Science.gov

Sample records for 4-amino-tetrahydro-l-biopterine prevents brain

  1. Endothelial nitric oxide synthase mediates arteriolar vasodilatation after traumatic brain injury in mice.

    PubMed

    Schwarzmaier, Susanne M; Terpolilli, Nicole A; Dienel, Ari; Gallozzi, Micaela; Schinzel, Reinhard; Tegtmeier, Frank; Plesnila, Nikolaus

    2015-05-15

    Brain edema and increased cerebral blood volume (CBV) contribute to intracranial hypertension and hence to unfavorable outcome after traumatic brain injury (TBI). The increased post-traumatic CBV may be caused in part by arterial vasodilatation. The aim of the current study was to uncover the largely unknown mechanisms of post-traumatic arteriolar vasodilatation. The diameter of pial arterioles and venules was monitored by intravital fluorescence microscopy before (baseline) and for 30 min after controlled cortical impact in C57BL/6 and endothelial nitric oxide synthase (eNOS)-/- mice (n=5-6/group) and in C57BL/6 mice (n=6/group) receiving vehicle (phosphate-buffered saline [PBS]) or 4-amino-tetrahydro-L-biopterine (VAS203), a NOS inhibitor previously shown to reduce post-traumatic intracranial hypertension. Temperature, end-tidal partial pressure of carbon dioxide (pCO₂), and mean arterial blood pressure were kept within the physiological range throughout the experiments. Arteriolar diameters were stable during baseline monitoring but increased significantly in C57BL/6 mice after controlled cortical impact (136±7% of baseline; p<0.001 vs. baseline). This response was reduced by 78% in eNOS-/- mice (108±3% of baseline; p<0.005 vs. wild-type). Application of VAS203, a NOS inhibitor, or PBS did not affect vessels diameter before TBI. After trauma, however, administration of VAS203 reduced arteriolar diameter to 92±2% of baseline (p<0.05). The diameter of pial veins was not affected. Our results suggest that arteriolar vasodilatation after TBI is largely mediated by excess production of endothelial nitric oxide. Accordingly, our data may explain the beneficial effects of the NOS inhibitor VAS203 in the early phase after TBI and suggest that inhibition of excess endothelial nitric oxide production may represent a novel therapeutic strategy following TBI. PMID:25363688

  2. Melatonin prevents learning disorders in brain-lesioned newborn mice.

    PubMed

    Bouslama, M; Renaud, J; Olivier, P; Fontaine, R H; Matrot, B; Gressens, P; Gallego, J

    2007-12-12

    Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. These injuries are chiefly ascribable to marked susceptibility of the immature brain to glutamate-induced excitotoxicity. No treatments are available. One well-characterized model of perinatal brain injuries consists in injecting the glutamate analog ibotenate into the brain of 5-day-old mice. The resulting excitotoxic lesions resemble the hypoxic-ischemic gray-matter lesions seen in full-term and near-term newborns, as well as the white-matter lesions of preterm newborns. We previously reported that these lesions disrupted odor preference conditioning in newborn mice. The aim of this study was to assess the effectiveness of the neuroprotector melatonin in preventing learning disabilities in newborn mice with ibotenate-induced brain injury. In postnatal day (P) 6-P7 pups, we tested psychomotor reflexes, spontaneous preference for maternal odors as an index of memory, ultrasonic vocalization responses to stroking as an index of sensitivity to tactile stimuli, and conditioned preference for an odor previously paired with stroking as an index of learning abilities. Without melatonin, conditioning was abolished, whereas spontaneous odor preference, psychomotor reflexes, and sensitivity to tactile stimuli were normal. Thus, abolition of conditioning was not associated with sensorimotor impairments. Histological analysis confirmed the efficacy of melatonin in reducing white-matter lesions induced by ibotenate. Furthermore, treatment with melatonin protected the ability to develop conditioning. Thus, melatonin, which easily crosses the blood-brain barrier and has been proven safe in children, may be effective in preventing learning disabilities caused by perinatal brain injuries in human preterm infants. PMID:17950543

  3. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... to Congress: Epidemiology and Rehabilitation Report to Congress: Military Personnel TBI in the US: Emergency Department Visits, Hospitalizations ... sustaining a traumatic brain injury, including: Buckling your child in the car using a child safety seat, ...

  4. Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline

    PubMed Central

    Raji, Cyrus A.; Eyre, Harris; Wei, Sindy H.; Bredesen, Dale; Moylan, Steven; Law, Meng; Small, Gary; Thompson, Paul; Friedlander, Robert; Silverman, Dan H.; Baune, Bernhard T; Hoang, Thu-Anh; Salamon, Noriko; Toga, Arthur; Vernooij, Meike W.

    2015-01-01

    Preventive neuroradiology is a new concept supported by a growing literature. The main rationale of preventive neuroradiology is the application of multi-modal brain imaging towards early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition ageing. In this hot topics review we will specifically focus on obesity and physical activity. PMID:26045577

  5. Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline.

    PubMed

    Raji, C A; Eyre, H; Wei, S H; Bredesen, D E; Moylan, S; Law, M; Small, G; Thompson, P M; Friedlander, R M; Silverman, D H; Baune, B T; Hoang, T A; Salamon, N; Toga, A W; Vernooij, M W

    2015-10-01

    Preventive neuroradiology is a new concept supported by growing literature. The main rationale of preventive neuroradiology is the application of multimodal brain imaging toward early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment, and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking, and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition aging. In this hot topics review, we will specifically focus on obesity and physical activity. PMID:26045577

  6. Sonolysis in Prevention of Brain Infarction During Cardiac Surgery (SONORESCUE)

    PubMed Central

    Školoudík, David; Hurtíková, Eva; Brát, Radim; Herzig, Roman

    2016-01-01

    Abstract Here, we examined whether intraoperative sonolysis can alter the risk of new ischemic lesions in the insonated brain artery territory during coronary artery bypass grafting (CABG) or valve surgery. Silent brain ischemic lesions could be detected in as many as two-thirds of patients after CABG or valve surgery. Patients indicated for CABG or valve surgery were allocated randomly to sonolysis (60 patients, 37 males; mean age, 65.3 years) of the right middle cerebral artery (MCA) during cardiac surgery and control group (60 patients, 37 males; mean age, 65.3 years). Neurologic examination, cognitive function tests, and brain magnetic resonance imaging (MRI) were conducted before intervention as well as 24 to 72 hours and 30 days after surgery. New ischemic lesions on control diffusion-weighted MRI in the insonated MCA territory ≥0.5 mL were significantly less frequent in the sonolysis group than in the control group (13.3% vs 26.7%, P = 0.109). The sonolysis group exhibited significantly reduced median volume of new brain ischemic lesions (P = 0.026). Stenosis of the internal carotid artery ≥50% and smoking were independent predictors of new brain ischemic lesions ≥0.5 mL (odds ratio = 5.685 [1.272–25.409], P = 0.023 and 4.698 [1.092–20.208], P = 0.038, respectively). Stroke or transient ischemic attack occurred only in 2 control patients (P = 0.496). No significant differences were found in scores for postintervention cognitive tests (P > 0.05). This study provides class-II evidence that sonolysis during CABG or valve surgery reduces the risk of larger, new ischemic lesions in the brain. www.clinicaltrials.gov (NCT01591018). PMID:27196464

  7. Aging of the Brain: How Can We Prevent It?

    ERIC Educational Resources Information Center

    Jarvik, Lissy F.

    1988-01-01

    Contends distinction between normal and abnormal aging of the brain changes as data emerge which identify as pathology what had previously been considered the norm. Reviews research on effects of aging in twins begun in 1940s, focusing on facts related to intellectual decline, neuropsychological test performance relationship to dementia, and…

  8. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model.

    PubMed

    Kumfu, Sirinart; Charununtakorn, Savitree T; Jaiwongkam, Thidarat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-06-01

    What is the central question of this study? Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. What is the main finding and its importance? The I/R injury caused blood-brain barrier breakdown, increased brain oxidative stress and resulted in mitochondrial dysfunction. Only the humanin treatment before ischaemia attenuated brain mitochondrial dysfunction, but it did not prevent blood-brain barrier breakdown or brain oxidative stress. Humanin treatment during ischaemia and in the reperfusion period provided no neuroprotection. These findings indicate that humanin exerted neuroprotection during cardiac I/R injury via improved brain mitochondrial function. Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Nevertheless, limited information is available regarding the effect of cardiac I/R injury on the brain, including blood-brain barrier (BBB) breakdown, brain oxidative stress and mitochondrial function. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. Forty-two male Wistar rats were divided into the following two groups: an I/R group, which was subjected to a 30 min left anterior descending coronary artery occlusion followed by 120 min reperfusion (I/R group; n = 36); and a sham group (n = 6). The I/R group was divided into six subgroups. Each subgroup was given either vehicle or humanin analogue (84 μg kg(-1) , i.v.) at three different time points, namely before

  9. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats

    PubMed Central

    Badeli, Hamze; Shahrokhi, Nader; KhoshNazar, Mahdieosadat; Asadi-Shekaari, Majid; Shabani, Mohammad; Eftekhar Vaghefi, Hassan; Khaksari, Mohammad; Basiri, Mohsen

    2016-01-01

    Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial pressure (ICP), and nerve damage. The current study assessed the effects of aqueous date fruit extract (ADFE) on the aforementioned parameters. Materials and Methods In this experimental study, diffused traumatic brain injury (TBI) was generated in adult male rats using Marmarou’s method. Experimental groups include two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14 days) and sham groups. Brain edema and neuronal injury were measured 72 hours after TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test was employed for the ANOVA post-hoc analysis. The criterion of statistical significance was sign at P<0.05. Results Brain water content in ADFE-treated groups was decreased in comparison with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and 72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was increased following on TBI. Conclusion ADFE pre-treatment demonstrated an efficient method for preventing traumatic brain deterioration and improving pathological parameters after TBI. PMID:27602324

  10. Linking brain stroke risk factors to human movement features for the development of preventive tools

    PubMed Central

    O'Reilly, Christian; Plamondon, Réjean; Lebrun, Louise-Hélène

    2014-01-01

    This paper uses human movement analyses to assess the susceptibility of brain stroke, one of the most important causes of disability in elders. To that end, a computerized battery of nine neuromuscular tests has been designed and evaluated with a sample of 120 subjects with or without stoke risk factors. The kinematics of the movements produced was analyzed using a computational neuromuscular model and predictive characteristics were extracted. Logistic regression and linear discriminant analysis with leave-one-out cross-validation was used to infer the probability of presence of brain stroke risk factors. The clinical potential value of movement information for stroke prevention was assessed by computing area under the receiver operating characteristic curve (AUC) for the diagnostic of risk factors based on motion analysis. AUC mostly varying between 0.6 and 0.9 were obtained, depending on the neuromuscular test and the risk factor investigated (obesity, diabetes, hypertension, hypercholesterolemia, cigarette smoking, and cardiac disease). Our results support the feasibility of the proposed methodology and its potential application for the development of brain stroke prevention tools. Although further research is needed to improve this methodology and its outcome, results are promising and the proposed approach should be of great interest for many experimenters open to novel approaches in preventive medicine and in gerontology. It should also be valuable for engineers, psychologists, and researchers using human movements for the development of diagnostic and neuromuscular assessment tools. PMID:25071559

  11. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  12. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner

    PubMed Central

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas; Hewitt, Stephen; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-01-01

    Purpose Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Experimental Design Temozolomide was administered in mice following earlier injection of brain-tropic human epidermal growth factor receptor 2 (HER2)-positive Jimt1-BR3 and triple negative 231-BR-EGFP sublines, the latter with and without expression of 06-methylguanine-DNA methyltransferase (MGMT). Additionally, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Results Temozolomide, when dosed at 50, 25, 10 or 5 mg/kg, 5 days/week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing Jimt-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, while in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Conclusions Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. PMID:24634373

  13. Levetiracetam for seizure prevention in brain tumor patients: a systematic review.

    PubMed

    Nasr, Ziad Ghantous; Paravattil, Bridget; Wilby, Kyle John

    2016-08-01

    Seizures are common complications for patients with brain tumors. No clear evidence exists regarding the use of antiepileptic agents for prophylactic use yet newer agents are being favoured in many clinical settings. The objective of this systematic review was to determine the efficacy of levetiracetam for preventing seizures in patients with brain tumors. A literature search was completed using the databases PubMed (1948 to December 2015), EMBASE (1980 to December 2015), Cochrane Database of Systematic Reviews, and Google Scholar. Studies were included if they reported seizure frequency data pertaining to levetiracetam use in patients with brain tumors as either monotherapy or as an add on agent. The literature search produced 21 articles (3 randomized controlled trials, seven prospective observational studies, and 11 retrospective observational studies). All studies were found to be at high risk of bias. Overall, studies show levetiracetam decreased seizure frequency in brain tumor patients with or without craniotomy. Safety outcomes were also favourable. As such, levetiracetam appears effective for reducing seizures in patients with brain tumors and may be considered a first-line agent. However, there is an urgent need for more high quality prospective data assessing levetiracetam and other antiepileptic drugs in this population. PMID:27168191

  14. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders.

    PubMed

    Wu, Aiguo; Noble, Emily E; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-05-01

    Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. PMID:25550171

  15. Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders

    PubMed Central

    Wu, Aiguo; Noble, Emily E.; Tyagi, Ethika; Ying, Zhe; Zhuang, Yumei; Gomez-Pinilla, Fernando

    2015-01-01

    Dietary deficiency of docosahexaenoic acid (C22: 6n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18: 3n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissue. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. PMID:25550171

  16. Alleviation of Brain Hypoperfusion after Preventative Treatment with Lomerizine in an Elderly Migraineur with Aura

    PubMed Central

    Aoyagi, Joe; Ikeda, Ken; Kiyozuka, Tetsuhito; Hirayama, Takehisa; Ishikawa, Yuichi; Sato, Ryuta; Yoshii, Yasuhiro; Kawabe, Kiyokazu; Iwasaki, Yasuo

    2011-01-01

    Previous studies of brain single-photon emission tomography (SPECT) showed changes of regional cerebral blood flow (rCBF) in migraineurs during prodromes or headache attacks. Little is known about how successful medication of migraine prevention can reflect rCBF in migraineurs. We highlighted alternation of brain SPECT findings in a migraineur with aura before and after prophylactic treatment with lomerizine, a calcium channel blocker. A 70-year-old man with migraine developed visual disturbance frequently at walking exercise for the recent 3 months. After this visual attack, a mild-degree of throbbing headache occured occasionally. Brain SPECT using 99mTc-ethyl cysteinate dimer was performed at interictal time of migraine. Brain SPECT before lomerizine treatment revealed hypoperfusion in the frontal, parietal, and occipital regions. He was diagnosed with recurrence of migraine with aura (MA). Lomerizine (10 mg/day, po) was administered for 3 months. MA and visual aura without headache were dramatically improved. Migraine attacks and visual disturbance were not induced at exercise. At 3 months after lomerizine medication, brain SPECT showed remarkable increase of rCBF. These SPECT changes of our patient indicated that antimigraine mechanism of lomerizine could contribute to restoration of cerebral hypoperfusion. PMID:21490733

  17. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice

    PubMed Central

    Zhou, Wenjun; Kavelaars, Annemieke; Heijnen, Cobi J.

    2016-01-01

    Rationale Chemotherapy-induced cognitive impairment, also known as ‘chemobrain’, is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin. Results Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5mg/kg) impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy. Conclusion In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation. PMID

  18. Prevention of brain trauma by legislation, regulation, and improved technology: a focus on motor vehicles.

    PubMed

    Jagger, J

    1992-03-01

    More than half of all brain trauma is caused by motor vehicle crashes. Prevention strategies that reduce the likelihood of motor vehicle crashes or injuries to occupants will also prevent trauma. Many effective strategies have yet to be applied on a large scale. Roadway design improvements such as removal of fixed objects from roadsides, widening roadside recovery zones, installing dividers between opposing lanes of traffic, and replacing fixed utility poles with breakaway designs, have been effective in reducing crashes and injuries. Driver measures of documented benefit include the 55 mph speed limit, safety belt use laws, 21 year legal drinking age, administrative license suspension for drinking drivers, and driving curfews and postponement of licensure for teenagers. Motor vehicle safety has improved greatly since the National Highway Traffic Safety Administration began regulating vehicle design. Significant design requirements include lap and shoulder belts in front seat positions, and, more recently, automatic safety belts or air bags in front seat positions, head restraints in front seat positions, reinforcing side and roof beams, and the center-mounted brake light. The most significant future advance will be the provision of full front seat air bags in all passenger vehicles. As much as one-quarter of brain trauma can be prevented or reduced in severity by this measure alone. Further safety requirements should include head restraints in rear positions, a-pillar, b-pillar, and roof padding, antilock brakes, and a vehicle rollover standard. PMID:1588622

  19. Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research

    PubMed Central

    Brandt, Claudia

    2010-01-01

    Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce “epileptogenesis,” a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis

  20. Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention.

    PubMed

    Blair, Clancy; Raver, C Cybele

    2016-04-01

    We review some of the growing evidence of the costs of poverty to children's neuroendocrine function, early brain development, and cognitive ability. We underscore the importance of addressing the negative consequences of poverty-related adversity early in children's lives, given evidence supporting the plasticity of executive functions and associated physiologic processes in response to early intervention and the importance of higher order cognitive functions for success in school and in life. Finally, we highlight some new directions for prevention and intervention that are rapidly emerging at the intersection of developmental science, pediatrics, child psychology and psychiatry, and public policy. PMID:27044699

  1. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    SciTech Connect

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan . E-mail: jy_chen@fmmu.edu.cn

    2007-02-15

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 {mu}g Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO{sub 4} solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications.

  2. Prevention and Treatment of Traumatic Brain Injury Due to Rapid-Onset Natural Disasters

    PubMed Central

    Regens, James L.; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  3. Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters.

    PubMed

    Regens, James L; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  4. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality. PMID:26751814

  5. Actual data on epidemiological evolution and prevention endeavours regarding traumatic brain injury

    PubMed Central

    Popescu, C; Anghelescu, A; Daia, C; Onose, G

    2015-01-01

    Background: Knowledge of the epidemiology of traumatic brain injury (TBI) is required both to prevent this disorder and to develop effective care and rehabilitation approaches for patients. Objective: The aim of this article is to find solutions to decrease the incidence of TBI and offer recommendations for their prevention. Material and methods: We analyzed epidemiological studies on TBI by performing a systematic review of literature, using information reported by different centers, collecting data on demographics, showing characteristics of TBI including incidence, identification of risk groups on differences in age, gender, geographical variation, severity and mortality. Results: Studies suggest that the incidence of TBI is between 18 and 250 per 100,000 persons per year. Men and people living in social and economical deprived areas, usually young adults and the elderly are high-risk groups for TBI. Discussion: Prevention remains the “key point” in medicine and especially for TBI, saving the patient from unnecessary often-harsh sufferance. Conclusions: Most public epidemiological data showed that TBI is a major cause of mortality and disability. The effort to understand TBI and the available strategies to treat this lesion, in order to improve clinical outcomes after TBI, may be based on an increase in research on the epidemiology of TBI. A coordinated strategy to evaluate this public health problem in Romania would first of all rely on a related advanced monitoring system, to provide precise information about the epidemiology, clinical and paraclinical data, but concerning the social and economic connected consequences, too. Abbreviations: CNS = central nervous system, ED = emergency department, EU = European Union, FTE = Full Time Employees, GCS = Glasgow Coma Scale, TBI = traumatic brain injury, US = United States, WHO = World Health Organization. PMID:26351526

  6. Preventing Flow-Metabolism Uncoupling Acutely Reduces Axonal Injury after Traumatic Brain Injury

    PubMed Central

    Mironova, Yevgeniya A.; Chen, Szu-Fu; Richards, Hugh K.; Pickard, John D.

    2012-01-01

    Abstract We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. Local cerebral metabolic rate for glucose (LCMRglc) and LCBF measurements were obtained 3 h post-trauma in the same rat via 18F-fluorodeoxyglucose and 14C-iodoantipyrine co-registered autoradiographic images, and compared to the density of damaged axonal profiles in adjacent sections, and in additional groups at 24 h used to assess different populations of injured axons stereologically. ACZ treatment significantly and globally elevated LCBF twofold above untreated-injured rats at 3 h (p<0.05), but did not significantly affect LCMRglc. As a result, ipsilateral LCMRglc:LCBF ratios were reduced by twofold to sham-control levels, and the density of β-APP-stained axons at 24 h was significantly reduced in most brain regions compared to the untreated-injured group (p<0.01). Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3–24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons. PMID:22321027

  7. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  8. Preventive effect of several antioxidants after oxidative stress on rat brain homogenates.

    PubMed

    Horáková, L; Ondrejicková, O; Bachratá, K; Vajdová, M

    2000-06-01

    Brain homogenate was used as a model system to study antioxidant properties of several natural and synthetic antioxidants under oxidative stress. Oxidative stress was induced by Fe/ascorbate system and lipid peroxidation as well as protein modification were studied. Thiobarbituric acid reactive substances (TBARS) were used as a marker of lipid peroxidation. The preventive effect concerning lipid peroxidation decreased in the order: buthylated hydroxytoluene (BHT) (3.5), stobadine (ST) (35), serotonin (54), trolox (98), U 74389G (160), melatonin (3100), (the numbers in the brackets represent IC50 in micromol/l). Methylprednisolone had no effect, and spin traps interfered with TBARS determination. Concerning creatine kinase (CK) activity as a selected marker of oxidative modification of proteins, the preventive effect of antioxidants (30 micromol/l) decreased in the order: BHT (30), trolox (75), stobadine (ST) (77), alpha-phenyl-N-tert-buthylnitrone (PBN) (87), sodium salt of N-tert-buthyl-C-(phenyl-2-sulfone) nitrone (SPBN) (90), (the numbers in the brackets represent the loss of CK activity in percentages, when 100% was the loss of CK activity in the absence of any antioxidant). The nonglucocorticoid steroid U 74389G, methylprednisolone and serotonin had no preventive effects, while melatonin had antioxidant effect only in a higher concentration (1 mmol/l). PMID:11156442

  9. Fingolimod Prevents Blood-Brain Barrier Disruption Induced by the Sera from Patients with Multiple Sclerosis

    PubMed Central

    Nishihara, Hideaki; Shimizu, Fumitaka; Sano, Yasuteru; Takeshita, Yukio; Maeda, Toshihiko; Abe, Masaaki; Koga, Michiaki; Kanda, Takashi

    2015-01-01

    Objective Effect of fingolimod in multiple sclerosis (MS) is thought to involve the prevention of lymphocyte egress from lymphoid tissues, thereby reducing autoaggressive lymphocyte infiltration into the central nervous system across blood-brain barrier (BBB). However, brain microvascular endothelial cells (BMECs) represent a possible additional target for fingolimod in MS patients by directly repairing the function of BBB, as S1P receptors are also expressed by BMECs. In this study, we evaluated the effects of fingolimod on BMECs and clarified whether fingolimod-phosphate restores the BBB function after exposure to MS sera. Methods Changes in tight junction proteins, adhesion molecules and transendothelial electrical resistance (TEER) in BMECs were evaluated following incubation in conditioned medium with or without fingolimod/fingolimod-phosphate. In addition, the effects of sera derived from MS patients, including those in the relapse phase of relapse-remitting (RR) MS, stable phase of RRMS and secondary progressive MS (SPMS), on the function of BBB in the presence of fingolimod-phosphate were assessed. Results Incubation with fingolimod-phosphate increased the claudin-5 protein levels and TEER values in BMECs, although it did not change the amount of occludin, ICAM-1 or MelCAM proteins. Pretreatment with fingolimod-phosphate restored the changes in the claudin-5 and VCAM-1 protein/mRNA levels and TEER values in BMECs after exposure to MS sera. Conclusions Pretreatment with fingolimod-phosphate prevents BBB disruption caused by both RRMS and SPMS sera via the upregulation of claudin-5 and downregulation of VCAM-1 in BMECs, suggesting that fingolimod-phosphate is capable of directly modifying the BBB. BMECs represent a possible therapeutic target for fingolimod in MS patients. PMID:25774903

  10. Readability assessment of concussion and traumatic brain injury publications by Centers for Disease Control and Prevention.

    PubMed

    Gill, Preetinder S; Gill, Tejkaran S; Kamath, Ashwini; Whisnant, Billy

    2012-01-01

    Health literacy is associated with a person's capacity to find, access, contextualize, and understand information needed for health care-related decisions. The level of health literacy thus has an influence on an individual's health status. It can be argued that low health literacy is associated with poor health status. Health care literature (eg, pamphlets, brochures, postcards, posters, forms) are published by public and private organizations worldwide to provide information to the general public. The ability to read, use, and understand is critical to the successful application of knowledge disseminated by this literature. This study assessed the readability, suitability, and usability of health care literature associated with concussion and traumatic brain injury published by the United States Centers for Disease Control and Prevention. The Flesch-Kincaid Grade Level, Flesch Reading Ease, Gunning Fog, Simple Measure of Gobbledygook, and Suitability Assessment of Materials indices were used to assess 40 documents obtained from the Centers for Disease Control and Prevention website. The documents analyzed were targeted towards the general public. It was found that in order to be read properly, on average, these documents needed more than an eleventh grade/high school level education. This was consistent with the findings of other similar studies. However, the qualitative Suitability Assessment of Materials index showed that, on average, usability and suitability of these documents was superior. Hence, it was concluded that formatting, illustrations, layout, and graphics play a pivotal role in improving health care-related literature and, in turn, promoting health literacy. Based on the comprehensive literature review and assessment of the 40 documents associated with concussion and traumatic brain injury, recommendations have been made for improving the readability, suitability, and usability of health care-related documents. The recommendations are presented in

  11. Readability assessment of concussion and traumatic brain injury publications by Centers for Disease Control and Prevention

    PubMed Central

    Gill, Preetinder S; Gill, Tejkaran S; Kamath, Ashwini; Whisnant, Billy

    2012-01-01

    Health literacy is associated with a person’s capacity to find, access, contextualize, and understand information needed for health care-related decisions. The level of health literacy thus has an influence on an individual’s health status. It can be argued that low health literacy is associated with poor health status. Health care literature (eg, pamphlets, brochures, postcards, posters, forms) are published by public and private organizations worldwide to provide information to the general public. The ability to read, use, and understand is critical to the successful application of knowledge disseminated by this literature. This study assessed the readability, suitability, and usability of health care literature associated with concussion and traumatic brain injury published by the United States Centers for Disease Control and Prevention. The Flesch–Kincaid Grade Level, Flesch Reading Ease, Gunning Fog, Simple Measure of Gobbledygook, and Suitability Assessment of Materials indices were used to assess 40 documents obtained from the Centers for Disease Control and Prevention website. The documents analyzed were targeted towards the general public. It was found that in order to be read properly, on average, these documents needed more than an eleventh grade/high school level education. This was consistent with the findings of other similar studies. However, the qualitative Suitability Assessment of Materials index showed that, on average, usability and suitability of these documents was superior. Hence, it was concluded that formatting, illustrations, layout, and graphics play a pivotal role in improving health care-related literature and, in turn, promoting health literacy. Based on the comprehensive literature review and assessment of the 40 documents associated with concussion and traumatic brain injury, recommendations have been made for improving the readability, suitability, and usability of health care-related documents. The recommendations are

  12. Moderate Peep After Tracheal Lipopolysaccharide Instillation Prevents Inflammation and Modifies the Pattern of Brain Neuronal Activation

    PubMed Central

    Quilez, María Elisa; Rodríguez-González, Raquel; Turon, Marc; Fernandez-Gonzalo, Sol; Villar, Jesús; Kacmarek, Robert M.; Gómez, Ma Nieves; Oliva, Joan Carles; Blanch, Lluís; López-Aguilar, Josefina

    2015-01-01

    ABSTRACT Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and ventilatory pattern may modify brain activation, possibly worsening the patient's outcome and resulting in cognitive sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving 7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS, SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes should be explored. PMID:26398809

  13. Brain Gαi2-subunit proteins and the prevention of salt sensitive hypertension

    PubMed Central

    Carmichael, Casey Y.; Wainford, Richard D.

    2015-01-01

    To counter the development of salt-sensitive hypertension, multiple brain G-protein-coupled receptor (GPCR) systems are activated to facilitate sympathoinhibition, sodium homeostasis, and normotension. Currently there is a paucity of knowledge regarding the role of down-stream GPCR-activated Gα-subunit proteins in these critically important physiological regulatory responses required for long-term blood pressure regulation. We have determined that brain Gαi2-proteins mediate natriuretic and sympathoinhibitory responses produced by acute pharmacological (exogenous central nociceptin/orphanin FQ receptor (NOP) and α2-adrenoceptor activation) and physiological challenges to sodium homeostasis (intravenous volume expansion and 1 M sodium load) in conscious Sprague–Dawley rats. We have demonstrated that in salt-resistant rat phenotypes, high dietary salt intake evokes site-specific up-regulation of hypothalamic paraventricular nucleus (PVN) Gαi2-proteins. Further, we established that PVN Gαi2 protein up-regulation prevents the development of renal nerve-dependent sympathetically mediated salt-sensitive hypertension in Sprague–Dawley and Dahl salt-resistant rats. Additionally, failure to up-regulate PVN Gαi2 proteins during high salt-intake contributes to the pathophysiology of Dahl salt-sensitive (DSS) hypertension. Collectively, our data demonstrate that brain, and likely PVN specific, Gαi2 protein pathways represent a central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Further, impairment of this endogenous “anti-hypertensive” mechanism contributes to the pathophysiology of salt-sensitive hypertension. PMID:26347659

  14. Abeta42 gene vaccine prevents Abeta42 deposition in brain of double transgenic mice.

    PubMed

    Qu, Bao-Xi; Xiang, Qun; Li, Liping; Johnston, Stephen Albert; Hynan, Linda S; Rosenberg, Roger N

    2007-09-15

    Abeta42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer's disease (AD). Gene-gun mediated gene vaccination targeting Abeta42 is a potential method to prevent and treat AD. APPswe/PS1DeltaE9 transgenic (Tg) mice were immunized with an Abeta42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Abeta42. The Abeta42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with control mice as assessed by ELISA analysis. Abeta42 plaque deposits in cerebral cortex and hippocampus were reduced by 51% and 52%, respectively, as shown by quantitative immunolabeling. Glial cell activation was also significantly attenuated in vaccinated compared with control mice. One rhesus monkey was vaccinated and developed anti-Abeta42 antibody. These new findings advance significantly our knowledge that gene-gun mediated Abeta42 gene immunization effectively induces a Th2 immune response and reduces the Abeta42 levels in brain in APPswe/PS1DeltaE9 mice. Abeta42 gene vaccination may be safe and efficient immunotherapy for AD. PMID:17574274

  15. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    PubMed

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia. PMID:24316471

  16. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration. PMID:26849417

  17. Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain.

