment with puerarin was found to upregulate mRNA levels of G6PDH, glutathione reductase, and catalase, all of which are important for endogenous antioxidant responses. These data suggest that the hypoglycemic effects of puerarin can be attributed to the upregulation of PPARγ and its downstream target genes, GLUT4 and adiponectin expression, leading to increased glucose utilization. Puerarin may also be effective in preventing the rise of oxidative stress during adipocyte differentiation by increasing endogenous antioxidant responses. PMID:20806284

  12. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  13. Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation

    PubMed Central

    Wang, Yu; Cui, Haitao; Wu, Zhenxu; Wu, Naipeng; Wang, Zongliang; Chen, Xuesi; Wei, Yen; Zhang, Peibiao

    2016-01-01

    Electrical stimulation (ES) is therapeutic to many bone diseases, from promoting fracture regeneration to orthopedic intervention. The application of ES offers substantial therapeutic potential, while optimal ES parameters and the underlying mechanisms responsible for the positive clinical impact are poorly understood. In this study, we assembled an ES cell culture and monitoring device. Mc-3T3-E1 cells were subjected to different frequency to investigate the effect of osteogenesis. Cell proliferation, DNA synthesis, the mRNA levels of osteosis-related genes, the activity of alkaline phosphatase (ALP), and intracellular concentration of Ca2+ were thoroughly evaluated. We found that 100 Hz could up-regulate the mRNA levels of collagen I, collagen II and Runx2. On the contrary, ES could down-regulate the mRNA levels of osteopontin (OPN). ALP activity assay and Fast Blue RR salt stain showed that 100 Hz could accelerate cells differentiation. Compared to the control group, 100 Hz could promote cell proliferation. Furthermore, 1 Hz to 10 Hz could improve calcium deposition in the intracellular matrix. Overall, these results indicate that 100Hz ES exhibits superior potentialities in osteogenesis, which should be beneficial for the clinical applications of ES for the treatment of bone diseases. PMID:27149625

  14. Most short DNA molecules isolated from 3T3 cells are not nascent.

    PubMed Central

    Kowalski, J; Denhardt, D T

    1978-01-01

    The population of short DNA molecules (less than 10(3) nucleotides) in 3T3 cells has been studied using in vivo and in vitro pulse labeling techniques and in vitro end-labeling. There is a large number of molecules of less than 100 nucleotides present in equal numbers in both Go and S phase cells. In S phase cells, most of these molecules are not replicating intermediates because they do not become density-labeled after a moderate period of substitution of BrdUMP, although they are detected by end-labeling in vitro. This population includes the nascent Okazaki pieces that can be labeled in a short pulse with [3H]dThd or [3H]dTTP, however, these represent less than 10% of the total population. Alkaline hydrolysis of the molecules that had been end-labeled with 32P using [gamma32P]ATP and polynucleotide kinase did not reveal significant release of [32P] 2'(3'), 5' ribonucleoside diphosphates. PMID:724517

  15. Cytoplasmic pH influences cytoplasmic calcium in MC3T3-E1 osteoblast cells

    NASA Technical Reports Server (NTRS)

    Lin, H. S.; Hughes-Fulford, M.; Kumegawa, M.; Pitts, A. C.; Snowdowne, K. W.

    1993-01-01

    We found that the cytoplasmic concentration of calcium (Cai) of MC3T3-E1 osteoblasts was influenced by the type of pH buffer we used in the perfusing medium, suggesting that intracellular pH (pHi) might influence Cai. To study this effect, the Cai and pHi were monitored as we applied various experimental conditions known to change pHi. Exposure to NH4Cl caused a transient increase in both pHi and Cai without a change in extracellular pH (pHo). Decreasing pHo and pHi by lowering the bicarbonate concentration of the medium decreased Cai, and increasing pHi by the removal of 5% CO2 increased Cai. Clamping pHi to known values with 10 microM nigericin, a potassium proton ionophore, also influenced Cai: acid pHi lowered Cai, whereas alkaline pHi increased it. The rise in Cai appears to be very sensitive to the extracellular concentration of calcium, suggesting the existence of a pH-sensitive calcium influx mechanism. We conclude that physiologic changes in pH could modulate Cai by controlling the influx of calcium ions and could change the time course of the Cai transient associated with hormonal activation.

  16. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes.

    PubMed Central

    Kallen, C B; Lazar, M A

    1996-01-01

    Lack of leptin (ob) protein causes obesity in mice. The leptin gene product is important for normal regulation of appetite and metabolic rate and is produced exclusively by adipocytes. Leptin mRNA was induced during the adipose conversion of 3T3-L1 cells, which are useful for studying adipocyte differentiation and function under controlled conditions. We studied leptin regulation by antidiabetic thiazolidinedione compounds, which are ligands for the adipocyte-specific nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) that regulates the transcription of other adipocyte-specific genes. Remarkably, leptin gene expression was dramatically repressed within a few hours after thiazolidinedione treatment. The ED50 for inhibition of leptin expression by the thiazolidinedione BRL49653 was between 5 and 50 nM, similar to its Kd for binding to PPARgamma. The relatively weak, nonthiazolidinedione PPAR activator WY 14,643 also inhibited leptin expression, but was approximately 1000 times less potent than BRL49653. These results indicate that antidiabetic thiazolidinediones down-regulate leptin gene expression with potencies that correlate with their abilities to bind and activate PPARgamma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8650171

  17. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes.

    PubMed

    Li, P; Zhang, X-N; Pan, C-M; Sun, F; Zhu, D-L; Song, H-D; Chen, M-D

    2011-06-01

    Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease. PMID:21667402

  18. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity. PMID:25050633

  19. MC3T3-E1 Cell Response to Pure Titanium, Zirconia and Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan; Han, Jung-Suk; Yang, Jae-Ho; Lee, Jai-Bong; Kim, Dae-Joon

    Titanium, zirconia and HAp were known as good biocompatible materials for tissue engineering. Osteblastic cell response is influence by the surface topography of material and its chemical composition as well. To evaluate the influence of different chemical compositions on osteoblast-like cells the specimens were polished until they have almost identical surface roughness. The commercially pure titanium, zirconia/alumina composite and nano-sized hydroxyapatite (HAp) specimens synthesized by hydrothermal method were used to evaluate the cell attachment, proliferation and differentiation. Confocal laser microscopy was used measurement of surface roughness, and flourescence microscopy and SEM were used to evaluate initial cell attachment and morphology after 3 hours. MTS assay was performed for cell proliferation after 1, 3, 7 days and ALP assay was used for cell differentiation after 7, 10, 14 days of cell culture period. Surface topography of nano-HAp specimen was almost identical compared with those of titanium and zirconia specimen. Under this condition, proliferation and differentiation of MC3T3-E1 cells was not significantly different with those on titanium and zirconia specimen. However, cells on Nano-HAp specimen showed quicker and more active cellular reaction for attachment when measured by the expression of adhesion proteins through confocal laser microscopy. The results suggested that the new nano-sized HAp can be applied as a suitable material for skeletal tissue engineering.

  20. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  1. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo . E-mail: ksekiya@affrc.go.jp

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.

  2. Manganese superoxide dismutase knock-down in 3T3-L1 preadipocytes impairs subsequent adipogenesis.

    PubMed

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Neumeier, Markus; Buechler, Christa

    2014-08-01

    Adipogenesis is associated with the upregulation of the antioxidative enzyme manganese superoxide dismutase (MnSOD) suggesting a vital function of this enzyme in adipocyte maturation. In the current work, MnSOD was knocked-down with small-interference RNA in preadipocytes to study its role in adipocyte differentiation. In mature adipocytes differentiated from these cells, proteins characteristic for mature adipocytes, which are strongly induced in late adipogenesis like adiponectin and fatty acid-binding protein 4, are markedly reduced. Triglycerides begin to accumulate after about 6 days of the induction of adipogenesis, and are strongly diminished in cells with low MnSOD. Proteins upregulated early during differentiation, like fatty acid synthase and cytochrome C oxidase-4, are not altered. Cell viability, insulin-mediated phosphorylation of Akt, antioxidative capacity (AOC), superoxide levels, and heme oxygenase 1 with the latter being induced upon oxidative stress are not affected. L-Buthionine-(S,R)-sulfoximine (BSO) depletes glutathione and modestly lowers AOC of mature adipocytes. Addition of BSO to 3T3-L1 cells 3 days after the initiation of differentiation impairs triglyceride accumulation and expression of proteins induced in late adipogenesis. Of note, proteins that increased early during adipogenesis are also diminished, suggesting that BSO causes de-differentiation of these cells. Preadipocyte proliferation is not considerably affected by low MnSOD and BSO. These data suggest that glutathione and MnSOD are essential for adipogenesis. PMID:24740755

  3. Protein kinase C activation by anthracyclines in Swiss 3T3 cells.

    PubMed

    Lanzi, C; Gambetta, R A; Perego, P; Banfi, P; Franzi, A; Guazzoni, L; Zunino, F

    1991-01-01

    The effects of the anti-cancer anthracyclines doxorubicin and daunorubicin on the activity of protein kinase C (PKC) were examined in intact Swiss 3T3 cells. The 2 drugs stimulated the phosphorylation of an 80K phosphoprotein found to be identical to that generated in response to the PKC activator 12-O-tetradecanoylphorbol-13-acetate as indicated by gel electrophoresis and peptide mapping. The effect of doxorubicin was dose-dependent in the range 10(-5) to 10(-3) M and was not associated with a detectable translocation of PKC activity from cytosol to the cell membrane. Doxorubicin and daunorubicin were found to increase the incorporation of phosphate into phosphatidic acid, phosphatidylinositol 4-monophosphate and phosphatidyl inositol 4,5-bisphosphate. In addition, the anthracyclines induced a rise in inositol phosphates, thus indicating a stimulation of the breakdown of phosphoinositides. These data are consistent with an indirect mechanism of PKC activation by anthracyclines. We propose that diacylglycerol, which is derived from the hydrolysis of phospholipids, (including the phosphoinositides), by activation of phospholipases, could mediate PKC activation. The described effects, involving cell-signal-transducing pathways, emphasize a new aspect of the cellular actions of these anti-tumor agents. PMID:1845961

  4. Transformation of NIH 3T3 cells by cotransfection with c-src and nuclear oncogenes.

    PubMed Central

    Shalloway, D; Johnson, P J; Freed, E O; Coulter, D; Flood, W A

    1987-01-01

    pp60c-src, the cellular homolog of the Rous sarcoma virus transforming protein, does not completely transform cells even when present at high levels, but has been shown to be involved in polyomavirus-induced transformation when activated by polyomavirus middle T (pmt)-antigen binding. Here we show that cotransfection, but not solo transfection, of expression plasmids for c-src and either adenovirus E1A, v-myc, c-myc, or the 5' half of polyomavirus large T (pltN) antigen into NIH 3T3 cells induces anchorage-independent growth, enhanced focus formation, and, for pltN cotransfection, tumorigenicity in adult NFS mice. Enhancement of transformation was not observed with polyomavirus small t (pst) antigen. Cotransfection of c-src with pltN induced modification of pp60c-src that altered its electrophoretic mobility and in vivo phosphorylation state and stimulated its in vitro kinase activity. Similar alterations were not seen after c-src-E1A cotransfection, suggesting that at least two different mechanisms of enhancement are involved. Images PMID:2446117