    PubMed

    Cauli, Omar; Rodrigo, Regina; Boix, Jordi; Piedrafita, Blanca; Agusti, Ana; Felipo, Vicente

    2008-09-01

    Developing procedures to delay the mechanisms of acute liver failure-induced death would increase patients' survival by allowing time for liver regeneration or to receive a liver for transplantation. Hyperammonemia is a main contributor to brain herniation and mortality in acute liver failure (ALF). Acute ammonia intoxication in rats leads to N-methyl-D-aspartate (NMDA) receptor activation in brain. Blocking these receptors prevents ammonia-induced death. Ammonia-induced activation of NMDA receptors could contribute to ALF-induced death. If this were the case, blocking NMDA receptors could prevent or delay ALF-induced death. The aim of this work was to assess 1) whether ALF leads to NMDA receptors activation in brain in vivo and 2) whether blocking NMDA receptors prevents or delays ALF-induced death of rats. It is shown, by in vivo brain microdialysis, that galactosamine-induced ALF leads to NMDA receptors activation in brain. Blocking NMDA receptors by continuous administration of MK-801 or memantine through miniosmotic pumps affords significant protection against ALF-induced death, increasing the survival time approximately twofold. Also, when liver injury is not 100% lethal (1.5 g/kg galactosamine), blocking NMDA receptors increases the survival rate from 23 to 62%. This supports that blocking NMDA receptors could have therapeutic utility to improve survival of patients with ALF. PMID:18599589

  18. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  19. How the brain prevents a second error in a perceptual decision-making task

    PubMed Central

    Perri, Rinaldo Livio; Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2016-01-01

    In cognitive tasks, error commission is usually followed by a performance characterized by post-error slowing (PES) and post-error improvement of accuracy (PIA). Three theoretical accounts were hypothesized to support these post-error adjustments: the cognitive, the inhibitory, and the orienting account. The aim of the present ERP study was to investigate the neural processes associated with the second error prevention. To this aim, we focused on the preparatory brain activities in a large sample of subjects performing a Go/No-go task. The main results were the enhancement of the prefrontal negativity (pN) component -especially on the right hemisphere- and the reduction of the Bereitschaftspotential (BP) -especially on the left hemisphere- in the post-error trials. The ERP data suggested an increased top-down and inhibitory control, such as the reduced excitability of the premotor areas in the preparation of the trials following error commission. The results were discussed in light of the three theoretical accounts of the post-error adjustments. Additional control analyses supported the view that the adjustments-oriented components (the post-error pN and BP) are separated by the error-related potentials (Ne and Pe), even if all these activities represent a cascade of processes triggered by error-commission. PMID:27534593

  20. Computationally Prediction of Candidate Agents for Preventing Organ Dysfunction After Brain Death.

    PubMed

    Liu, Qianwen; Ye, Qifa

    2016-01-01

    BACKGROUND Our aim was to explore the mechanism of post-transplant organ function decrease induced by brain death (BD) and discover a potential candidate drug for improving the survival and organ function after BD. MATERIAL AND METHODS The microarray data developed from the liver tissues after BD were further analyzed by bioinformatics methods. The differentially expressed genes (DEGs) were computationally predicted and the DEGs that involved biological functions were explored by gene ontology (GO) analysis. The candidate agents that could induce the reverse gene signature were predicted based on the Connectivity Map (CMap) database. RESULTS There were total 1374 DEGs, including 589 up-regulated genes and 785 down-regulated genes. Function analysis showed that DEGs were mainly enriched in biological process-related GO terms, such as regulation of transcription, DNA-dependent, inflammatory response, and regulation of phosphorus metabolic process. The down-regulated genes were significantly enriched in transcription factor activity and transcription regulator activity-related molecular function. The down-regulated GO terms exhibited close interaction with each other. CONCLUSIONS The organ function decrease may be attributed by transcription alteration, inflammation response, and metabolic alteration in liver after BD. Spaglumic acid and halcinonide may be potential drugs for preventing organ damage during the BD process. PMID:27170053

  1. How the brain prevents a second error in a perceptual decision-making task.

    PubMed

    Perri, Rinaldo Livio; Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2016-01-01

    In cognitive tasks, error commission is usually followed by a performance characterized by post-error slowing (PES) and post-error improvement of accuracy (PIA). Three theoretical accounts were hypothesized to support these post-error adjustments: the cognitive, the inhibitory, and the orienting account. The aim of the present ERP study was to investigate the neural processes associated with the second error prevention. To this aim, we focused on the preparatory brain activities in a large sample of subjects performing a Go/No-go task. The main results were the enhancement of the prefrontal negativity (pN) component -especially on the right hemisphere- and the reduction of the Bereitschaftspotential (BP) -especially on the left hemisphere- in the post-error trials. The ERP data suggested an increased top-down and inhibitory control, such as the reduced excitability of the premotor areas in the preparation of the trials following error commission. The results were discussed in light of the three theoretical accounts of the post-error adjustments. Additional control analyses supported the view that the adjustments-oriented components (the post-error pN and BP) are separated by the error-related potentials (Ne and Pe), even if all these activities represent a cascade of processes triggered by error-commission. PMID:27534593

  2. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia

    PubMed Central

    Thatipamula, Shabarish; Rahim, Md Al; Zhang, Jiangyang; Hossain, Mir Ahamed

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I–IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24–48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 d). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax[6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4–24 weeks

  3. Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed?

    PubMed

    Weinstock, Marta

    2015-01-01

    This chapter presents a critical analysis of the behavioral alterations reported in the offspring of women exposed to stress and/or depression during pregnancy and the neurochemical and structural changes underlying them. Among the alterations attributed to prenatal stress in humans and experimental rats of both sexes is impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis, anxiety and exaggerated fear of novelty, and decreased social interaction. Learning and attention deficits are more prevalent in boys and male rats. Fear of novelty and anxiety are associated with enlargement of the amygdala and its corticotropin-releasing factor content, and decreased socialization, with lower oxytocin activity in the amygdala. Learning deficits are associated with a decrease in neurogenesis, dendritic complexity, and spine number in the dorsal hippocampus. Fostering prenatally stressed (PS) pups onto control mothers prevents the dysregulation of the HPA axis and heightened anxiety, indicating a role for postnatal factors in their etiology. By contrast, learning impairment and decreased socialization are not affected by this fostering procedure and are therefore prenatally mediated.In spite of their widespread use in depressed pregnant women, selective serotonin reuptake inhibitor (SSRI) antidepressants do not normalize the behavior of their children. When administered during gestation to stressed rats, SSRIs do not reduce anxiety or learning deficits in their offspring. Moreover, when given to unstressed mothers, SSRIs induce anxiety in the offspring. The detrimental effect of SSRIs may result from inhibition of the serotonin transporter exposing the brain to excess amounts of 5-hydroxytryptamine (5-HT) at a critical time during fetal development. PMID:25287533

  4. Prevention

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Prevention Basic Facts & Information Some factors that affect your ... control of the things that you can change. Preventive Recommendations for Adults Aged 65 and Older The ...

  5. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-01

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words). PMID:26057694

  6. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  7. MicroRNAs Linked to Trastuzumab Resistance, Brain Metastases | Division of Cancer Prevention

    Cancer.gov

    Researchers have tied increased levels of a microRNA (miRNA) to resistance to the targeted therapy trastuzumab (Herceptin) in women with HER2-positive breast cancer. Another research team has discovered a “signature” of miRNAs in brain metastases in patients with melanoma—a signature that is also present in the primary tumor and could identify melanoma patients at increased risk of brain metastases. |

  8. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by Soman. (Reannouncement with new availability information)

    SciTech Connect

    Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J.

    1992-12-31

    The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions and electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.

  9. Brain-derived Neurotrophic Factor Prevents Phencyclidine-induced Apoptosis in Developing Brain by Parallel Activation of both the ERK and PI-3K/Akt Pathways

    PubMed Central

    Xia, Yan; Wang, Cheng Z.; Liu, Jie; Anastasio, Noelle C.; Johnson, Kenneth M.

    2009-01-01

    Summary Phencyclidine is an N-methyl D-aspartate receptor (NMDAR) blocker that has been reported to induce neuronal apoptosis during development and schizophrenia-like behaviors in rats later in life. Brain derived neurotrophic factor (BDNF) has been shown to prevent neuronal death caused by NMDAR blockade, but the precise mechanism is unknown. This study examined the role of the phosphatidylinositol-3 kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in BDNF protection of PCP-induced apoptosis in corticostriatal organotypic cultures. It was observed that BDNF inhibited PCP-induced apoptosis in a concentration dependent fashion. BDNF effectively prevented PCP-induced inhibition of the ERK and PI-3K/Akt pathways and suppressed GSK-3β activation. Blockade of either PI-3K/Akt or ERK activation abolished BDNF protection. Western blot analysis revealed that the PI-3K inhibitor LY294002 prevented the stimulating effect of BDNF on the PI-3K/Akt pathway, but had no effect on the ERK pathway. Similarly, the ERK inhibitor PD98059 prevented the stimulating effect of BDNF on the ERK pathway, but not the PI-3K/Akt pathway. Co-application of LY294002 and PD98059 had no additional effect on BDNF-evoked activation of Akt or ERK. However, concurrent exposure to PD98059 and LY294002 caused much greater inhibition of BDNF-evoked phosphorylation of GSK-3β at serine 9 than did LY294002 alone. Finally, either BDNF or GSK-3β inhibition prevented PCP-induced suppression of cyclic-AMP response element binding protein (CREB) phosphorylation. These data demonstrate that the protective effect of BDNF against PCP-induced apoptosis is mediated by parallel activation of the PI-3K/Akt and ERK pathways, most likely involves inhibition of GSK-3β and activation of CREB. PMID:19887077

  10. Physical activity, cognitive function, and brain health: what is the role of exercise training in the prevention of dementia?

    PubMed

    Gregory, Sara M; Parker, Beth; Thompson, Paul D

    2012-01-01

    Tor preventive measures are necessary to attenuate the increased economic and social burden of dementia. This review will focus on the potential for physical activity and exercise training to promote brain health and improve cognitive function via neurophysiological changes. We will review pertinent animal and human research examining the effects of physical activity on cognitive function and neurophysiology. We will discuss cross-sectional and longitudinal studies addressing the relationship between neurocognitive health and cardiorespiratory fitness or habitual activity level. We will then present and discuss longitudinal investigations examining the effects of exercise training on cognitive function and neurophysiology. We will conclude by summarizing our current understanding of the relationship between physical activity and brain health, and present areas for future research given the current gaps in our understanding of this issue. PMID:24961266

  11. Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection

    PubMed Central

    Dionne, Kalen R.; Galvin, John M.; Schittone, Stephanie A.; Clarke, Penny

    2011-01-01

    In vivo and ex vivo models of reoviral encephalitis were utilized to delineate the contribution of type I interferon (IFN) to the host’s defense against local central nervous system (CNS) viral infection and systemic viral spread. Following intracranial (i.c.) inoculation with either serotype 3 (T3) or serotype 1 (T1) reovirus, increased expression of IFN-α, IFN-β, and myxovirus-resistance protein (Mx1; a prototypical IFN stimulated gene) was observed in mouse brain tissue. Type I IFN receptor deficient mice (IFNAR−/−) had accelerated lethality, compared to wildtype (B6wt) controls, following i.c. T1 or T3 challenge. Although viral titers in the brain and eyes of reovirus infected IFNAR−/− mice were significantly increased, these mice did not develop neurologic signs or brain injury. In contrast, increased reovirus titers in peripheral tissues (liver, spleen, kidney, heart, and blood) of IFNAR−/− mice were associated with severe intestinal and liver injury. These results suggest that reovirus-infected IFNAR−/− mice succumb to peripheral disease rather than encephalitis per se. To investigate the potential role of type I IFN in brain tissue, brain slice cultures (BSCs) were prepared from IFNAR−/− mice and B6wt controls for ex vivo T3 reovirus infection. Compared to B6wt controls, reoviral replication and virus-induced apoptosis were enhanced in IFNAR−/− BSCs indicating that a type I IFN response, initiated by resident CNS cells, mediates innate viral immunity within the brain. T3 reovirus tropism was extended in IFNAR−/− brains to include dentate neurons, ependymal cells, and meningeal cells indicating that reovirus tropism within the CNS is dependent upon type I interferon signaling. PMID:21671121

  12. Therapeutic Administration of Plasminogen Activator Inhibitor-1 Prevents Hypoxic–Ischemic Brain Injury in Newborns

    PubMed Central

    Yang, Dianer; Nemkul, Niza; Shereen, Ahmed; Jone, Alice; Dunn, R. Scott; Lawrence, Daniel A.; Lindquist, Diana

    2009-01-01

    Disruption of the integrity of the blood–brain barrier (BBB) is an important mechanism of cerebrovascular diseases, including neonatal cerebral hypoxia–ischemia (HI). Although both tissue-type plasminogen activator (tPA) and matrix metalloproteinase-9 (MMP-9) can produce BBB damage, their relationship in neonatal cerebral HI is unclear. Here we use a rodent model to test whether the plasminogen activator (PA) system is critical for MMP-9 activation and HI-induced brain injury in newborns. To test this hypothesis, we examined the therapeutic effect of intracerebroventricular injection of plasminogen activator inhibitor-1 (PAI-1) in rat pups subjected to unilateral carotid artery occlusion and systemic hypoxia. We found that the injection of PAI-1 greatly reduced the activity of both tPA and urokinase-type plasminogen activator after HI. It also blocked HI-induced MMP-9 activation and BBB permeability at 24 h of recovery. Furthermore, magnetic resonance imaging and histological analysis showed the PAI-1 treatment reduced brain edema, axonal degeneration, and cortical cell death at 24–48 h of recovery. Finally, the PAI-1 therapy provided a dose-dependent decrease of brain tissue loss at 7 d of recovery, with the therapeutic window at 4 h after the HI insult. Together, these results suggest that the brain PA system plays a pivotal role in neonatal cerebral HI and may be a promising therapeutic target in infants suffering hypoxic–ischemic encephalopathy. PMID:19587273

  13. Prevention

    MedlinePlus

    ... Prevention Treatment 2003 U.S. Outbreak African Rodent Importation Ban For Clinicians Clinical Recognition Specimen Collection Treatment Smallpox ... Examining Animals with Suspected Monkeypox African Rodent Importation Ban Resources Related Links Poxvirus Molluscum Contagiosum Orf Virus ( ...

  14. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    PubMed

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-01

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer. PMID:24423836

  15. Fructose-1,6-biphosphate prevents excitotoxic neuronal cell death in the neonatal mouse brain.

    PubMed

    Rogido, Marta; Husson, Isabelle; Bonnier, Christine; Lallemand, Marie Christine; Mérienne, Claude; Gregory, George A; Sola, Augusto; Gressens, Pierre

    2003-02-16

    The excitotoxic cascade may represent an important pathway leading to brain damage and cerebral palsy. Brain lesions induced in newborn mice by ibotenate (acting on N-methyl-D-aspartate receptors) and by S-bromowillardiine (acting on alpha-3-amino-hydroxy-5-methyl-4-isoxazole propionic acid and kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage. Fructose 1,6-biphosphate (FBP) is a high-energy glycolytic pathway intermediate which, in therapeutic doses, is non-toxic and neuroprotective in hypoxic-ischemic models of brain injury. Mechanisms of action include modulation of intracellular calcium through phospholipase C (PLC) activation. The goal of this study was to determine the neuroprotective effects of FBP in a mouse model of neonatal excitotoxic brain injury. Mice that received intraperitoneal FBP had a significant reduction in size of ibotenate-induced (80% reduction) or S-bromowillardiine-induced (40% reduction) cortical plate lesions when compared with control animals. Studies of fragmented DNA and cleaved caspase 3 confirmed the survival promoting effects of FBP. FBP had no detectable effect on excitotoxic white matter lesions. The effects of FBP were antagonized by co-administration of PLC, protein kinase C or mitogen-associated protein kinase inhibitors but not by protein kinase A inhibitor. A moderate, transient cooling of pups immediately after the insult extended the therapeutic window for FBP, as FBP administered 24 h after ibotenate was still significantly neuroprotective in these pups. This data extends the neuroprotective profile of FBP in neonatal brain injury and identifies gray matter lesions involving N-methyl-D-aspartate receptors as a major target for this promising drug. PMID:12586434

  16. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

    PubMed Central

    2012-01-01

    A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD. PMID:22849382

  17. Re-Training the Addicted Brain: A Review of Hypothesized Neurobiological Mechanisms of Mindfulness-Based Relapse Prevention

    PubMed Central

    Witkiewitz, Katie; Lustyk, M. Kathleen B.; Bowen, Sarah

    2013-01-01

    Addiction has generally been characterized as a chronic relapsing condition. Several laboratory, preclinical, and clinical studies have provided evidence that craving and negative affect are strong predictors of the relapse process. These states, as well as the desire to avoid them, have been described as primary motives for substance use. A recently developed behavioral treatment, Mindfulness-Based Relapse Prevention (MBRP), was designed to target experiences of craving and negative affect and their roles in the relapse process. MBRP offers skills in cognitive behavioral relapse prevention integrated with mindfulness meditation. The mindfulness practices in MBRP are intended to increase discriminative awareness, with a specific focus on acceptance of uncomfortable states or challenging situations without reacting “automatically.” A recent efficacy trial found that those randomized to MBRP, as compared to those in a control group, demonstrated significantly lower rates of substance use and greater decreases in craving following treatment. Furthermore, individuals in MBRP did not report increased craving or substance use in response to negative affect. Importantly, areas of the brain that have been associated with craving, negative affect, and relapse have also been shown to be affected by mindfulness training. Drawing from the neuroimaging literature, we review several plausible mechanisms by which MBRP might be changing neural responses to the experiences of craving and negative affect, which subsequently may reduce risk for relapse. We hypothesize that MBRP may affect numerous brain systems and may reverse, repair, or compensate for the neuroadaptive changes associated with addiction and addictive behavior relapse. PMID:22775773

  18. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion.

    PubMed

    Zheng, J; Bizzozero, O A

    2010-03-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the scavengers tested, with the exception of hydralazine, prevented protein carbonylation. These findings suggest that the majority of protein-associated carbonyl groups in this oxidative stress paradigm do not derive from stable lipid peroxidation products like malondialdehyde (MDA), acrolein and 4-hydroxynonenal (4-HNE). This conclusion was confirmed by the observation that the amount of MDA-, acrolein- and 4-HNE-protein adducts does not increase upon GSH depletion. Additional studies revealed that the efficacy of hydralazine at preventing carbonylation was due to its ability to reduce oxidative stress, most likely by inhibiting mitochondrial production of superoxide and/or by scavenging lipid free radicals. PMID:20001647

  19. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. PMID:26872850

  20. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    PubMed Central

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  1. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    PubMed

    Fares, Raafat P; Belmeguenai, Amor; Sanchez, Pascal E; Kouchi, Hayet Y; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  2. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients.

    PubMed

    Bertram, Sebastian; Brixius, Klara; Brinkmann, Christian

    2016-08-01

    Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer's disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood-brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group. PMID:27160819

  3. Predicting and Preventing Skull Overheating in Non Invasive Brain HIFU Treatment Protocols

    SciTech Connect

    Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickael; Fink, Mathias

    2005-03-28

    Ultrasound brain therapy is currently limited by the strong phase and amplitude aberrations induced by the heterogeneities of the skull. However the development of aberration correction techniques has made it possible to correct the beam distortion induced by the skull and to produce a sharp focus in the brain. Moreover, using the density of the skull bone that can be obtained with high-resolution CT scans, the corrections needed to produce this sharp focus can be calculated using ultrasound propagation models. We propose here a model for computing the temperature elevation in the skull during High Intensity Focused Ultrasound (HIFU) transcranial therapy. Based on CT scans, the wave propagation through the skull is computed with 3D finite differences wave propagation software. The acoustic simulation is combined with a 3D thermal diffusion code and the temperature elevation inside the skull is computed. Finally, the simulation is validated experimentally by measuring the temperature elevation in several locations of the skull.

  4. Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis

    PubMed Central

    Sifringer, M; Bendix, I; Börner, C; Endesfelder, S; von Haefen, C; Kalb, A; Holifanjaniaina, S; Prager, S; Schlager, G W; Keller, M; Jacotot, E; Felderhoff-Mueser, U

    2012-01-01

    Within the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluoro-phenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-methyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino)3-methylbutyrylamino)propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants. PMID:22237207

  5. Ibuprofen Fails to Prevent Brain Pathology in a Model of Neuropsychiatric Lupus

    PubMed Central

    BALLOK, DAVID A.; MA, XIAOXING; DENBURG, JUDAH A.; ARSENAULT, LARRY; SAKIC, BORIS

    2006-01-01

    Objective Neurologic and psychiatric manifestations are severe complications of systemic lupus erythematosus (SLE). As commonly seen in patients, spontaneous development of lupus-like disease in MRL-lpr mice is accompanied by brain atrophy and behavioral dysfunction. We examined inflammatory and ultrastructural aspects of central nervous system (CNS) involvement using a nonselective cyclooxygenase-2 (COX-2) inhibitor and measuring effects on behavior, microglial activation, and neuronal morphology. Methods Ibuprofen (IBU) was provided in a rodent chow (375 ppm) for animals 5–19 weeks of age. Exploration of a novel environment and performance in the forced swim test assessed effects on behavior. Immunohistochemistry, fluoro-Jade B (FJB) staining, and flow cytometry were employed in neuropathological analysis. Transmission electron microscopy was used to examine ultrastructural morphology of cortical, hippocampal, hypothalamic, nigral, and cerebellar cells. Results Chronic IBU treatment failed to normalize immune status, behavior, and brain mass in lupusprone MRL-lpr mice. It also did not reduce density of CD3+ lymphocytes in the choroid plexus, or FJB+ neurons in the hypothalamus. Activated F4/80+ microglia increased with age, but IBU treatment was not effective in reducing their numbers. Although numerous dark cells were seen in functionally critical brain regions (e.g., paraventricular nucleus and subgranular zone), ultrastructural morphologies of classical apoptosis or necrosis were not detected. Conclusion The COX-dependent pathway does not seem to be critical in the etiology of CNS disease in this model of neuropsychiatric lupus. Reduced brain mass, increased microglial activation, and condensation of cytoplasm point to a metabolic perturbation (e.g., excitotoxic damage) that compromises function and survival of central neurons during lupus-like disease. PMID:17086606

  6. Treatment-induced prevention of learning deficits in newborn mice with brain lesions.

    PubMed

    Bouslama, M; Chauvière, L; Fontaine, R H; Matrot, B; Gressens, P; Gallego, J

    2006-08-25

    Perinatal brain injuries often result in irreversible learning disabilities, which manifest in early childhood. The molecular and cellular mechanisms of these injuries and potential pharmacological treatments are emerging, chiefly from studies in newborn rodents. In newborn mice, experimentally induced lesions can be dramatically reduced by appropriate neuroprotective treatments. However, the early effectiveness of these treatments in preserving cognition remained unknown. Here, we addressed this issue by using intracerebral ibotenate to induce excitotoxic brain lesions in 5-day-old mice (postnatal day 5). On postnatal days 6-7, we tested spontaneous preference for maternal odors, as an index of odor memory, and conditioned preference for an artificial odor previously paired with stroking, as an index of associative learning. Brain-lesioned newborn mice showed normal general status and preference for maternal odors. In contrast, odor conditioning was severely impaired. A previous study showed that fructose 1,6-biphosphate acted as a neuroprotective agent which significantly reduced neocortical lesion size. In the present study, treating the newborn mice with fructose 1,6-biphosphate 15 min before the ibotenate injection reduced neocortical lesion size and restored conditioning. This demonstrates, for the first time, that neuroprotective treatment can protect some features of early cognition. PMID:16713117

  7. Active sleep and its role in the prevention of apoptosis in the developing brain.

    PubMed

    Morrissey, Michael J; Duntley, S P; Anch, A M; Nonneman, R

    2004-01-01

    The aim of this study is to identify a possible function of Active Sleep (AS), also known as Rapid Eye Movement Sleep (REM) in humans, as a protective state during early Central Nervous System (CNS) development. Previous research suggest pharmacological agents that inhibit high levels of neuronal activity in the CNS (e.g., benzodiazepines, ethanol, and anesthetics) precipitate massive CNS programmed cell death (PCD), in developing mammals. AS is characterized by high levels of CNS activity at levels comparable to waking. AS occupies up to 75% of the circadian cycle in developing mammals (rodents from postnatal days 1-14 days (p1-p14), and humans from prenatal month seven to postnatal year one). Many studies have implicated AS as having an active role in the normal development of the visual system and have documented myriad behavioral anomalies as a result of AS deprivation. Reduced adult brain mass has also been observed after AS deprivation in developing rats during this period, however, no study to date has documented this process as it occurs (i.e., the cellular mechanisms that result in behavioral anomalies or reduced adult brain mass). The purpose of this study is to begin documentation of this process by utilizing histological techniques that identify the PCD process, if it occurs, after acute and prolonged AS deprivation in rats from ages p7 to p14 (a time of active synaptogenesis). Our methodology includes utilization of the alpha2-adrenergic receptor agonist clonidine, to deprive rat pups of AS at ages varying from p7 to p14. Pilot data from our laboratory has shown that an acute exposure to clonidine significantly reduces time spent in AS. The animals that were AS deprived also showed a statistically significant decrease in brain mass and have stained positively for PCD. If our hypotheses are correct, this research will have major implications with regard to determining the function(s) of REM sleep. PMID:15142640

  8. A randomized trial of stress management for the prevention of new brain lesions in MS

    PubMed Central

    Lovera, Jesus; Brown, Ted; Cohen, Bruce; Neylan, Thomas; Henry, Roland; Siddique, Juned; Jin, Ling; Daikh, David; Pelletier, Daniel

    2012-01-01

    Objectives: This trial examined the efficacy of a stress management program in reducing neuroimaging markers of multiple sclerosis (MS) disease activity. Methods: A total of 121 patients with relapsing forms of MS were randomized to receive stress management therapy for MS (SMT-MS) or a wait-list control condition. SMT-MS provided 16 individual treatment sessions over 24 weeks, followed by a 24-week post-treatment follow-up. The primary outcome was the cumulative number of new gadolinium-enhancing (Gd+) brain lesions on MRI at weeks 8, 16, and 24. Secondary outcomes included new or enlarging T2 MRI lesions, brain volume change, clinical exacerbation, and stress. Results: SMT-MS resulted in a reduction in cumulative Gd+ lesions (p = 0.04) and greater numbers of participants remained free of Gd+ lesions during the treatment (76.8% vs 54.7%, p = 0.02), compared to participants receiving the control treatment. SMT-MS also resulted in significantly reduced numbers of cumulative new T2 lesions (p = 0.005) and a greater number of participants remaining free of new T2 lesions (69.5% vs 42.7%, p = 0.006). These effects were no longer detectable during the 24-week post-treatment follow-up period. Conclusions: This trial indicates that SMT-MS may be useful in reducing the development of new MRI brain lesions while patients are in treatment. Classification of evidence: This study provides Class I evidence that SMT-MS, a manualized stress management therapy program, reduced the number of Gd+ lesions in patients with MS during a 24-week treatment period. This benefit was not sustained beyond 24 weeks, and there were no clinical benefits. Trial registration: ClinicalTrials.gov, number NCT00147446. PMID:22786596

  9. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells.

    PubMed

    Li, Jingang; Yawno, Tamara; Sutherland, Amy; Loose, Jan; Nitsos, Ilias; Bischof, Robert; Castillo-Melendez, Margie; McDonald, Courtney A; Wong, Flora Y; Jenkin, Graham; Miller, Suzanne L

    2016-09-01

    Infants born very preterm are at high risk for neurological deficits including cerebral palsy. In this study we assessed the neuroprotective effects of umbilical cord blood cells (UCBCs) and optimal administration timing in a fetal sheep model of preterm brain injury. 50 million allogeneic UCBCs were intravenously administered to fetal sheep (0.7 gestation) at 12h or 5d after acute hypoxia-ischemia (HI) induced by umbilical cord occlusion. The fetal brains were collected at 10d after HI. HI (n=7) was associated with reduced number of oligodendrocytes (Olig2+) and myelin density (CNPase+), and increased density of activated microglia (Iba-1+) in cerebral white matter compared to control fetuses (P<0.05). UCBCs administered at 12h, but not 5d after HI, significantly protected white matter structures and suppressed cerebral inflammation. Activated microglial density showed a correlation with decreasing oligodendrocyte number (P<0.001). HI caused cell death (TUNEL+) in the internal capsule and cell proliferation (Ki-67+) in the subventricular zone compared to control (P<0.05), while UCBCs at 12h or 5d ameliorated these effects. Additionally, UCBCs at 12h induced a significant systemic increase in interleukin-10 at 10d, and reduced oxidative stress (malondialdehyde) following HI (P<0.05). UCBC administration at 12h after HI reduces preterm white matter injury, via anti-inflammatory and antioxidant actions. PMID:27317990

  10. Brain Injury in the Preterm Infant: New Horizons for Pathogenesis and Prevention

    PubMed Central

    Back, Stephen A.

    2015-01-01

    Preterm neonates are surviving with a milder spectrum of motor and cognitive disabilities that appear to be related to widespread disturbances in cell maturation that target cerebral gray and white matter. Whereas the preterm brain was previously at high risk for destructive lesions, preterm survivors now commonly display less severe injury that is associated with aberrant regeneration and repair responses that result in reduced cerebral growth. Impaired cerebral white matter growth is related to myelination disturbances that are initiated by acute death of pre-myelinating oligodendrocytes (preOLs), but are followed by rapid regeneration of preOLs that fail to normally mature to myelinating cells. Although immature neurons are more resistant to cell death than mature neurons, they display widespread disturbances in maturation of their dendritic arbors and synapses, which further contributes to impaired cerebral growth. Thus, even more mild cerebral injury involves disrupted repair mechanisms in which neurons and preOLs fail to fully mature during a critical window in development of neural circuitry. These recently recognized distinct forms of cerebral gray and white matter dysmaturation raise new diagnostic challenges and suggest new therapeutic strategies to promote brain growth and repair. PMID:26302698

  11. Research on prevention of bilirubin-induced brain injury and kernicterus: National Institute of Child Health and Human Development conference executive summary. 2003.

    PubMed

    Blackmon, Lillian R; Fanaroff, Avroy A; Raju, Tonse N K

    2004-07-01

    In July 2003, the National Institute of Child Health and Human Development convened a conference, "Research on Prevention of Bilirubin-Induced Brain Injury and Kernicterus: Bench-to-Bedside." This article will provide a summary of presentations and discussions from this conference. The summary will focus on the identified knowledge gaps in 5 areas related to bilirubin-induced brain injury and kernicterus: 1) neurobiology and neuroimaging; 2) epidemiology and issues of clinical management; 3) methodologies for assessing clinical jaundice and direct and noninvasive measurement of serum bilirubin and hemolysis; 4) therapies for management of neonatal hyperbilirubinemia; and 5) public health surveillance and systems-based approaches to prevention. PMID:15231933

  12. Adeno-associated virus-mediated expression of β-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain.

    PubMed

    Sargeant, Timothy J; Wang, Susan; Bradley, Josephine; Smith, Nicolas J C; Raha, Animesh A; McNair, Rosamund; Ziegler, Robin J; Cheng, Seng H; Cox, Timothy M; Cachón-González, Maria Begoña

    2011-11-15

    Sandhoff disease, a GM2 gangliosidosis caused by a deficiency in β-hexosaminidase, is characterized by progressive neurodegeneration. Although loss of neurons in association with lysosomal storage of glycosphingolipids occurs in patients with this disease, the molecular pathways that lead to the accompanying neurological defects are unclear. Using an authentic murine model of GM2 gangliosidosis, we examined the pattern of neuronal loss in the central nervous system and investigated the effects of gene transfer using recombinant adeno-associated viral vectors expressing β-hexosaminidase subunits (rAAV2/1-Hex). In 4-month-old Sandhoff mice with neurological deficits, cells staining positively for the apoptotic signature in the TUNEL reaction were found in the ventroposterior medial and ventroposterior lateral (VPM/VPL) nuclei of the thalamus. There was progressive loss of neuronal density in this region with age. Comparable loss of neuronal density was identified in the lateral vestibular nucleus of the brainstem and a small but statistically significant loss was present in the ventral spinal cord. Loss of neurons was not detected in other regions that were analysed. Administration of rAAV2/1-Hex into the brain of Sandhoff mice prevented the decline in neuronal density in the VPM/VPL. Preservation of neurons in the VPM/VPL was variable at the humane endpoint in treated animals, but correlated directly with increased lifespan. Loss of neurons was localized to only a few regions in the Sandhoff brain and was prevented by rAAV-mediated transfer of β-hexosaminidase gene function at considerable distances from the site of vector administration. PMID:21852247

  13. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis. PMID:26318578

  14. tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury.

    PubMed

    Armstead, William M; Riley, John; Yarovoi, Serge; Cines, Douglas B; Smith, Douglas H; Higazi, Abd Al-Roof

    2012-06-10

    Traumatic brain injury (TBI) is associated with loss of autoregulation due to impaired responsiveness to cerebrovascular dilator stimuli, which leads to cerebral hypoperfusion and neuronal impairment or death. Upregulation of tissue plasminogen activator (tPA) post-TBI exacerbates loss of cerebral autoregulation and NMDA-receptor-mediated impairment of cerebral hemodynamics, and enhances excitotoxic neuronal death. However, the relationship between NMDA-receptor activation, loss of autoregulation, and neurological dysfunction is unclear. Here, we evaluated the potential therapeutic efficacy of a catalytically inactive tPA variant, tPA S481A, that acts by competing with wild-type tPA for binding, cleavage, and activation of NMDA receptors. Lateral fluid percussion brain injury was produced in anesthetized piglets. Pial artery reactivity was measured via a closed cranial window, and cerebrospinal fluid (CSF) extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) was quantified by enzyme-linked immunosorbent assay (ELISA). tPA-S481A prevented impairment of cerebral autoregulation and reduced histopathologic changes after TBI by inhibiting upregulation of the ERK isoform of MAPK. Treatment with this tPA variant provides a novel approach for limiting neuronal toxicity caused by untoward NMDA-receptor activation mediated by increased tPA and glutamate following TBI. PMID:22435890

  15. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells.

    PubMed

    Binley, Kate E; Ng, Wai S; Barde, Yves-Alain; Song, Bing; Morgan, James E

    2016-08-01

    We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as 'labelling' with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain-derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma. PMID:27285957

  16. The combination of organoselenium compounds and guanosine prevents glutamate-induced oxidative stress in different regions of rat brains.

    PubMed

    Dalla Corte, Cristiane L; Bastos, Luíza L; Dobrachinski, Fernando; Rocha, João B T; Soares, Félix A A

    2012-01-01

    This study was designed to investigate the protective effects of the combination of guanosine and 2 organoselenium compounds (ebselen and diphenyl diselenide) against glutamate-induced oxidative stress in different regions of rat brains. Glutamate caused an increase in reactive oxygen species (ROS) generation and a decrease in [(3)H]-glutamate uptake in striatal, cortical, and hippocampal slices. Guanosine, ebselen, and diphenyl diselenide prevented glutamate-induced ROS production in striatal, cortical and hippocampal slices. The combination of guanosine with organoselenium compounds was more effective against glutamate-induced ROS production than the individual compounds alone. Guanosine prevented [(3)H]-glutamate uptake inhibition in striatal, cortical, and hippocampal slices. Thus, protection against the harmful effects of glutamate is possibly due to the combination of the antioxidant properties of organoselenium compounds and the stimulatory effect of guanosine on glutamate uptake. In conclusion, the combination of antioxidants and glutamatergic system modulators could be considered a potential therapy against the prooxidant effects of glutamate. PMID:22133308

  17. Synergistic effect of L-Carnosine and EGCG in the prevention of physiological brain aging.

    PubMed

    Davinelli, Sergio; Di Marco, Roberto; Bracale, Renata; Quattrone, Alessandro; Zella, Davide; Scapagnini, Giovanni

    2013-01-01

    The benefits of multi-target action are well established in a variety of pathological models. Many dietary supplements and nutraceuticals may be useful to slow age-related cognitive declines and the risk of developing neurodegenerative disease. L-Carnosine and EGCG are natural compounds that have received particular attention because of their potential role in modulating oxidative stress associated with aging and chronic conditions. The biological activities of these naturally occurring substances have frequently been used to prevent or reduce senile features; however they have never been evaluated as a combined treatment. In the present study we investigated the combined effect of L-Carnosine and EGCG on the activation of two stress-responsive pathways: HO-1 and Hsp72 (the inducible form of Hsp70), which play an important role in cytoprotection against oxidative stress-induced cell damage. We demonstrated that the neuroprotective effects of EGCG and L-Carnosine are achieved through the modulation of HO-1/Hsp72 systems. Furthermore, the combined action of both compounds resulted in a synergistic increase of HO-1 expression which suggests a crosstalk between the HO-1 and the Hsp72-mediated pathways. Our results indicate that the combined administration of EGCG and L-Carnosine would benefit the treatment and prevention of neurodegenerative diseases by reducing the neuronal damage caused by oxidative stress. PMID:23092324

  18. Ferrous Iron Induces Nrf2 Expression in Mouse Brain Astrocytes to Prevent Neurotoxicity.

    PubMed

    Cui, Zhenwen; Zhong, Zhihong; Yang, Yong; Wang, Baofeng; Sun, Yuhao; Sun, Qingfang; Yang, Guo-Yuan; Bian, Liuguan

    2016-08-01

    Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF-E2-related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe(2+) . Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe(2+) on Nrf2 expression. The results demonstrated that 24-h Fe(2+) exposure exerted time- and concentration-dependent cytotoxicity in astrocytes. Furthermore, Fe(2+) exposure in astrocytes resulted in time- and concentration-dependent increases in Nrf2 expression, which preceded Fe(2+) toxicity. Nrf2-specific siRNA further knocked down Nrf2 levels, resulting in greater Fe(2+) -induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self-defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe(2+) -induced neurotoxicity. PMID:27037625

  19. Activating Akt and the brain's resources to drive cellular survival and prevent inflammatory injury

    PubMed Central

    Chong, Z.Z.; Li, F.; Maiese, K.

    2008-01-01

    Summary Protein kinase B, also known as Akt, is a serine/threonine kinase and plays a critical role in the modulation of cell development, growth, and survival. Interestingly, Akt is ubiquitously expressed throughout the body, but its expression in the nervous system is substantially up-regulated during cellular stress, suggesting a more expansive role for Akt in the nervous system that may involve cellular protection. In this regard, a body of recent work has identified a robust capacity for Akt and its downstream substrates to foster both neuronal and vascular survival during apoptotic injury. Cell survival by Akt is driven by the modulation of both intrinsic cellular pathways that oversee genomic DNA integrity and extrinsic mechanisms that control inflammatory microglial activation. A series of distinct pathways are regulated by Akt that include the Forkhead family of transcription factors, GSK-3ß, ß-catenin, c-Jun, CREB, Bad, IKK, and p53. Culminating below these substrates of Akt are the control of caspase mediated pathways that promote genomic integrity as well as prevent inflammatory cell demise. With further levels of progress in defining the cellular role of Akt, the attractiveness of Akt as a vital and broad cytoprotectant for both neuronal and vascular cell populations should continue to escalate. PMID:15578447

  20. Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1.

    PubMed

    Yang, Xiaojiao; He, Zhijie; Zhang, Qi; Wu, Yi; Hu, Yongshan; Wang, Xiaolou; Li, Mingfen; Wu, Zhiyuan; Guo, Zhenzhen; Guo, Jingchun; Jia, Jie

    2012-01-01

    Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC)-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1) protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate. PMID:22949807

  1. Inhibition of neuroinflammation prevents injury to the serotonergic network after hypoxia-ischemia in the immature rat brain.

    PubMed

    Wixey, Julie A; Reinebrant, Hanna E; Buller, Kathryn M

    2011-01-01

    The phenotypic identities and characterization of neural networks disrupted after neonatal hypoxia-ischemia (HI) in the preterm brain remain to be elucidated. Interruption of the central serotonergic (5-hydroxytryptamine [5-HT]) system can lead to numerous functional deficits, many of which match those in human preterm neonates exposed to HI. How the central serotonergic network is damaged after HI and mechanisms underlying such injury are not known. We used a Postnatal Day 3 rat model of preterm HI and found parallel reductions in the 5-HT transporter expression, 5-HT levels and numbers of 5-HT-positive dorsal raphe neurons 1 week after insult. Post-HI administration of minocycline, an inhibitor of activated microglia, attenuated HI-induced damage to the serotonergic network. Minocycline effects seemed to be region specific, that is, where there was micro-glial activation and increases in tumor necrosis factor-α and inter-leukin 1β. The concurrent improvement in serotonergic outcomes suggests that inhibition of neuroinflammation prevented damage to the serotonergic neurons rather than affected the regulation of 5-HT or serotonin transporter. These data elucidate the mechanisms of serotonergic network injury in HI, and despite the known adverse effects associated with the use of minocycline in neonates, postinsult administration of minocycline may represent a novel approach to counter neuroinflammation and preserve the integrity of the central serotonergic network in the preterm neonate. PMID:21157380

  2. Dipeptidyl peptidase 4 inhibitor improves brain insulin sensitivity, but fails to prevent cognitive impairment in orchiectomy obese rats.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-08-01

    It is unclear whether the dipeptidyl peptidase 4 (DPP4) inhibitor can counteract brain insulin resistance, brain mitochondrial dysfunction, impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived obese rats. We hypothesized that DPP4 inhibitor vildagliptin improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function and hippocampal synaptic plasticity. Thirty male Wistar rats received either a sham-operated (S, n=6) or bilateral orchiectomy (ORX, n=24). ORX rats were divided into two groups and fed with either a normal diet (ND (NDO)) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n=6/subgroup) to receive either a vehicle or vildagliptin (3 mg/kg per day, p.o.) for 4 weeks. After treatment, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity and brain mitochondrial function were determined in each rat. We found that HFO rats exhibited peripheral and brain insulin resistance, brain mitochondrial dysfunction, impaired hippocampal synaptic plasticity and cognitive decline. NDO rats did not develop peripheral and brain insulin resistance. However, impaired hippocampal synaptic plasticity and cognitive decline occurred. Vildagliptin significantly improved peripheral insulin sensitivity, restored brain insulin sensitivity and decreased brain mitochondrial reactive oxygen species production in HFO rats. However, vildagliptin did not restore hippocampal synaptic plasticity and cognitive function in both NDO and HFO rats. These findings suggest that vildagliptin could not counteract the impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived subjects, despite its effects on improved peripheral and brain insulin sensitivity as well as brain mitochondrial function. PMID:26016746

  3. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways.

    PubMed

    Won, Soonmi; Sayeed, Iqbal; Peterson, Bethany L; Wali, Bushra; Kahn, Jared S; Stein, Donald G

    2015-01-01

    Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF-kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5'-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells. PMID:25815722

  4. Vitamin D Prevents Hypoxia/Reoxygenation-Induced Blood-Brain Barrier Disruption via Vitamin D Receptor-Mediated NF-kB Signaling Pathways

    PubMed Central

    Won, Soonmi; Sayeed, Iqbal; Peterson, Bethany L.; Wali, Bushra; Kahn, Jared S.; Stein, Donald G.

    2015-01-01

    Maintaining blood-brain barrier integrity and minimizing neuronal injury are critical components of any therapeutic intervention following ischemic stroke. However, a low level of vitamin D hormone is a risk factor for many vascular diseases including stroke. The neuroprotective effects of 1,25(OH)2D3 (vitamin D) after ischemic stroke have been studied, but it is not known whether it prevents ischemic injury to brain endothelial cells, a key component of the neurovascular unit. We analyzed the effect of 1,25(OH)2D3 on brain endothelial cell barrier integrity and tight junction proteins after hypoxia/reoxygenation in a mouse brain endothelial cell culture model that closely mimics many of the features of the blood-brain barrier in vitro. Following hypoxic injury in bEnd.3 cells, 1,25(OH)2D3 treatment prevented the decrease in barrier function as measured by transendothelial electrical resistance and permeability of FITC-dextran (40 kDa), the decrease in the expression of the tight junction proteins zonula occludin-1, claudin-5, and occludin, the activation of NF—kB, and the increase in matrix metalloproteinase-9 expression. These responses were blocked when the interaction of 1,25(OH) )2D3 with the vitamin D receptor (VDR) was inhibited by pyridoxal 5’-phosphate treatment. Our findings show a direct, VDR-mediated, protective effect of 1,25(OH) )2D3 against ischemic injury-induced blood-brain barrier dysfunction in cerebral endothelial cells. PMID:25815722

  5. Gonadotropin-releasing hormone agonist prevents l-arginine induced immune dysfunction independent of gonadal steroids: Relates with a decline in elevated thymus and brain nitric oxide levels.

    PubMed

    Ullewar, Meenal P; Umathe, Sudhir N

    2016-07-01

    The present study was carried out to find out the effect of leuprolide, a gonadotropin-releasing hormone (GnRH) receptor agonist, on l-arginine induced immunosuppression, and relates with brain and thymus levels of nitric oxide (NO). Further, the effect of leuprolide was studied in sham operated, ovariectomized and castrated mice to understand the role of sex steroids in l-arginine induced immunosuppression. Treatment with l-arginine (250, 500, 1000 mg/kg/i.p. for 7 days) increased brain and thymus levels of NO; measured by using 'NO Measuring Instrument' (Innovative Instruments Inc., USA) in dose dependent manner. It also decreased cellularity, relative weight of thymus, DNA fragmentation, humoral, and cell mediated immunity response to sheep RBC. Prior treatment of leuprolide (100μg/mouse, s.c. for 7 days) prevented l-arginine induced rise in brain and thymus tissue levels of NO as well as the changes in immunological parameters. The protective effect of leuprolide against l-arginine induced immunosuppression and rise in brain and tissue nitric oxide levels was even evident in ovariectomized and castrated mice, suggesting that the observed effect of leuprolide is independent of sex steroids, and correlated with its ability to prevent l-arginine induced rise in CNS and peripheral immune tissue levels of NO. PMID:27130798

  6. Brain Basics: Preventing Stroke

    MedlinePlus

    ... valve defects, irregular heart beat (atrial fibrillation), and enlargement of one of the heart's chambers can result ... of atrial fibrillation; LVH = diagnosis of left ventricular hypertrophy Points 0 +1 +2 +3 +4 +5 +6 + ...

  7. Partially Silencing Brain Toll-Like Receptor 4 Prevents in Part Left Ventricular Remodeling with Sympathoinhibition in Rats with Myocardial Infarction-Induced Heart Failure

    PubMed Central

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Background Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. Methodology/Principal Findings MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Conclusions Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure. PMID:23874864

  8. Inhibition of Leptin-ObR Interaction Does not Prevent Leptin Translocation Across a Human Blood-Brain Barrier Model.

    PubMed

    Gonzalez-Carter, D; Goode, A E; Fiammengo, R; Dunlop, I E; Dexter, D T; Porter, A E

    2016-06-01

    The adipocyte-derived hormone leptin regulates appetite and energy homeostasis through the activation of leptin receptors (ObR) on hypothalamic neurones; hence, leptin must be transported through the blood-brain barrier (BBB) to reach its target sites in the central nervous system. During obesity, however, leptin BBB transport is decreased, in part precluding leptin as a viable clinical therapy against obesity. Although the short isoform of the ObR (ObRa) has been implicated in the transport of leptin across the BBB as a result of its elevated expression in cerebral microvessels, accumulating evidence indicates that leptin BBB transport is independent of ObRa. In the present study, we employed an ObR-neutralising antibody (9F8) to directly examine the involvement of endothelial ObR in leptin transport across an in vitro human BBB model composed of the human endothelial cell line hCMEC/D3. Our results indicate that, although leptin transport across the endothelial monolayer was nonparacellular, and energy- and endocytosis-dependent, it was not inhibited by pre-treatment with 9F8, despite the ability of the latter to recognise hCMEC/D3-expressed ObR, prevent leptin-ObR binding and inhibit leptin-induced signal transducer and activator of transcription 3 (STAT-3) phosphorylation in hCMEC/D3 cells. Furthermore, hCMEC/D3 cells expressed the transporter protein low-density lipoprotein receptor-related protein-2 (LRP-2), which is capable of binding and endocytosing leptin. In conclusion, our results demonstrate that leptin binding to and signalling through ObR is not required for efficient transport across human endothelial monolayers, indicating that ObR is not the primary leptin transporter at the human BBB, a role which may fall upon LRP-2. A deeper understanding of leptin BBB transport will help clarify the exact causes for leptin resistance seen in obesity and aid in the development of more efficient BBB-penetrating leptin analogues. PMID:27037668

  9. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression

    PubMed Central

    Haenisch, Britta; Bilkei-Gorzo, Andras; Caron, Marc G.; Bönisch, Heinz

    2009-01-01

    Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout (KO) of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, NGF and NT-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NETKO mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants. PMID:19694905

  10. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  11. Inhibitory effects of alcohol on glucose transport across the blood–brain barrier leads to neurodegeneration: preventive role of acetyl-L-carnitine

    PubMed Central

    Muneer, P. M. Abdul; Alikunju, Saleena; Szlachetka, Adam M.; Haorah, James

    2011-01-01

    Purpose Evidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose. Here we examined whether interference of glucose uptake and transport at the endothelium by alcohol leads to BBB dysfunction and neuronal degeneration. Material and methods We tested the hypothesis in cell culture of human brain endothelial cells, neurons and alcohol intake in animal by immunofluorescence, Western blotting and glucose uptake assay methods. Results We found that decrease in glucose uptake correlates the reduction of glucose transporter protein 1 (GLUT1) in cell culture after 50 mM ethanol exposure. Decrease in GLUT1 protein levels was regulated at the translation process. In animal, chronic alcohol intake suppresses the transport of glucose into the frontal and occipital regions of the brain. This finding is validated by a marked decrease in GLUT1 protein expression in brain microvessel (the BBB). In parallel, alcohol intake impairs the BBB tight junction proteins occludin, zonula occludens-1, and claudin-5 in the brain microvessel. Permeability of sodium fluorescein and Evans Blue confirms the leakiness of the BBB. Further, depletion of trans-endothelial electrical resistance of the cell monolayer supports the disruption of BBB integrity. Administration of acetyl-L-carnitine (a neuroprotective agent) significantly prevents the adverse effects of alcohol on glucose uptake, BBB damage and neuronal degeneration. Conclusion These findings suggest that alcohol-elicited inhibition of glucose transport at the blood-brain interface leads to BBB malfunction and neurological complications. PMID:21079922

  12. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients

    PubMed Central

    Brandt, Moritz D; Brandt, Kalina; Werner, Annett; Schönfeld, Robby; Loewenbrück, Kai; Donix, Markus; Schaich, Markus; Bornhäuser, Martin; von Kummer, Rüdiger; Leplow, Bernd; Storch, Alexander

    2015-01-01

    Background Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. Methods To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy (1H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. Results CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in 1H-MRS. Conclusion Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that 1H-MRS allows the detection of neurogenesis-associated plasticity in the human brain. PMID:26442754

  13. Vasodilation by in vivo activation of astrocyte endfeet via two-photon calcium uncaging as a strategy to prevent brain ischemia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Cheng, Jie; Roman, Gustavo; Wong, Stephen T. C.

    2013-12-01

    Decreased cerebral blood flow causes brain ischemia and plays an important role in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease and vascular dementia. In this study, we photomodulated astrocytes in the live animal by a combination of two-photon calcium uncaging in the astrocyte endfoot and in vivo imaging of neurovasculature and astrocytes by intravital two-photon microscopy after labeling with cell type specific fluorescent dyes. Our study demonstrates that photomodulation at the endfoot of a single astrocyte led to a 25% increase in the diameter of a neighboring arteriole, which is a crucial factor regulating cerebral microcirculation in downstream capillaries. Two-photon uncaging in the astrocyte soma or endfoot near veins does not show the same effect on microcirculation. These experimental results suggest that infrared photomodulation on astrocyte endfeet may be a strategy to increase cerebral local microcirculation and thus prevent brain ischemia.

  14. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    PubMed

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway. PMID:26573919

  15. The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment

    PubMed Central

    Robbins, Mike E.; Payne, Valerie; Tommasi, Ellen; Diz, Debra I; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao, Weiling

    2009-01-01

    Purpose We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Methods and Materials Groups of 80 young adult male Fischer 344 × Brown Norway (F344×BN) rats, 12–14 weeks old, received either: i] fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, ii] sham-irradiation; iii] WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during and for 14, 28, or 54 weeks post-irradiation; and iv] sham-irradiation plus L-158,809 for 14, 28, or 54 weeks post-irradiation. An additional group of rats (n = 20) received L-158,809 prior to, during, and for 5 weeks post-irradiation, after which they received normal drinking water up to 28 weeks post-irradiation Results Administration of L-158,809 prior to, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks post-irradiation. Moreover, giving L-158,809 prior to, during, and for only 5 weeks post-irradiation ameliorated the significant cognitive impairment observed 26 weeks post-irradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks post-irradiation, respectively. Conclusions Administering L-158,809 prior to, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks post-irradiation. These findings offer the promise of improving the quality of life for brain tumor patients. PMID:19084353

  16. The AT{sub 1} Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    SciTech Connect

    Robbins, Mike E. Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-02-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of {gamma} rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients.

  17. Mannosylated liposomal cytidine 5' diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain.

    PubMed

    Ghosh, S; Das, N; Mandal, A K; Dungdung, S R; Sarkar, S

    2010-12-29

    Mitochondrial dysfunctions generating from cerebral ischemia-reperfusion exert a potential threat on neuronal cell survival and hence, accelerate the aging process and age dependent neuropathology. Thirty min moderate cerebral ischemia induced by bilateral common carotid artery occlusion (BCCAO) followed by 30 min reperfusion caused an increased diene production, depleted glutathione (GSH) content, reduced superoxide dismutase (SOD) and catalase activities and pyramidal neuronal loss in young (2 months old) and aged (20 months old) rat brain compared to sham operated controls. Cytidine 5' diphosphocholine (CDP-Choline) is a known neuroprotective drug. CDP-Choline after metabolism in the liver suffers hydrolysis and splits into cytidine and choline before entering systemic circulation and hardly circumvents blood brain barrier (BBB) as such. Previous reports show CDP-Choline liposomes significantly increased in vivo uptake compared to "free drug" administration in cerebral ischemia. To enhance the therapeutic concentration build up in brain we sought to formulate mannosylated liposomal CDP-Choline (MLCDP) utilizing the mannose receptors. We tested the therapeutic supremacy of MLCDP over liposomal CDP-Choline (LCDP) in global moderate cerebral ischemia reperfusion induced neuronal damage. CDP-Choline in MLCDP delivery system was found potent to exert substantial protection against global moderate cerebral ischemia reperfusion induced mitochondrial damage in aged rat brain. Membrane lipid peroxidation, GSSG/GSH ratio and reactive oxygen species (ROS) generation in cerebral tissue were found to be higher in aged, compared to young rat. Further decline of those parameters was observed in aged rat brain by the induction of global moderate cerebral ischemia and reperfusion. MLCDP treatment when compared to free or LCDP treatment prevented global moderate cerebral ischemia-reperfusion induced mitochondrial damage as evident ultra structurally and release of cytochrome c

  18. ACTIVITY-DEPENDENT NEUROPROTECTIVE PROTEIN–DERIVED PEPTIDE, NAP, PREVENTING ALCOHOL-INDUCED APOPTOSIS IN FETAL BRAIN OF C57BL/6 MOUSE

    PubMed Central

    SARI, Y.

    2012-01-01

    Possible prevention of the effects of prenatal alcohol exposure has been investigated using peptides that were previously shown to be involved in neuroprotection both in vitro and in vivo. I focused in this study on investigating the neuro-protective effects of one of these peptides with regard to the determination of the downstream signaling pathways involved in neuroprotection. This peptide with the sequence NAPVSIPQ, known as NAP, a fragment of activity-dependent neuroprotective protein, demonstrated a potent protective effect against oxidative stress associated with alcohol exposure. On embryonic day 7 (E7), weight-matched C57BL/6 pregnant females were assigned the following groups: (1) Ethanol liquid diet group (ALC) 25% (4.49%, v/v) ethano-derived calories, (2) Pair-fed (PF) control group (3) Chow control group, (4) treatment groups with alcohol alongside i.p. injections of d-NAP (ALC/d-NAP, 20 or 30 μg/20 g body weight), (5) PF/d-NAP control group. On E13, fetal brains were collected and assayed for TdT-mediated dUTP nick end labeling (TUNEL) staining, caspase-3 colorimetric assay and ELISA for cytochrome c detection. My results show that NAP significantly prevented alcohol-induced weight reduction of the fetal brain. Apoptosis was determined by TUNEL staining; NAP administration significantly prevented alcohol-induced increases in TUNEL-positive cells in primordium cingulate cortex and basal ganglia eminence. The investigation of downstream signaling pathways involving NAP neuroprotection revealed that this peptide significantly prevented alcohol-induced increase in the concentrations of caspase-3 in E13 fetal brains. Moreover, ELISA for cytochrome c shows that NAP significantly prevented both alcohol-induced increases in the level of cytosolic cytochrome c and alcohol-induced decreases in the level of mitochondrial cytochrome c. These data provide an understanding of NAP intracellular target, and the downstream mechanisms of action that will pave a path

  19. A novel peptide, colivelin, prevents alcohol-induced apoptosis in fetal brain of C57BL/6 mice: signaling pathway investigations

    PubMed Central

    Sari, Youssef; Chiba, Tomohiro; Yamada, Marina; Rebec, George V.; Aiso, Sadakazu

    2009-01-01

    Fetal alcohol exposure is known to induce cell death through apoptosis. We found that colivelin (CLN), a novel peptide with the sequence SALLRSIPAPAGASRLLLLTGEIDLP, prevents this apoptosis. Our initial experiment revealed that CLN enhanced the viability of primary cortical neurons exposed to alcohol. We then used a mouse model of fetal alcohol exposure to identify the intracellular mechanisms underlying these neuroprotective effects. On embryonic day 7 (E7), weight-matched pregnant females were assigned to the following groups: (1) ethanol liquid diet (ALC) 25% (4.49%, v/v) ethanol derived calories; (2) pair-fed control; (3) normal chow; (4) ALC combined with administration (i.p.) of CLN (20 μg/20 g body weight); and (5) pair-fed combined with administration (i.p.) of CLN (20 μg/20 g body weight). On E13, fetal brains were collected and assayed for TUNEL staining, caspase-3 colorimetric assay, ELISA, and MSD electrochemiluminescence. CLN blocked the alcohol-induced decline in brain weight and prevented alcohol-induced: apoptosis, activation of caspase-3 and increases of cytosolic cytochrome c, and decreases of mitochondrial cytochrome c. Analysis of proteins in the upstream signaling pathway revealed that CLN down-regulated the phosphorylation of the c-Jun N-terminal kinase. Moreover, CLN prevented alcohol-induced reduction in phosphorylation of BAD protein. Thus, CLN appears to act directly on upstream signaling proteins to prevent alcohol-induced apoptosis. Further assessment of these proteins and their signaling mechanisms is likely to enhance development of neuroprotective therapies. PMID:19782727

  20. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  1. Alpha- and gamma- tocopherol prevent age-related transcriptional alterations in the heart and brain of mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the global effects of vitamin E supplementation on aging, we used high density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-month-old B6C3F1 mice supplemented with alpha- and gamma-tocopherol since middle age (15 months). Gene ...

  2. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide.

    PubMed

    Holmes, Gregory L; Tian, Chengju; Hernan, Amanda E; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-05-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure

  3. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. PMID:25445491

  4. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect.

    PubMed

    Thiel, Kenneth J; Painter, Michael R; Pentkowski, Nathan S; Mitroi, Danut; Crawford, Cynthia A; Neisewander, Janet L

    2012-03-01

    Environmental enrichment (EE) during a period of forced abstinence attenuates incentive motivational effects of cocaine-paired stimuli. Here we examined whether EE during forced abstinence from cocaine self-administration would prevent time-dependent increases in cue-elicited cocaine-seeking behavior (i.e. the incubation effect). Rats were trained to self-administer cocaine, which was paired with light/tone cues, for 15 days while living in isolated conditions (IC). Controls received yoked saline infusions. Subsequently, rats were assigned to live in either continued IC or EE for either 1 or 21 days of forced abstinence prior to a test for cocaine-seeking behavior. During testing, responding resulted only in presentation of the light/tone cues. Contrary to our prediction, cocaine-seeking behavior increased over time regardless of living condition during abstinence; however, EE attenuated cocaine-seeking behavior relative to IC regardless of length of abstinence. Brains were harvested and trunk blood was collected immediately after the 60-minute test and later assayed. Results indicated that short-term EE elevated hippocampal brain-derived neurotrophic factor and reduced plasma corticosterone compared with IC. Furthermore, 21 days of EE during forced abstinence prevented increases in the cue-elicited amygdala phosphorylated extracellular signal-regulated kinase expression that was observed in IC rats. These findings suggest that EE attenuates incentive motivational effects of cocaine cues through a mechanism other than preventing the incubation effect, perhaps involving reduction of stress and neural activity in response to cocaine-paired cues during acute withdrawal. PMID:21812872

  5. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect

    PubMed Central

    Thiel, Kenneth J.; Painter, Michael R.; Pentkowski, Nathan S.; Mitroi, Danut; Crawford, Cynthia A.; Neisewander, Janet L.

    2011-01-01

    Environmental enrichment (EE) during a period of forced abstinence attenuates incentive motivational effects of cocaine-paired stimuli. Here we examined whether EE during forced abstinence from cocaine self-administration would prevent time-dependent increases in cue-elicited cocaine-seeking behavior (i.e., the incubation effect). Rats were trained to self-administer cocaine, which was paired with light/tone cues, for 15 days while living in isolated conditions (IC). Controls received yoked saline infusions. Subsequently, rats were assigned to live in either continued IC or EE for either 1 or 21 days of forced abstinence prior to a test for cocaine-seeking behavior. During testing, responding resulted only in presentation of the light/tone cues. Contrary to our prediction, cocaine-seeking behavior increased over time regardless of living condition during abstinence; however, EE attenuated cocaine-seeking behavior relative to IC regardless of length of abstinence. Brains were harvested and trunk blood was collected immediately after the 60-min test and later assayed. Results indicated that short-term EE elevated hippocampal brain-derived neurotrophic factor and reduced plasma corticosterone compared to IC. Furthermore, 21 days of EE during forced abstinence prevented increases in the cue-elicited amygdala phosphorylated extracellular signal-regulated kinase expression that was observed in IC rats. These findings suggest that EE attenuates incentive motivational effects of cocaine cues through a mechanism other than preventing the incubation effect, perhaps involving reduction of stress and neural activity in response to cocaine-paired cues during acute withdrawal. PMID:21812872

  6. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210

  7. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. PMID:24933327

  8. TBI ADAPTER: traumatic brain injury assessment diagnosis advocacy prevention and treatment from the emergency room--a prospective observational study.

    PubMed

    Ganti, Latha; Daneshvar, Yasamin; Bodhit, Aakash; Ayala, Sarah; Patel, Pratik S; Lottenberg, Lawrence L; York, Donna; Counsell, Colleen; Peters, Keith R

    2015-04-01

    There is no standard treatment algorithm for patients who present to the emergency department (ED) with acute traumatic brain injury (TBI). This is in part because of the heterogeneity of the injury pattern and the patient profile, and the lack of evidence-based guidelines, especially for mild TBI in adults. As TBI is seen more and more frequently in the ED, a standardized assessment would be beneficial in terms of efficiency. The authors present their ED approach to mild TBI evaluation in the ED, along with results to date. These data represent a prospective observational cohort study, where each patient provided individual, written informed consent. PMID:25826342

  9. Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice

    PubMed Central

    Huang, Chien-Tsun; Li, Zhenguang; Huang, Ying; Zhang, Guoqing; Zhou, Ming; Chai, Qingqing; Wu, Hua; Fu, Zhen F.