  5. Hsp90 chaperones PPARγ and regulates differentiation and survival of 3T3-L1 adipocytes

    PubMed Central

    Nguyen, M T; Csermely, P; Sőti, C

    2013-01-01

    Adipose tissue dysregulation has a major role in various human diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of adipocyte differentiation and function, as well as a target of insulin-sensitizing drugs. The Hsp90 chaperone stabilizes a diverse set of signaling ‘client' proteins, thereby regulates various biological processes. Here we report a novel role for Hsp90 in controlling PPARγ stability and cellular differentiation. Specifically, we show that the Hsp90 inhibitors geldanamycin and novobiocin efficiently impede the differentiation of murine 3T3-L1 preadipocytes. Geldanamycin at higher concentrations also inhibits the survival of both developing and mature adipocytes, respectively. Further, Hsp90 inhibition disrupts an Hsp90-PPARγ complex, leads to the destabilization and proteasomal degradation of PPARγ, and inhibits the expression of PPARγ target genes, identifying PPARγ as an Hsp90 client. A similar destabilization of PPARγ and a halt of adipogenesis also occur in response to protein denaturing stresses caused by a single transient heat-shock or proteasome inhibition. Recovery from stress restores PPARγ stability and adipocyte differentiation. Thus, our findings reveal Hsp90 as a critical stress-responsive regulator of adipocyte biology and offer a potential therapeutic target in obesity and the metabolic syndrome. PMID:24096869

  6. (-)-Ternatin inhibits adipogenesis and lipid metabolism in 3T3-L1 cells.

    PubMed

    Ito, Masahiko; Ito, Junko; Kitazawa, Hidefumi; Shimamura, Ken; Fukami, Takehiro; Tokita, Shigeru; Shimokawa, Kenichiro; Yamada, Kaoru; Kanatani, Akio; Uemura, Daisuke

    2009-06-01

    (-)-Ternatin, a highly N-methylated cyclic peptide, inhibits fat accumulation in 3T3-L1 cells and reduces fat mass in mice. However, the mechanism for its anti-adipogenic effect has remained unknown. To examine the mechanism used by (-)-ternatin to inhibit adipocyte differentiation, we examined the effects of (-)-ternatin and [l-Ala(4)]ternatin, an inactive analog of (-)-ternatin, on the expression of adipocyte markers and lipogenic enzymes. We found that (-)-ternatin potently reduced mRNA expression of several adipocyte markers in a dose-dependent manner, whereas [l-Ala(4)]ternatin showed no effects. At the immediate early phase, (-)-ternatin, but not [l-Ala(4)]ternatin, reduced the expression of Srebp1c, Fas, Acc2 and C/EBP-alpha while showing no effects on C/EBP-beta and C/EBP-delta. These results suggest that (-)-ternatin affects the mid-to late differentiation stages of adipocytes. Consistent with the decreased expression of lipogenic enzymes, (-)-ternatin potently inhibited triglyceride synthesis. Intriguingly, (-)-ternatin also inhibited triglyceride synthesis in rat primary hepatocytes, suggesting that the potential action sites for (-)-ternatin are shared by adipocytes and liver. Although the target molecule of (-)-ternatin remains unknown, our data suggest that (-)-ternatin and its potential target might provide a new therapeutic approach to metabolic disorders. PMID:19463739

  7. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts

    PubMed Central

    Grainger, Deborah L.; Kutzler, Lydia; Rannels, Sharon L.; Kimball, Scot R.

    2016-01-01

    REDD1 is a transcriptional target gene of p53 and HIF-1, and an inhibitor of mTOR (mechanistic target of rapamycin) complex 1 (mTORC1)-signaling through PP2A-dependent interaction, making it an important convergence point of both tumor suppression and cell growth pathways. In accordance with this positioning, REDD1 levels are transcriptionally upregulated in response to a variety of cellular stress factors such as nutrient deprivation, hypoxia and DNA damage. In the absence of such conditions, and in particular where growth factor signaling is activated, REDD1 expression is typically negligible; therefore, it is necessary to induce REDD1 prior to experimentation or detection in model systems. Here, we evaluated the performance of a commercially available polyclonal antibody recognizing REDD1 by Western blotting in the presence of thapsigargin, a pharmacological inducer of ER stress well known to upregulate REDD1 protein expression. Further, REDD1 antibody specificity was challenged in HEK-293 cells in the presence of RNA interference and with a REDD1 -/- mouse embryonic fibroblast knockout cell line. Results showed reproducibility and specificity of the antibody, which was upheld in the presence of thapsigargin treatment. We conclude that this antibody can be used to reliably detect REDD1 endogenous expression in samples of both human and mouse origin. PMID:27335637

  8. Actions of β-Apo-Carotenoids in Differentiating Cells: Differential Effects in P19 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Wang, Cynthia X.; Jiang, Hongfeng; Yuen, Jason J.; Lee, Seung-Ah; Narayanasamy, Sureshbabu; Curley, Robert W.; Harrison, Earl H.; Blaner, William S.

    2015-01-01

    β-Apo-carotenoids, including β-apo-13-carotenone and β-apo-14′-carotenal, are potent retinoic acid receptor (RAR) antagonists in transactivation assays. We asked how these influence RAR-dependent processes in living cells. Initially, we explored the effects of β-apo-13-carotenone and β-apo-14′-carotenal on P19 cells, a mouse embryonal carcinoma cell line that differentiates into neurons when treated with all-trans-retinoic acid. Treatment of P19 cells with either compound failed to block all-trans-retinoic acid induced differentiation. Liquid chromatography tandem mass spectrometry studies, however, established that neither of these β-apo-carotenoids accumulates in P19 cells. All-trans-retinoic acid accumulated to high levels in P19 cells. This suggests that the uptake and metabolism of β-apo-carotenoids by some cells does not involve the same processes used for retinoids and that these may be cell type specific. We also investigated the effects of two β-apo-carotenoids on 3T3-L1 adipocyte marker gene expression during adipocyte differentiation. Treatment of 3T3-L1 adipocytes with either β-apo-13-carotenone or β-apo-10′-carotenoic acid, which lacks RAR antagonist activity, stimulated adipocyte marker gene expression. Neither blocked the inhibitory effects of a relatively large dose of exogenous all-trans-retinoic acid on adipocyte differentiation. Our data suggest that in addition to acting as transcriptional antagonists, some β-apo-carotenoids act through other mechanisms to influence 3T3-L1 adipocyte differentiation. PMID:25602703

  9. Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

    PubMed Central

    Yang, Jung Yoon; Park, Min Young; Park, Sam Young; Yoo, Hong Il; Kim, Min Seok; Kim, Jae Hyung

    2015-01-01

    Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells. PMID:26557017

  10. CREB Activation Induces Adipogenesis in 3T3-L1 Cells

    PubMed Central

    Reusch, Jane E. B.; Colton, Lilliester A.; Klemm, Dwight J.

    2000-01-01

    Obesity is the result of numerous, interacting behavioral, physiological, and biochemical factors. One increasingly important factor is the generation of additional fat cells, or adipocytes, in response to excess feeding and/or large increases in body fat composition. The generation of new adipocytes is controlled by several “adipocyte-specific” transcription factors that regulate preadipocyte proliferation and adipogenesis. Generally these adipocyte-specific factors are expressed only following the induction of adipogenesis. The transcription factor(s) that are involved in initiating adipocyte differentiation have not been identified. Here we demonstrate that the transcription factor, CREB, is constitutively expressed in preadipocytes and throughout the differentiation process and that CREB is stimulated by conventional differentiation-inducing agents such as insulin, dexamethasone, and dibutyryl cAMP. Stably transfected 3T3-L1 preadipocytes were generated in which we could induce the expression of either a constitutively active CREB (VP16-CREB) or a dominant-negative CREB (KCREB). Inducible expression of VP16-CREB alone was sufficient to initiate adipogenesis as determined by triacylglycerol storage, cell morphology, and the expression of two adipocyte marker genes, peroxisome proliferator activated receptor gamma 2, and fatty acid binding protein. Alternatively, KCREB alone blocked adipogenesis in cells treated with conventional differentiation-inducing agents. These data indicate that activation of CREB was necessary and sufficient to induce adipogenesis. Finally, CREB was shown to bind to putative CRE sequences in the promoters of several adipocyte-specific genes. These data firmly establish CREB as a primary regulator of adipogenesis and suggest that CREB may play similar roles in other cells and tissues. PMID:10629058

  11. Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes[S

    PubMed Central

    Fernández-Galilea, Marta; Pérez-Matute, Patricia; Prieto-Hontoria, Pedro L; Martinez, J Alfredo; Moreno-Aliaga, Maria J

    2012-01-01

    Lipoic acid (LA) is a naturally occurring compound with beneficial effects on obesity. The aim of this study was to evaluate its effects on lipolysis in 3T3-L1 adipocytes and the mechanisms involved. Our results revealed that LA induced a dose- and time-dependent lipolytic action, which was reversed by pretreatment with the c-Jun N-terminal kinase inhibitor SP600125, the PKA inhibitor H89, and the AMP-activated protein kinase activator AICAR. In contrast, the PI3K/Akt inhibitor LY294002 and the PDE3B antagonist cilostamide enhanced LA-induced lipolysis. LA treatment for 1 h did not modify total protein content of hormone-sensitive lipase (HSL) but significantly increased the phosphorylation of HSL at Ser563 and at Ser660, which was reversed by H89. LA treatment also induced a marked increase in PKA-mediated perilipin phosphorylation. LA did not significantly modify the protein levels of adipose triglyceride lipase or its activator comparative gene identification 58 (CGI-58) and inhibitor G(0)/G(1) switch gene 2 (G0S2). Furthermore, LA caused a significant inhibition of adipose-specific phospholipase A2 (AdPLA) protein and mRNA levels in parallel with a decrease in the amount of prostaglandin E2 released and an increase in cAMP content. Together, these data suggest that the lipolytic actions of LA are mainly mediated by phosphorylation of HSL through cAMP-mediated activation of protein kinase A probably through the inhibition of AdPLA and prostaglandin E2. PMID:22941773

  12. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells.