    2014-01-01

    Rabies virus (RABV) is a neurotropic virus that causes fatal disease in humans and animals. Currently there is no cure for rabies once clinical signs appear. It is believed that once RABV enters the central nervous system (CNS), virus neutralizing antibodies (VNAs) in the periphery cannot pass through the Blood–brain Barrier (BBB) and into the CNS. Furthermore, it has been hypothesized that VNAs produced in the CNS by invading B cells, rather than those produced in the periphery and then transported into the CNS, are important in clearing RABV from the CNS. In the present study, mouse serum containing VNA was administered intravenously into mice after infection with wild-type RABV. Our studies demonstrate that exogenous administration of VNAs is crucial in the clearance of RABV from the brain and prevent the development of rabies in both immunocompetent and immunocompromised mice as long as the BBB permeability remains enhanced. This present study therefore provides a foundation for the possibility of developing VNA therapy for clinical rabies in humans. PMID:25108172

  10. Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice.

    PubMed

    Huang, Chien-Tsun; Li, Zhenguang; Huang, Ying; Zhang, Guoqing; Zhou, Ming; Chai, Qingqing; Wu, Hua; Fu, Zhen F

    2014-10-01

    Rabies virus (RABV) is a neurotropic virus that causes fatal disease in humans and animals. Currently there is no cure for rabies once clinical signs appear. It is believed that once RABV enters the central nervous system (CNS), virus neutralizing antibodies (VNAs) in the periphery cannot pass through the blood-brain barrier (BBB) and into the CNS. Furthermore, it has been hypothesized that VNAs produced in the CNS by invading B cells, rather than those produced in the periphery and then transported into the CNS, are important in clearing RABV from the CNS. In the present study, mouse serum containing VNA was administered intravenously into mice after infection with wild-type RABV. Our studies demonstrate that exogenous administration of VNAs is crucial in the clearance of RABV from the brain and prevent the development of rabies in both immunocompetent and immunocompromised mice as long as the BBB permeability remains enhanced. This present study therefore provides a foundation for the possibility of developing VNA therapy for clinical rabies in humans. PMID:25108172

  11. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction.

    PubMed

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M; Liao, Hong; Pang, Tao

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague-Dawley rats, produced by occlusion of the middle cerebral artery for 2h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. PMID:26440581

  12. Cost-effectiveness of the bird's nest filter for preventing pulmonary embolism among patients with malignant brain tumors and deep venous thrombosis of the lower extremities.

    PubMed

    Chau, Quan; Cantor, Scott B; Caramel, Elenir; Hicks, Marshall; Kurtin, Danna; Grover, Tejpal; Elting, Linda S

    2003-12-01

    Patients with malignant brain tumors and deep venous thrombosis (DVT) of the lower extremities are at high risk of developing pulmonary embolism (PE). We developed a Markov model to compare the cost-effectiveness of two strategies to prevent PE in such patients: intra-vena-caval bird's nest filter (BNF) with anticoagulation versus anticoagulation alone. Using the benchmark of 50,000 US dollars per quality-adjusted life year (QALY), BNF was not cost-effective in this population as it reduced the rate of PE at an incremental cost-effectiveness ratio of 198,852 dollars per QALY gained. However, after adjusting the model to reflect the 5-year mortality rate of hypothetical breast cancer patients, BNF was more effective and less expensive than anticoagulation alone. BNF was effective in reducing the rate of PE but was not cost-effective for patients with brain tumors. BNF could be cost-effective for patients with longer life expectancies. PMID:13680322

  13. L-Leucine prevents ammonia-induced changes in glutamate receptors in the brain and in visual evoked potentials in the rabbit.

    PubMed

    Ferenci, P; Pappas, C S; Jones, E A

    1984-01-01

    The effect of L-leucine on glutamate receptors in the brain and on visual evoked potentials was studied in hyperammonemic rabbits. Hyperammonemia was induced by the iv infusion of 2.1 mmol NH4Cl/h over 3 hr. Hyperammonemia was followed by a 116% increase in the specific binding of 3H-glutamate to synaptic membranes prepared from the hippocampus. This increase was due to both an increase in the affinity and in the density of the glutamate receptor. The simultaneous infusion of L-leucine (6.7 mmol/hr) completely prevented the ammonia-induced increase in the specific glutamate binding, whereas L-valine and D-leucine had no effect. Hyperammonemia was also associated with typical, reproducible, and reversible changes in visual evoked potentials. The amplitudes of the first negative and the second positive peak decreased, whereas the latencies of these peaks remained unchanged. The simultaneous infusion of L-leucine completely prevented these changes. These findings indicate (1) that L-leucine prevents ammonia-induced changes in the glutamatergic excitatory neurotransmitter system and (2) that pharmacologic doses of L-leucine modulate the effects of hyperammonemia on central neurotransmission as assessed by visual evoked potentials. A causal relationship between the effects of L-leucine on ammonia-induced changes in glutamate receptors and in visual evoked potentials cannot be inferred with confidence. These findings provide a potential alternative explanation for the apparent beneficial effects of infusions of branched-chain amino acids on hepatic encephalography in patients with chronic liver disease. PMID:6151602

  14. Inhibition of Calpain Prevents Manganese-Induced Cell Injury and Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures

    PubMed Central

    Xu, Bin; Liu, Wei; Deng, Yu; Yang, Tian-Yao; Feng, Shu; Xu, Zhao-Fa

    2015-01-01

    Overexposure to manganese has been known to promote alpha-synuclein oligomerization and enhance cellular toxicity. However, the exact mechanism of Mn-induced alpha-synuclein oligomerization is unclear. To explore whether alpha-synuclein oligomerization was associated with the cleavage of alpha-synuclein by calpain, we made a rat brain slice model of manganism and pretreated slices with calpain inhibitor II, a cell-permeable peptide that restricts the activity of calpain. After slices were treated with 400 μM Mn for 24 h, there were significant increases in the percentage of apoptotic cells, lactate dehydrogenase release, intracellular [Ca2+]i, calpain activity, and the mRNA and protein expression of calpain 1 and alpha-synuclein. Moreover, the number of C- and N-terminal fragments of alpha-synuclein and the amount of alpha-synuclein oligomerization also increased. These results also showed that calpain inhibitor II pretreatment could reduce Mn-induced nerve cell injury and alpha-synuclein oligomerization. Additionally, there was a significant decrease in the number of C- and N-terminal fragments of alpha-synuclein in calpain inhibitor II-pretreated slices. These findings revealed that Mn induced the cleavage of alpha-synuclein protein via overactivation of calpain and subsequent alpha-synuclein oligomerization in cultured slices. Moreover, the cleavage of alpha-synuclein by calpain 1 is an important signaling event in Mn-induced alpha-synuclein oligomerization. PMID:25756858

  15. Nationwide epidemiology of hospitalized patients with first-time traumatic brain injury with special reference to prevention.

    PubMed

    Alaranta, H; Koskinen, S; Leppänen, L; Palomäki, H

    2000-01-01

    The national data of hospitalized TBI-patients were gathered retrospectively during the years 1991-95 from the Hospital Discharge Register. The inclusion criteria were: TBI as the primary diagnosis (ICD-9: 800, 801, 803, 850, 851-854), no history of previous TBI during the previous three years and the hospitalization of the patient. The incidence of TBI varied from 4 793-5 055 (95-100 per 100,000 people), comprising altogether 24,497 patients. The biggest subgroups of external cause were the sudden fall (61%) and vehicle accidents (26%). The biggest subgroups of the place of accident were the home (33%) and the traffic area (30%). The data reflect an assumption that many causes of TBI are preventable. PMID:11191954

  16. CXCL9 Is Important for Recruiting Immune T Cells into the Brain and Inducing an accumulation of the T Cells to the areas of tachyzoite proliferation to prevent reactivation of chronic cerebral infection with Toxoplasma gondii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. In the present study, we examined the role of non-ELR (glutamic acid-leucine-arginine) CXC chemokine CXCL9 for T cell recruitment to prevent reactivation of infection with T. gondii. SCID mice were...

  17. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats.

    PubMed

    Castelo-Branco, Gonçalo; Stridh, Pernilla; Guerreiro-Cacais, André Ortlieb; Adzemovic, Milena Z; Falcão, Ana Mendanha; Marta, Monica; Berglund, Rasmus; Gillett, Alan; Hamza, Kedir Hussen; Lassmann, Hans; Hermanson, Ola; Jagodic, Maja

    2014-11-01

    Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system (CNS) in young adults. Chronic treatments with histone deacetylase inhibitors (HDACis) have been reported to ameliorate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by targeting immune responses. We have recently shown that the HDAC inhibition/knockdown in the presence of thyroid hormone (T3) can also promote oligodendrocyte (OL) differentiation and expression of myelin genes in neural stem cells (NSCs) and oligodendrocyte precursors (OPCs). In this study, we found that treatment with an HDACi, valproic acid (VPA), and T3, alone or in combination, directly affects encephalitogenic CD4+ T cells. VPA, but not T3, compromised their proliferation, while both molecules reduced the frequency of IL-17-producing cells. Transfer of T3, VPA and VPA/T3 treated encephalitogenic CD4+ T cells into naïve rats induced less severe EAE, indicating that the effects of these molecules are persistent and do not require their maintenance after the initial stimuli. Thus, we investigated the effect of acute treatment with VPA and l-thyroxine (T4), a precursor of T3, on myelin oligodendrocyte glycoprotein-induced EAE in Dark Agouti rats, a close mimic of MS. We found that a brief treatment after disease onset led to sustained amelioration of EAE and prevention of inflammatory demyelination in the CNS accompanied with a higher expression of myelin-related genes in the brain. Furthermore, the treatment modulated immune responses, reduced the number of CD4+ T cells and affected the Th1 differentiation program in the brain. Our data indicate that an acute treatment with VPA and T4 after the onset of EAE can produce persistent clinically relevant therapeutic effects by limiting the pathogenic immune reactions while promoting myelin gene expression. PMID:25149263

  18. Using an eHealth Intervention to Stimulate Health Behavior for the Prevention of Cognitive Decline in Dutch Adults: A Study Protocol for the Brain Aging Monitor

    PubMed Central

    2015-01-01

    Background Internet-delivered intervention programs are an effective way of changing health behavior in an aging population. The same population has an increasing number of people with cognitive decline or cognitive impairments. Modifiable lifestyle risk factors such as physical activity, nutrition, smoking, alcohol consumption, sleep, and stress all influence the probability of developing neurodegenerative diseases such as Alzheimer’s disease. Objective This study aims to answer two questions: (1) Is the use of a self-motivated, complex eHealth intervention effective in changing multiple health behaviors related to cognitive aging in Dutch adults in the work force, especially those aged 40 and over? and (2) Does this health behavior change result in healthier cognitive aging patterns and contribute to preventing or delaying future onset of neurodegenerative syndromes? Methods The Brain Aging Monitor study uses a quasi-experimental 2-year pre-posttest design. The Brain Aging Monitor is an online, self-motivated lifestyle intervention program. Recruitment is done both in medium to large organizations and in the Dutch general population over the age of 40. The main outcome measure is the relationship between lifestyle change and cognitive aging. The program uses different strategies and modalities such as Web content, email, online newsletters, and online games to aid its users in behavior change. To build self-regulatory skills, the Brain Aging Monitor offers its users goal-setting activities, skill-building activities, and self-monitoring. Results Study results are expected to be published in early 2016. Conclusions This study will add to the body of evidence on the effectiveness of eHealth intervention programs with the combined use of state-of-the-art applied games and established behavior change techniques. This will lead to new insights on how to use behavior change techniques and theory in multidimensional lifestyle eHealth research, and how these techniques

  19. Paliperidone Prevents Brain Toll-Like Receptor 4 Pathway Activation and Neuroinflammation in Rat Models of Acute and Chronic Restraint Stress

    PubMed Central

    MacDowell, KS; Caso, JR; Martín-Hernández, D; Madrigal, JL; Leza, JC

    2015-01-01

    Background: Alterations in the innate immune/inflammatory system have been proposed to underlie the pathophysiology of psychotic disease, but the mechanisms implicated remain elusive. The main agents of the innate immunity are the family of toll-like receptors (TLRs), which detect circulating pathogen-associated molecular patterns and endogenous damage-associated molecular patterns (DAMPS). Current antipsychotics are able to modulate pro- and anti-inflammatory pathways, but their actions on TLRs remain unexplored. Methods: This study was conducted to elucidate the effects of paliperidone (1mg/Kg i.p.) on acute (6 hours) and chronic (6 hours/day during 21 consecutive days) restraint stress–induced TLR-4 pathway activation and neuroinflammation, and the possible mechanism(s) related (bacterial translocation and/or DAMPs activation). The expression of the elements of a TLR-4-dependent proinflammatory pathway was analyzed at the mRNA and protein levels in prefrontal cortex samples. Results: Paliperidone pre-treatment prevented TLR-4 activation and neuroinflammation in the prefrontal cortices of stressed rats. Regarding the possible mechanisms implicated, paliperidone regulated stress-induced increased intestinal inflammation and plasma lipopolysaccharide levels. In addition, paliperidone also prevented the activation of the endogenous activators of TLR-4 HSP70 and HGMB-1. Conclusions: Our results showed a regulatory role of paliperidone on brain TLR-4, which could explain the therapeutic benefits of its use for the treatment of psychotic diseases beyond its effects on dopamine and serotonin neurotransmission. The study of the mechanisms implicated suggests that gut-increased permeability, inflammation, and bacterial translocation of Gram-negative microflora and HSP70 and HGMB1 expression could be potential adjuvant therapeutic targets for the treatment of psychotic and other stress-related psychiatric pathologies. PMID:25522409

  20. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    PubMed

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  1. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    PubMed

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. PMID:27199101

  2. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    PubMed Central

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2014-01-01

    Background Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby improve functional outcome after global cerebral ischemia. Incomplete global cerebral ischemia was induced in Wistar rats and the time-course of enhanced contractile responses and the effect of U0126 in cerebral arteries were studied by wire myography and the neuronal cell death by TUNEL. The expression of ETB and 5-HT1B receptors was determined by immunofluorescence. Results Enhanced vasoconstriction peaked in fore- and midbrain arteries 3 days after ischemia. Neuronal cell death appeared initially in the hippocampus 3 days after ischemia and gradually increased until 7 days post-ischemia. Treatment with U0126 normalised cerebrovascular ETB and 5-HT1B receptor expression and contractile function, reduced hippocampal cell death and improved survival rate compared to vehicle treated animals. Conclusions Excessive cerebrovascular expression of contractile ETB and 5-HT1B receptors is a delayed response to global cerebral ischemia peaking 3 days after the insult, which likely contributes to the development of delayed neuronal damage. The enhanced cerebrovascular contractility can be

  3. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    PubMed Central

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  4. Early Alzheimer's Linked to Brain 'Leakage'

    MedlinePlus

    ... news/fullstory_159116.html Early Alzheimer's Linked to Brain 'Leakage' Normally, blood-brain barrier prevents this from happening To use the ... more "leaks" in the barrier that separates the brain from the bloodstream, a small study suggests. Known ...

  5. Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging.

    PubMed

    Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M

    2015-01-01

    It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD. PMID:26402120

  6. Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain.

    PubMed

    Souza, Leandro Cattelan; Antunes, Michelle Silva; Filho, Carlos Borges; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Donato, Franciele; Prigol, Marina; Boeira, Silvana Peterini; Jesse, Cristiano R

    2015-07-01

    In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent. PMID:25931267

  7. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury.

    PubMed

    Duncan, Jeremy W; Zhang, Xiao; Wang, Niping; Johnson, Shakevia; Harris, Sharonda; Udemgba, Chinelo; Ou, Xiao-Ming; Youdim, Moussa B; Stockmeier, Craig A; Wang, Jun Ming

    2016-06-01

    Binge drinking induces several neurotoxic consequences including oxidative stress and neurodegeneration. Because of these effects, drugs which prevent ethanol-induced damage to the brain may be clinically beneficial. In this study, we investigated the ethanol-mediated KLF11-MAO cell death cascade in the frontal cortex of Sprague-Dawley rats exposed to a modified Majchowicz 4-day binge ethanol model and control rats. Moreover, MAO inhibitors (MAOIs) were investigated for neuroprotective activity against binge ethanol. Binge ethanol-treated rats demonstrated a significant increase in KLF11, both MAO isoforms, protein oxidation and caspase-3, as well as a reduction in BDNF expression in the frontal cortex compared to control rats. MAOIs prevented these binge ethanol-induced changes, suggesting a neuroprotective benefit. Neither binge ethanol nor MAOI treatment significantly affected protein expression levels of the oxidative stress enzymes, SOD2 or catalase. Furthermore, ethanol-induced antinociception was enhanced following exposure to the 4-day ethanol binge. These results demonstrate that the KLF11-MAO pathway is activated by binge ethanol exposure and MAOIs are neuroprotective by preventing the binge ethanol-induced changes associated with this cell death cascade. This study supports KLF11-MAO as a mechanism of ethanol-induced neurotoxicity and cell death that could be targeted with MAOI drug therapy to alleviate alcohol-related brain injury. Further examination of MAOIs to reduce alcohol use disorder-related brain injury could provide pivotal insight to future pharmacotherapeutic opportunities. PMID:26805422

  8. Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol.

    PubMed

    Sinha, Maitrayee; Bir, Aritri; Banerjee, Anindita; Bhowmick, Pritha; Chakrabarti, Sasanka

    2016-05-01

    The aged brain may be used as a tool to investigate altered metabolism of amyloid beta protein (Aβ42) that may have implications in the pathogenesis of Alzheimer's disease (AD). In the present study, we have observed a striking increase in the amyloid precursor protein (APP) level in the brain cortex of aged rats (22-24 months) along with a mild but statistically significant increase in the level of APP mRNA. Moreover, the activity of β secretase is elevated (nearly 55%) and that of neprilysin diminished (48%) in brain cortex of aged rats compared to that in young rats (4-6 months). All these changes lead to a markedly increased accumulation of Aβ42 in brain cortical tissue of aged rats. Long-term dietary supplementation of rats with a combination of N-acetylcysteine, α-lipoic and α-tocopherol from 18 months onwards daily till the sacrifice of the animals by 22-24 months, attenuates the age-related alterations in amyloid beta metabolism. In separate experiments, a significant impairment of spatial learning and memory has been observed in aged rats, and the phenomenon is remarkably prevented by the dietary supplementation of the aged animals by the same combination of N-acetylcysteine, α-lipoic acid and α-tocopherol. The results call for further explorations of this combination in suitable animal models in ameliorating AD related brain deficits. PMID:26463138

  9. Human ApoE Isoforms Differentially Modulate Glucose and Amyloid Metabolic Pathways in Female Brain: Evidence of the Mechanism of Neuroprotection by ApoE2 and Implications for Alzheimer's Disease Prevention and Early Intervention.

    PubMed

    Keeney, Jeriel Thomas-Richard; Ibrahimi, Shaher; Zhao, Liqin

    2015-01-01

    Three major genetic isoforms of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4, exist in humans and lead to differences in susceptibility to Alzheimer's disease (AD). This study investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme (Ide), indicating further compromised glucose metabolism and Aβ dysregulation associated with ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 signaling activity to a more robust ApoE2-like phenotype favoring both energy production and amyloid homeostasis holds promise for AD prevention and early intervention. PMID:26402005

  10. Thoracotomy reduces intrinsic brain movement caused by heartbeat and respiration: a simple method to prevent motion artifact for in vivo experiments.

    PubMed

    Matsumoto, Nobuyoshi; Takahara, Yuji; Matsuki, Norio; Ikegaya, Yuji

    2011-10-01

    Recent technical advances in electrophysiological recording and functional imaging from the brain of living animals have promoted our understandings of the brain function, but these in vivo experiments are still technically demanding and often suffer from spontaneous pulsation, i.e., brain movements caused by respiration and heartbeat. Here we report that thoracotomy suppresses the motion artifact to a practically negligible level. This simple method will be useful in a wide variety of in vivo experiments, such as patch-clamp physiology, and optical imaging of neurons, glial cell, and blood vessels. PMID:21787813

  11. CXCL9 Is Important for Recruiting Immune T Cells into the Brain and Inducing an Accumulation of the T Cells to the Areas of Tachyzoite Proliferation to Prevent Reactivation of Chronic Cerebral Infection with Toxoplasma gondii

    PubMed Central

    Ochiai, Eri; Sa, Qila; Brogli, Morgan; Kudo, Tomoya; Wang, Xisheng; Dubey, Jitender P.; Suzuki, Yasuhiro

    2016-01-01

    T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. Here, we examined the role of non–glutamic acid-leucine-arginine CXC chemokine CXCL9 for T-cell recruitment to prevent reactivation of infection with T. gondii. Severe combined immunodeficient (SCID) mice were infected and treated with sulfadiazine to establish a chronic infection. Immune T cells from infected wild-type mice were transferred into the SCID mice in combination with treatment with anti-CXCL9 or control sera. Three days later, sulfadiazine was discontinued to initiate reactivation of infection. Numbers of CD4+ and CD8+ T cells isolated from the brains were markedly less in mice treated with anti-CXCL9 serum than in mice treated with control serum at 3 days after sulfadiazine discontinuation. Amounts of tachyzoite (acute stage form of T. gondii)-specific SAG1 mRNA and numbers of foci associated with tachyzoites were significantly greater in the former than the latter at 5 days after sulfadiazine discontinuation. An accumulation of CD3+ T cells into the areas of tachyzoite growth was significantly less frequent in the SCID mice treated with anti-CXCL9 serum than in mice treated with control serum. These results indicate that CXCL9 is crucial for recruiting immune T cells into the brain and inducing an accumulation of the T cells into the areas where tachyzoites proliferate to prevent reactivation of chronic T. gondii infection. PMID:25432064

  12. Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders

    PubMed Central

    Blanchard, Helene C.; Taha, Ameer Y.; Rapoport, Stanley I; Yuan, Zhi-Xin

    2015-01-01

    Background Older human immunodeficiency virus (HIV)-1 transgenic rats are a model for HIV-1 associated neurocognitive disorders (HAND). They show behavioral changes, neuroinflammation, neuronal loss, and increased brain arachidonic acid (AA) enzymes. Aspirin (acetylsalicylate, ASA) inhibits AA oxidation by cyclooxygenase (COX)-1 and COX-2. Hypothesis Chronic low-dose ASA will downregulate brain AA metabolism in HIV-1 transgenic rats. Methods Nine month-old HIV-1 transgenic and wildtype rats were given 42 days of 10 mg/kg/day ASA or nothing in drinking water; eicosanoids were measured using ELISAs on microwaved brain extracts. Results Brain 15-epi-lipoxin A4 and 8-isoprostane concentrations were significantly higher in HIV-1 transgenic than wildtype rats; these differences were prevented by ASA. ASA reduced prostaglandin E2 and leukotriene B4 concentrations in HIV-1 Tg but not wildtype rats. Thromboxane B2, 15-HETE, lipoxin A4 and resolvin D1 concentrations were unaffected by genotype or treatment. Conclusion Chronic low-dose ASA reduces AA-metabolite markers of neuroinflammation and oxidative stress in a rat model for HAND. PMID:25638779

  13. Brain Science, Brain Fiction.

    ERIC Educational Resources Information Center

    Bruer, John T.

    1998-01-01

    Three big ideas from brain science have arisen during the past 20 to 30 years: neural connections form rapidly early in life; critical periods occur in development; and enriched environments profoundly affect brain development during the early years. Current brain research has little to offer educational practice or policy. (10 references) (MLH)

  14. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  15. Fish oil supplementation of maternal rats on an n-3 fatty acid-deficient diet prevents depletion of maternal brain regional docosahexaenoic acid levels and has a postpartum anxiolytic effect.

    PubMed

    Chen, Hui-Feng; Su, Hui-Min

    2012-03-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet. PMID:21543216

  16. Prevention by eliprodil (SL 82.0715) of traumatic brain damage in the rat. Existence of a large (18 h) therapeutic window.

    PubMed

    Toulmond, S; Serrano, A; Benavides, J; Scatton, B

    1993-08-20

    The neuroprotective potential of eliprodil (SL 82.0715), an N-methyl-D-aspartate (NMDA) receptor antagonist acting at the polyamine modulatory site, in brain trauma was examined in a rat model of lateral fluid-percussion brain injury. The volume of the lesion was assessed histologically by measuring, at 7 days post-injury, the area of brain damage at 10 coronal planes. Eliprodil (10 mg/kg i.p.) when given 15 min, 6 h and 24 h after fluid percussion (1.6 atm) and then b.i.d. for the following 6 days, reduced by 60% the volume of cortical damage. A similar neuroprotection was obtained when the first administration of eliprodil was delayed by up to 12 h after the brain insult. Moreover, when the treatment with this compound was started at 18 h post-injury, cortical damage was still significantly reduced by 33%. Autoradiographic studies showed that eliprodil treatment (10 mg/kg, i.p.), initiated 15 min after the trauma, also caused a marked reduction of the loss of the neuronal marker omega 1-2 (central benzodiazepine) binding sites and of the increase in the glial/macrophage marker peripheral type benzodiazepine binding sites in the cerebral cortex. In contrast, dizocilpine (a blocker of the cationic channel coupled to the NMDA receptor) when administered 6 h and 24 h after fluid percussion and then b.i.d. for the following 6 days induced a non significant reduction of the volume of the lesion at the highest tolerated dose (0.6 mg/kg i.p.). These results demonstrate the neuroprotective activity of eliprodil in experimental brain trauma using neuropathology as an endpoint and indicate that there is a very large time window for therapeutic intervention, consistent with the delayed nature of the neuronal loss, in this condition. PMID:8402196

  17. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  18. Preventing stroke

    MedlinePlus

    Stroke - prevention; CVA - prevention; cerebral vascular accident - prevention; TIA - prevention, transient ischemic attack - prevention ... Clinical Cardiology; Council on Functional Genomics and ... Council on Hypertension. Guidelines for the primary prevention ...

  19. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior.

    PubMed

    Ishikawa, Kozo; Yasuda, Seiko; Fukuhara, Kayoko; Iwanaga, Yasutake; Ida, Yuika; Ishikawa, Junko; Yamagata, Hirotaka; Ono, Midori; Kakeda, Takahiro; Ishikawa, Toshizo

    2014-03-01

    Chronic pain with mood disorder, resulting from a peripheral nerve injury, is a serious clinical problem affecting the quality of life. A lack of brain-derived neurotrophic factor (BDNF) and abnormal intercellular signaling in the brain can mediate this symptom. BDNF is induced in cultured neurons by 4-methylcatechol (4-MC), but little is known about its role in pain-emotion. Thus, we characterized the actions of 4-MC on TrkB receptor-related pERK and BDNF mRNA in discreet brain regions related to pain-emotion after chronic pain in rat. Rats implanted with a stainless steel cannula into the lateral ventricular were subjected to chronic constriction injury (CCI). Pain was assessed by changes in paw withdrawal latency (PWL) to heat stimuli after CCI. Immobility time during the forced swimming testing was measured for depression-like behavior. Analgesic and antidepression modulations with 4-MC were examined by an anti-BDNF antibody (K252a, a TrkB receptor inhibitor). The animals were perfused and fixed (4% paraformaldehyde) for immunohistochemistry analysis (c-FOS/pERK). BDNF mRNA expression (anterior cingulate cortex) was determined using reverse transcription-PCR. Rats showed a sustained decrease in PWL, associated with a prolonged immobility time after CCI. 4-MC reduced decreases in PWL and increased immobility time. 4-MC reduced increases in pERK immunoreactivity and decreases in BDNF mRNA expression in regions related to pain and the limbic system. Anti-BDNF blocked effects induced by 4-MC. We suggest that a lack of BDNF associated with activated extracellular signal-regulated kinase in the pain-emotion network may be involved in depression-like behavior during chronic pain. 4-MC ameliorates pain-emotion symptoms by inducing BDNF and normalizing pERK activities. PMID:24518228

  20. Prophylactic cranial irradiation for preventing brain metastases in patients undergoing radical treatment for non-small-cell lung cancer: A Cochrane Review

    SciTech Connect

    Lester, Jason Francis . E-mail: jason.lester@velindre-tr.wales.nhs.uk; MacBeth, Fergus R.; Coles, Bernadette

    2005-11-01

    Purpose: To investigate whether prophylactic cranial irradiation (PCI) has a role in the management of patients with non-small-cell lung cancer (NSCLC) treated with curative intent. Methods and Materials: A search strategy was designed to identify randomized controlled trials (RCTs) comparing PCI with no PCI in NSCLC patients treated with curative intent. The electronic databases MEDLINE, EMBASE, LILACS, and Cancerlit were searched, along with relevant journals, books, and review articles to identify potentially eligible trials. Four RCTs were identified and reviewed. A total of 951 patients were randomized in these RCTs, of whom 833 were evaluable and reported. Forty-two patients with small-cell lung cancer were excluded, leaving 791 patients in total. Because of the small patient numbers and trial heterogeneity, no meta-analysis was attempted. Results: Prophylactic cranial irradiation did significantly reduce the incidence of brain metastases in three trials. No trial reported a survival advantage with PCI over observation. Toxicity data were poorly collected and no quality of life assessments were carried out in any trial. Conclusion: Prophylactic cranial irradiation may reduce the incidence of brain metastases, but there is no evidence of a survival benefit. It was not possible to evaluate whether any radiotherapy regimen is superior, and the effect of PCI on quality of life is not known. There is insufficient evidence to support the use of PCI in clinical practice. Where possible, patients should be offered entry into a clinical trial.

  1. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    PubMed

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. PMID:26350230

  2. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. PMID:25839414

  3. Antioxidant Formulae, Shengmai San, and LingGuiZhuGanTang, Prevent MPTP Induced Brain Dysfunction and Oxidative Damage in Mice

    PubMed Central

    Giridharan, Vijayasree Vayalanellore; Thandavarayan, Rajarajan Amirthalingam; Konishi, Tetsuya

    2015-01-01

    The present study was designed to evaluate the preventive effect of antioxidative traditional oriental medicine formulae, Shengmai San (SMS) and LingGuiZhuGanTang (LGZGT), against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (i.p 30 mg·kg−1 for 5 consecutive days) induced neurotoxicity. In in vitro antioxidant assays measured with Trolox and butyl hydroxyl toluene as reference antioxidant revealed that SMS has higher scavenging potential against hydroxyl radical than superoxide anion radical, but LGZGT was the reverse. The neuroprotective effect of SMS and LGZGT against MPTP was evaluated in mice by behavioral, biochemical, and immunohistochemical studies. In the behavioral study, both SMS and LGZGT significantly reversed the locomotive impairment induced by MPTP. Simultaneously, both formulae significantly prevented the MPTP induced dopaminergic neuron loss assessed by tyrosine hydroxylase in the midbrain. Both SMS and LGZGT significantly attenuated the elevated lipid peroxidation and protein carbonyls levels by MPTP. The DNA damage induced by MPTP was also prevented by both formulae. Although a little difference in the protective functions was observed between the two formulae, such as in DNA damage and behavioral studies, the results indicate that both SMS and LGZGT with antioxidant property act as a good candidate applicable for the antioxidant based complementary therapies of neurodegenerative diseases. PMID:26612995

  4. Comparison of the efficacy of recombinant human brain natriuretic peptide with saline hydration in preventing contrast-induced nephropathy in patients undergoing coronary angiography with or without concomitant percutaneous coronary intervention

    PubMed Central

    Sun, Chaoyu; Zhi, Jixin; Bai, Xiaopeng; Li, Xueqi; Xia, Hongyuan

    2015-01-01

    The incidence of contrast-induced nephropathy has an increasing trend as a result of increased use of contrast media during coronary interventional procedures. Contrast-induced nephropathy is one of the major causes for hospital acquired renal failure after coronary interventional procedures. In this study, a total of 126 enrolled patients undergoing elective coronary angiography and/or percutaneous coronary intervention were randomly divided into two groups to investigate the efficacy of recombinant human brain natriuretic peptide in preventing contrast-induced nephropathy in patients undergoing elective coronary angiography and/or percutaneous coronary intervention. Our results showed that there was no statistically significant difference in the primary end points, with similar incidence of contrast-induced nephropathy in the two groups (P=0.770). In compared with the hydration group, the elevation of serum creatinine in the recombinant human brain natriuretic peptide group was less, especially at 48 hours (P=0.047) and at 72 hours (P=0.048) after the procedure. The creatinine clearance from baseline to 72 hours after the procedure was higher in the BNP group than in the hydration group. There were significant differences in creatinine clearance at 48 hours (P=0.016) and at 72 hours (P=0.019) between the two groups. In spite of similar incidence of contrast-induced nephropathy, recombinant human brain natriuretic peptide has its advantages for the protection of the renal function associated with better protection of renal function in patients undergoing elective coronary angiography and/or percutaneous coronary intervention, compared with saline hydration. PMID:26550389

  5. TBI Symptoms, Diagnosis, Treatment, Prevention

    MedlinePlus

    ... Issues Cover Story: Traumatic Brain Injury TBI Symptoms, Diagnosis, Treatment, Prevention Past Issues / Fall 2008 Table of ... of coordination, and increased confusion, restlessness or agitation. Diagnosis Imaging tests, including X-rays of the head ...

  6. Could there be a fine-tuning role for brain-derived adipokines in the regulation of bodyweight and prevention of obesity?

    PubMed Central

    Brown, Russell E.

    2008-01-01

    Obesity is one of the most prevalent medical conditions, often associated with several negative stereotypes. Although it is true that weight gain occurs when food intake exceeds energy expenditure, it is important to note that even a 1% mismatch between the two can lead to a substantial weight gain after only a few years. Further, the body appears to balance energy metabolism via an endogenous lipostatic loop in which adipose stores send hormonal signals (e.g. adipokines such as leptin) to the hypothalamus in order to reduce appetite and increase energy expenditure. However, the brain is also a novel site of expression of many of these adipokine genes. This led to the hypothesis that hypothalamic-derived adipokines might also be involved in bodyweight regulation by exerting some effect on the control of appetite or hypothalamic function. When RNA interference (RNAi) was used to specifically silence adipokine gene expression in various in vitro models, this led to increases in cell death, modification of the expression of key signaling genes (i.e. suppressor of cytokine signaling-3; SOCS-3), and modulation of the activation of cellular energy sensors (i.e. adenosine monophosphate-activated protein kinase; AMPK). Subsequently, when RNAi was used to inhibit the expression of brain-derived leptin in adult rats this resulted in minor increases in weight gain in addition to modifying the expression of other adipokine genes (eg. resistin). In summary, although adipokines secreted by adipose tissue appear to the main regulator of lipostatic loop, this review shows that the fine tuning that is required to maintain a stable bodyweight by this system might be accomplished by hypothalamic-derived adipokines. Perturbations in this central adipokine system could lead to alterations in normal hypothalamic function which leads to unintended weight gain. PMID:19148319

  7. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  8. TRAUMATIC BRAIN INJURY SURVEILLANCE SYSTEM (TBISS)

    EPA Science Inventory

    The National Center for Injury Prevention and Control (NCIPC), Centers for Disease Control and Prevention (CDC) had developed and maintains a surveillance system to understand the magnitude and characteristics of hospitalized and fatal traumatic brain injuries in the United State...

  9. Brain abscess

    MedlinePlus

    Brain abscesses commonly occur when bacteria or fungi infect part of the brain. As a result, swelling and irritation (inflammation) develop. Infected brain cells, white blood cells, live and dead bacteria, ...

  10. Brain Tumors

    MedlinePlus

    ... brain. Brain tumors can be benign, with no cancer cells, or malignant, with cancer cells that grow quickly. Some are primary brain ... targeted therapy. Targeted therapy uses substances that attack cancer cells without harming normal cells. Many people get ...

  11. Brain components

    MedlinePlus Videos and Cool Tools

    The brain is composed of more than a thousand billion neurons. Specific groups of them, working in concert, provide ... of information. The 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The ...

  12. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  13. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  14. Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: Implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor

    PubMed Central

    Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.

    2014-01-01

    Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676

  15. A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats

    PubMed Central

    Li, Guoling; Tian, Yufei; Zhang, Yuzhong; Hong, Ying; Hao, Yingzhi; Chen, Chunxiao; Wang, Penglong; Lei, Haimin

    2015-01-01

    Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke. PMID:26370988

  16. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism

    PubMed Central

    Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone

    2016-01-01

    Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. PMID:26721948

  17. Controversies in preterm brain injury.

    PubMed

    Penn, Anna A; Gressens, Pierre; Fleiss, Bobbi; Back, Stephen A; Gallo, Vittorio

    2016-08-01

    In this review, we highlight critical unresolved questions in the etiology and mechanisms causing preterm brain injury. Involvement of neurons, glia, endogenous factors and exogenous exposures is considered. The structural and functional correlates of interrupted development and injury in the premature brain are under active investigation, with the hope that the cellular and molecular mechanisms underlying developmental abnormalities in the human preterm brain can be understood, prevented or repaired. PMID:26477300

  18. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  19. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  20. ThinkFirst National Injury Prevention Foundation

    MedlinePlus

    ... all ages how to prevent traumatic brain and spinal cord injuries! The ThinkFirst Foundation is a 501c3 nonprofit organization. ... The mission of ThinkFirst is to prevent brain, spinal cord and other traumatic injuries through education, research and advocacy. Support ThinkFirst Support ...

  1. A novel GSK-3β inhibitor YQ138 prevents neuronal injury induced by glutamate and brain ischemia through activation of the Nrf2 signaling pathway

    PubMed Central

    Pang, Tao; Wang, Yun-jie; Gao, Yuan-xue; Xu, Yuan; Li, Qiu; Zhou, Yu-bo; Xu, Lei; Huang, Zhang-jian; Liao, Hong; Zhang, Lu-yong; Gao, Jian-rong; Ye, Qing; Li, Jia

    2016-01-01

    Aim: To discover neuroprotective compounds and to characterize the discovered active compound YQ138 as a novel GSK-3β inhibitor. Methods: Primary rat cerebellar granule cells (CGCs) were treated with glutamate, and cell viability was analyzed with MTT assay, which was used as in vitro model for screening neuroprotective compounds. Active compound was further tested in OGD- or serum deprivation-induced neuronal injury models. The expression levels of GSK-3β downstream proteins (Nrf2, HO-1, NQO1, Tau and β-catenin) were detected with Western blotting. For evaluating the neuroprotective effects in vivo, adult male rats were subjected to transient middle cerebral artery occlusion (tMCAO), then treated with YQ138 (10 mg/kg, iv) at 2, 4 and 6 h after ischemia onset. Results: From a compound library consisting of about 2000 potential kinase inhibitors, YQ138 was found to exert neuroprotective effects: pretreatment with YQ138 (0.1–40 μmol/L) dose-dependently inhibited glutamate-induced neuronal death. Furthermore, pretreatment with YQ138 (10 μmol/L) significantly inhibited OGD- or serum deprivation-induced neuronal death. Among a panel of seven kinases tested, YQ138 selectively inhibited the activity of GSK-3β (IC50=0.52 nmol/L). Furthermore, YQ138 dose-dependently increased the expression of β-catenin, and decreased the phosphorylation of Tau in CGCs. Moreover, YQ138 significantly increased the expression of GSK-3β downstream antioxidative proteins Nrf2, HO-1, NQO1, GSH and SOD in CGCs. In rats with tMCAO, administration of YQ138 significantly decreased infarct volume, improved the neurological deficit, and increased the expression of Nrf2 and HO-1 and the activities of SOD and GSH in the cerebral cortex. Conclusion: A novel GSK-3β inhibitor YQ138 effectively suppresses brain ischemic injury in vitro and in vivo. PMID:27108601

  2. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction. PMID:26048337

  3. Ageing and the brain.

    PubMed

    Peters, R

    2006-02-01

    Ageing causes changes to the brain size, vasculature, and cognition. The brain shrinks with increasing age and there are changes at all levels from molecules to morphology. Incidence of stroke, white matter lesions, and dementia also rise with age, as does level of memory impairment and there are changes in levels of neurotransmitters and hormones. Protective factors that reduce cardiovascular risk, namely regular exercise, a healthy diet, and low to moderate alcohol intake, seem to aid the ageing brain as does increased cognitive effort in the form of education or occupational attainment. A healthy life both physically and mentally may be the best defence against the changes of an ageing brain. Additional measures to prevent cardiovascular disease may also be important. PMID:16461469

  4. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain.

    PubMed

    Xuan, Meiyan; Okazaki, Mari; Iwata, Naohiro; Asano, Satoshi; Kamiuchi, Shinya; Matsuzaki, Hirokazu; Sakamoto, Takeshi; Miyano, Yoshiyuki; Iizuka, Hiroshi; Hibino, Yasuhide

    2015-01-01

    Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice. PMID:25945116

  5. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain

    PubMed Central

    Xuan, Meiyan; Okazaki, Mari; Iwata, Naohiro; Asano, Satoshi; Kamiuchi, Shinya; Matsuzaki, Hirokazu; Sakamoto, Takeshi; Miyano, Yoshiyuki; Iizuka, Hiroshi; Hibino, Yasuhide

    2015-01-01

    Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK), which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis) induced by hypoxia/ischemia (H/I) in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min) and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o.) for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice. PMID:25945116

  6. Recombinant Brain Natriuretic Peptide for the Prevention of Contrast-Induced Nephropathy in Patients with Chronic Kidney Disease Undergoing Nonemergent Percutaneous Coronary Intervention or Coronary Angiography: A Randomized Controlled Trial

    PubMed Central

    Liu, Jinming; Xie, Yanan; He, Fang; Gao, Zihan; Hao, Yuming; Zu, Xiuguang; Chang, Liang; Li, Yongjun

    2016-01-01

    The role of brain natriuretic peptide (BNP) in the prevention of contrast-induced nephropathy (CIN) is unknown. This study aimed to investigate BNP's effect on CIN in chronic kidney disease (CKD) patients undergoing elective percutaneous coronary intervention (PCI) or coronary angiography (CAG). The patients were randomized to BNP (0.005 μg/kg/min before contrast media (CM) exposure and saline hydration, n = 106) or saline hydration alone (n = 103). Cystatin C, serum creatinine (SCr) levels, and estimated glomerular filtration rates (eGFR) were assessed at several time points. The primary endpoint was CIN incidence; secondary endpoint included changes in cystatin C, SCr, and eGFR. CIN incidence was significantly lower in the BNP group compared to controls (6.6% versus 16.5%, P = 0.025). In addition, a more significant deterioration of eGFR, cystatin C, and SCr from 48 h to 1 week (P < 0.05) was observed in controls compared to the BNP group. Although eGFR gradually deteriorated in both groups, a faster recovery was achieved in the BNP group. Multivariate logistic regression revealed that using >100 mL of CM (odds ratio: 4.36, P = 0.004) and BNP administration (odds ratio: 0.21, P = 0.006) were independently associated with CIN. Combined with hydration, exogenous BNP administration before CM effectively decreases CIN incidence in CKD patients. PMID:26949703

  7. Brain abscess

    MedlinePlus

    ... with certain heart disorders, may receive antibiotics before dental or other procedures to help reduce the risk of infection. Alternative Names Abscess - brain; Cerebral abscess; CNS abscess Images Amebic brain ...

  8. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  9. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... Before surgery, the hair on part of the scalp is shaved and the area is cleaned. The doctor makes ...

  10. Brain Health

    MedlinePlus

    ... exercise, diet and nutrition, cognitive activity, and social engagement — can help keep your body and brain ... Stay Mentally Active > Mentally challenging activities and social engagement may support brain health. Learn More Plan ahead ...

  11. The Brain.

    ERIC Educational Resources Information Center

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  12. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  13. Left Brain. Right Brain. Whole Brain

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  14. Pediatric Traumatic Brain Injury.

    PubMed

    Schaller, Alexandra L; Lakhani, Saquib A; Hsu, Benson S

    2015-10-01

    The purpose of this article is to provide a better understanding of pediatric traumatic brain injury and its management. Within the pediatric age group, ages 1 to 19, injuries are the number one cause of death with traumatic brain injury being involved in almost 50 percent of these cases. This, along with the fact that the medical system spends over $1 billion annually on pediatric traumatic brain injury, makes this issue both timely and relevant to health care providers. Over the course of this article the epidemiology, physiology, pathophysiology, and treatment of pediatric traumatic brain injury will be explored. Emphasis will be placed on the role of the early responder and the immediate interventions that should be considered and/or performed. The management discussed in this article follows the most recent recommendations from the 2012 edition of the Guidelines for the Acute Medical Management of Severe Traumatic Brain Injury in Infants, Children, and Adolescents. Despite the focus of this article, it is important not to lose sight of the fact that an ounce of prevention is worth a pound--or, to be more precise and use the average human's brain measurements, just above three pounds--of cure. PMID:26630835

  15. Brain Basics: Know Your Brain

    MedlinePlus

    ... fact sheet is a basic introduction to the human brain. It may help you understand how the healthy ... largest and most highly developed part of the human brain: it consists primarily of the cerebrum ( 2 ) and ...

  16. The Brains Behind the Brain.

    ERIC Educational Resources Information Center

    D'Arcangelo, Marcia

    1998-01-01

    Interviews with five neuroscientists--Martin Diamond, Pat Wolfe, Robert Sylwester, Geoffrey Caine, and Eric Jensen--disclose brain-research findings of practical interest to educators. Topics include brain physiology, environmental enrichment, memorization, windows of learning opportunity, brain learning capacity, attention span, student interest,…

  17. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  18. Prevention Neuroscience: A new frontier for preventive medicine.

    PubMed

    Hall, Peter A

    2016-05-01

    Prevention neuroscience may be defined as follows: an interdisciplinary field concerned with the neurobiological factors that influence susceptibility to preventable disease, disability or mortality. It includes, but is not limited to: examination of brain health as an outcome, brain activity as a predictor of health outcomes, brain structures/systems as causal determinants of health outcomes (e.g., health behaviours), and the brain as a mediator of other causal influences (e.g., social conditions) on health outcomes. This commentary describes concepts, theory and research illustrating each of these scenarios using exercise, smoking cessation, dietary behaviour, and health disparities as examples. It is argued that neuroscience may provide both concepts and methods that may be possible (even fruitful) to incorporate into preventive medicine research and health promotion practise. Although public health practitioners and cognitive neuroscientists have not traditionally crossed paths outside of the context of neurodegenerative diseases such as Alzheimer's and other dementias, it is easy to envision a future where many common disease prevention activities involve collaboration between the two disciplines, and the cache of tools available to the preventive medicine expert includes neuroimaging and neuromodulation techniques. PMID:26876625

  19. Brain Injury Safety Tips and Prevention

    MedlinePlus

    ... because they don’t think a concussion is serious. They may also worry about: Losing their position on the team or during the game. Jeopardizing their future sports career. Looking weak. Letting ...

  20. Preventing Suicide

    MedlinePlus

    ... The top three methods used in suicides include firearms (49.9%), suffocation (26.7%), and poisoning (15. ... Content source: National Center for Injury Prevention and Control, Division of Violence Prevention Page maintained by: Office ...

  1. Drowning Prevention

    MedlinePlus

    ... Listen Español Text Size Email Print Share Drowning Prevention: Information for Parents Page Content Article Body Drowning ... in very cold water for lengthy periods. Drowning Prevention: Know the Warning Signs These signs may signal ...

  2. Brain tumors.

    PubMed Central

    Black, K. L.; Mazziotta, J. C.; Becker, D. P.

    1991-01-01

    Recent advances in experimental tumor biology are being applied to critical clinical problems of primary brain tumors. The expression of peripheral benzodiazepine receptors, which are sparse in normal brain, is increased as much as 20-fold in brain tumors. Experimental studies show promise in using labeled ligands to these receptors to identify the outer margins of malignant brain tumors. Whereas positron emission tomography has improved the dynamic understanding of tumors, the labeled selective tumor receptors with positron emitters will enhance the ability to specifically diagnose and greatly aid in the pretreatment planning for tumors. Modulation of these receptors will also affect tumor growth and metabolism. Novel methods to deliver antitumor agents to the brain and new approaches using biologic response modifiers also hold promise to further improve the management of brain tumors. Images PMID:1848735

  3. Acute Methamphetamine Intoxication: Brain Hyperthermia, Blood-Brain Barrier and Brain Edema

    PubMed Central

    Kiyatkin, Eugene A.; Sharma, Hari S.

    2011-01-01

    Methamphetamine (METH) is a powerful and often abused stimulant with potent addictive and neurotoxic properties. While it is generally assumed that multiple chemical substances released in the brain following METH-induced metabolic activation (or oxidative stress) are primary factors underlying damage of neural cells, in this work we will present data suggesting a role of brain hyperthermia and associated leakage of the brain-blood barrier (BBB) in acute METH-induced toxicity. First, we show that METH induces a dose-dependent brain and body hyperthermia, which is strongly potentiated by associated physiological activation and in warm environments that prevent proper heat dissipation to the external environment. Second, we demonstrate that acute METH intoxication induces robust, widespread but structure-specific leakage of the BBB, acute glial activation, and increased water content (edema), which are related to drug-induced brain hyperthermia. Third, we document widespread morphological abnormalities of brain cells, including neurons, glia, epithelial and endothelial cells developing rapidly during acute METH intoxication. These structural abnormalities are tightly related to the extent of brain hyperthermia, leakage of the BBB, and brain edema. While it is unclear whether these rapidly developed morphological abnormalities are reversible, this study demonstrates that METH induces multiple functional and structural perturbations in the brain, determining its acute toxicity and possibly contributing to neurotoxicity. PMID:19897075

  4. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  5. A Review of Traumatic Brain Injury Trauma Center Visits Meeting Physiologic Criteria from the American College of Surgeons Committee on Trauma/Centers for Disease Control and Prevention Field Triage Guidelines

    PubMed Central

    Pearson, William S.; Ovalle, Fernando; Faul, Mark; Sasser, Scott M.

    2016-01-01

    Background Traumatic brain injury (TBI) represents a serious subset of injuries among persons in the United States, and prehospital care of these injuries can mitigate both the morbidity and the mortality in patients who suffer from these injuries. Guidelines for triage of injured patients have been set forth by the American College of Surgeons Committee on Trauma (ACS-COT) in cooperation with the Centers for Disease Control and Prevention (CDC). These guidelines include physiologic criteria, such as the Glasgow Coma Scale (GCS) score, systolic blood pressure, and respiratory rate, which should be used in determining triage of an injured patient. Objectives This study examined the numbers of visits at level I and II trauma centers by patients with a diagnosed TBI to determine the prevalence of those meeting physiologic criteria from the ACS-COT/CDC guidelines and to determine the extent of mortality among this patient population. Methods The data for this study were taken from the 2007 National Trauma Data Bank (NTDB) National Sample Program (NSP). This data set is a nationally representative sample of visits to level I and II trauma centers across the United States and is funded by the American College of Surgeons. Estimates of demographic characteristics, physiologic measures, and death were made for this study population using both chi-square analyses and adjusted logistic regression modeling. Results The analyses demonstrated that although many people who sustain a TBI and were taken to a level I or II trauma center did not meet the physiologic criteria, those who did meet the physiologic criteria had significantly higher odds of death than those who did not meet the criteria. After controlling for age, gender, race, Injury Severity Score (ISS), and length of stay in the hospital, persons who had a GCS score ≤13 were 17 times more likely to die than TBI patients who had a higher GCS score (odds ratio [OR] 17.4; 95% confidence interval [CI] 10.7–28.3). Other

  6. Brain Diseases

    MedlinePlus

    ... know what causes some brain diseases, such as Alzheimer's disease. The symptoms of brain diseases vary widely depending on the specific problem. In some cases, damage is permanent. In other cases, treatments such as surgery, medicines, or physical therapy can correct the source of the problem or ...

  7. Brain Tumor Epidemiology Consortium Membership Information

    Cancer.gov

    BTEC welcomes new members interested in the development of multi-center, inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes and prevention of all brain tumors.

  8. Preventing Rejection

    MedlinePlus

    ... Drug Assistance Lifestyle Changes Back to Work or School Physical Changes Relationship Changes Pregnancy Precautions Fertility Labor & Delivery Breastfeeding Risks Cancer Types Risk Factors Prevention & Early Detection ...

  9. Brain investigation and brain conceptualization

    PubMed Central

    Redolfi, Alberto; Bosco, Paolo; Manset, David; Frisoni, Giovanni B.

    Summary The brain of a patient with Alzheimer’s disease (AD) undergoes changes starting many years before the development of the first clinical symptoms. The recent availability of large prospective datasets makes it possible to create sophisticated brain models of healthy subjects and patients with AD, showing pathophysiological changes occurring over time. However, these models are still inadequate; representations are mainly single-scale and they do not account for the complexity and interdependence of brain changes. Brain changes in AD patients occur at different levels and for different reasons: at the molecular level, changes are due to amyloid deposition; at cellular level, to loss of neuron synapses, and at tissue level, to connectivity disruption. All cause extensive atrophy of the whole brain organ. Initiatives aiming to model the whole human brain have been launched in Europe and the US with the goal of reducing the burden of brain diseases. In this work, we describe a new approach to earlier diagnosis based on a multimodal and multiscale brain concept, built upon existing and well-characterized single modalities. PMID:24139654

  10. Stroke prevention: an update.

    PubMed

    Bousser, Marie-Germaine

    2012-03-01

    Stroke is a personal, familial, and social disaster. It is the third cause of death worldwide, the first cause of acquired disability, the second cause of dementia, and its cost is astronomic. The burden of stroke is likely to increase given the aging of the population and the growing incidence of many vascular risk factors. Prevention of stroke includes--as for all other diseases--a "mass approach" aiming at decreasing the risk at the society level and an individual approach, aiming at reducing the risk in a given subject. The mass approach is primarily based on the identification and treatment of vascular risk factors and, if possible, in the implementation of protective factors. These measures are the basis of primary prevention but most of them have now been shown to be also effective in secondary prevention. The individual approach combines a vascular risk factor modification and various treatments addressing the specific subtypes of stroke, such as antiplatelet drugs for the prevention of cerebral infarction in large and small artery diseases of the brain, carotid endarterectomy or stenting for tight carotid artery stenosis, and oral anticoagulants for the prevention of cardiac emboli. There is a growing awareness of the huge evidence-to-practice gap that exists in stroke prevention largely due to socio-economic factors. Recent approaches include low cost intervention packages to reduce blood pressure and cheap "polypills" combining in a single tablet aspirin and several drugs to lower blood pressure and cholesterol. Polypill intake should however not lead to abandon the healthy life-style measures which remain the mainstay of stroke prevention. PMID:22460445

  11. Preventative Maintenance.

    ERIC Educational Resources Information Center

    Migliorino, James

    Boards of education must be convinced that spending money up front for preventive maintenance will, in the long run, save districts' tax dollars. A good program of preventive maintenance can minimize disruption of service; reduce repair costs, energy consumption, and overtime; improve labor productivity and system equipment reliability; handle…

  12. Preventing Falls

    MedlinePlus

    ... from osteoporosis. Lower-body strength exercises and balance exercises can help you prevent falls and avoid the disability that may result from falling. Here are some fall prevention tips from Go4Life : l Have your eyes and hearing tested often. Always wear your glasses when you ...

  13. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  14. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  15. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  16. Brain Development

    MedlinePlus

    ... new neural connections every second. This growing brain development is influenced by many factors, including a child’s relationships, experiences and environment. Learn more about the crucial role you play ...

  17. Brain herniation

    MedlinePlus

    Ling GSF. Traumatic brain injury and spinal cord injury. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 406. Stippler M. Trauma of ...

  18. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  19. Future directions in treatment of brain metastases

    PubMed Central

    Barani, Igor J.; Larson, David A.; Berger, Mitchel S.

    2013-01-01

    Background: Brain metastases affect up to 30% of patients with cancer. Management of brain metastases continues to evolve with ever increasing focus on cognitive preservation and quality of life. This manuscript reviews current state of brain metastases management and discusses various treatment controversies with focus on future clinical trials. Stereotactic radiosurgery (SRS) and whole-brain radiotherapy (WBRT) are discussed in context of multiple (4+ brain metastases) as well as new approaches combining radiation and targeted agents. A brief discussion of modified WBRT approaches, including hippocampal-avoidance WBRT (HA-WBRT) is included as well as a section on recently presented results of Radiation Therapy Oncology Group (RTOG) 0614, a randomized, double-blind, placebo-controlled trial of menantine for prevention of neurocognitive injury after WBRT. Methods: A search of selected studies relevant to management of brain metastases was performed in PubMed as well as in various published meeting abstracts. This data was collated and analyzed in context of contemporary management and future clinical trial plans. This data is presented in tabular form and discussed extensively in the text. Results: The published data demonstrate continued evolution of clinical trials and management strategies designed to minimize and/or prevent cognitive decline following radiation therapy management of brain metastases. Hippocampal avoidance whole-brain radiation therapy (HA-WBRT) and radiosurgery treatments for multiple brain metastases are discussed along with preliminary results of RTOG 0614, a trial of memantine therapy to prevent cognitive decline following WBRT. Trial results appear to support the use of memantine for prevention of cognitive decline. Conclusions: Different management strategies for multiple brain metastases (>4 brain metastases) are currently being evaluated in prospective clinical trials to minimize the likelihood of cognitive decline following WBRT. PMID

  20. Preventing falls

    MedlinePlus

    ... worsened. Improving your vision will help reduce falls. Images ... for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews 2009, Issue 2. Art. No.: ...

  1. Preventing Influenza

    MedlinePlus

    ... spread in respiratory droplets distributed by coughing and sneezing, they readily spread from person to person. Additionally, ... and nose with a tissue when coughing or sneezing, you may help prevent those around you from ...

  2. Dengue Prevention

    MedlinePlus

    ... Compartir This photograph shows a mother applying mosquito repellent to her child's skin in order to prevent ... the lights are on. To protect yourself, use repellent on your skin while indoors or out. When ...

  3. Brain death.

    PubMed

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families. PMID:24182378

  4. Organic brain syndrome

    MedlinePlus

    OBS; Organic mental disorder (OMS); Chronic organic brain syndrome ... Listed below are disorders associated with OBS. Brain injury caused by ... the brain ( subarachnoid hemorrhage ) Blood clot inside the ...

  5. Animating Brains.

    PubMed

    Borck, Cornelius

    2016-07-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title 'Voodoo Correlations in Social Neuroscience'. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of 'soul catching', the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain's electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  6. Smart Brains.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1995-01-01

    New techniques have opened windows to the brain. Although the biochemistry of learning remains largely a mystery, the following findings seem to have clear implications for education: (1) the importance of early-learning opportunities for the very young; (2) the connection between music and abstract reasoning; and (3) the importance of good…

  7. Vision's Brain.

    ERIC Educational Resources Information Center

    Miller, Julie Ann

    1978-01-01

    The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)

  8. Deregulated proliferation and differentiation in brain tumors.

    PubMed

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2015-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  9. Stress- and Allostasis-Induced Brain Plasticity

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2014-01-01

    The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms. PMID:20707675

  10. Deregulated proliferation and differentiation in brain tumors

    PubMed Central

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2014-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  11. What Do We Know About Preventing Alzheimer's? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Alzheimer's Disease What Do We Know About Preventing Alzheimer's? Past ... the Brain Currently, the most definite diagnosis of Alzheimer's disease is made after death, by examining brain tissue ...

  12. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  13. Brain Tumors (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  14. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  15. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  16. Poison Prevention

    MedlinePlus

    ... Word Shop AAP Find a Pediatrician Safety & Prevention ... Content Article Body Post the Poison Help number 1-800-222-1222 on the emergency list next to every phone in your home and in your cell phone. A toddler or preschooler who vomits may ...

  17. Preventing Tragedy.

    ERIC Educational Resources Information Center

    One Feather, Sandra

    2003-01-01

    The Navajo supervisor in the Office of Environmental Health in New Mexico identifies diseases and their risk factors, administers an injury prevention program, and ensures compliance with various health-related codes. She assists in the planning and direction of environmental health programs and public health education for local Navajo…

  18. Bullying Prevention

    ERIC Educational Resources Information Center

    Kemp, Patrice

    2016-01-01

    The focus of the milestone project is to focus on bridging the gap of bullying and classroom instruction methods. There has to be a defined expectations and level of accountability that has to be defined when supporting and implementing a plan linked to bullying prevention. All individuals involved in the student's learning have to be aware of…

  19. Martian 'Brain'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    5 May 2004 Most middle-latitude craters on Mars have strange landforms on their floors. Often, the floors have pitted and convoluted features that lack simple explanation. In this case, the central part of the crater floor shown in this 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image bears some resemblance to the folded nature of a brain. Or not. It depends upon the 'eye of the beholder,' perhaps. The light-toned 'ring' around the 'brain' feature is more easily explained--windblown ripples and dunes. The crater occurs near 33.1oS, 91.2oW, and is illuminated from the upper left. The picture covers an area about 3 km (1.9 mi) across.

  20. Silicon Brains

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation <1 kW. For a balanced view on intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  1. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  2. Animating Brains

    PubMed Central

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  3. Preeclampsia prevention

    PubMed Central

    Herrera-Medina, Rodolfo; Pineda, Lucia M

    2015-01-01

    Background: Preeclampsia is the main complication of pregnancy in developing countries. Calcium starting at 14 weeks of pregnancy is indicated to prevent the disease. Recent advances in prevention of preeclampsia endorse the addition of conjugated linoleic acid. Objective: To estimate the protective effect from calcium alone, compared to calcium plus conjugated linoleic acid in nulliparous women at risk of preeclampsia. Methods: A case-control design nested in the cohort of nulliparous women attending antenatal care from 2010 to 2014. The clinical histories of 387 cases of preeclampsia were compared with 1,054 normotensive controls. The exposure was prescriptions for calcium alone, the first period, or calcium plus conjugated linoleic acid, the second period, from 12 to 16 weeks of gestational age to labor. Confounding variables were controlled, allowing only nulliparous women into the study and stratifying by age, education and ethnic group. Results: The average age was 26.4 yrs old (range= 13-45), 85% from mixed ethnic backgrounds and with high school education. There were no differences between women who received calcium carbonate and those who did not (OR= 0.96; 95% CI= 0.73-1.27). The group of adolescents (13 to 18 years old) in the calcium plus conjugated linoleic acid was protected for preeclampsia (OR= 0.00; 95% CI= 0.00-0.44) independent of the confounder variables. Conclusions: 1. Calcium supplementation during pregnancy did not have preventive effects on preeclampsia. 2. Calcium plus Conjugated Linoleic acid provided to adolescents was observed to have preventive effect on Preeclampsia. PMID:26848195

  4. Preventing and diagnosing dementia.

    PubMed

    Keenan, Bernie; Jenkins, Catharine; Ginesi, Laura

    While dementia is an umbrella term for a range of degenerative brain disorders, many share similar presentations. Nurses are ideally placed to identify those at risk and empower them to access treatment and plan and prepare for their future needs--as such, they need up-to-date knowledge of the signs and symptoms of the different types of dementia to identify risk factors and make an informed diagnosis. This article, the third in a four-part series on dementia, examines the risk factors, signs, symptoms and diagnosis of dementia, as well as outlining lifestyle factors such as diet and exercise that may help to prevent the development of the condition. PMID:27544960

  5. Traumatic brain injury: pathophysiology for neurocritical care.

    PubMed

    Kinoshita, Kosaku

    2016-01-01

    Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood-brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction. PMID:27123305

  6. Hippocampal Sclerosis: Causes and Prevention.

    PubMed

    Walker, Matthew Charles

    2015-06-01

    Hippocampal sclerosis is the commonest cause of drug-resistant epilepsy in adults, and is associated with alterations to structures and networks beyond the hippocampus.In addition to being a cause of epilepsy, the hippocampus is vulnerable to damage from seizure activity. In particular, prolonged seizures (status epilepticus) can result in hippocampal sclerosis. The hippocampus is also vulnerable to other insults including traumatic brain injury, and inflammation. Hippocampal sclerosis can occur in association with other brain lesions; the prevailing view is that it is probably a secondary consequence. In such instances, successful surgical treatment usually involves the resection of both the lesion and the involved hippocampus. Experimental data have pointed to numerous neuroprotective strategies to prevent hippocampal sclerosis. Initial neuroprotective strategies aimed at glutamate receptors may be effective, but later, metabolic pathways, apoptosis, reactive oxygen species, and inflammation are involved, perhaps necessitating the use of interventions aimed at multiple targets. Some of the therapies that we use to treat status epilepticus may neuroprotect. However, prevention of neuronal death does not necessarily prevent the later development of epilepsy or cognitive deficits. Perhaps, the most important intervention is the early, aggressive treatment of seizure activity, and the prevention of prolonged seizures. PMID:26060898

  7. Adolescent and Pediatric Brain Tumors

    MedlinePlus

    ... abta.org Donate Now Menu Adolescent & Pediatric Brain Tumors Brain Tumors In Children Pediatric Brain Tumor Diagnosis Family ... or Complete our contact form Adolescent & Pediatric Brain Tumors Brain Tumors In Children Pediatric Brain Tumor Diagnosis Family ...