    PubMed

    Osland, Teresa M; Fernø, Johan; Håvik, Bjarte; Heuch, Ivar; Ruoff, Peter; Lærum, Ole Didrik; Steen, Vidar M

    2011-07-01

    Bipolar disorder has been associated with disturbances in circadian rhythms. Lithium is frequently used in the long-term treatment of bipolar disorder, and has been shown to prolong such rhythms in animals and humans. To examine whether lithium affects the expression of genes regulating the circadian clock, cultured NIH-3T3 cells were synchronized by serum-shocking, and the relative expression of the clock genes Period1 (Per1), Period2 (Per2), Period3 (Per3), Cryptochrome1 (Cry1), Cryptochrome2 (Cry2), Brain and muscle aryl hydrocarbon nuclear translocator-like 1 (Bmal1), Circadian locomotor output cycles kaput (Clock), Rev-Erb-α (Nr1d1), RAR-related orphan receptor α (Ror-α), Glycogen synthase kinase-3β (Gsk-3β), Casein kinase 1-ε (CK1-ε; Csnk1ε), E4 binding protein 4 (E4BP4; Nfil-3) and albumin D-binding protein (Dbp) was examined for three consecutive days in the presence of lithium (20 mM) or vehicle (20 mM NaCl). We found that lithium significantly increased the expression of Per2 and Cry1, whereas Per3, Cry2, Bmal1, E4BP4 and Rev-Erb-α expression was reduced. We also found that lithium prolonged the period of Per2. Taken together, these effects on clock gene expression may be relevant for the effects of lithium on biological rhythms and could also give new leads to further explore its mood-stabilizing actions in the treatment of bipolar disorder. PMID:20837565

  13. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  14. Exogenous Sodium Pyruvate Stimulates Adipogenesis of 3T3-L1 Cells.

    PubMed

    Hwang, Ji-Sun; Kim, Song-Yi; Jung, Eun-Hye; Kwon, Mi-Youn; Kim, Kyoung-Hong; Cho, Hyeongjin; Han, Inn-Oc

    2016-01-01

    We investigated the effects of exogenous sodium pyruvate (SP) on adipocyte differentiation, lipid accumulation, and the mRNA expression levels of adipogenesis-related genes in 3T3-L1 pre-adipocytes. Differentiation of pre-adipocytes was induced by MDI (3-isobutyl-1-methylxanthine: IBMX, dexamethasone: DEX, and insulin), in the presence or absence of SP. Adipogenesis was stimulated by SP in a concentration-dependent manner. SP also induced the expression of genes encoding aP2, GLUT4, and adiponectin, but had no effect on cell proliferation. Exogenous glucose did not promote adipogenesis or lipid accumulation. 2-deoxy-D-glucose inhibited adipogenesis initiated by MDI, but failed to influence the effects of SP on adipogenesis, whereas 3-bromopyruvate inhibited adipogenesis regardless of whether SP was present. The pro-adipogenic properties of SP were limited to the early events of adipogenesis. To determine whether SP mimics the adipogenic action of dexamethasone or insulin, we examined the effects of SP on adipogenesis with combinations of IBMX, DEX, and insulin. SP did not improve incomplete lipid accumulation observed in cells grown under IBMX-, DEX-, or insulin-free conditions. Insulin-stimulated ERK1/2 phosphorylation was diminished by SP, while phosphorylation of Akt was increased, correlating with increased glucose uptake in response to insulin. We also observed that SP stimulated immediate early expression of C/EBPβ and C/EBPδ. The PPARγ antagonist GW9662 inhibited adipogenesis. Our findings highlight the adipogenic function of exogenous SP by stimulating early events of adipogenesis. PMID:26053972

  15. A surface-tethered spheroid model for functional evaluation of 3T3-L1 adipocytes.

    PubMed

    Turner, Paul A; Harris, Lacey M; Purser, Christine A; Baker, Rodney C; Janorkar, Amol V

    2014-01-01

    In order to effectively treat obesity, it must be better understood at the cellular level with respect to metabolic state and environmental stress. However, current two-dimensional (2D) in vitro cell culture methods do not represent the in vivo adipose tissue appropriately due to the absence of complex architecture and cellular signaling. Conversely, 3D in vitro cultures have been reported to have optimal results mimicking the adipose tissue in vivo. The main aim of this study was to examine the efficacy of a novel conjugate of a genetically engineered polymer, elastin-like polypeptide (ELP) and a synthetic polymer, polyethyleneimine (PEI), toward creating a 3D preadipocyte culture system. We then used this 3D culture model to study the preadipocyte differentiation and adipocyte maintenance processes when subjected to various dosages of nutritionally relevant free fatty acids with respect to total DNA and protein content, cell viability, and intracellular triglyceride accumulation. Our results showed that 3T3-L1 preadipocytes cultured on the ELP-PEI surface formed 3D spheroids within 72 h, whereas the cells cultured on unmodified tissue culture polystyrene surfaces remained in monolayer configuration. Significant statistical differences were discovered between the 3D spheroid and 2D monolayer culture with respect to the DNA and protein content, fatty acid consumption, and triglyceride accumulation, indicating differences in cellular response. Results indicated that the 3D culture may be a more sensitive modeling technique for in vitro adipocyte culture and provides a platform for future evaluation of 3D in vitro adipocyte function. PMID:24038000

  16. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.

    PubMed

    Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R

    2016-08-01

    Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders. PMID:27302655

  17. Shp2 suppresses the adipogenic differentiation of preadipocyte 3T3-L1 cells at an early stage

    PubMed Central

    Tao, J; Zheng, L; Meng, M; Li, Y; Lu, Z

    2016-01-01

    Tyrosine phosphatase protein Shp2 is a potential therapeutic target for obesity. However, the mechanism of Shp2 during adipogenesis is not fully understood. The present study investigated the role of Shp2 in the terminal differentiation of preadipocytes. The results showed that Shp2 suppressed adipocyte differentiation in 3T3-L1 cells; overexpression of Shp2 reduced lipid droplet production in 3T3-L1 cells, whereas Shp2 knockdown increased lipid droplet production in 3T3-L1 cells. Furthermore, inhibition of Shp2 activity also enhanced adipocyte differentiation. Interestingly, Shp2 expression was specifically decreased early during differentiation in response to stimulation with the dexamethasone–methylisobutylxanthine–insulin (DMI) hormone cocktail. During the first 2 days of differentiation, Shp2 overexpression impaired the DMI-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in 3T3-L1 cells and blocked the peak expression of CCAAT/enhancer-binding proteins β and δ during preadipocyte differentiation. In conclusion, Shp2 downregulated the early stages of hormone-induced differentiation of 3T3-L1 cells and inhibited the expression of the first wave of transcription factors by suppressing the DMI-induced STAT3 signaling pathway. These discoveries point to a novel role of Shp2 during adipogenesis and support the hypothesis that Shp2 could be a therapeutic target for the control of obesity. PMID:27551539

  18. Cellular uptake and fate of fibroin microspheres loaded with randomly fragmented DNA in 3T3 cells

    PubMed Central

    Lee, Jin Sil; Hur, Won

    2016-01-01

    Purified fibroin protein can be obtained in large quantities from silk fibers and processed to form microscopic particles as delivery vehicles for therapeutic agents. In this study, we demonstrated that fibroin microspheres were taken up by 3T3 cells, localized in the nonlysosomal compartment, and secreted from the cytoplasm after medium replenishment. DNA-loaded microspheres were taken up by >95% of 3T3 cells. DNA cargo had no influence on the intracellular trafficking of microspheres, while fluorescently labeled cargo DNA was observed in the lysosomal compartment and in the microspheres. These results indicate that fibroin microspheres can travel through 3T3 cells without making any contact with the lysosomal compartments. The amount of DNA loaded in the microspheres taken up by 3T3 cells was estimated up to 831.0 pg/cell. Thus, fibroin microspheres can deliver a large amount of randomly fragmented DNA (<10 kb) into the cytoplasmic compartment of 3T3 cells. PMID:27257379

  19. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.

    PubMed

    Du, William W; Li, Xianmin; Li, Tianbi; Li, Haoran; Khorshidi, Azam; Liu, Fengqiong; Yang, Burton B

    2015-01-15

    The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB, FAK, N-cadherin, vimentin, Oct4 and Sca-1 (also known as stem cell antigen-1), and downregulates E-cadherin. Par4 has been reported as a tumor suppressor gene that induces apoptosis in cancer cells, but not in normal cells. Repression of Par4 by miR-17-3p enhances the transcription of CEBPB and FAK, which promotes mouse cardiac fibroblast (MCF) epithelial-to-mesenchymal transition (EMT) and self-renewal, resulting in cellular senescence and apoptosis resistance. We conclude that Par4 can bind to the CEBPB promoter and inhibit its transcription. Decreased Par4 expression increases the amount of CEBPB, which binds to the FAK promoter and enhances FAK transcription. Par4, CEBPB and FAK form a senescence signaling pathway, playing roles in modulating cell survival, growth, apoptosis, EMT and self-renewal. Through this novel senescence signaling axis, miR-17-3p represses Par4 expression, acting pleiotropically as a negative modulator of cardiac aging and cardiac fibroblast cellular senescence. PMID:25472717

  20. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  1. Effects of large and small T antigens on DNA synthesis and cell division in simian virus 40-transformed BALB/c 3T3 cells.

    PubMed Central

    Christensen, J B; Brockman, W W

    1982-01-01

    The roles of the large T and small t antigens of simian virus 40 in cellular DNA synthesis and cell division were analyzed in BALB/c 3T3 mouse cells transformed by wild-type, temperature-sensitive A (tsA), or tsA-deletion (tsA/dl) double mutants. Assessment of DNA replication and cell cycle distribution by radioautography of [3H]thymidine-labeled nuclei and by flow microfluorimetry indicate that tsA transformants do not synthesize DNA or divide at the restrictive temperature to the same extent as they do at the permissive temperature or as wild-type transformants do at the restrictive temperature. This confirms earlier studies suggesting that large T induces DNA synthesis and mitosis in transformed cells. Inhibition of replication in tsA transformants at the restrictive temperature, however, is not complete. Some residual cell division does occur but is in large part offset by cell detachment and death. This failure to revert completely to the parental 3T3 phenotype, as indicated by residual cell cycling at the restrictive temperature, was also observed in cells transformed by tsA/dl double mutants which, in addition to producing a ts large T, make no small t protein. Small t, therefore, does not appear to be responsible for the residual cell cycling and plays no demonstrable role in the induction of DNA synthesis or cell division in stably transformed BALB/c 3T3 cells. Comparison of cell cycling in tsA and tsA/dl transformants, normal 3T3 cells, and a transformation revertant suggests that the failure of tsA transformants to revert completely may be due to leakiness of the tsA mutation as well as to a permanent cellular alteration induced during viral transformation. Finally, analysis of cells transformed by tsA/dl double mutants indicates that small t is not required for full expression of growth properties characteristic of transformed cells. Images PMID:6292518

  2. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast

  3. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  4. Prolonged treatment with 3-isobutyl-1-methylxanthine improves the efficiency of differentiating 3T3-L1 cells into adipocytes.

    PubMed

    Hua, Yongjie; Ke, Shanshan; Wang, Yao; Irwin, David M; Zhang, Shuyi; Wang, Zhe

    2016-08-15

    Until now, the low efficiency of current protocols or kits for the differentiation of 3T3-L1 preadipocytes makes it difficult to continue the studies of the cellular and molecular mechanisms in adipocytes. Here we present a productive and highly efficient protocol for the differentiation of 3T3-L1 cells that uses a prolonged treatment with 3-isobutyl-1-methylxanthine (IBMX) during the differentiated process. 3T3-L1 cells of unknown passage +3 and unknown passage +7 treated with a prolonged exposure to IBMX showed significantly increased differentiation efficiency by day 15, in contrast to low levels of differentiation seen with protocols that lacked additional IBMX. PMID:27210514

  5. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  6. High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis.

    PubMed

    Wang, Xiaoju; Feng, Zhengping; Li, Jiling; Chen, Lixue; Tang, Weixue

    2016-07-01

    In the present study, we investigate the function of ROS-AKT-mTOR axis on the apoptosis, proliferation and autophagy of MC3T3-E1 cells, and the proliferation of MC3T3-E1 cells after autophagy inhibition under high glucose conditions. MC3T3-E1 cells cultured in vitro were divided into the following groups: normal control group, N-acetylcysteine (NAC) group, 11.0 mM high glucose group, 11.0 mM high glucose + NAC group, 22.0 mM high glucose group, 22.0 mM high glucose + NAC group, CQ group, 22.0 mM high glucose + CQ group, 3-MA group and 3-MA + 22.0 mM high glucose group. ROS production was measured by DCFH-DA fluorescent probe. Cell proliferation was measured by MTT assay. Cells in different groups were stained with Annexin V-FITC/PI, and then apoptosis rate was detected by flow cytometry. Nucleus morphology was observed under fluorescence microscope after being incubated with Honchest33258. Protein expression was measured using Western blotting and immunofluorescence. Cell apoptosis and proliferation in high glucose group were increased and decreased, respectively, in a dose-dependent manner. Autophagy was significantly induced in high glucose group, even though different concentration of glucose induced autophagy in different stages of autophagy. ROS production in MC3T3-E1 cells was remarkably increased in high glucose group, but not in a dose-dependent manner. NAC, as an antioxidant, reduced ROS production and ameliorated cell apoptosis, proliferation abnormity and autophagy caused by high glucose. Expression of p-AKT and p-mTOR proteins were dramatically decreased in high glucose group, and NAC reversed their expression. In addition, 3-MA, an inhibitor of autophagy, significantly decreased the proliferation of MC3T3-E1 cells. When cocultured with 22.0 mM glucose that induced autophagy, proliferation of MC3T3-E1 cells was not affected compared to 22.0 mM high glucose group. Our present findings reveal that high glucose affects apoptosis

  7. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress.

    PubMed

    Micali, Nicola; Longobardi, Elena; Iotti, Giorgio; Ferrai, Carmelo; Castagnaro, Laura; Ricciardi, Mario; Blasi, Francesco; Crippa, Massimo P

    2010-06-01

    PREP1 (PKNOX1) maps in the Down syndrome (DS) critical region of chromosome 21, is overexpressed in some DS tissues and might be involved in the DS phenotype. By using fibroblasts from DS patients and by overexpressing Prep1 in F9 teratocarcinoma and Prep1(i/i) MEF to single out the role of the protein, we report that excess Prep1 increases the sensitivity of cells to genotoxic stress and the extent of the apoptosis directly correlates with the level of Prep1. The apoptotic response of Prep1-overexpressing cells is mediated by the pro-apoptotic p53 protein that we show is a direct target of Prep1, as its depletion reverts the apoptotic phenotype. The induction of p53 overcomes the anti-apoptotic role of Bcl-X(L), previously shown to be also a Prep1 target, the levels of which are increased in Prep1-overexpressing cells as well. Our results provide a rationale for the involvement of PREP1 in the apoptotic phenotype of DS tissues and indicate that differences in Prep1 level can have drastic effects. PMID:20110257

  8. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress

    PubMed Central

    Micali, Nicola; Longobardi, Elena; Iotti, Giorgio; Ferrai, Carmelo; Castagnaro, Laura; Ricciardi, Mario; Blasi, Francesco; Crippa, Massimo P.

    2010-01-01

    PREP1 (PKNOX1) maps in the Down syndrome (DS) critical region of chromosome 21, is overexpressed in some DS tissues and might be involved in the DS phenotype. By using fibroblasts from DS patients and by overexpressing Prep1 in F9 teratocarcinoma and Prep1i/i MEF to single out the role of the protein, we report that excess Prep1 increases the sensitivity of cells to genotoxic stress and the extent of the apoptosis directly correlates with the level of Prep1. The apoptotic response of Prep1-overexpressing cells is mediated by the pro-apoptotic p53 protein that we show is a direct target of Prep1, as its depletion reverts the apoptotic phenotype. The induction of p53 overcomes the anti-apoptotic role of Bcl-XL, previously shown to be also a Prep1 target, the levels of which are increased in Prep1-overexpressing cells as well. Our results provide a rationale for the involvement of PREP1 in the apoptotic phenotype of DS tissues and indicate that differences in Prep1 level can have drastic effects. PMID:20110257

  9. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts.

    PubMed Central

    Okada, Y; Tsuchiya, W; Yada, T; Yano, J; Yawo, H

    1981-01-01

    1. Fibroblastic L cells not only respond with a slow hyperpolarizing potential change to a mechanical or electrical stimulus but also show spontaneous, repetitive hyperpolarizations (i.e. membrane potential oscillation). 2. Almost all the cells can actively take up latex beads whose surfaces were treated by U.V. irradiation. 3. Non-phagocytic L cells hardly showed hyperpolarizing responses, while hyperpolarizing responses were obtained in all the phagocytic L cells. The exposure of the cell surface to beads, however, did not trigger the generation of hyperpolarizing responses. 4. Metabolic inhibitors, low temperature and cytochalasin B inhibited both the uptake of beads and the hyperpolarizing responses. 5. Increasing the external concentration of Ca2+ induced a remarkable stimulation of the phagocytosis of beads. Mg2+ and Ba2+, which inhibited hyperpolarizing responses due to competition for Ca2+ sites on the outer surface of the membrane, significantly suppressed the uptake of beads. 6. Verapamil, a Ca2+ channel blocker, inhibited not only hyperpolarizing membrane responses but also ingestion of beads. 7. It is concluded that the Ca2+ inflow on the hyperpolarizing membrane responses is closely associated with the phagocytic activity in L cells, probably through activation of the microfilament assembly. Images Plate 1 PMID:7024506

  10. Mouse embryonic fibroblasts accumulate differentially on titanium surfaces treated with nanosecond laser pulses.

    PubMed

    Radmanesh, Mitra; Ektesabi, Amin M; Wyatt, Rachael A; Crawford, Bryan D; Kiani, Amirkianoosh

    2016-01-01

    Biomaterial engineering, specifically in bone implant and osseointegration, is currently facing a critical challenge regarding the response of cells to foreign objects and general biocompatibility of the materials used in the production of these implants. Using the developing technology of the laser surface treatment, this study investigates the effects of the laser repetition rate (frequency) on cell distribution across the surface of the titanium substrates. The main objective of this research is building a fundamental understanding of how cells interact with treated titanium and how different treatments affect cell accumulation. Cells respond differently to surfaces treated with different frequency lasers. The results of this research identify the influence of frequency on surface topography properties and oxidation of titanium, and their subsequent effects on the pattern of cell accumulation on its surface. Despite increased oxidation in laser-treated regions, the authors observe that fibroblast cells prefer untreated titanium to laser-treated regions, except the regions treated with 25 kHz pulses, which become preferentially colonized after 72 h. PMID:27581527

  11. Isolation of up- or down-regulated genes in PPARgamma-expressing NIH-3T3 cells during differentiation into adipocytes.

    PubMed

    Okuno, Masaaki; Arimoto, Emi; Nishizuka, Makoto; Nishihara, Tsutomu; Imagawa, Masayoshi

    2002-05-22

    Adipocyte differentiation is a complex process in which the expression of many transcription factors and adipocyte-specific genes is regulated under a strict program. The peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the steroid/thyroid nuclear hormone receptor superfamily of ligand-activated transcription factors, is an important regulator of adipocyte gene expression and differentiation. In this study, we tried to identify downstream target genes of PPARgamma, by using PPARgamma-expressing cells and a subtractive cloning strategy, and isolated cDNA clones which were up-regulated or down-regulated by PPARgamma. Northern blot analyses revealed that the expression levels of the aldehyde dehydrogenase-2-like, type VI collagen alpha 3 subunit, cellular retinoic acid binding protein 1 and thrombospondin 1 are changed during the differentiation of mouse 3T3-L1 preadipocyte cells, indicating that these genes might be downstream targets of PPARgamma in adipocyte differentiation. PMID:12023027

  12. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts.

    PubMed

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2015-05-01

    Anhydromannose (anMan)-containing heparan sulfate (HS) derived from S-nitrosylated glypican-1 is generated in endosomes by an endogenously or ascorbate induced S-nitrosothiol-catalyzed reaction. Expression and processing of amyloid precursor protein (APP) is required to initiate formation and endosome-to-nucleus translocation of anMan-containing HS in wild-type mouse embryonic fibroblasts (WT MEF). HS is then transported to autophagosomes and finally degraded in lysosomes. To investigate how APP-derived amyloid β (Aβ) peptide affects intracellular trafficking of HS, we have studied nuclear transit as well as autophagosome/lysosome targeting and degradation in transgenic Alzheimer disease mouse (Tg2576) MEF which produce increased amounts of Aβ. Deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody showed anMan staining in the nuclei of Tg2576 MEF after 5 min of ascorbate treatment and after 15 min in WT MEF. There was also greater nuclear accumulation of HS in Tg2576 MEF as determined by (35)S-sulfate-labeling experiments. Tg2576 MEF was less sensitive to inhibition of NO production and copper-chelation than WT MEF. By using APP- and Aβ-recognizing antibodies, we observed nuclear translocation of Aβ peptide in Tg2576 MEF but not in WT MEF. HS remained in the nucleus of WT MEF for at least 8 h and was then transported to autophagosomes. By 8 h, HS had disappeared from the nuclei of Tg2576 MEF but colocalized poorly with the autophagosome marker LC3. Aβ also disappeared rapidly from the nuclei of Tg2576 MEF. Initially, it appeared in acidic vesicles and later it accumulated extracellularly. Thus, in Tg2576 MEF there is nuclear accumulation as well as secretion of Aβ and impaired degradation of HS. PMID:25527428

  13. Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts.