  8. Allergy prevention.

    PubMed

    Muche-Borowski, Cathleen; Kopp, Matthias; Reese, Imke; Sitter, Helmut; Werfel, Thomas; Schäfer, Torsten

    2010-09-01

    The further increase of allergies in industrialized countries demands evidence-based measures of primary prevention. The recommendations as published in the guideline of 2004 were updated and consented on the basis of a systematic literature search. Evidence from the period February 2003-May 2008 was searched in the electronic databases Cochrane and MEDLINE as well as in reference lists of recent reviews and by contacting experts. The retrieved citations were screened for relevance first by title and abstract and in a second step as full paper. Levels of evidence were assigned to each included study and the methodological quality of the studies was assessed as high or low. Finally the revised recommendations were formally consented (nominal group process) by representatives of relevant societies and organizations including a self-help group. Of originally 4556 hits, 217 studies (4 Cochrane Reviews, 14 meta-analyses, 19 randomized controlled trials, 135 cohort and 45 case-control studies) were included and critically appraised. Grossly unchanged remained the recommendations on avoiding environmental tobacco smoke, breast-feeding over 4 months (alternatively hypoallergenic formulas for children at risk), avoiding a mold-promoting indoor climate, vaccination according to current recommendations, and avoidance of furry pets (especially cats) in children at risk. The recommendation on reducing the house dust mite allergen exposure as a measure of primary prevention was omitted and the impact of a delayed introduction of supplementary food was reduced. New recommendations were adopted concerning fish consumption (during pregnancy / breast-feeding and as supplementary food in the first year), avoidance of overweight, and reducing the exposure to indoor and outdoor air pollutants. The revision of this guideline on a profound evidence basis led to (1) a confirmation of existing recommendations, (2) substantial revisions, and (3) new recommendations. Thereby it is possible

  9. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  10. Epilepsy and brain inflammation.

    PubMed

    Vezzani, Annamaria; Aronica, Eleonora; Mazarati, Andrey; Pittman, Quentin J

    2013-06-01

    During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble

  11. Antibodies as Mediators of Brain Pathology.

    PubMed

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T; Diamond, Betty

    2015-11-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  12. Antibodies as Mediators of Brain Pathology

    PubMed Central

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T.; Diamond, Betty

    2016-01-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  13. Translating Developmental Neuroscience to Substance Use Prevention

    PubMed Central

    Riggs, Nathaniel R.

    2015-01-01

    Several preventive interventions have demonstrated efficacy in reducing substance use. However, opportunities exist to further improve prevention approaches. The application of recent advances in developmental neuroscience can inform the design, implementation, and evaluation of substance use prevention programs. This paper first briefly describes the developmental integration of the prefrontal cortex with emotion and motivation centers of the brain, and the implications of this process for substance use vulnerability. Discussed next are specific examples of how developmental neuroscience can inform prevention timing, development, and evaluation. Contextual considerations are then suggested including a critical role for schools in substance misuse prevention. Finally, current theoretical and methodological challenges to the translation of developmental neuroscience to substance use prevention are discussed. PMID:26236576

  14. Brain tumors: Special characters for research and banking

    PubMed Central

    Kheirollahi, Majid; Dashti, Sepideh; Khalaj, Zahra; Nazemroaia, Fatemeh; Mahzouni, Parvin

    2015-01-01

    A brain tumor is an intracranial neoplasm within the brain or in the central spinal canal. Primary malignant brain tumors affect about 200,000 people worldwide every year. Brain cells have special characters. Due to the specific properties of brain tumors, including epidemiology, growth, and division, investigation of brain tumors and the interpretation of results is not simple. Research to identify the genetic alterations of human tumors improves our knowledge of tumor biology, genetic interactions, progression, and preclinical therapeutic assessment. Obtaining data for prevention, diagnosis, and therapy requires sufficient samples, and brain tumors have a wide range. As a result, establishing the bank of brain tumors is very important and essential. PMID:25625110

  15. Brain Protection during Cardiac Surgery: Circa 2012

    PubMed Central

    Hammon, John W.

    2013-01-01

    Abstract: Brain injury during cardiac surgery can cause a potentially disabling syndrome consisting mainly of cognitive dysfunction but can manifest itself as symptoms and signs indistinguishable from frank stroke. The cause of the damage is mainly the result of emboli consisting of solid material such as clots or atherosclerotic plaque, fat, and/or gas. These emboli enter the cerebral circulation from the cardiopulmonary bypass machine, break off the aorta during manipulation, and enter the circulation from cardiac chambers. This damage can be prevented or at least minimized by avoiding aortic manipulation, filtering aortic inflow from the pump, preventing air from entering the pump plus careful deairing of the heart. Shed blood from the cardiotomy suction should be processed by a cell saver whenever possible. By doing these maneuvers, inflammation of the brain can be avoided. Long-term neurocognitive damage has been largely prevented in large series of patients having high-risk surgery, which makes these preventive measures worthwhile. PMID:23930381

  16. Brain stimulation in migraine.

    PubMed

    Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida

    2013-01-01

    Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. PMID:24112926

  17. Traumatic Brain Injury

    MedlinePlus

    ... Center PTACs Workspaces Log-in Search for: Traumatic Brain Injury A legacy resource from NICHCY Disability Fact ... in her. Back to top What is Traumatic Brain Injury? A traumatic brain injury (TBI) is an ...

  18. Brain-based Learning.

    ERIC Educational Resources Information Center

    Weiss, Ruth Palombo

    2000-01-01

    Discusses brain research and how new imaging technologies allow scientists to explore how human brains process memory, emotion, attention, patterning, motivation, and context. Explains how brain research is being used to revise learning theories. (JOW)

  19. That's Using Your Brain!

    ERIC Educational Resources Information Center

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  20. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  1. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  2. Brain tumor (image)

    MedlinePlus

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  3. Metastatic brain tumor

    MedlinePlus

    ... brain from an unknown location. This is called cancer of unknown primary (CUP) origin. Growing brain tumors can place pressure ... not know the original location. This is called cancer of unknown primary (CUP) origin. Metastatic brain tumors occur in about ...

  4. Metastatic brain tumor

    MedlinePlus

    Brain tumor - metastatic (secondary); Cancer - brain tumor (metastatic) ... For many people with metastatic brain tumors, the cancer is not curable. It will eventually spread to other areas of the body. Prognosis depends on the type of tumor ...

  5. Do metals that translocate to the brain exacerbate traumatic brain injury?

    PubMed

    Kalinich, John F; Kasper, Christine E

    2014-05-01

    Metal translocation to the brain is strictly controlled and often prevented by the blood-brain barrier. For the most part, only those metals required to maintain normal function are transported into the brain where they are under tight metabolic control. From the literature, there are reports that traumatic brain injury disrupts the blood-brain barrier. This could allow the influx of metals that would normally have been excluded from the brain. We also have preliminary data showing that metal pellets, surgically-implanted into the leg muscle of a rat to simulate a shrapnel wound, solubilize and the metals comprising the pellet can enter the brain. Surprisingly, rats implanted with a military-grade tungsten alloy composed of tungsten, nickel, and cobalt also showed significantly elevated uranium levels in their brains as early as 1 month after pellet implantation. The only source of uranium was low levels that are naturally found in food and water. Conversely, rats implanted with depleted uranium pellets demonstrated elevated uranium levels in brain resulting from degradation of the implanted pellets. However, when cobalt levels were measured, there were no significant increases in the brain until the rats had reached old age. The only source of cobalt for these rats was the low levels found in their food and water. These data suggest that some metals or metal mixtures (i.e., tungsten alloy), when embedded into muscle, can enhance the translocation of other, endogenous metals (e.g., uranium) across the blood-brain barrier. For other embedded metals (i.e., depleted uranium), this effect is not observed until the animal is of advanced age. This raises the possibility that metal body-burdens can affect blood-brain barrier permeability in a metal-specific and age-dependent manner. This possibility is disconcerting when traumatic brain injury is considered. Traumatic brain injury has been called the "signature" wound of the conflicts in Iraq and Afghanistan, often, an

  6. Revisiting Einstein's brain in Brain Awareness Week.

    PubMed

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain. PMID:25382446

  7. DESIGNING "LIFESTYLE INTERVENTIONS" WITH THE BRAIN IN MIND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central hypothesis examined in this issue is that insulin resistance promotes maladaptive brain function and contributes to reduced neuronal plasticity, potentially accelerating brain aging. Therefore, if we were to prevent or treat insulin resistance, through weight loss and exercise, cognitive...

  8. The Correlation between Brain Development, Language Acquisition, and Cognition

    ERIC Educational Resources Information Center

    Wasserman, Leslie Haley

    2007-01-01

    There continues to be a debate whether educators should use brain research to their advantage in the classroom. This debate should not prevent educators from using their new found knowledge toward enhancing their students' learning. By understanding how the brain learns, educators are able to determine what developmental level the child is…

  9. S-nitrosoglutathione prevents experimental cerebral malaria

    PubMed Central

    Zanini, Graziela M.; Martins, Yuri C.; Cabrales, Pedro; Frangos, John A.; Carvalho, Leonardo J. M.

    2012-01-01

    Administration of the exogenous nitric oxide (NO) donor dipropylenetriamine-NONOate (DPTA-NO) to mice during Plasmodium berghei ANKA (PbA) infection largely prevents development of experimental cerebral malaria (ECM). However, a high dose (1mg/mouse twice a day) is necessary and causes potent side effects such as marked hypotension. In the present study we evaluated whether an alternative, physiologically relevant NO donor, S-nitrosoglutathione (GSNO), was able to prevent ECM at lower doses with minimal side effects. Prophylactic treatment with high (3.5mg), intermediate (0.35mg) or low (0.035mg) doses of GSNO decreased incidence of ECM in PbA-infected mice, decreasing also edema, leukocyte accumulation and hemorrhage incidence in the brain. The high dose inhibited parasite growth and also induced transient hypotension. Low and intermediate doses had no or only mild effects on parasitemia, blood pressure, and heart rate compared to saline-treated mice. PbA infection decreased brain total and reduced (GSH) glutathione levels. Brain levels of oxidized (GSSG) glutathione and the GSH/GSSG ratio were positively correlated with temperature and motor behavior. Low and intermediate doses of GSNO failed to restore the depleted brain total glutathione and GSH levels, suggesting that ECM prevention by GSNO was probably related to other effects such as inhibition of inflammation and vascular protection. These results indicate that ECM is associated with depletion of the brain glutathione pool and that GSNO is able to prevent ECM development in a wide range of doses, decreasing brain inflammation and inducing milder cardiovascular side effects. PMID:22391863

  10. Rapid brain cooling in diving ducks.

    PubMed

    Caputa, M; Folkow, L; Blix, A S

    1998-08-01

    Hypothermia may limit asphyxic damages to the brain, and many small homeotherms have been shown to use anapyrexic strategies when exposed to asphyxic conditions. Larger homeotherms do not seem to use the same strategy, but could save oxygen and prevent hypoxic brain damage by employing selective brain cooling (SBC) in connection with asphyxia. To test the hypothesis that selective brain cooling may take place in connection with asphyxia, we have recorded brain [hypothalamic (THyp)] and body [colonic (TC)] temperatures and heart rates in four Pekin ducks during 5-min simulated (head submersion) diving in cold water (10 degrees C). Diving resulted in a drop in THyp (3.1 +/- 1.4 degrees C) that continued into the recovery period (P < 0.001). Restricting heat loss from the buccal cavity and eyes during diving compromised brain cooling in an additive manner. TC was not influenced by diving. Control cooling of the head with crushed ice during a 5-min period of undisturbed breathing had no effect on THyp. Warm water (35 degrees C) markedly reduced brain cooling, and dive capacity was reduced by approximately 14% (P < 0.05) compared with diving in water at 10 degrees C. The data suggest that SBC is used in ducks during diving, and we propose that this mechanism may enable the bird to save oxygen for prolonged aerobic submergence and to protect the brain from asphyxic damages. PMID:9688670

  11. Dosimetric evaluation of brain scanning agents

    SciTech Connect

    Eckerman, K.F.; Cristy, M.; Warner, G.G.

    1981-06-01

    Conventional radiopharmaceuticals used for scanning the brain are excluded from normal brain tissue by the presence of an intact blood-brain-barrier (BBB). The current generation of radiopharmaceuticals being developed is capable of crossing the intact BBB thus providing direct measurement of brain function. The dosimetry of the first generation agents is complicated by the presence of the BBB which prevents the agent from achieving uniform distribution as generally assumed in dosimetric evaluation. The second generation radiopharmaceuticals while crossing the BBB are also nonuniformly distributed in the brain. Tabulations of specific absorbed fraction data for photon emitters uniformly distributed in the gray and in the white matter regions of the brain are presented and compared to values for a uniform distribution throughout the brain. Estimates of the specific absorbed fraction for the lens of the eye and the pituitary gland are also presented. Dose values per unit cumulated activity (S-factors) are developed based on the specific absorbed fraction data. The significance of the positron component to the dose to the regions of the brain is indicated for second generation scanning agents containing carbon-11, nitrogen-13, oxygen-15, and fluorine-18.

  12. The stomach-brain axis.

    PubMed

    Holtmann, Gerald; Talley, Nicholas J

    2014-12-01

    required instead of widely utilised opportunistic stool microbiome studies. In summary, it is now well established that there are important links between the brain and the stomach that have significant effects on gastric function. However, the stomach also influences the brain. Disturbances in the crosstalk between the stomach and the brain may manifest as functional GI disorders while disturbances in the stomach-brain communication may also result in an altered regulation of satiety and as a consequence may affect eating behaviour and mood. These observations may enable the identification of novel therapies targeted at the gastroduodenum that positively alter brain function and treat or prevent conditions such as obesity or functional gastrointestinal disorders. PMID:25439064

  13. A randomized double-blind crossover trial of deep brain stimulation of the subcallosal cingulate gyrus in patients with treatment-resistant depression: a pilot study of relapse prevention

    PubMed Central

    Puigdemont, Dolors; Portella, Maria J.; Pérez-Egea, Rosario; Molet, Joan; Gironell, Alexandre; de Diego-Adeliño, Javier; Martín, Anna; Rodríguez, Rodrigo; Àlvarez, Enric; Artigas, Francesc; Pérez, Víctor

    2015-01-01

    Background To date, antidepressant drugs show limited efficacy, leaving a large number of patients experiencing severe and persistent symptoms of major depression. Previous open-label clinical trials have reported significant sustained improvements with deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) in patients with severe, chronic treatment-resistant depression (TRD). This study aimed to confirm the efficacy and measure the impact of discontinuation of the electrical stimulation. Methods We conducted a 6-month double-blind, randomized, sham-controlled crossover study in implanted patients with previous severe TRD who experienced full remission after chronic stimulation. After more than 3 months of stable remission, patients were randomly assigned to 2 treatment arms: the ON–OFF arm, which involved active electrode stimulation for 3 months followed by sham stimulation for 3 months, and the OFF–ON arm, which involved sham stimulation for 3 months followed by active stimulation for 3 months. The primary outcome measure was the difference in the 17-item Hamilton Rating Scale for Depression (HAMD-17) total score between sham and active stimulation. Results We enrolled 5 patients in our trial. A Friedman repeated-measures analysis of variance revealed a significant effect of treatment (χ21 = 5.0, p = 0.025) in patients with higher depression scores during sham stimulation. At the end of active stimulation, depression was remitted in 4 of 5 patients and none of them had experienced a relapse, whereas at the end of sham stimulation, 2 patients remained in remission, 2 relapsed and 1 showed a progressive worsening without reaching relapse criteria. Limitations The small sample size limited the statistical power and external validity. Conclusion These preliminary findings indicate that DBS of the SCG is an effective and safe treatment for severe forms of TRD and that continuous electrical stimulation is required to maintain therapeutic effects

  14. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  15. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  16. [Prevention of senescence and stress by food composition].

    PubMed

    Unno, Keiko

    2015-01-01

      The high prevalence of dementia in aged individuals suggests that aging is the most important risk factor and that senescence further enhances dementia. We have searched for dietary factors that prevent brain senescence using a mouse model of age-related neurodegeneration (SAMP10). This mouse line is suitable for studying brain senescence because brain atrophy and cognitive dysfunction are observed with aging, similar to humans. The production of reactive oxygen species and oxidative damage are high in the brains of aged SAMP10. We found that green tea catechin and β-cryptoxanthin in Japanese mandarin oranges prevented brain atrophy and cognitive dysfunction. In addition, psychosocially chronically stressed mice exhibited a shortened life span and accelerated cognitive dysfunction. These deficiencies were prevented by the ingestion of theanine, an amino acid in tea, under stressed conditions. While a number of factors affect brain senescence, our results suggest that non-nutritive food components such as catechin, β-cryptoxanthin and theanine may be useful for preventing brain senescence. PMID:25743897

  17. Brain Tumor Symptoms

    MedlinePlus

    ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us Our Founders Board of Directors Staff ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning Donate to the ABTA Help advance the understanding ...

  18. The Blood-Brain Barrier Challenge for the Treatment of Brain Cancer, Secondary Brain Metastases, and Neurological Diseases.

    PubMed

    Weidle, Ulrich H; Niewöhner, Jens; Tiefenthaler, Georg

    2015-01-01

    Formation of metastases from various tumor entities in the brain is a major problem for the treatment of advanced cancer. We describe target molecules and tools for the delivery of small molecules or proteins across the blood-brain barrier (BBB), and the treatment of brain tumors and metastases with antibody-related moieties. In addition, drugs preventing formation of metastases or interfering with the growth of established metastases are described, as well as pre-clinical metastasis models and corresponding clinical data. Furthermore, we discuss the delivery of effector proteins and antibody-based moieties fused with an antibody-based scaffold across the BBB in several model systems which might be applicable for the treatment of brain metastases. PMID:26136217

  19. Effective primary prevention programs in public health and their applicability to the prevention of child maltreatment.

    PubMed

    Rivara, Frederick P; Johnston, Brian

    2013-01-01

    Principles of public health practice can be applied to problems, such as child maltreatment, that have behavioral antecedents and injury outcomes. Successful campaigns to promote bicycle helmet use to prevent brain injury and to promote supine sleeping to prevent sudden infant death are described. These programs were universally applied, featured simple behavioral goals, were based on the best available evidence, and monitored both behavioral and health-related outcomes. PMID:24199326

  20. A Role for Brain Stress Systems in Addiction

    PubMed Central

    Koob, George F.

    2009-01-01

    Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026

  1. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    PubMed Central

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470

  2. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.

    PubMed

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, J J

    2016-09-01

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in

  3. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  4. Brain evolution by brain pathway duplication.

    PubMed

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  5. Prevention of unintentional childhood injury.

    PubMed

    Theurer, Wesley M; Bhavsar, Amit K

    2013-04-01

    Unintentional injury accounts for 40 percent of childhood deaths annually, most commonly from motor vehicle crashes. The proper use of child restraints is the most effective strategy to prevent injury or death. Motor vehicle restraint guidelines have recently been revised to an age-based system that delays the progression in type of restraint for most children. Strategies to prevent suffocation in children include using appropriate bedding, positioning babies on their backs to sleep, and removing items from the sleep and play environment that could potentially entrap or entangle the child. Fencing that isolates a swimming pool from the yard and surrounding area and "touch" adult supervision (i.e., an adult is in the water and able to reach and grab a child) have been shown to be most effective in preventing drownings. Swimming lessons are recommended for children older than four years. Poison prevention programs have been shown to improve prevention behavior among caregivers, but may not decrease poisoning incidence. Syrup of ipecac is not recommended. Smoke detector maintenance, a home escape plan, and educating children about how to respond during a fire emergency are effective strategies for preventing fire injuries or death. Fall injuries may be reduced by not using walkers for infants and toddlers or bunk beds for children six years and younger. Consistent helmet use while bicycling reduces head and brain injuries. Although direct counseling by physicians appears to improve some parental safety behaviors, its effect on reducing childhood injuries is uncertain. Community-based interventions can be effective in high-risk populations. PMID:23547592

  6. Vitamin D in dementia prevention.

    PubMed

    Annweiler, Cédric

    2016-03-01

    Beyond effects on bone health, vitamin D exerts effects on a variety of target organs, including the brain. The discussion herein presents the state of the art in research on the neurological role of vitamin D and clinical implications among older adults, including implications for dementia onset and progression. Some of the neurosteroid actions of vitamin D include regulation of calcium homeostasis, clearance of amyloid-β peptide, antioxidant and anti-inflammatory effects, and possible protection against the neurodegenerative mechanisms associated with Alzheimer's disease (AD). The correction of age-related hypovitaminosis D and cognitive decline has been reported by various cross-sectional and longitudinal studies reporting associations of lower vitamin D concentrations with brain changes and poorer cognition, specifically with respect to executive dysfunction. Epidemiological studies have consistently shown an association between inadequate dietary intake of vitamin D and cognitive disorders, including greater AD risk. Although there have not been any randomized placebo-controlled trials conducted to examine the effectiveness of vitamin D supplementation to prevent AD, several nonrandomized controlled studies have found that older adults experienced cognitive improvements after 1-15 months of vitamin D supplementation. Therefore, it appears crucial to maintain vitamin D concentrations at sufficiently high levels in order to slow, prevent, or improve neurocognitive decline. PMID:27116242

  7. Healthy cognitive aging and dementia prevention.

    PubMed

    Smith, Glenn E

    2016-01-01

    Behavioral prevention strategies can help maintain high levels of cognition and functional integrity, and can reduce the social, medical, and economic burden associated with cognitive aging and age-associated neurodegenerative diseases. Interventions involving physical exercise and cognitive training have consistently shown positive effects on cognition in older adults. "Brain fitness" interventions have now been shown to have sustained effects lasting 10 years or more. A meta-analysis suggests these physical exercise and brain fitness exercises produce nearly identical impact on formal measures of cognitive function. Behavioral interventions developed and deployed by psychologists are key in supporting healthy cognitive aging. The National Institutes of Health should expand research on cognitive health and behavioral and social science to promote healthy aging and to develop and refine ways to prevent and treat dementia. Funding for adequately powered, large-scale trials is needed. Congress must maintain support for crucial dementia-related initiatives like the Centers for Disease Control and Prevention Healthy Brain Initiative and fund training programs to insure there is a work force with skills to provide high quality care for older adults. Insurers must provide better coverage for behavioral interventions. Better coverage is needed so there can be increased access to evidence-based disease prevention and health promotion services with the potential for reducing dementia risk. (PsycINFO Database Record PMID:27159433

  8. Preventing Pressure Sores

    MedlinePlus Videos and Cool Tools

    Experts \\ Preventing Pressure Sores Topics Adult Injuries Spinal Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury ... The Basics of Spinal Cord Injury Rehabilitation Preventing Pressure Sores Preventing Pressure Sores Transition from Hospital to ...

  9. Lead Poisoning Prevention Tips

    MedlinePlus

    ... CDC.gov . Lead Home Calendar of Events National Lead Poisoning Prevention Week Archived Materials CDC's Childhood Lead Poisoning Prevention Program Advisory Committee (ACCLPP) Current Activities Blood ...

  10. Efflux transporters in blood-brain interfaces of the developing brain

    PubMed Central

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2015-01-01

    The cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-CSF barrier (BCSFB) operate as gatekeepers for the central nervous system. Exposure of the vulnerable developing brain to chemical insults can have dramatic consequences for brain maturation and lead to life-long neurological diseases. The ability of blood-brain interfaces to efficiently protect the immature brain is therefore an important pathophysiological issue. This is also key to our understanding of drug entry into the brain of neonatal and pediatric patients. Non-specific paracellular diffusion through barriers is restricted early during development, but other neuroprotective properties of these interfaces differ between the developing and adult brains. This review focuses on the developmental expression and function of various classes of efflux transporters. These include the multispecific transporters of the ATP-binding cassette transporter families ABCB, ABCC, ABCG, the organic anion and cation transporters of the solute carrier families SLC21/SLCO and SLC22, and the peptide transporters of the SLC15 family. These transporters play a key role in preventing brain entry of blood-borne molecules such as drugs, environmental toxicants, and endogenous metabolites, or else in increasing the clearance of potentially harmful organic ions from the brain. The limited data available for laboratory animals and human highlight transporter-specific developmental patterns of expression and function, which differ between blood-brain interfaces. The BCSFB achieves an adult phenotype earlier than BBB. Efflux transporters at the BBB appear to be regulated by various factors subsequently secreted by neural progenitors and astrocytes during development. Their expression is also modulated by oxidative stress, inflammation, and exposure to xenobiotic inducers. A better understanding of these regulatory pathways during development, in particular

  11. Understanding brain networks and brain organization

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz

    2014-09-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal "true" subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different "slices" of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.

  12. Understanding brain networks and brain organization

    PubMed Central

    Pessoa, Luiz

    2014-01-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881

  13. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  14. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  15. Left Brain, Right Brain: Facts and Fantasies

    PubMed Central

    Corballis, Michael C.

    2014-01-01

    Summary Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the “norm” of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal. PMID:24465175

  16. Neural repair in the adult brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  17. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... to make progress in “immunogenomics” Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  18. Genetic Brain Disorders

    MedlinePlus

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  19. Brain aneurysm repair

    MedlinePlus

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  20. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  1. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  2. Anatomy of the Brain

    MedlinePlus

    ... our existence. It controls our personality, thoughts, memory, intelligence, speech and understanding, emotions, senses, and basic body functions, as well as how we function in our environment. The diagrams below show brain anatomy, or the various parts of the brain, ...

  3. Brain natriutetic peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/007509.htm Brain natriuretic peptide test To use the sharing features on this page, please enable JavaScript. Brain natriuretic peptide (BNP) test is a blood test that measures ...

  4. American Brain Tumor Association

    MedlinePlus

    ... 800-886-ABTA (2282) or Complete our contact form The American Brain Tumor Association was the first and is the only national organization committed to funding brain tumor research and providing ...

  5. Brain Tumor Statistics

    MedlinePlus

    ... facts and statistics here include brain and central nervous system tumors (including spinal cord, pituitary and pineal gland ... U.S. living with a primary brain and central nervous system tumor. This year, nearly 17,000 people will ...

  6. Biophysics: Unfolding the brain

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2016-06-01

    The folded surface of the human brain, although striking, continues to evade understanding. Experiments with swelling gels now fuel the notion that brain folding is modulated by physical forces, and not by genetic, biological or chemical events alone.

  7. Brain injury - discharge

    MedlinePlus

    ... Rehabilitation Nurses. Care of the patient with mild traumatic brain injury. Available at: www.aann.org/pubs/content/guidelines. ... Stroud, NL, Zafonte R. Rehabilitation of patients with traumatic brain injury. In: Winn HR, ed. Youman's Neurological Surgery . 6th ...

  8. Deep Brain Stimulation for Obesity

    PubMed Central

    Sussman, Eric S; Zhang, Michael; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-01-01

    Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer’s disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain. PMID:26180683

  9. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  10. Neuromythology of Einstein's brain.

    PubMed

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. PMID:24836969

  11. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  12. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  13. Brain Research and Learning.

    ERIC Educational Resources Information Center

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  14. Our Amazing Brains

    ERIC Educational Resources Information Center

    Bath, Howard

    2005-01-01

    This article begins a regular series on how brain research can help us understand young people and ourselves as well. The intent is to alert the reader to important information from recent research on the brain. This initial installment explores the concept of the triune brain, a term coined by neuroscientist Paul MacLean. This refers to three…

  15. Brain and Language.

    ERIC Educational Resources Information Center

    Damasio, Antonio R., Damasio, Hanna

    1992-01-01

    Discusses the advances made in understanding the brain structures responsible for language. Presents findings made using magnetic resonance imaging (MRI) and positron emission tomographic (PET) scans to study brain activity. These findings map the structures in the brain that manipulate concepts and those that turn concepts into words. (MCO)

  16. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  17. Brain and Addiction

    MedlinePlus

    ... brain. View Online Download PDF The Awesomely Evolved Human Brain Published: September 01, 2013 The brain is an ... mark of the U.S. Department of Health and Human Services (HHS). The National Drug & Alcohol Facts Week design mark, and associated trade dress are registered ... close

  18. Brain Migration Revisited

    ERIC Educational Resources Information Center

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  19. Brain Structure and Development.

    ERIC Educational Resources Information Center

    Teyler, T.J.; Chiaia, N.

    1983-01-01

    Considers basic biology of brain, what is known of how it operates, and something of how it develops. Discusses properties of neurons and specialized regions of the brain in linguistic and higher order processing skills, as well as genetic and environmental influences on brain development. (CMG)

  20. Traumatic Brain Injury

    MedlinePlus

    ... a concussion may feel dazed and may lose vision or balance for a while after the injury A brain contusion is a bruise of the brain. This ... consciousness Headache Confusion Feeling dizzy or lightheaded Blurry vision ... or severe traumatic brain injury include all of the symptoms listed above ...

  1. Is it always Alzheimer's? Let's talk to our patients about "cardiocerebrovascular" prevention.

    PubMed

    Volpe, Roberto; Sotis, Gianluca; Cianciabella, Marta

    2016-02-01

    Unlike Alzheimer's, vascular dementia can, in part, be prevented. The preventive approach foresees treatment for high blood pressure, atrial fibrillation, diabetes, high cholesterol, low HDL cholesterol, sedentary lifestyle, smoking, alcohol abuse, obesity, and sleep apnea. Moreover, also a well-balanced diet and physical activity are cornerstones of prevention, with beneficial effects on the brain and cognition. PMID:26559414

  2. Immune System to Brain Signaling: Neuropsychopharmacological Implications

    PubMed Central

    Capuron, Lucile; Miller, Andrew H.

    2011-01-01

    There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activity, motivation, anxiety and alarm. Behavioral consequences of these effects of the immune system on the brain include depression, anxiety, fatigue, psychomotor slowing, anorexia, cognitive dysfunction and sleep impairment; symptoms that overlap with those which characterize neuropsychiatric disorders, especially depression. Pathways that appear to be especially important in immune system effects on the brain include the cytokine signaling molecules, p38 mitogen activated protein kinase and nuclear factor kappa B; indoleamine 2,3 dioxygenase and its down stream metabolites, kynurenine, quinolinic acid and kynurenic acid; the neurotransmitters, serotonin, dopamine and glutamate; and neurocircuits involving the basal ganglia and anterior cingulate cortex. A series of vulnerability factors including aging and obesity as well as chronic stress also appear to interact with immune to brain signaling to exacerbate immunologic contributions to neuropsychiatric disease. The elucidation of the mechanisms by which the immune system influences behavior yields a host of targets for potential therapeutic development as well as informing strategies for the prevention of neuropsychiatric disease in at risk populations. PMID:21334376

  3. Epilepsy: Extreme Events in the Human Brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  4. Brain fag: New perspectives from case observations.