    PubMed

    Feng, N; Sen, A; Nguyen, H; Vo, P; Hoshino, Y; Deal, E M; Greenberg, H B

    2009-07-01

    Rotavirus NSP1 has been shown to function as an E3 ubiquitin ligase that mediates proteasome-dependent degradation of interferon (IFN) regulatory factors (IRF), including IRF3, -5, and -7, and suppresses the cellular type I IFN response. However, the effect of rotavirus NSP1 on viral replication is not well defined. Prior studies used genetic analysis of selected reassortants to link NSP1 with host range restriction in the mouse, suggesting that homologous and heterologous rotaviruses might use their different abilities to antagonize the IFN response as the basis of their host tropisms. Using a mouse embryonic fibroblast (MEF) model, we demonstrate that heterologous bovine (UK and NCDV) and porcine (OSU) rotaviruses fail to effectively degrade cellular IRF3, resulting in IRF3 activation and beta IFN (IFN-beta) secretion. As a consequence of this failure, replication of these viruses is severely restricted in IFN-competent wild-type, but not in IFN-deficient (IFN-alpha/beta/gamma receptor- or STAT1-deficient) MEFs. On the other hand, homologous murine rotaviruses (ETD or EHP) or the heterologous simian rotavirus (rhesus rotavirus [RRV]) efficiently degrade cellular IRF3, diminish IRF3 activation and IFN-beta secretion and are not replication restricted in wild-type MEFs. Genetic reassortant analysis between UK and RRV maps the distinctive phenotypes of IFN antagonism and growth restriction in wild-type MEFs to NSP1. Therefore, there is a direct relationship between the replication efficiencies of different rotavirus strains in MEFs and strain-related variations in NSP1-mediated antagonism of the type I IFN response. PMID:19420080

  14. Genomewide approaches for BACH1 target genes in mouse embryonic fibroblasts showed BACH1-Pparg pathway in adipogenesis.

    PubMed

    Matsumoto, Mitsuyo; Kondo, Keiichi; Shiraki, Takuma; Brydun, Andrey; Funayama, Ryo; Nakayama, Keiko; Yaegashi, Nobuo; Katagiri, Hideki; Igarashi, Kazuhiko

    2016-06-01

    The transcription repressor BTB and CNC homology 1 (BACH1) represses genes involved in heme metabolism and oxidative stress response. BACH1 also suppresses the p53-dependent cellar senescence in primary mouse embryonic fibroblasts (MEFs). To investigate the role of BACH1 in MEF other than its known functions, we carried out a genomewide mapping of binding site for BACH1 and its heterodimer partner MAFK in immortalized MEFs (iMEFs) using chromatin immunoprecipitation and next-generation sequencing technology (ChIP-sequence). The comparative analysis of the ChIP-sequence data and DNA microarray data from Bach1-deficient and wild-type (WT) iMEF showed 35 novel candidate target genes of BACH1. Among these genes, five genes (Pparg, Nfia, Ptplad2, Adcy1 and Ror1) were related with lipid metabolism. Bach1-deficient iMEFs showed increased expression of mRNA and protein of PPARγ, which is the key factor of adipogenesis. These cells also showed a concomitant increase in ligand-dependent activation of PPARγ target genes compared with wild-type iMEFs. Moreover, Bach1-deficient iMEFs efficiently differentiated to adipocyte compared with wild-type cells in the presence of PPARγ ligands. Our results suggest that BACH1 regulates expression of adipocyte-related genes including Pparg and potentiates adipocyte differentiation capacity. PMID:27030212

  15. Hyperoxia Induces Intracellular Acidification in Neonatal Mouse Lung Fibroblasts: Real-Time Investigation Using Plasmonically Enhanced Raman Spectroscopy.

    PubMed

    Panikkanvalappil, Sajanlal R; James, Masheika; Hira, Steven M; Mobley, James; Jilling, Tamas; Ambalavanan, Namasivayam; El-Sayed, Mostafa A

    2016-03-23

    It is important to understand the molecular mechanisms underlying oxygen toxicity, which contributes to multiple human disorders. The archetype model of oxygen toxicity is neonatal lung injury induced by hyperoxia exposure. Here, we utilized plasmonically enhanced Raman spectroscopy (PERS) in combination with fluorescence and proteomic analysis to provide comprehensive information on hyperoxia-induced biomolecular modifications in neonatal mouse lung fibroblasts (nMLFs). During this study, we made the novel observation that hyperoxia induces intracellular acidification in nMLF, which we probed in real-time using label-free PERS. We found that intracellular acidification induces conformational modifications in proteins followed by significant changes in Raman vibrations corresponding to aromatic amino acids such as phenylalanine and tryptophan as well as cysteine moieties. Hyperoxia-induced intracellular pH changes and subsequent modifications in protein expression and associated post-translational modifications within the cells were further validated by fluorescence and proteomic analysis. These new insights may help identifying unique oxidant stress-induced mechanisms in disease processes and may guide the development of more efficient therapeutic strategies. PMID:26938952

  16. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  17. Prolyl isomerase Pin1 regulated signaling pathway revealed by Pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells.

    PubMed

    Huang, Guo-Liang; Qiu, Jin-Hua; Li, Bin-Bin; Wu, Jing-Jing; Lu, Yan; Liu, Xing-Yan; He, Zhiwei

    2013-10-01

    Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1) plays a key role in a number of diseases including cancer and Alzheimer disease. Previous studies have identified a wide range of phosphoproteins as Pin1 substrates. Related pathways were analyzed separately. The aim of this study was to provide a comprehensive picture involving Pin1 regulation. A genome-wide mRNA expression microarray was carried out using the RNA isolation from Pin1 (+/+) and Pin1 (-/-) mouse embryonic fibroblast (MEF) cells. Signaling pathways regulated by Pin1 were analyzed with the utility of KEGG pathway and GO annotation. An expression pattern regulated by Pin1 was revealed. A total of 606 genes, 375 being up-regulated and 231 down-regulated, were differentially expressed when comparing Pin1 +/+ to Pin1 -/- MEF cells. Totally 48 pathways were shown to be regulated by Pin1 expression in KEGG pathway analysis. In the GO annotation system, 19 processes on biological processes, 15 processes on cellular components, and 18 processes on molecular functions were found to be in the regulation of Pin1 expression. Pathways related to immune system and cancer showed most significant association with Pin1 regulation. Pin1 is an important regulator in a wide range of signaling pathways that were related to immune system and cancer. PMID:23563987

  18. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  19. cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Rommens, J M; Dho, S; Bear, C E; Kartner, N; Kennedy, D; Riordan, J R; Tsui, L C; Foskett, J K

    1991-01-01

    A cAMP-inducible chloride permeability has been detected in mouse fibroblast (L cell) lines upon stable integration of a full-length cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR). As indicated by a Cl(-)-indicator dye, the Cl- permeability of the plasma membrane increases by 10- to 30-fold within 2 min after treatment of the cells with forskolin, an activator of adenylyl cyclase. The properties of the conductance are similar to those described in secretory epithelial cells; the whole-cell current-voltage relationship is linear and there is no evidence of voltage-dependent inactivation or activation. In contrast, this cAMP-dependent Cl- flux is undetectable in the untransfected cells or cells harboring defective cDNA constructs, including one with a phenylalanine deletion at amino acid position 508 (delta F508), the most common mutation causing cystic fibrosis. These observations are consistent with the hypothesis that the CFTR is a cAMP-dependent Cl- channel. The availability of a heterologous (nonepithelial) cell type expressing the CFTR offers an excellent system to understand the basic mechanisms underlying this CFTR-associated ion permeability and to study the structure and function of the CFTR. Images PMID:1715567

  20. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    PubMed Central

    Kuznetsov, Sergei A.; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2009-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 ± 1.0 to 11.5 ± 4.0 per 1 × 105 nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 ± 4.1 for children and 32.3 ± 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology. PMID:19383412

  1. Physicochemical surface properties of elementary bodies from different serotypes of chlamydia trachomatis and their interaction with mouse fibroblasts.

    PubMed Central

    Söderlund, G; Kihlström, E

    1982-01-01

    Aqueous biphasic partitioning, hydrophobic interaction chromatography, and ion-exchange chromatography were used to characterize the surface properties of Renografin-purified elementary bodies of Chlamydia trachomatis serotypes E and L1. The two serotypes differed with respect to liability to hydrophobic interaction and negative surface charge. Furthermore, the mutual relative magnitude of these parameters differed between the two serotypes, depending on the chromatographic technique used. This indicates that these chromatographic techniques register different aspects of charge and hydrophobicity on the chlamydial surface. DEAE-dextran and dextran sulfate affected association of, penetration, and intracellular development of C. trachomatis in mouse fibroblasts (McCoy cells). DEAE-dextran affected the association of C. trachomatis serotype E with McCoy cells mainly by charge-dependent forces, whereas both DEAE-dextran and dextran sulfate influenced the association of C. trachomatis serotype L1 mainly by charge-independent forces. These results indicate that the numerous biological differences between lymphogranuloma venereum and non-lymphogranuloma venereum strains of C. trachomatis may be assigned to differences in surface properties between the two strains. PMID:7095854

  2. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses

    PubMed Central

    Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe

    2015-01-01

    In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network. PMID:26740745

  3. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells

    PubMed Central

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice. PMID:26091287

  4. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  5. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  6. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    SciTech Connect

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing Liao, Er-Yuan

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  7. RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro.

    PubMed

    Duarte, Carolina; Kobayashi, Yukiho; Kawamoto, Tatsuo; Moriyama, Keiji

    2014-08-01

    RELAXIN (RLN) is a polypeptide hormone of the insulin-like hormone family; it facilitates birth by softening and widening the pubic symphysis and cervix in many mammals, including humans. The role of RLN in bone metabolism was recently suggested by its ability to induce osteoclastogenesis and activate osteoclast function. RLN binds to RELAXIN/INSULIN-LIKE FAMILY PEPTIDE 1 (RXFP1) and 2 (RXFP2), with varying species-specific affinities. Young men with mutated RXFP2 are at high risk for osteoporosis, as RXFP2 influences osteoblast metabolism by binding to INSULIN-LIKE PEPTIDE 3 (INSL3). However, there have been no reports on RLN function in osteoblast differentiation and mineralization or on the functionally dominant receptors for RLN in osteoblasts. We previously described Rxfp1 and 2 expression patterns in developing mouse oral components, including the maxillary and mandibular bones, Meckel's cartilage, tongue, and tooth primordia. We hypothesized that Rln/Rxfp signaling is a key mediator of skeletal development and metabolism. Here, we present the gene expression patterns of Rxfp1 and 2 in developing mouse calvarial frontal bones as determined by in situ hybridization. In addition, RLN enhanced osteoblastic differentiation and caused abnormal mineralization and extracellular matrix metabolism through Rxfp2, which was predominant over Rxfp1 in MC3T3-E1 mouse calvarial osteoblasts. Our data suggest a novel role for Rln in craniofacial skeletal development and metabolism through Rxfp2. PMID:24857857

  8. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells.

    PubMed

    Tzeng, Thing-Fong; Liu, I-Min

    2013-04-15

    6-Gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) is one of the pungent constituents of Zingiber zerumbet (L) Smith (Zingiberaceae family). In this study, we investigated the effects of 6-gingerol on the inhibition of adipogenesis in 3T3-L1 cells. After treatment with 6-gingerol in differentiation medium for 4 or 8 days, the 3T3-L1 cells were lysed for experimental analysis. Cells were stained with Oil-Red-O to detect oil droplets in adipocytes. The 3T3-L1 cells were lysed and measured for triglyceride contents. The protein expression of adipogenesis-related transcription factor was evaluated by Western blot analysis. 6-Gingerol suppressed oil droplet accumulation and reduced the droplet size in a concentration (5-15 μg/ml)- and time-dependent manner. Treatment of 3T3-L1 cells with 6-gingerol reduced the protein levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α. Additionally, the protein levels of fatty acid synthase (FAS) and adipocyte-specific fatty acid binding protein (aP2) decreased upon treatment with 6-gingerol. Meanwhile, 6-gingerol diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9). These results suggest that 6-gingerol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and subsequently inhibits FAS and aP2 expression. 6-Gingerol also inhibited differentiation in 3T3-L1 cells by attenuating the Akt/GSK3β pathway. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of 6-gingerol. PMID:23369342

  9. Molecular mechanism of extinction of liver-specific functions in mouse hepatoma x rat fibroblast hybrids: extinction of the albumin gene

    SciTech Connect

    Papaconstantinou, J.; Wong, E.; Ratrie, H.; Szpirer, C.; Szpirer, J.

    1982-01-01

    Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and ..cap alpha..-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse ..beta..-glucyronidase gene (which is encoded on the same chromosome as the mouse albumin and ..cap alpha..-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.

  10. Osmotically inducible uptake of betaine via amino acid transport system A in SV-3T3 cells.

    PubMed

    Petronini, P G; De Angelis, E; Borghetti, A F; Wheeler, K P

    1994-05-15

    The osmotically inducible uptake of betaine (NNN-trimethylglycine) by SV-3T3 cells has been studied and compared with the similar process in MDCK cells. Betaine uptake by SV-3T3 cells could be described in terms of a saturable, Na(+)-dependent, component plus a small non-saturable, Na(+)-independent, component. Transport was active, producing considerable accumulation of betaine in the cells. After exposure of the cells to hypertonic conditions for 6 h, there was a marked increase in betaine uptake. Kinetic analysis indicated that this increase resulted from an increase in the Vmax. value of the saturable component, from about 88 to 185 nmol of betaine/5 min per mg of protein, the corresponding Km values of about 15 and 10 mM not being significantly different. This induction of transport activity was detectable only after about 2 h exposure of the cells to hypertonic medium, closely paralleling an induction of influx of N-methylaminoisobutyric acid, and was prevented by the presence of cycloheximide. Betaine influx was markedly inhibited by several neutral amino acids, particularly those transported by system A, such as N-methylaminoisobutyric acid and the imino acid proline. A high concentration (25 mM) of betaine also significantly inhibited the uptake of proline by SV-3T3 cells. Although very similar results were obtained with MDCK cells, prolonged exposure of cells to hypertonic conditions revealed distinct differences. When the hypertonic incubation was extended from 6 h to 24 h, betaine transport in SV-3T3 cells either remained the same or decreased, whereas it showed a further marked increase in MDCK cells, and also became sensitive to inhibition by gamma-aminobutyric acid. mRNA for the betaine transporter BGT-1 [Yamauchi, Uchida, Kwon, Preston, Brooks Robey, Garcia-Perez, Burg and Handler (1992) J. Biol. Chem. 267, 649-652] was detectable in MDCK cells exposed to hypertonic medium for 24 h, but not in SV-3T3 cells under any conditions. It is concluded that

  11. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  12. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs.

    PubMed

    Keane, Fiona M; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G; Chowdhury, Sumaiya; Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M T; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M; McLennan, Susan V; McCaughan, Geoffrey W; Bachovchin, William W; Gorrell, Mark D

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  13. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells

    PubMed Central

    Lukaszewicz, Agnès; Savatier, Pierre; Cortay, Véronique; Kennedy, Henry; Dehay, Colette

    2002-01-01

    Basic fibroblast growth factor (bFGF) exerts a mitogenic effect on cortical neuroblasts, whereas neurotrophin 3 (NT3) promotes differentiation in these cells. Here we provide evidence that both the mitogenic effect of bFGF and the differentiation-promoting effect of NT3 are linked with modifications of cell cycle kinetics in mouse cortical precursor cells. We adapted an in vitro assay, which makes it possible to evaluate (1) the speed of progression of the cortical precursors through the cell cycle, (2) the duration of individual phases of the cell cycle, (3) the proportion of proliferative versus differentiative divisions, and (4) the influence on neuroglial differentiation. Contrary to what has been claimed previously, bFGF promotes proliferation via a change in cell cycle kinetics by simultaneously decreasing G1 duration and increasing the proportion of proliferative divisions. In contrast, NT3 lengthens G1 and promotes differentiative divisions. We investigated the molecular foundations of these effects and show that bFGF downregulates p27kip1 and upregulates cyclin D2 expression. This contrasts with NT3, which upregulates p27kip1 and downregulates cyclin D2 expression. Neither bFGF nor NT3 influences the proportion of glia or neurons in short to medium term cultures. The data point to links between the length of the G1 phase and the type of division of cortical precursors: differentiative divisions are correlated with long G1 durations, whereas proliferative divisions correlate with short G1 durations. The present results suggest that concerted mechanisms control the progressive increase in the cell cycle duration and proportion of differentiative divisions that is observed as corticogenesis proceeds. PMID:12151540

  14. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts

    PubMed Central

    Xu, Hairong; Zhou, Yanhong; Coughlan, Kathleen A.; Ding, Ye; Wang, Shaobin; Wu, Yue; Song, Ping; Zou, Ming-Hui

    2014-01-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21WAF1/Cip1 (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1−/−, AMPKα2−/−) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis. PMID:25307521

  15. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  16. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs☆

    PubMed Central

    Keane, Fiona M.; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G.; Chowdhury, Sumaiya; Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M.T.; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A. Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M.; McLennan, Susan V.; McCaughan, Geoffrey W.; Bachovchin, William W.; Gorrell, Mark D.

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  17. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Eda, Homare; Aoki, Katsuhiko; Marumo, Keishi; Fujii, Katsuyuki; Ohkawa, Kiyoshi

    2008-02-08

    Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

  18. Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold.

    PubMed

    Koç, Aysel; Elçin, Ayşe Eser; Elçin, Yaşar Murat

    2016-09-01

    This study evaluates the suitability of a macroporous three-dimensional chitosan/hydroxyapatite (CS/HA) composite as a bone tissue engineering scaffold using MC3T3-E1 cells. The CS/HA scaffold was produced by freeze-drying, and characterized by means of SEM and FTIR. In vitro findings demonstrated that CS/HA supported attachment and proliferation of cells, and stimulated extracellular matrix (ECM) production. Tissue biocompatibility and osteogenic capacity of the cell-laden constructs were evaluated in an ectopic Wistar rat model. In vivo results showed that the MC3T3-E1 cell-laden CS/HA was essentially histocompatible, promoted neovascularization and calcified matrix formation, and secreted osteoblast-specific protein. We conclude that the composite scaffold evaluated has potential for applications in bone regeneration. PMID:25968048

  19. Deoxyactein Isolated from Cimicifuga racemosa protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity.

    PubMed

    Choi, Eun Mi

    2013-06-01

    Deoxyactein is one of the major constituents isolated from Cimicifuga racemosa. In the present study, we investigated the protective effects of deoxyactein on antimycin A (mitochondrial electron transport inhibitor)-induced toxicity in osteoblastic MC3T3-E1 cells. Exposure of MC3T3-E1 cells to antimycin A caused significant cell viability loss, as well as mitochondrial membrane potential dissipation, complex IV inactivation, ATP loss, intracellular calcium ([Ca(2+) ]i ) elevation and oxidative stress. Pretreatment with deoxyactein prior to antimycin A exposure significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, ATP loss, [Ca(2+) ]i elevation and oxidative stress. Moreover, deoxyactein increased the activation of PI3K (phosphoinositide 3-kinase), Akt (protein kinase B) and CREB (cAMP-response element-binding protein) inhibited by antimycin A. All these data indicate that deoxyactein may reduce or prevent osteoblasts degeneration in osteoporosis or other degenerative disorders. PMID:22180388

  20. Bombesin stimulation of c-fos and c-myc gene expression in cultured of Swiss 3T3 cells

    SciTech Connect

    Palumbo, A.P.; Rossino, P.; Comoglio, P.M.

    1986-11-01

    Bombesin has been show to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations it stimulates DNA synthesis in quiescent cultures of 3T3 cells and also induces the expression of c-fos and c-myc mRNA. c-fos mRNA transcripts dramatically increase 15 min after the addition of bombesin, are still abundant after 30-60 min and then decrease. c-myc mRNA induction is detectable later, 1 h after bombesin treatment. Conversely, no changes in c-Ki-ras expression are observed after stimulation with bombesin. These results demonstrate that the increased expression of c-fos and c-myc mRNAs appears to be a common response to diverse agents that induce DNA synthesis and cell proliferation.

  1. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  2. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription. PMID:26189725

  3. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  4. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  5. Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes.

    PubMed

    Lee, Chae Myoung; Yoon, Mi Sook; Kim, Young Chul

    2015-06-01

    We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at 1,000 μg/mL was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or 500 μg/mL PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and 500 μg/mL PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor γ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein β and α mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells. PMID:26191386

  6. Photo catalogue for the classification of foci in the BALB/c 3T3 cell transformation assay.

    PubMed

    Sasaki, Kiyoshi; Bohnenberger, Susanne; Hayashi, Kumiko; Kunkelmann, Thorsten; Muramatsu, Dai; Poth, Albrecht; Sakai, Ayako; Salovaara, Susan; Tanaka, Noriho; Thomas, B Claire; Umeda, Makoto

    2012-04-11

    This catalogue is a display of focus photos representative of the BALB/c 3T3 cell transformation assay (CTA). It is intended as a visual aid for the identification and the scoring of foci in the conduct of the assay. A proper training from experienced personnel together with the protocol reported in this issue and the present photo catalogue will support method transfer and consistency in the assay results. PMID:22331008

  7. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice.