    PubMed

    Ebigbo, Peter O; Lekwas, Elekwachi Chimezie; Chukwunenyem, Nweze Felix

    2015-06-01

    Brain fag was originally described as a culture-bound syndrome among West African students. The term "brain fag" literally means "brain fatigue." Available literature indicates that brain fag symptoms usually present in formal academic settings when African students are required to transit to a reliance on written literature (as opposed to more traditional oral forms of information transmission) and to adapt to westernized, individualistic systems of education that, at times, oppose the values of relatively collectivistic African societies. Based on detailed observation of two typical and two nontypical cases of brain fag, the authors suggest that the syndrome may not be solely related to tensions in the academic sphere, but may function more generally as an expression of psychological distress that results from societal pressures that exceed the coping capacity of the individual. The brain fag symptoms, including lack of concentration, sensations of internal heat in the head and body, heaviness, and multiple somatic complaints, may constitute a defensive process which helps prevent a full-fledged decompensation. PMID:25468825

  5. [Prevention of Alzheimer's Disease and Nutrients].

    PubMed

    Otsuka, Mieko

    2016-07-01

    The dietary recommendations for the prevention and management of Alzheimer's disease (AD), are the Mediterranean diet and the Japanese-style diet, both of which contain well-balanced nutrients from fish and vegetables. These diets are rich in vitamin E, carotenes, antioxidant flavonoids, vitamin B12, folate, and n-3PUFA. According to recent review supplementation of folate and vitamin E may protect against elderly people's cognitive decline when the serum folate is <12 nmol/L or the vitamin E intake is <6.1 mg/day. Another nutritional topic with regard to dementia and diet is the association of type-2 diabetes and hyperinsulinemia with AD. Expression array data of the brain tissue of AD patients in the Hisayama study strongly suggests a disturbance in insulin signaling in the AD brain. The dysfunction of insulin signaling could directly lead to disrupted glucose utilization in the AD brain. Instead of improperly utilized glucose, the medium chain triglyceride ketone bodies can be an alternative energy resource for the AD brain. In conclusion, the dietary recommendations for the prevention and management of AD are a high consumption of fish, vegetables, and low glycemic index fruits; a moderate amount of meat and dairy products; and a lower amount of carbohydrates and refined sugar. PMID:27395465

  6. Neuropathophysiology of Brain Injury.

    PubMed

    Quillinan, Nidia; Herson, Paco S; Traystman, Richard J

    2016-09-01

    Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans. PMID:27521191

  7. Dissection of the Process of Brain Metastasis Reveals Targets and Mechanisms for Molecular-based Intervention.

    PubMed

    Weidle, Ulrich H; Birzele, Fabian; Kollmorgen, Gwendlyn; Rüger, Rüdiger

    2016-01-01

    Brain metastases outnumber the incidence of brain tumors by a factor of ten. Patients with brain metastases have a dismal prognosis and current treatment modalities achieve only a modest clinical benefit. We discuss the process of brain metastasis with respect to mechanisms and involved targets to outline options for therapeutic intervention and focus on breast and lung cancer, as well as melanoma. We describe the process of penetration of the blood-brain-barrier (BBB) by disseminated tumor cells, establishment of a metastatic niche, colonization and outgrowth in the brain parenchyma. Furthermore, the role of angiogenesis in colonization of the brain parenchyma, interactions of extravasated tumor cells with microglia and astrocytes, as well as their propensity for neuromimicry, is discussed. We outline targets suitable for prevention of metastasis and summarize targets suitable for treatment of established brain metastases. Finally, we highlight the implications of findings revealing druggable mutations in brain metastases that cannot be identified in matching primary tumors. PMID:27365375

  8. Exercise, nutrition and the brain.

    PubMed

    Meeusen, Romain

    2014-05-01

    Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and can improve cognitive function. Exercise has been promoted as a possible prevention for neurodegenerative diseases. Exercise will have a positive influence on cognition and it increases the brain-derived neurotrophic factor, an essential neurotrophin. Several dietary components have been identified as having effects on cognitive abilities. In particular, polyphenols have been reported to exert their neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning, and cognitive function. Dietary factors can affect multiple brain processes by regulating neurotransmitter pathways, synaptic transmission, membrane fluidity, and signal-transduction pathways. Flavonols are part of the flavonoid family that is found in various fruits, cocoa, wine, tea and beans. Although the antioxidant effects of flavonols are well established in vitro, there is general agreement that flavonols have more complex actions in vivo. Several cross-sectional and longitudinal studies have shown that a higher intake of flavonoids from food may be associated with a better cognitive evolution. Whether this reflects a causal association remains to be elucidated. Several studies have tried to 'manipulate' the brain in order to postpone central fatigue. Most studies have clearly shown that in normal environmental circumstances these interventions are not easy to perform. There is accumulating evidence that rinsing the mouth with a carbohydrate solution will improve endurance performance. There is a need for additional well controlled studies to explore the possible impact of diet and nutrition on brain functioning. PMID:24791916

  9. Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain.

    PubMed

    Saeed, Ahmed A; Genové, Guillem; Li, Tian; Lütjohann, Dieter; Olin, Maria; Mast, Natalia; Pikuleva, Irina A; Crick, Peter; Wang, Yuqin; Griffiths, William; Betsholtz, Christer; Björkhem, Ingemar

    2014-08-22

    The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfb(ret/ret), shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfb(ret/ret) mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed. PMID:24973215

  10. Brain Rhythms Reveal a Hierarchical Network Organization

    PubMed Central

    Steinke, G. Karl; Galán, Roberto F.

    2011-01-01

    Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or “virtual brains”, whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower

  11. Recipes for Prevention. Substance Abuse Prevention

    ERIC Educational Resources Information Center

    Steele, Catherine

    This handbook, which is the first in a series of materials being developed by an educational group in Albany, New York, for parents and caregivers of preschoolers, focuses on substance abuse prevention concepts. Its goals are to promote awareness that substance abuse prevention starts with very young children and to provide a format of activities…

  12. Brain Pathways to Recovery from Alcohol Dependence

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Warren, Kenneth; Koob, George F.; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T.; Chandler, L. Judson; Pfefferbaum, Adolf; Becker, Howard C.; Lovinger, David; Everitt, Barry; Egli, Mark; Mandyam, Chitra; Fein, George; Potenza, Marc N.; Harris, R. Adron; Grant, Kathleen A.; Roberto, Marisa; Meyerhoff, Dieter J.; Sullivan, Edith V.

    2015-01-01

    This article highlights the research presentations at the satellite symposium on “Brain Pathways to Recovery from Alcohol Dependence” held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed. PMID:26074423

  13. Obesity-Induced Hypertension: Brain Signaling Pathways.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E P; Hall, John E

    2016-07-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  14. Prevention of Traumatic Brain Injury in Youth and Adolescents.

    PubMed

    Barnes, Vernon A; Maria, Bernard L; Caldwell, Alice Little; Hopkins, Irene

    2013-11-01

    The goal of this project was to promote bicycle helmet use via an inpatient educational program. We hypothesized that this program would increase bicycle helmet use. One hundred twenty inpatients with history of regular (>1 time per week) bicycle riding (mean age 10.0 ± 3.6 years; 67 males, 53 females; 57 whites, 59 blacks, 4 other) were randomized to treatment (n = 58) or control (n = 62) groups. All participants received a bicycle helmet. At 1 month, 50 (92.6%) of the intervention group and 48 (82.8%) of the control group wore a helmet every bike ride (P < .07). At 3 months, 50 (96.2%) of the intervention group and 44 (80%) of the controls wore a helmet with every bike ride (P < .03). The study proved feasible, requiring trained personnel to deliver the intervention. Providing a helmet without the intervention was effective in 80% to 83% of cases with respect to parental report of helmet wearing compliance. PMID:23143720

  15. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  16. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  17. [Brain abscess - overview].

    PubMed

    Sveinsson, Olafur Arni; Asgeirsson, Hilmir; Olafsson, Ingvar H

    2013-01-01

    Brain abscess is a life threatening illness, demanding rapid diagnosis and treatment. Its development requires seeding of an organism into the brain parenchyma, often in an area of damaged brain tissue or in a region with poor microcirculation. The lesion evolves from a cerebritis stage to capsule formation. Brain abscesses can be caused by contiguous or haematogenous spread of an infection, or by head trauma/ neurosurgical procedure. The most common presentation is that of headache and vomiting due to raised intracranial pressure. Seizures have been reported in up to 50% of cases. Focal neurological deficits may be present, depending on the location of the lesion. Treatment of a brain abscess involves aspiration or excision, along with parenteral antibiotic therapy. The outcome has improved dramatically in the last decades due to improvement in diagnostic techniques, neurosurgery, and broad-spectrum antibiotics. The authors provide an overview of the pathogenesis, diagnosis and management of brain abscesses. PMID:23341403

  18. Preventing HIV with Medicine

    MedlinePlus

    ... information in Spanish ( en español ) Preventing HIV with medicine Get medicine right after you are exposed to ... to top More information on Preventing HIV with medicine Explore other publications and websites National HIV and ...

  19. Breast Cancer Prevention

    MedlinePlus

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... to keep cancer from starting. General Information About Breast Cancer Key Points Breast cancer is a disease in ...

  20. Preventing High Blood Pressure

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ...

  1. High Blood Cholesterol Prevention

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ... this? Submit What's this? Submit Button Related CDC Web Sites Division for Heart Disease and Stroke Prevention ...

  2. Antioxidants and Cancer Prevention

    MedlinePlus

    ... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ... Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...

  3. Home Improvements Prevent Falls

    MedlinePlus

    ... on. Feature: Falls and Older Adults Home Improvements Prevent Falls Past Issues / Winter 2014 Table of Contents ... or home modification programs to help older people prevent falls. Check with your local health department, senior ...

  4. Measles -- Recommendations for Prevention

    MedlinePlus

    ... Prevent News and Media Resources News Newsletters Events Measles - Recommendations for Prevention Recommend on Facebook Tweet Share ... safest protection you can give your child against measles. Children should be given the first dose of ...

  5. Research Areas: Prevention

    Cancer.gov

    NCI's prevention research has a broad focus—from identifying environmental and lifestyle factors that influence cancer risk to studying the biology of how cancer develops and testing ways to disseminate prevention interventions.

  6. Preventing Deep Vein Thrombosis

    MedlinePlus

    ... Patient Education FAQs Preventing Deep Vein Thrombosis Patient Education Pamphlets - Spanish Preventing Deep Vein Thrombosis FAQ174, August 2011 PDF ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  7. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  8. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation.

    PubMed

    Bola, R Aaron; Kiyatkin, Eugene A

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  9. The Suicide Prevention Continuum

    PubMed Central

    Caldwell, Dawn

    2010-01-01

    The suicide prevention continuum illustrates a practical approach to the complex issue of suicide prevention. The continuum evolved from discussions with two Aboriginal communities in Atlantic Canada about suicide and the different types of interventions available. The continuum offers a framework and reference tool to differentiate between the different stages of suicide risk. It illustrates where the Aboriginal Community Youth Resilience Network (ACYRN) fits into suicide prevention and how it contributes to prevention knowledge, capacity building, and policy development. PMID:20835376

  10. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery.

    PubMed

    Oller-Salvia, Benjamí; Sánchez-Navarro, Macarena; Giralt, Ernest; Teixidó, Meritxell

    2016-08-22

    Brain delivery is one of the major challenges in drug development because of the high number of patients suffering from neural diseases and the low efficiency of the treatments available. Although the blood-brain barrier (BBB) prevents most drugs from reaching their targets, molecular vectors - known as BBB shuttles - offer great promise to safely overcome this formidable obstacle. In recent years, peptide shuttles have received growing attention because of their lower cost, reduced immunogenicity, and higher chemical versatility than traditional Trojan horse antibodies and other proteins. PMID:27188322

  11. Left Brain, Right Brain, Super Brain: The Holistic Model.

    ERIC Educational Resources Information Center

    Yellin, David

    Recent discoveries about the whole brain seem to call for a holistic approach to learning, one in which educators would teach the whole person, including physical and emotional states as well as cognitive abilities. Three holistic techniques are particularly relevant to education: (1) biofeedback; (2) yoga; and (3) the Lozanov method. Biofeedback…

  12. Structural brain defects.

    PubMed

    Whitehead, Matthew T; Fricke, Stanley T; Gropman, Andrea L

    2015-06-01

    Up to 14% of patients with congenital metabolic disease may show structural brain abnormalities from perturbation of cell proliferation, migration, and/or organization. Most inborn errors of metabolism have a postnatal onset. Abnormalities from genetic disease processes have a prenatal onset. Energy impairment, substrate insufficiency, cell membrane receptor and cell signaling abnormalities, and toxic byproduct accumulation are associations between genetic disorders and structural brain anomalies. Collective imaging patterns of brain abnormalities can provide clues to the underlying etiology. We review selected metabolic diseases associated with brain malformations and highlight characteristic clinical and imaging manifestations that help narrow the differential diagnosis. PMID:26042908

  13. Brain tumor - children

    MedlinePlus

    Glioblastoma multiforme - children; Ependymoma - children; Glioma - children; Astrocytoma - children; Medulloblastoma - children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children)

  14. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  15. Fire Prevention Education.

    ERIC Educational Resources Information Center

    Ehmann, Jeanne; Claus, William C.

    The fire prevention education bulletin helps schools continue their work to make the home, school, and community safe places in which to live and to help children and young people live in safe ways without developing undue fears. Briefly discussed are the goals of a fire prevention program, who should be concerned with fire prevention education,…

  16. Suicide Prevention Triangle.

    ERIC Educational Resources Information Center

    Cutter, Fred

    This manual provides resource tools and strategies to enhance the suicide prevention capabilities of health professionals and the health care setting in which care is provided. In the first section, terms are defined and the suicide prevention triangle model is described. Applications of the model and good practices for suicide prevention in any…

  17. Wildfire Prevention Strategies.

    ERIC Educational Resources Information Center

    National Wildlife Coordinating Group, Boise, ID.

    This document provides information and guidance on wildfire prevention strategies. Chapters include: (1) "Introduction"; (2) "How to Use this Guide"; (3) "Fire Cause Classification"; (4) "Relative Effectiveness"; (5) "Degree of Difficulty"; (6) "Intervention Techniques"; (7) "Prevention Activities"; (8) "Sample Prevention Strategies"; and (9)…

  18. Can I Prevent Acne?

    MedlinePlus

    ... I Help a Friend Who Cuts? Can I Prevent Acne? KidsHealth > For Teens > Can I Prevent Acne? Print A A A Text Size What's ... too. Although there is no surefire way to prevent acne, try these tips to help reduce the ...

  19. FACILITY POLLUTION PREVENTION GUIDE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) has developed the Facility Pollution Prevention Guide for those who are interested in and responsible for pollution prevention in industrial or service facilities. t summarizes the benefits of a company-wide pollution prevention...

  20. Murals Reflecting Prevention.

    ERIC Educational Resources Information Center

    Office of Elementary and Secondary Education (ED), Washington, DC. Safe and Drug Free Schools Program.

    This document is used in a collaborative project that engages children and adolescents in alcohol, tobacco, and drug prevention activities through the arts. The project offers an innovative teaching resource that uses the universal language of the arts for drug prevention. By creating murals with drug prevention themes, elementary and secondary…

  1. Prevention of Food Poisoning.

    ERIC Educational Resources Information Center

    Army Quartermaster School, Ft. Lee, VA.

    The programed text provides a single lesson, four-hour, correspondence subcourse on the prevention of food poisoning. It covers the following areas: a definition of food poisoning; chemical food poisoning; biological food poisoning; causes and prevention of trichinosis; six factors controlling bacteria growth; bacterial infection; prevention of…

  2. Progress in Neuroprotective Strategies for Preventing Epilepsy

    PubMed Central

    Acharya, Munjal M.; Hattiangady, Bharathi; Shetty, Ashok K.

    2008-01-01

    Neuroprotection is increasingly considered as a promising therapy for preventing and treating temporal lobe epilepsy (TLE). The development of chronic TLE, also termed as epileptogenesis, is a dynamic process. An initial precipitating injury (IPI) such as the status epilepticus (SE) leads to neurodegeneration, abnormal reorganization of the brain circuitry and a significant loss of functional inhibition. All of these changes likely contribute to the development of chronic epilepsy, characterized by spontaneous recurrent motor seizures (SRMS) and learning and memory deficits. The purpose of this review is to discuss the current state of knowledge pertaining to neuroprotection in epileptic conditions, and to highlight the efficacy of distinct neuroprotective strategies for preventing or treating chronic TLE. Although the administration of certain conventional and new generation antiepileptic drugs is effective for primary neuroprotection such as reduced neurodegeneration after acute seizures or the SE, their competence for preventing the development of chronic epilepsy after an IPI is either unknown or not promising. On the other hand, alternative strategies such as the ketogenic diet therapy, administration of distinct neurotrophic factors, hormones or antioxidants seem useful for preventing and treating chronic TLE. However, long term studies on the efficacy of these approaches introduced at different time-points after the SE or an IPI are lacking. Additionally, grafting of fetal hippocampal cells at early time-points after an IPI holds considerable promise for preventing TLE, though issues regarding availability of donor cells, ethical concerns, timing of grafting after SE, and durability of graft-mediated seizure suppression need to be resolved for further advances with this approach. Overall, from the studies performed so far, there is consensus that neuroprotective strategies need to be employed as quickly as possible after the onset of the SE or an IPI for

  3. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation.

    PubMed

    Schwartz, Hila; Blacher, Eran; Amer, Malak; Livneh, Nir; Abramovitz, Lilach; Klein, Anat; Ben-Shushan, Dikla; Soffer, Shelly; Blazquez, Raquel; Barrantes-Freer, Alonso; Müller, Meike; Müller-Decker, Karin; Stein, Reuven; Tsarfaty, Galia; Satchi-Fainaro, Ronit; Umansky, Viktor; Pukrop, Tobias; Erez, Neta

    2016-08-01

    Malignant melanoma is the deadliest of skin cancers. Melanoma frequently metastasizes to the brain, resulting in dismal survival. Nevertheless, mechanisms that govern early metastatic growth and the interactions of disseminated metastatic cells with the brain microenvironment are largely unknown. To study the hallmarks of brain metastatic niche formation, we established a transplantable model of spontaneous melanoma brain metastasis in immunocompetent mice and developed molecular tools for quantitative detection of brain micrometastases. Here we demonstrate that micrometastases are associated with instigation of astrogliosis, neuroinflammation, and hyperpermeability of the blood-brain barrier. Furthermore, we show a functional role for astrocytes in facilitating initial growth of melanoma cells. Our findings suggest that astrogliosis, physiologically instigated as a brain tissue damage response, is hijacked by tumor cells to support metastatic growth. Studying spontaneous melanoma brain metastasis in a clinically relevant setting is the key to developing therapeutic approaches that may prevent brain metastatic relapse. Cancer Res; 76(15); 4359-71. ©2016 AACR. PMID:27261506

  4. Freezing effect on brain density in postmortem CT.

    PubMed

    Sugimoto, Miyu; Hyodoh, Hideki; Rokukawa, Masumi; Kanazawa, Ayumi; Murakami, Rina; Shimizu, Junya; Okazaki, Shunichiro; Mizuo, Keisuke; Watanabe, Satoshi

    2016-01-01

    Two 60-year-old males were found at their homes whose bodies had deteriorated due to putrefaction. To prevent worm invasion and minimize deterioration, dry ice was used prior to the autopsy investigation. Prior to autopsy, postmortem CT demonstrated a decreased density in brain parenchyma at the dry-iced side, and autopsy revealed deteriorated brain parenchyma with frozen effect (presented like sherbet). Moreover, the deteriorated cerebral parenchyma maintained their structure and they were evaluated by cutting. When lower CT density presents in postmortem CT, the freezing effect may need to be considered and the physician should evaluate the cadaver's postmortem condition to prevent misdiagnoses. PMID:26832379

  5. Preventing Diabetes: Early Versus Late Preventive Interventions.

    PubMed

    Tuomilehto, Jaakko; Schwarz, Peter E H

    2016-08-01

    There are a number of arguments in support of early measures for the prevention of type 2 diabetes (T2D), as well as for concepts and strategies at later intervention stages. Diabetes prevention is achievable when implemented in a sustainable manner. Sustainability within a T2D prevention program is more important than the actual point in time or disease process at which prevention activities may start. The quality of intervention, as well as its intensity, should vary with the degree of the identified T2D risk. Nevertheless, preventive interventions should start as early as possible in order to allow a wide variety of relatively low- and moderate-intensity programs. The later the disease risk is identified, the more intensive the intervention should be. Public health interventions for diabetes prevention represent an optimal model for early intervention. Late interventions will be targeted at people who already have significant pathophysiological derangements that can be considered steps leading to the development of T2D. These derangements may be difficult to reverse, but the worsening of dysglycemia may be halted, and thus the clinical onset of T2D can be delayed. PMID:27440823

  6. Imaging of Brain Dopamine Pathways

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.; Fowler, Joanna S.

    2011-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. PMID:21603099

  7. Maturation of the adolescent brain

    PubMed Central

    Arain, Mariam; Haque, Maliha; Johal, Lina; Mathur, Puja; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Sharma, Sushil

    2013-01-01

    Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain’s region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex

  8. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  9. Effect of mealing on plasma and brain amino acid, and brain monoamine in rats after oral aspartame.

    PubMed

    Torii, K; Mimura, T; Takasaki, Y; Ichimura, M

    1986-01-01

    Aspartame (APM; L-aspartyl-L-phenylalanine methyl ester) was investigated for its ability to alter brain amino acids and monoamines in overnight fasted rats allowed to consume commercial diets for 60 minutes. In addition, the effects of mealing on the changes in plasma and brain amino acids and brain monoamines induced by glucose and/or insulin, and known pharmacologically active compounds, were studied. The consumption of the commercial chow largely prevented changes in blood glucose and amino acids, and brain amino acids and the monoamines dopamine, norepinephrine and serotonin that might be expected to occur following glucose with or without insulin. Feeding failed to prevent changes in the above parameters when 5-hydroxy-tryptophan, p-chlorophenylalanine and reserpine were administered. The oral administration of up to 250 mg/kg BW APM with water or glucose followed by free feeding failed to alter brain monoamines. These studies demonstrate the potent ability of food to normalize biochemical parameters in blood and brain that otherwise might occur, and clearly show the lack of effect on brain monoamine levels of abuse doses of APM when administered with food. PMID:2940610

  10. Split Brain Functioning.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1978-01-01

    Summarizing recent research, this article defines the functions performed by the left and right sides of the human brain. Attention is given to the right side, or the nondominant side, of the brain and its potential in terms of perception of the environment, music, art, geometry, and the aesthetics. (JC)

  11. Postcards from the brain

    NASA Astrophysics Data System (ADS)

    Wang, Sam

    2009-07-01

    Brains have long been compared to the most advanced existing technology - including, at one point, telephone switchboards. Today, people often talk about brains as if they were a sort of biological computer, with pink mushy "hardware" and "software" generated by life experiences.

  12. Multiple brain abscesses.

    PubMed

    Burke, L P; Ho, S U; Cerullo, L J; Kim, K S; Harter, D H

    1981-12-01

    A young woman with 12 separate brain abscesses was treated medically after aspiration of one abscess for diagnostic bacteriological examination. She made an excellent recovery with only minimal residual neurological dysfunction. Surgical aspiration for detailed bacteriological studies followed by appropriate antimicrobial therapy is an effective way of treating multiple brain abscesses in the neurologically stable patient. PMID:7330768

  13. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  14. Using Your Brain

    ERIC Educational Resources Information Center

    Ward, Hellen

    2011-01-01

    Many scientists have been fascinated by how the brain works, but much of what is known about the brain has been discovered within the last twenty years. In this article, the author explores how thinking and using one's mind are essential to understanding. She contends that children need to be in control of their learning; the adult's role is to…

  15. COPPER AND BRAIN FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

  16. The Emerging Scholarly Brain

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.

    It is now a commonplace observation that human society is becoming a coherent super-organism, and that the information infrastructure forms its emerging brain. Perhaps, as the underlying technologies are likely to become billions of times more powerful than those we have today, we could say that we are now building the lizard brain for the future organism.

  17. Drugs and the Brain.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHHS), Bethesda, MD.

    This booklet explores various aspects of drug addiction, with a special focus on drugs' effects on the brain. A brief introduction presents information on the rampant use of drugs in society and elaborates the distinction between drug abuse and drug addiction. Next, a detailed analysis of the brain and its functions is given. Drugs target the more…

  18. Feed Your Brain!

    ERIC Educational Resources Information Center

    Failmezger, Tammie L.

    2006-01-01

    Language arts teachers and library media specialists bear the responsibility of teaching students how to properly feed their brains. In this article, the author describes how she teaches her students to make wise choices when selecting books. Furthermore, she presents the "Brain Food Pyramid" model that looks similar to the food pyramid but it…

  19. Demystifying the Adolescent Brain

    ERIC Educational Resources Information Center

    Steinberg, Laurence

    2011-01-01

    Understanding the nature of brain development in adolescence helps explain why adolescents can vacillate so often between mature and immature behavior. Early and middle adolescence, in particular, are times of heightened vulnerability to risky and reckless behavior because the brain's reward center is easily aroused, but the systems that control…

  20. Brain-Flow Writing.

    ERIC Educational Resources Information Center

    Peterson, Robert J.

    The brain-flow writing technique, which might also be called the "fast flow" technique, offers a particularly useful means of helping adults overcome writer's block. It also offers some bonuses in the form of enhanced creativity, improved thought-flow, and much faster writing output. There are six steps to brain-flow writing. In the first, or…

  1. The Resilient Brain

    ERIC Educational Resources Information Center

    Brendtro, Larry K.; Longhurst, James E.

    2005-01-01

    Brain research opens new frontiers in working with children and youth experiencing conflict in school and community. Blending this knowledge with resilience science offers a roadmap for reclaiming those identified as "at risk." This article applies findings from resilience research and recent brain research to identify strategies for reaching…

  2. Brain Friendly School Libraries

    ERIC Educational Resources Information Center

    Sykes, Judith Anne

    2006-01-01

    This title gives concrete practical examples of how to align school library programs and instructional practice with the six key concepts of brain-compatible learning: increasing input to the brain; increasing experiential data; multiple source feedback; reducing threat; involving students in learning decision making; and interdisciplinary unit…

  3. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  4. Inside the Adolescent Brain

    ERIC Educational Resources Information Center

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  5. Brain imaging in psychiatry

    SciTech Connect

    Morihisa, J.M.

    1984-01-01

    This book contains the following five chapters: Positron Emission Tomography (PET) in Psychiatry; Regional Cerebral Blood Flow (CBF) in Psychiatry: Methodological Issues; Regional Cerebral Blood Flow in Psychiatry: Application to Clinical Research; Regional Cerebral Blood Flow in Psychiatry: The Resting and Activated Brains of Schizophrenic Patients; and Brain Electrical Activity Mapping (BEAM) in Psychiatry.

  6. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  7. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. Patients who have a weakened immune system are at high risk of primary lymphoma of the ...

  8. Brain and spinal tumour.

    PubMed

    Goh, C H; Lu, Y Y; Lau, B L; Oy, J; Lee, H K; Liew, D; Wong, A

    2014-12-01

    This study reviewed the epidemiology of brain and spinal tumours in Sarawak from January 2009 till December 2012. The crude incidence of brain tumour in Sarawak was 4.6 per 100,000 population/year with cumulative rate 0.5%. Meningioma was the most common brain tumour (32.3%) and followed by astrocytoma (19.4%). Only brain metastases showed a rising trend and cases were doubled in 4 years. This accounted for 15.4% and lung carcinoma was the commonest primary. Others tumour load were consistent. Primitive neuroectodermal tumour (PNET) and astrocytoma were common in paediatrics (60%). We encountered more primary spinal tumour rather than spinal metastases. Intradural schwannoma was the commonest and frequently located at thoracic level. The current healthcare system in Sarawak enables a more consolidate data collection to reflect accurate brain tumours incidence. This advantage allows subsequent future survival outcome research and benchmarking for healthcare resource planning. PMID:25934956

  9. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  10. Intraoperative virtual brain counseling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando

    1997-06-01

    Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.

  11. [Prevention of osteoporosis].

    PubMed

    Dambacher, M A; Kissling, R; Neff, M

    1998-11-01

    The European Parliament presented June 10th in Brussels the 'Osteoporosis Report in EU--Means for Prevention'. It was emphasized that in the EU more than 3500 million Ecu have to be spent for hospitalization and that more than 500,000 hospitals beds are being used by osteoporotic patients. According to some calculations this number will double within the next 50 years. The EU has set up eight steps to be considered, e.g. have densitometric measurements available for persons with high risk and have these measurement paid by the insurances to further finance and support research for the very important areas of prevention and treatment. One distinguishes between primary, secondary and tertiary prevention of osteoporosis. Primary prevention aims at reaching at adolescent age a peak bone mass as high as possible. Secondary prevention aims at reducing bone loss peri- and postmenopausal. The tertiary prevention with manifest osteoporosis aims at preventing fractures. Emphasis of the primary prevention is, besides a sufficient calcium intake, to omit risk factors; with secondary prevention the use of medical treatments such as estrogens/gestagens, bisphosphonates, and recently also SERMs is applied. The tertiary prevention tries mostly to reduce the femur fractures. In addition to drugs such as vitamin D/calcium, vitamin D metabolites and bisphosphonates it is very important to create 'a fall-proof home'. Also very useful are hip protectors. PMID:9865147

  12. Ensembling brain regions for brain decoding.

    PubMed

    Alkan, Sarper; Yarman-Vural, Fatos T

    2015-08-01

    In this study, we propose a new method which ensembles the brain regions for brain decoding. The ensemble is generated by clustering the fMRI images recorded during an experimental set-up which measures the cognitive states associated to semantic categories. Initially, voxel clusters are formed by using hierarchical agglomerative clustering with correlation as the similarity metric. Then, for each voxel cluster, a support vector machine (SVM) classifier is trained to estimate the class-posteriori probabilities. Lastly, the class-posteriori probabilities are ensembled by concatenating them under the same feature space, which are then used to train a meta-layer SVM for the final classification of the cognitive states. By using the voxel clusters, we aim to utilize the distributed, but complementing nature of the semantic representations in the brain and improve the classification accuracy. Thus, we make an existential claim that the brain regions provide a natural basis for ensemble learning which should be superior to the random clusters formed over a selected set of voxels. Our approach yields to better classification accuracies in Mitchell dataset on most of the subjects, when compared to state-of-the-art which emphasizes voxel selection and ensemble learning with random subspaces. PMID:26736910

  13. Preventing Injury: A Safety Curriculum. Grades 5 and 6.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at children because it is early in life that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of child development,…

  14. Preventing Injury: A Safety Curriculum. Grades 3 and 4.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  15. Preventing Injury: A Safety Curriculum. Preschool-Kindergarten.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  16. Preventing Injury: A Safety Curriculum. Grades 1 and 2.