    PubMed

    Dadheech, Nidheesh; Soni, Sanket; Srivastava, Abhay; Dadheech, Sucheta; Gupta, Shivika; Gopurappilly, Renjitha; Bhonde, Ramesh R; Gupta, Sarita

    2013-01-01

    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes. PMID:23662125

  8. A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice

    PubMed Central

    Dadheech, Nidheesh; Soni, Sanket; Srivastava, Abhay; Dadheech, Sucheta; Gupta, Shivika; Gopurappilly, Renjitha; Bhonde, Ramesh R.; Gupta, Sarita

    2013-01-01

    Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes. PMID:23662125

  9. The effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation.

    PubMed

    Gagnon, A; Sorisky, A

    1998-03-01

    We examined the effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Oil Red O staining of neutral lipid, cellular triglyceride mass, and glycerol phosphate dehydrogenase (GPDH) activity, were greater in 3T3-L1 cells cultured at 5 mM vs. 25 mM glucose. GPDH activity was 2- to 4-fold higher at 5 mM vs. 25 mM glucose over a range of insulin concentrations (0.1 to 100 nM). Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was 1.7-fold greater, and insulin-stimulated phosphoinositide 3-kinase association with IRS-1 was 2.3-fold higher, at 5 mM vs. 25 mM glucose. These effects of glucose were not caused by alterations in IRS-1 mass or cell-surface insulin binding. In preadipose cells at 5 mM glucose, expression of the leukocyte antigen-related (LAR) protein tyrosine phosphatase (negative regulator of insulin signaling) was 63% of the level at 25 mM glucose. Our data demonstrate that glucose concentration affects insulin-induced 3T3-L1 adipose cell differentiation as well as differentiation-directed insulin signaling pathways. Alterations in LAR expression potentially may be involved in modulating these responses. PMID:9545023

  10. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  11. MiR-25 suppresses 3T3-L1 adipogenesis by directly targeting KLF4 and C/EBPα.

    PubMed

    Liang, Wei-Cheng; Wang, Yan; Liang, Pu-Ping; Pan, Xu-Qing; Fu, Wei-Ming; Yeung, Venus Sai-Ying; Lu, Ying-Fei; Wan, David Chi-Cheong; Tsui, Stephen Kwok-Wing; Tsang, Suk-Ying; Ma, Wen-Bin; Zhang, Jin-Fang; Waye, Mary Miu-Yee

    2015-11-01

    In the past decade, miRNA emerges as a vital player in orchestrating gene regulation and maintaining cellular homeostasis. It is well documented that miRNA influences a variety of biological events, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes. It has been shown that adipogenesis is tightly modulated by a number of transcription factors such as PPARγ, KLF4, and C/EBPα. However, the molecular mechanisms underlying the missing link between miRNA and adipogenesis-related transcription factors remain elusive. In this study, we unveiled that miR-25, a member of miR-106b-25 cluster, was remarkably downregulated during 3T3-L1 adipogenesis. Restored expression of miR-25 significantly impaired 3T3-L1 adipogenesis and downregulated the expression of serial adipogenesis-related genes. Further experiments presented that ectopic expression of miR-25 did not affect cell proliferation and cell cycle progression. Finally, KLF4 and C/EBPα, two key regulators of adipocyte differentiation, were experimentally identified as bona fide targets for miR-25. These data indicate that miR-25 is a novel negative regulator of adipocyte differentiation and it suppressed 3T3-L1 adipogenesis by targeting KLF4 and C/EBPα, which provides novel insights into the molecular mechanism of miRNA-mediated cellular differentiation. PMID:25923408

  12. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    SciTech Connect

    Kimira, Yoshifumi; Ogura, Kana; Taniuchi, Yuri; Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi

    2014-10-24

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.

  13. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  14. 4-Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells.

    PubMed

    Li, Yongjia; Goto, Tsuyoshi; Yamakuni, Kanae; Takahashi, Haruya; Takahashi, Nobuyuki; Jheng, Huei-Fen; Nomura, Wataru; Taniguchi, Masahiko; Baba, Kimiye; Murakami, Shigeru; Kawada, Teruo

    2016-07-01

    Adipocyte differentiation plays a pivotal role in maintaining the production of small-size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4-Hydroxyderricin (4-HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti-inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4-HD on adipocyte differentiation. 4-HD promoted lipid accumulation in 3T3-L1 cells, upregulated both peroxisome proliferator-activated receptor (PPAR)-γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4-HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin-dependent glucose uptake into 3T3-L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4-HD, which promoted adipogenesis and insulin sensitivity in 3T3-L1 cells, might be a phytochemical with potent insulin-sensitizing effects. PMID:27098252

  15. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05). PMID:26494490

  16. Soy pinitol acts partly as an insulin sensitizer or insulin mediator in 3T3-L1 preadipocytes

    PubMed Central

    Do, Gyeong-Min; Choi, Myung-Sook; Kim, Hye-Jin; Woo, Myung-Nam; Lee, Mi-Kyung

    2007-01-01

    The blood glucose-lowering property of pinitol is mediated via the insulin signaling pathway. This study was carried out to evaluate the effects of soy pinitol on adipogenesis in a 3T3-L1 cell line; 3T3-L1 preadipocytes were treated with pinitol (0–1 mM) together with insulin for 9 days. The regulation of lipid metabolism was assessed by oil-red-O staining of intracellular lipids and real-time PCR of adipogenesis-related factors. The inhibition of cell proliferation was estimated by MTT assay. Pinitol treatment did not inhibit lipid accumulation, nor did it affect expression of adipogenesis-related factors, including ADD1, aP2 and FAS, in a dose-dependent manner. Expression of adiponectin, GLUT4, IRS, C/EBPα and PPARγ mRNAs, however, increased in cells treated with 0.5 mM and/or 1 mM pinitol. Pinitol treatment did not affect the inhibition of cell growth and proliferation in a dose-dependent manner. Accordingly, we suggest that pinitol is nontoxic to this cell line, and that it enhances adipogenesis by acting as an insulin sensitizer or insulin mediator via the upregulation of adiponectin, GLUT4, IRS, C/EBPα and PPARγ in 3T3-L1 preadipocytes. PMID:18850231

  17. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  18. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Taguchi, Sadayoshi

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  19. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  20. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    SciTech Connect

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca{sup 2+} plus A23187, a Ca{sup 2+} ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca{sup 2+}-mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with ({sup 3}H)glycerol and ({sup 3}H)inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-{beta}-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate.

  1. Widdrol-induced lipolysis is mediated by PKC and MEK/ERK in 3T3-L1 adipocytes.

    PubMed

    Jeong, Hyun Young; Yun, Hee Jung; Kim, Byung Woo; Lee, Eun Woo; Kwon, Hyun Ju

    2015-12-01

    Obesity is a serious medical condition causing various diseases such as heart disease, type-2 diabetes, and cancer. Fat cells (adipocytes) play an important role in the generation of energy through hydrolysis of lipids they accumulate. Therefore, induction of lipolysis (breakdown of lipids into fatty acids and glycerol), is one of the ways to treat obesity. In the present study, we investigated the lipolytic effect of widdrol in 3T3-L1 adipocytes and its mechanism. Widdrol considerably increased the amount of glycerol released from 3T3-L1 adipocytes into the medium in a time- and dose-dependent manner. To determine the mechanism of this effect, we investigated the alterations in glycerol release and protein expression in 3T3-L1 adipocytes treated with widdrol alone or widdrol and inhibitors of proteins involved in the cAMP-dependent pathway or cAMP-independent PKC-MAPK pathway, which are known to induce lipolysis in adipocytes. The adenylyl cyclase inhibitor SQ-22536, PLA2 inhibitor dexamethasone, PI3K inhibitor wortmannin, and PKA inhibitor H-89, which were used to investigate the involvement of the cAMP-dependent pathway, did not affect the lipolytic effect of widdrol. Widdrol-induced phosphorylation of PKC, MEK, and ERK, which are related to the PKC-MAPK pathway, and their phosphorylation was inhibited by their inhibitors (H-7, U0126, and PD-98059, respectively). Moreover, the increase in glycerol release induced by widdrol was almost completely blocked by PKC, MEK, and ERK inhibitors. These results suggest that widdrol induces lipolysis through activation of the PKC-MEK-ERK pathway. PMID:26359088

  2. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    SciTech Connect

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  3. TNF-α Induces Caspase-1 Activation Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells.

    PubMed

    Furuoka, Mana; Ozaki, Kei-Ichi; Sadatomi, Daichi; Mamiya, Sayaka; Yonezawa, Tomo; Tanimura, Susumu; Takeda, Kohsuke

    2016-12-01

    The intracellular cysteine protease caspase-1 is critically involved in obesity-induced inflammation in adipose tissue. A substantial body of evidence from immune cells, such as macrophages, has shown that caspase-1 activation depends largely on a protein complex, called the NLRP3 inflammasome, which consists of the NOD-like receptor (NLR) family protein NLRP3, the adaptor protein ASC, and caspase-1 itself. However, it is not fully understood how caspase-1 activation is regulated within adipocytes upon inflammatory stimuli. In this study, we show that TNF-α-induced activation of caspase-1 is accompanied by robust induction of NLRP3 in 3T3-L1 adipocytes but that caspase-1 activation may not depend on the NLRP3 inflammasome. Treatment of 3T3-L1 cells with TNF-α induced mRNA expression and activation of caspase-1. Although the basal expression of NLRP3 and ASC was undetectable in unstimulated cells, TNF-α strongly induced NLRP3 expression but did not induce ASC expression. Interestingly, inhibitors of the ERK MAP kinase pathway strongly suppressed NLRP3 expression but did not suppress the expression and activation of caspase-1 induced by TNF-α, suggesting that NLRP3 is dispensable for TNF-α-induced caspase-1 activation. Moreover, we did not detect the basal and TNF-α-induced expression of other NLR proteins (NLRP1a, NLRP1b, and NLRC4), which do not necessarily require ASC for caspase-1 activation. These results suggest that TNF-α induces caspase-1 activation in an inflammasome-independent manner in 3T3-L1 cells and that the ERK-dependent expression of NLRP3 may play a role independently of its canonical role as a component of inflammasomes. J. Cell. Physiol. 231: 2761-2767, 2016. © 2016 Wiley Periodicals, Inc. PMID:26989816

  4. Pasteurella multocida toxin (PMT) upregulates CTGF which leads to mTORC1 activation in Swiss 3T3 cells.

    PubMed

    Oubrahim, Hammou; Wong, Allison; Wilson, Brenda A; Chock, P Boon

    2013-05-01

    Pasteurella multocida toxin (PMT) is a mitogenic protein that hijacks cellular signal transduction pathways via deamidation of heterotrimeric G proteins. We previously showed that rPMT activates mTOR signaling via a Gαq/11/PLCβ/PKC mediated pathway, leading in part to cell proliferation and migration. Herein, we show that mTOR and MAPK, but not membrane-associated tyrosine kinases, are activated in serum-starved 3T3 cells by an autocrine/paracrine substance(s) secreted into the conditioned medium following rPMT treatment. Surprisingly, this diffusible factor(s) is capable of activating mTOR and MAPK pathways even in MEF Gαq/11 double knockout cells. Microarray analysis identified connective tissue growth factor (CTGF) mRNA as the most upregulated gene in rPMT-treated serum-starved 3T3 cells relative to untreated cells. These results were further confirmed using RT-PCR and Western blot analyses. In accord with rPMT-induced mTOR activation, upregulation of CTGF protein was observed in WT MEF, but not in Gαq/11 double knockout MEF cells. Although CTGF expression is regulated by TGFβ, rPMT did not activate TGFβ pathway. In addition, MEK inhibitors U0126 or PD98059, but not mTOR specific inhibitors, rapamycin and Torin 1, inhibited rPMT-induced upregulation of CTGF. Importantly, CTGF overexpression in serum-starved 3T3 cells using adenovirus led to phosphorylation of ribosomal protein S6, a downstream target of mTOR. However, despite the ability of CTGF to activate the mTOR pathway, upregulation of CTGF alone could not induce morphological changes as those observed in rPMT-treated cells. Our findings reveal that CTGF plays an important role, but there are additional factors involved in the mitogenic action of PMT. PMID:23415771

  5. Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats

    NASA Astrophysics Data System (ADS)

    Wang, Liting; Zhou, Gang; Liu, Haifeng; Niu, Xufeng; Han, Jingyun; Zheng, Lisha; Fan, Yubo

    2012-04-01

    While the advantages of nanomaterials are being increasingly recognized, their potential toxicity is drawing more and more attention and concern. In this study, we explore the toxicity mechanism of 20-30 nm rod-shaped hydroxyapatite (HA) nanoparticles in vitro and in vivo. The nanoparticles were prepared by precipitation and characterized by IR, XRD and TEM. Concentrations of 0 μg mL-1, 10 μg mL-1, 100 μg mL-1, 1 mg mL-1, and 10 mg mL-1 were applied to the MC3T3-E1 cells for viability (MTT-test). Based on the characteristic differences of the two methods of cell death, the morphological features of the MC3T3-E1 cell line co-cultured with nano-hydroxyapatite (n-HA) (10 mg mL-1) for 24 h were also observed by TEM. Furthermore, important serum biochemical markers and histopathological examinations were used to evaluate the potential toxicological effect of n-HA on the major organs of SD rats injected intraperitoneally with n-HA (33.3 mg kg-1 body weight). In the results, we found cell growth inhibition and apoptosis in MC3T3-E1 cells co-cultured with n-HA. Moreover, apoptosis but not necrosis was illustrated in liver and renal tissue by using histopathology slices and serum biochemical markers. It suggests that apoptosis may be the possible mechanism of n-HA toxicity and provides a better understanding of the biocompatibility of nanomaterials applied in human bone repair.

  6. Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

    PubMed Central

    Lim, Heejin; Yeo, Eunju; Song, Eunju; Chang, Yun-Hee; Han, Bok-Kyung; Choi, Hyuk-Joon

    2015-01-01

    BACKGROUND/OBJECTIVES Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ) as well as the mRNA levels of CEBPα, PPARγ, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic

  7. Expression of H-ras correlates with metastatic potential: evidence for direct regulation of the metastatic phenotype in 10T1/2 and NIH 3T3 cells.

    PubMed Central

    Egan, S E; McClarty, G A; Jarolim, L; Wright, J A; Spiro, I; Hager, G; Greenberg, A H

    1987-01-01

    Using three independent approaches, we studied the effects of H-ras on metastasis formation. Analysis of five in vitro-ras-transfected 10T1/2 clones with either flat or refractile morphologies revealed a relationship between metastatic potential, H-ras expression, and anchorage-independent growth. Four metastatic variants derived from a poorly metastatic, low-H-ras-expressing line all expressed high levels of H-ras RNA and grew efficiently in soft agar. Activation of H-ras expression in the metastatic tumors had occurred through amplification and rearrangement of H-ras sequences. In addition, preinduction of p21 synthesis in NIH 3T3 line 433, which contains v-H-ras under transcriptional control of the glucocorticoid-sensitive mouse mammary tumor virus long terminal repeat, significantly increased metastatic efficiency. Glucocorticoid treatment of normal or pEJ-transformed NIH 3T3 cells did not affect metastatic potential. These data reveal a direct relationship between ras expression and metastasis formation and suggest that metastatic and transformed phenotypes may be coregulated in ras-transformed 10T1/2 and NIH 3T3 cells. Images PMID:3102946

  8. LXA4 actions direct fibroblast function and wound closure.

    PubMed

    Herrera, Bruno S; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P; Van Dyke, Thomas E

    2015-09-01

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A4 (LXA4), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA4 on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA4 receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a "scratch" assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA4 receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA4 slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA4 tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA4 in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. PMID:26188508

  9. β3 Integrin in Cardiac Fibroblast Is Critical for Extracellular Matrix Accumulation during Pressure Overload Hypertrophy in Mouse

    PubMed Central

    Balasubramanian, Sundaravadivel; Quinones, Lakeya; Kasiganesan, Harinath; Zhang, Yuhua; Pleasant, Dorea L.; Sundararaj, Kamala P.; Zile, Michael R.; Bradshaw, Amy D.; Kuppuswamy, Dhandapani

    2012-01-01

    The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3−/−) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3−/− mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3−/− mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3−/− mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3−/− mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3−/− cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3−/− cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis. PMID:22984613

  10. LXA{sub 4} actions direct fibroblast function and wound closure

    SciTech Connect

    Herrera, Bruno S.; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P.; Van Dyke, Thomas E.

    2015-09-04

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF

  11. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and in 3T3-L1 adipocytes

    PubMed Central

    Vazquez Prieto, Marcela A.; Bettaieb, Ahmed; Rodriguez Lanzi, Cecilia; Soto, Verónica C.; Perdicaro, Diahann J.; Galmarini, Claudio R.; Haj, Fawaz G.; Miatello, Roberto M.; Oteiza, Patricia I.

    2015-01-01

    Scope This study evaluated the capacity of dietary catechin (C), quercetin (Q) and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNFα) in 3T3-L1 adipocytes. Methods and results In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/d of C, Q and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNFα-induced elevated protein carbonyls, increased pro-inflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to: i) decrease the activation of the mitogen activated kinases (MAPKs) JNK and p38; and ii) prevent the downregulation of PPARγ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose pro-inflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNFα, MCP-1, resistin) insulin sensitivity. Conclusion Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS associated adipose inflammation, oxidative stress, and insulin resistance. PMID:25620282

  12. Restoration of murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells

    PubMed Central

    Huang, Xiangyu; Li, Yanqiu; Xu, Jiantao; Liu, Kai; Yu, Xin; Cheng, Xin; Xu, Dongdong; Li, Zubing

    2016-01-01

    Connective tissue growth factor (CTGF) is a member of the CCN super family and is reported to widely participate in bone development and regeneration. This study aimed to restore murine femoral segmental defect using CTGF-overexpressing MC3T3-E1 cells. MC3T3-E1 cells were transinfected by lenti-CTGF (LvCTGF) and lenti-negative control (LvNC) virus to obtain stably transinfected cells. Real-time PCR, Western blot, alkaline phosphatase activity assay, and alizarin red staining demonstrated that the overexpression of CTGF enhanced osteogenesis in vitro. Cell migration assay results showed that LvCTGF cells expressed higher migration ability than LvNC cells, while CCK-8 assay revealed no significant difference in cell proliferation. The LvCTGF and LvNC cells were then seeded into a chitosan/β-TCP scaffold and were used to restore a murine femoral segmental defect. Samples were harvested by the end of 2 and 5 weeks respectively. Micro-CT analysis and Masson’s trichrome staining results showed that the LvCTGF-scaffold group expressed better bone healing compared with the LvNC-scaffold and scaffold-only groups. CTGF-overexpressed cells serve as an efficient source of seeding cells for bone regeneration. PMID:27186279

  13. Berberine inhibits SREBP-1-related clozapine and risperidone induced adipogenesis in 3T3-L1 cells.

    PubMed

    Hu, Yueshan; Kutscher, Eric; Davies, Gareth E

    2010-12-01

    Weight gain is a common and potentially serious complication associated with the treatment of second generation antipsychotics such as clozapine and risperidone. Increased peripheral adipogenesis via the SREBP-1 pathway could be one critical mechanism responsible for antipsychotic drug-induced weight gain. Berberine, a botanical alkaloid, has been shown in our previous studies to inhibit adipogenesis in cell and animal models. MTT was used to determine the cytotoxic effects of clozapine and risperidone in combination with berberine. Differentiation of 3T3-L1 cells was monitored by Oil-Red-O staining and the expression of SREBP-1 and related proteins was determined by real-time RT-PCR and western blotting. The results showed that neither clozapine nor risperidone, alone or in combination with berberine had significant effects on cell viability. Eight days treatment with 15 μM clozapine increased adipogenesis by 37.4% and 50 μM risperidone increased adipogenesis by 26.5% during 3T3-L1 cell differentiation accompanied by increased SREBP-1, PPARγ, C/EBPα, LDLR and Adiponectin gene expression. More importantly, the addition of 8 μM berberine diminished the induction of adipogenesis almost completely accompanied by down-regulated mRNA and protein expression levels of SREBP-1-related proteins. These encouraging results may lead to the use of berberine as an adjuvant to prevent weight gain during second generation antipsychotic medication. PMID:20564506

  14. Characterization of RNA from Noninfectious Virions Produced by Sarcoma Positive-Leukemia Negative Transformed 3T3 Cells

    PubMed Central

    Phillips, Leo A.; Hollis, Vincent W.; Bassin, Robert H.; Fischinger, Peter J.

    1973-01-01

    RNA from noninfectious virions produced by two established clonal lines of sarcoma positive-leukemia negative (S+L-)-transformed 3T3 cells has been characterized. RNA from virions or nucleoids of S+L--(C243) cells consisted of three to four sizes: ±44 S (6%), 28 S (17%), 18 S (38%), and <18 S (39%). 28S virion RNA contained some virus-specific information demonstrable by RNA·DNA hybridization with a DNA probe derived from the RNA-directed DNA polymerase product of murine sarcoma-leukemia virus, while parallel studies indicated that 28S ribosomal RNA from ribosomal subunits of transformed and nontransformed 3T3 cells did not contain virus-specific information. In contrast to the S+L-(C243) virions, RNA from virions or nucleoids of S+L-(D56) cells consisted of five sizes: 80 S (6%), 68 S (8%), 56 S (5%), 28 S (28%), and <28 S (53%). Thermal dissociation studies suggested that this S+L- genome is comprised of 28S RNA subunits. From these studies we postulate that the 28S viral RNA is most probably the monomeric genome of S+L- virions. PMID:4355380

  15. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.

    PubMed

    Ju, Jae-Hyun; Yoon, Hong-Sup; Park, Hyun-Joon; Kim, Mi-Young; Shin, Hyeun-Kil; Park, Kun-Young; Yang, Jin-Oh; Sohn, Min-Shik; Do, Myoung-Sool

    2011-10-01

    The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity. PMID:21861722

  16. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

    PubMed Central

    Park, Mi Hwa; Kim, Seoyeon; Cheon, Jihyeon; Lee, Juyeong; Kim, Bo Kyung; Lee, Sang-Hyeon; Kong, Changsuk; Kim, Yuck Yong

    2016-01-01

    BACKGROUND/OBJECTIVES Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs. PMID:27087897

  17. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  18. Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes

    SciTech Connect

    Yarmo, Michelle N.; Landry, Anne; Molgat, Andre S.D.; Gagnon, AnneMarie; Sorisky, Alexander

    2009-02-01

    This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3