    ERIC Educational Resources Information Center

    Richards, J. Scott; And Others

    The focus of this curriculum is on prevention of spinal cord injury (SCI) and traumatic brain injury (TBI). The program is aimed at young children because it is during the early years that behavioral patterns are formed which become increasingly more difficult to modify as the child enters adolescence. The curriculum is based on principles of…

  17. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    PubMed Central

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment. PMID:17875991

  18. Brain orexin promotes obesity resistance.

    PubMed

    Kotz, Catherine; Nixon, Joshua; Butterick, Tammy; Perez-Leighton, Claudio; Teske, Jennifer; Billington, Charles

    2012-08-01

    Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in stricter form, spontaneous physical activity (SPA), may be an attractive modifiable variable for obesity prevention. In this review, we discuss individual variability in SPA and NEAT (nonexercise thermogenesis, or the energy expended by SPA) and its relationship to obesity resistance. The hypothalamic neuropeptide orexin (hypocretin) may play a key role in regulating SPA and NEAT. We discuss how elevated orexin signaling capacity, in the context of a brain network modulating SPA, may play a major role in defining individual variability in SPA and NEAT. Greater activation of this SPA network leads to a lower propensity for fat mass gain and therefore may be an attractive target for obesity prevention and therapy. PMID:22803681

  19. Research Review: Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia

    ERIC Educational Resources Information Center

    Ross, Randal G.; Stevens, Karen E.; Proctor, William R.; Leonard, Sherry; Kisley, Michael A.; Hunter, Sharon K.; Freedman, Robert; Adams, Catherine E.

    2010-01-01

    The onset of diagnostic symptomology for neuropsychiatric diseases is often the end result of a decades-long process of aberrant brain development. Identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal. However, there are few models for how this…

  20. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  1. Ideology and Violence Prevention

    PubMed Central

    Whitman, Steven

    1988-01-01

    Interpersonal violence is a major problem in US society in terms of the death and destruction it causes, the fear it generates, and the attention it receives. A recent trend has been to regard the problem of violence as an epidemic and to shape ideas of violence prevention according to public-health formulations. This process does not take into account the ideological nature of the proposed violence-prevention measures. Problems arise because this ideology is relevant to the potential effectiveness of violence prevention. This paper delineates several ideological issues involved in violence prevention and discusses how they interact with frequently employed public-health prevention strategies. Based upon this discussion, a general perspective for violence prevention is proposed and guiding principles that emerge from this perspective are presented. PMID:3404554

  2. Bone marrow-derived stem cell therapy for metastatic brain cancers.

    PubMed

    Kaneko, Yuji; Tajiri, Naoki; Staples, Meaghan; Reyes, Stephanny; Lozano, Diego; Sanberg, Paul R; Freeman, Thomas B; van Loveren, Harry; Kim, Seung U; Borlongan, Cesar V

    2015-01-01

    We propose that stem cell therapy may be a potent treatment for metastatic melanoma in the brain. Here we discuss the key role of a leaky blood-brain barrier (BBB) that accompanies the development of brain metastases. We review the need to characterize the immunological and inflammatory responses associated with tumor-derived BBB damage in order to reveal the contribution of this brain pathological alteration to the formation and growth of brain metastatic cancers. Next, we discuss the potential repair of the BBB and attenuation of brain metastasis through transplantation of bone marrow-derived mesenchymal stem cells with the endothelial progenitor cell phenotype. In particular, we review the need for evaluation of the efficacy of stem cell therapy in repairing a disrupted BBB in an effort to reduce neuroinflammation, eventually attenuating brain metastatic cancers. The demonstration of BBB repair through augmented angiogenesis and vasculogenesis will be critical to establishing the potential of stem cell therapy for the treatment/prevention of metastatic brain tumors. The overarching hypothesis we advanced here is that BBB breakdown is closely associated with brain metastatic cancers of melanoma, exacerbating the inflammatory response of the brain during metastasis, and ultimately worsening the outcome of metastatic brain cancers. Abrogating this leaky BBB-mediated inflammation via stem cell therapy represents a paradigm-shifting approach to treating brain cancer. This review article discusses the pros and cons of cell therapy for melanoma brain metastases. PMID:25310691

  3. Values in Preventive Medicine

    PubMed Central

    Hoffmaster, Barry

    1992-01-01

    We know how lifestyle affects health, yet concern for preventing illness by promoting healthy lifestyles remains marginal in medical practice. Effective preventive strategies can raise daunting moral and political problems about the extent to which individual freedoms may be infringed, particularly on paternalistic grounds. Evaluative questions also arise about more specific matters, such as identifying risk and causal factors, determining what level of risk is acceptable, and deciding how compelling the evidence must be to take preventive action. PMID:11651426

  4. [Epidemiology of brain metastases].

    PubMed

    Taillibert, S; Le Rhun, É

    2015-02-01

    The most frequent intracranial brain tumours are brain metastases. All types of cancer can develop brain metastases but two thirds of brain metastases occurring in adult patients are secondary to one of these three cancers: lung cancer, breast cancer and melanoma. In accordance with these data, this review is focusing on the epidemiology of these three types of cancer. We report here the incidence, risk factors, median time of brain metastases occurrence after diagnosis of the primary cancer, prognosis and median survival for these three types of cancer. We also discuss the clinical implications of these data. The second part of this review is focusing on the Graded Prognostic Assessment scores in all types of primary cancer with brain metastases, how they can be applied in clinical research for a better stratification of patients, and to some extent in clinical practice to guide decisions for personalized treatments. These scores provide a better understanding of the different profiles of clinical evolution that can be observed amongst patients suffering from brain metastases according to the type of primary cancer. We highlighted the most remarkable and useful clinical implications of these data. PMID:25636729

  5. [Surgery of brain metastases].

    PubMed

    Métellus, P; Reyns, N; Voirin, J; Menei, P; Bauchet, L; Faillot, T; Loiseau, H; Pallud, J; Guyotat, J; Mandonnet, E

    2015-02-01

    Surgical excision of brain metastases has been well evaluated in unique metastases. Two randomized phase III trial have shown that combined with adjuvant whole brain radiotherapy, it significantly improves overall survival. However, even in the presence of multiple brain metastases, surgery may be useful. Also, even in lesions amenable to radiosurgery, surgical resection is preferred when tumors displayed cystic or necrotic aspect with important edema or when located in highly eloquent areas or cortico-subcortically. Furthermore, surgery may have a diagnostic role, in the absence of histological documentation of the primary disease, to rule out a differential diagnosis (brain abscess, lymphoma, primary tumor of the central nervous system or radionecrosis). Finally, the biological documentation of brain metastatic disease might be useful in situations where a specific targeted therapy can be proposed. Selection of patients who will really benefit from surgery should take into account three factors, clinical and functional status of the patient, systemic disease status and characteristics of intracranial metastases. Given the improved overall survival of cancer patients partially due to the advent of effective targeted therapies on systemic disease, a renewed interest has been given to the local treatment of brain metastases. Surgical resection currently represents a valuable tool in the armamentarium of brain metastases but has also become a diagnostic and decision tool that can affect therapeutic strategies in these patients. PMID:25640217

  6. Aquaporins and Brain Tumors.

    PubMed

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood-brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  7. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  8. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  9. Brain specialization for music.

    PubMed

    Peretz, Isabelle

    2002-08-01

    Music, like language, is a universal and specific trait to humans. Similarly, music appreciation, like language comprehension, appears to be the product of a dedicated brain organization. Support for the existence of music-specific neural networks is found in various pathological conditions that isolate musical abilities from the rest of the cognitive system. Cerebrovascular accidents, traumatic brain damage, and congenital brain anomalies can lead to selective disorders of music processing. Conversely, autism and epilepsy can reveal the autonomous functioning and the selectivity, respectively, of the neural networks that subserve music. However, brain specialization for music should not be equated with the presence of a singular "musical center" in the brain. Rather, multiple interconnected neural networks are engaged, of which some may capture the essence of brain specialization for music. The encoding of pitch along musical scales is likely such an essential component. The implications of the existence of such special-purpose cortical processes are that the human brain might be hardwired for music. PMID:12194505

  10. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  11. Multifunctional nanoparticles for brain tumor imaging and therapy.

    PubMed

    Cheng, Yu; Morshed, Ramin A; Auffinger, Brenda; Tobias, Alex L; Lesniak, Maciej S

    2014-02-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  12. The blood-brain barrier: geriatric relevance of a critical brain-body interface.

    PubMed

    Zeevi, Neer; Pachter, Joel; McCullough, Louise D; Wolfson, Leslie; Kuchel, George A

    2010-09-01

    The blood-brain barrier (BBB) represents the interface between the brain and other body tissues. Its ability to protect the brain from harmful compounds has attracted the attention of clinicians and investigators, but far from being a simple physical barrier, the BBB is a complex, heterogeneous, and dynamic tissue. The integrated function of the cerebral microvasculature, tight junction proteins, brain microvascular endothelial cells (BMECs), cellular transport pathways, and enzymatic machinery jointly contribute to normal BBB integrity. Aging, systemic diseases, and ischemic injury can disrupt these processes, resulting in a decline in overall BBB function and integrity. Based on the published literature, this study proposes that age- and disease-related BBB alterations play a key role in diminishing the ability of older patients to recover from acute ischemic stroke. Evidence linking deficits in the cerebral microvasculature and BBB integrity to dementia, medication-related cognitive decline, white matter disease (WMD or leukoaraiosis), and related geriatric syndromes including delirium, gait disorders, and urinary incontinence is also reviewed. Priority areas for a future research agenda include strategies to improve clinicians' ability to diagnose, prevent, and manage BBB abnormalities. In future years, in vivo measures such as functional and contrast-enhanced neuroimaging will be used to evaluate BBB integrity in older adults while also assessing the effectiveness of interventions, some targeting inflammatory pathways known to disrupt the BBB, for their ability to prevent or slow the progression of these complex multifactorial geriatric syndromes. PMID:20863334

  13. Prevention of High Blood Pressure

    MedlinePlus

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  14. Preventing Suicides in the Military

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Preventing Suicides Preventing Suicides in the Military Past Issues / Winter 2010 ... Family Hotline 1-800-984-8523 Read More "Preventing Suicides" Articles Preventing Suicides in the Military / Who's ...

  15. Human Immunodeficiency Virus Prevention.

    PubMed

    Davis, Teaniese Latham; DiClemente, Ralph

    2016-04-01

    Human immunodeficiency virus (HIV) is the virus that causes AIDS. Surveillance data from 2012 indicate an estimated 1.2 million people aged 13 years and older were living with HIV infection in the United States, and 12.8% do not know their status. There are approximately 50,000 new HIV infections annually. With no available cure for HIV, primary prevention to reduce incident cases of HIV is essential. Strategies to prevent HIV transmission include reducing sexual risk behavior and needle sharing. The Centers for Disease Control and Prevention has multiple resources available for primary and secondary prevention to reduce disease transmission and severity. PMID:26980130

  16. Preventive treatment of migraine.

    PubMed

    Silberstein, Stephen D

    2006-08-01

    Migraine is a common episodic pain disorder, the treatment of which can be acute to stop an attack or preventive to reduce the frequency, duration or severity of attacks. Preventive treatment is used when attacks are frequent or disabling. Many different medication groups are used for preventive treatment, including beta-blockers, antidepressants and antiepileptic drugs. Their mechanisms of action include raising the threshold to migraine activation, enhancing antinociception, inhibiting cortical spreading depression, inhibiting peripheral and central sensitization, blocking neurogenic inflammation and modulating sympathetic, parasympathetic or 5-HT tone. In this article, I review evidence of the effectiveness of migraine preventive drugs. I also discuss the setting of treatment priorities. PMID:16820222

  17. Roles in Suicide Prevention

    MedlinePlus

    ... Programs Training & Events Online Training Courses Assessing and Managing Suicide Risk (AMSR) News & Highlights SPARK Talks Organizations States National Action Alliance for Suicide Prevention National ...

  18. The Brain from Within.

    PubMed

    di Porzio, Umberto

    2016-01-01

    Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a "map" of neural connections in the brain, or "connectome". It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one's own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions. PMID:27375460

  19. The Brain from Within

    PubMed Central

    di Porzio, Umberto

    2016-01-01

    Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a “map” of neural connections in the brain, or “connectome”. It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one’s own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions. PMID:27375460

  20. Prevention at Community Colleges. Prevention Update

    ERIC Educational Resources Information Center

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2012

    2012-01-01

    According to "Community College Student Alcohol Use: Developing Context-Specific Evidence and Prevention Approaches," community colleges have traditionally had a threefold mission that includes preparing students for transfer to four-year colleges, developmental education, and workforce preparation. The researchers point out that the demographic…

  1. [Roles of aquaporins in the brain].

    PubMed

    Guérin, Céline F; Regli, Luca; Badaut, Jérôme

    2005-01-01

    It is now over 10 years ago that aquaporin 1 (AQP1) was discovered and cloned from the red blood cells, and in 2003 the Nobel price in Chemistry was awarded to Pr. Peter Agre for his work on AQPs, highlighting the importance of these proteins in life sciences. AQPs are water channels. To date this protein family is composed of 11 sub-types in mammalians. Three main AQPs described in the mammalian brain are AQP1, AQP4 and AQP9. Several recent studies have shown that these channels are implicated in numerous physiological functions. AQP1 has a role in cerebrospinal fluid formation, whereas AQP4 is involved in water homeostasis and extracellular osmotic pressure in brain parenchyma. AQP4 seems also to have an important function in oedema formation after brain trauma or brain ischemia. AQP9 is implicated in brain energy metabolism. The level of expression of each AQP is highly regulated. After a trauma or an ischemia perturbation of the central nervous system, the level of expression of each AQP is differentially modified, resulting in facilitating oedema formation. At present, the exact role of each AQP is not yet determined. A better understanding of the mechanisms of AQP regulation should permit the development of new pharmacological strategies to prevent oedema formation. AQP9 has been recently specifically detected in the catecholaminergic neurons of the brain. This new result strengthens the hypothesis that the AQPs are not only water channels, but that some AQPs may play a role in energy metabolism as metabolite channels. PMID:16115461

  2. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  3. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  4. The brain drain.

    PubMed

    Rubin, I M

    1987-01-01

    The adult human brain weights around three pounds. Yet it is capable of feats that dwarf those of the most sophisticated computers. The sad fact is, those brains are largely wasted in modern organizations. Instead of tapping the full capacity of the human brains that could make our organizations more efficient and effective, we allow them to lapse into an inexcusably large amount of wasted activity. What is needed by the health care field, in a time that demands more with less, is more sensible use not only of its manpower but also of its brainpower. PMID:10312137

  5. Brain Organization and Psychodynamics

    PubMed Central

    Peled, Avi; Geva, Amir B.

    1999-01-01

    Any attempt to link brain neural activity and psychodynamic concepts requires a tremendous conceptual leap. Such a leap may be facilitated if a common language between brain and mind can be devised. System theory proposes formulations that may aid in reconceptualizing psychodynamic descriptions in terms of neural organizations in the brain. Once adopted, these formulations can help to generate testable predictions about brain–psychodynamic relations and thus significantly affect the future of psychotherapy. (The Journal of Psychotherapy Practice and Research 1999; 8:24–39) PMID:9888105

  6. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  7. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    ERIC Educational Resources Information Center

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  8. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  9. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  10. A novel preclinical method to quantitatively evaluate early-stage metastatic events at the murine blood-brain barrier.

    PubMed

    Adkins, Chris E; Nounou, Mohamed I; Mittapalli, Rajendar K; Terrell-Hall, Tori B; Mohammad, Afroz S; Jagannathan, Rajaganapathi; Lockman, Paul R

    2015-01-01

    The observation that approximately 15% of women with disseminated breast cancer will develop symptomatic brain metastases combined with treatment guidelines discouraging single-agent chemotherapeutic strategies facilitates the desire for novel strategies aimed at outright brain metastasis prevention. Effective and robust preclinical methods to evaluate early-stage metastatic processes, brain metastases burden, and overall mean survival are lacking. Here, we develop a novel method to quantitate early metastatic events (arresting and extravasation) in addition to traditional end time-point parameters such as tumor burden and survival in an experimental mouse model of brain metastases of breast cancer. Using this method, a reduced number of viable brain-seeking metastatic cells (from 3,331 ± 263 cells/brain to 1,079 ± 495 cells/brain) were arrested in brain one week postinjection after TGFβ knockdown. Treatment with a TGFβ receptor inhibitor, galunisertib, reduced the number of arrested cells in brain to 808 ± 82 cells/brain. Furthermore, we observed a reduction in the percentage of extravasated cells (from 63% to 30%) compared with cells remaining intralumenal when TGFβ is knocked down or inhibited with galunisertib (40%). The observed reduction of extravasated metastatic cells in brain translated to smaller and fewer brain metastases and resulted in prolonged mean survival (from 36 days to 62 days). This method opens up potentially new avenues of metastases prevention research by providing critical data important to early brain metastasis of breast cancer events. PMID:25348853

  11. A novel preclinical method to quantitatively evaluate early-stage metastatic events at the murine blood-brain barrier

    PubMed Central

    Adkins, Chris E; Nounou, Mohamed I; Mittapalli, Rajendar K; Terrell-Hall, Tori B; Mohammad, Afroz S; Jagannathan, Rajaganapathi; Lockman, Paul R

    2014-01-01

    The observation that approximately 15% of women with disseminated breast cancer will develop symptomatic brain metastases combined with treatment guidelines discouraging single-agent chemotherapeutic strategies facilitates the desire for novel strategies aimed at outright brain metastasis prevention. Effective and robust preclinical methods to evaluate early stage metastatic processes, brain metastases burden, and overall mean survival are lacking. Here, we develop a novel method to quantitate early metastatic events (arresting and extravasation) in addition to traditional end time-point parameters such as tumor burden and survival in an experimental mouse model of brain metastases of breast cancer. Using this method, a reduced number of viable brain seeking metastatic cells (from 3331 ± 263 cells/brain to 1079 ± 495 cells/brain) arrested in brain one week post injection after TGFβ knockdown. Treatment with a TGFβ receptor inhibitor, galunisertib, reduced the number of arrested cells in brain to 808 ± 82 cells/brain. Further, we observed a reduction in the percent of extravasated cells (from 63% to 30%) compared to cells remaining intralumenal when TGFβ is knocked down or inhibited with galunisertib (40%). The observed reduction of extravasated metastatic cells in brain translated to smaller and fewer brain metastases and resulted in prolonged mean survival (from 36 days to 62 days). This method opens up potentially new avenues of metastases prevention research by providing critical data important to early brain metastasis of breast cancer events. PMID:25348853

  12. Weight Drop Models in Traumatic Brain Injury.

    PubMed

    Kalish, Brian T; Whalen, Michael J

    2016-01-01

    Weight drop models in rodents have been used for several decades to advance our understanding of the pathophysiology of traumatic brain injury. Weight drop models have been used to replicate focal cerebral contusion as well as diffuse brain injury characterized by axonal damage. More recently, closed head injury models with free head rotation have been developed to model sports concussions, which feature functional disturbances in the absence of overt brain damage assessed by conventional imaging techniques. Here, we describe the history of development of closed head injury models in the first part of the chapter. In the second part, we describe the development of our own weight drop closed head injury model that features impact plus rapid downward head rotation, no structural brain injury, and long-term cognitive deficits in the case of multiple injuries. This rodent model was developed to reproduce key aspects of sports concussion so that a mechanistic understanding of how long-term cognitive deficits might develop will eventually follow. Such knowledge is hoped to impact athletes and war fighters and others who suffer concussive head injuries by leading to targeted therapies aimed at preventing cognitive and other neurological sequelae in these high-risk groups. PMID:27604720

  13. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment. PMID:23198672

  14. The Developing Brain.

    ERIC Educational Resources Information Center

    Schatz, Carla J.

    1992-01-01

    Discusses neural activity and stimulation crucial in fetal brain development and the formation of the mind. Focuses on activity-dependent remodeling related to development of the visual system and retinal activity. (MCO)

  15. Brains on video games.

    PubMed

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-12-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

  16. Traumatic Brain Injury

    MedlinePlus

    ... disabilities include problems with cognition (thinking, memory, and reasoning), sensory processing (sight, hearing, touch, taste, and smell), ... barrier. NIH Patient Recruitment for Traumatic Brain Injury Clinical Trials At NIH Clinical Center Throughout the U.S. ...

  17. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  18. Modular Brain Networks

    PubMed Central

    Sporns, Olaf; Betzel, Richard F.

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics. PMID:26393868

  19. Deep brain stimulation

    MedlinePlus

    ... the brain The neurostimulator, which puts out the electric current. The stimulator is similar to a heart pacemaker . It is usually placed under the skin near the collarbone, but may be ... pulses travel from the neurostimulator, along the extension ...

  20. Mind and Brain.

    ERIC Educational Resources Information Center

    Fischbach, Gerald D.

    1992-01-01

    Presents an overview of research findings concerning the biological foundations of conscious memory and other attributes of the mind. Includes vignettes and diagrams depicting brain structure and how neurons communicate. (MCO)

  1. Modular Brain Networks.

    PubMed

    Sporns, Olaf; Betzel, Richard F

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics. PMID:26393868

  2. Childhood Brain Tumors

    MedlinePlus

    ... They are among the most common types of childhood cancers. Some are benign tumors, which aren't ... can still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches ...

  3. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  4. Fire Prevention Inspection Procedures.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    Lesson plans are provided for a fire prevention inspection course of the Wisconsin Fire Service Training program. Objectives for the course are to enable students to describe and conduct fire prevention inspections, to identify and correct hazards common to most occupancies, to understand the types of building construction and occupancy, and to…

  5. Teaching Prevention in Pediatrics.

    ERIC Educational Resources Information Center

    Cheng, Tina L.; Greenberg, Larrie; Loeser, Helen; Keller, David

    2000-01-01

    Reviews methods of teaching preventive medicine in pediatrics and highlights innovative programs. Methods of teaching prevention in pediatrics include patient interactions, self-directed learning, case-based learning, small-group learning, standardized patients, computer-assisted instruction, the Internet, student-centered learning, and lectures.…

  6. Statins and Cancer Prevention

    MedlinePlus

    ... site at http://prevention.cancer.gov on the Internet. More information on cholesterol-lowering drugs can be obtained from the FDA Web site at http://www.fda.gov on the Internet. Related Resources Causes and Prevention Posted: June 2, ...

  7. Preventing Child Abuse

    ERIC Educational Resources Information Center

    Alvy, Kerby T.

    1975-01-01

    Focuses on two major and general approaches to analyzing the problems of child abuse; briefly discusses the prevention implications; deals with the individual physical abuse of children, with particular emphasis on the relationship between theoretical formulations of the causes of individual physical abuse and preventative programs; and, finally,…

  8. Prevention of Graves' ophthalmopathy.

    PubMed

    Bartalena, Luigi

    2012-06-01

    Smoking is the most important risk factor for the occurrence/progression of Graves' ophthalmopathy (GO), as well as for its lower/slower response to immunosuppression. Accordingly, refrain from smoking should be urged, both as primary prevention (removal of risk factors in Graves' patients without GO), secondary prevention (early detection and treatment of asymptomatic/very mild GO) and tertiary prevention (reduction of complications/disability of overt GO). A 6-month course of 200 μg/day sodium selenite can prevent progression of mild GO to more severe GO and is, therefore, a form of secondary prevention and, probably, primary prevention. Correction of thyroid dysfunction and stable maintenance of euthyroidism are important preventive measures. The optimal treatment for hyperthyroidism in patients with GO is uncertain, because evidence demonstrating the superiority of antithyroid drugs over thyroid ablation (radioiodine, thyroidectomy, or both) is lacking. If radioiodine is used, low-dose steroid prophylaxis is recommended, particularly in smokers, to prevent radioiodine-associated GO progression. PMID:22632372

  9. MEASURING POLLUTION PREVENTION PROGRESS

    EPA Science Inventory

    The workshop, "Measuring Pollution Prevention Progress," was held in Salem, MA, March 31 - April 2, 1993. he purpose of this workshop was to present the latest significant research and practical findings related to pollution prevention measurement from ongoing and recently comple...

  10. Stomach (Gastric) Cancer Prevention

    MedlinePlus

    ... of stomach cancer. Some studies show that eating fruits and vegetables that are high in vitamin C and beta carotene may lower the risk ... take can prevent cancer. These may include eating fruits and vegetables, exercising, ... vitamins, minerals, or food supplements. New ways to prevent ...

  11. DIABETES PREVENTION PROGRAM

    EPA Science Inventory

    The Diabetes Prevention Program (DPP) was a major clinical trial, or research study, aimed at discovering whether either diet and exercise or the oral diabetes drug metformin (Glucophage) could prevent or delay the onset of type 2 diabetes in people with impaired glucose toleranc...

  12. Is Brain Emulation Dangerous?

    NASA Astrophysics Data System (ADS)

    Eckersley, Peter; Sandberg, Anders

    2013-12-01

    Brain emulation is a hypothetical but extremely transformative technology which has a non-zero chance of appearing during the next century. This paper investigates whether such a technology would also have any predictable characteristics that give it a chance of being catastrophically dangerous, and whether there are any policy levers which might be used to make it safer. We conclude that the riskiness of brain emulation probably depends on the order of the preceding research trajectory. Broadly speaking, it appears safer for brain emulation to happen sooner, because slower CPUs would make the technology`s impact more gradual. It may also be safer if brains are scanned before they are fully understood from a neuroscience perspective, thereby increasing the initial population of emulations, although this prediction is weaker and more scenario-dependent. The risks posed by brain emulation also seem strongly connected to questions about the balance of power between attackers and defenders in computer security contests. If economic property rights in CPU cycles1 are essentially enforceable, emulation appears to be comparatively safe; if CPU cycles are ultimately easy to steal, the appearance of brain emulation is more likely to be a destabilizing development for human geopolitics. Furthermore, if the computers used to run emulations can be kept secure, then it appears that making brain emulation technologies ―open‖ would make them safer. If, however, computer insecurity is deep and unavoidable, openness may actually be more dangerous. We point to some arguments that suggest the former may be true, tentatively implying that it would be good policy to work towards brain emulation using open scientific methodology and free/open source software codebases

  13. Brain Research: Implications for Education.

    ERIC Educational Resources Information Center

    Crouch-Shinn, Jenella; Shaughnessy, Michael F.

    This paper attempts to examine the research of split-brain, hemispheric specialization, and brain function, as it pertains to handwriting, brain wave patterns, and lateral differences. Studies are reviewed which point to asymmetric differentiated functions and capacities of the two cerebral hemispheres in split-brain patients and in normal…

  14. Tumor Angiogenesis as a Target for Dietary Cancer Prevention

    PubMed Central

    Li, William W.; Li, Vincent W.; Hutnik, Michelle; Chiou, Albert S.

    2012-01-01

    Between 2000 and 2050, the number of new cancer patients diagnosed annually is expected to double, with an accompanying increase in treatment costs of more than $80 billion over just the next decade. Efficacious strategies for cancer prevention will therefore be vital for improving patients' quality of life and reducing healthcare costs. Judah Folkman first proposed antiangiogenesis as a strategy for preventing dormant microtumors from progressing to invasive cancer. Although antiangiogenic drugs are now available for many advanced malignancies (colorectal, lung, breast, kidney, liver, brain, thyroid, neuroendocrine, multiple myeloma, myelodysplastic syndrome), cost and toxicity considerations preclude their broad use for cancer prevention. Potent antiangiogenic molecules have now been identified in dietary sources, suggesting that a rationally designed antiangiogenic diet could provide a safe, widely available, and novel strategy for preventing cancer. This paper presents the scientific, epidemiologic, and clinical evidence supporting the role of an antiangiogenic diet for cancer prevention. PMID:21977033

  15. Prevention of preterm birth.

    PubMed

    Flood, Karen; Malone, Fergal D

    2012-02-01

    Preterm birth (delivery before 37 completed weeks of gestation) is common and rates are increasing. In the past, medical efforts focused on ameliorating the consequences of prematurity rather than preventing its occurrence. This approach resulted in improved neonatal outcomes, but it remains costly in terms of both the suffering of infants and their families and the economic burden on society. Increased understanding of the pathophysiology of preterm labor has altered the approach to this problem, with increased focus on preventive strategies. Primary prevention is a limited strategy which involves public education, smoking cessation, improved nutritional status and avoidance of late preterm births. Secondary prevention focuses on recurrent preterm birth which is the most recognisable risk factor. Widely accepted strategies include cervical cerclage, progesterone and dedicated clinics. However, more research is needed to explore the role of antibiotics and anti-inflammatory treatments in the prevention of this complex problem. PMID:21893439

  16. [Atorvastatin in primary prevention].

    PubMed

    Kültürsay, Hakan

    2009-03-01

    Statins are one of the most widely used drugs in medical treatment and have been shown to prevent cardiovascular disease or reduce risk in a large number of studies. Although there is a general class effect, there are differences with regard to structure and efficacy between these agents. Among these agents, atorvastatin is a potent statin whose efficacy has been demonstrated in many clinical trials. Despite the presence of numerous clinical studies, data on atorvastatin related to primary prevention are limited compared to secondary prevention. In this article, clinical results of primary prevention trials with atorvastatin and data on its cost-effectiveness are reviewed. It is concluded that atorvastatin has a role in primary prevention and the cost of its use seems to be lower than commonly accepted cost-effectiveness thresholds. PMID:19404046

  17. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. PMID:27318135

  18. The brain metastatic niche.

    PubMed

    Winkler, Frank

    2015-11-01

    Metastasizing cancer cells that arrest in brain microvessels have to face an organ microenvironment that is alien, and exclusive. In order to survive and thrive in this foreign soil, the malignant cells need to successfully master a sequence of steps that includes close interactions with pre-existing brain microvessels, and other nonmalignant cell types. Unfortunately, a relevant number of circulating cancer cells is capable of doing so: brain metastasis is a frequent and devastating complication of solid tumors, becoming ever more important in times where the systemic tumor disease is better controlled and life of cancer patients is prolonged. Thus, it is very important to understand which environmental cues are necessary for effective brain colonization. This review gives an overview of the niches we know, including those who govern cancer cell dormancy, survival, and proliferation in the brain. Colonization of pre-existing niches related to stemness and resistance is a hallmark of successful brain metastasis. A deeper understanding of those host factors can help to identify the most vulnerable steps of the metastatic cascade, which might be most amenable to therapeutic interventions. PMID:26489608

  19. Examining the decomposed brain.

    PubMed

    MacKenzie, James Mackintosh

    2014-12-01

    Examination of the decomposed brain is a largely neglected area of forensic neuropathology. However, careful examination often yields valuable information that may assist in criminal proceedings. Decomposition encompasses the processes of autolysis, putrefaction, and decay. Most decomposed brains will be affected by both autolysis and putrefaction, resulting in a brain that may, at one end of the spectrum, be almost normal or, at the other end, pulpified, depending on the conditions in which the body remained after death and the postmortem interval. Naked eye examination may detect areas of hemorrhage and also guides appropriate sampling for histology. Histological appearances are often better than what would be predicted from the state of the brain. Histology often confirms macroscopic abnormalities and may also reveal other features such as ischemic injury. Silver staining demonstrates neuritic plaques, and immunocytochemistry for β-amyloid precursor protein and other molecules produces results comparable with those seen in well-preserved fixed brains. The usefulness of information derived from the examination of the decomposed brain in criminal proceedings is illustrated with 6 case reports drawn from the author's own practice. PMID:25384305

  20. Epidemiology of traumatic brain injuries: Indian scenario.

    PubMed

    Gururaj, G

    2002-01-01

    Traumatic brain injuries (TBIs) are a leading cause of morbidity, mortality, disability and socioeconomic losses in India and other developing countries. Specific topics addressed in this paper include magnitude of the problem, causes, context of injury occurrence, risk factors, severity, outcome and impact of TBIs on rapidly transforming societies. It is estimated that nearly 1.5 to 2 million persons are injured and 1 million succumb to death every year in India. Road traffic injuries are the leading cause (60%) of TBIs followed by falls (20%-25%) and violence (10%). Alcohol involvement is known to be present among 15%-20% of TBIs at the time of injury. The rehabilitation needs of brain injured persons are significantly high and increasing from year to year. India and other developing countries face the major challenges of prevention, pre-hospital care and rehabilitation in their rapidly changing environments to reduce the burden of TBIs. PMID:11783750

  1. [Prevention of injuries associated with horseback riding].

    PubMed

    ten Kate, Chantal A; de Kooter, Tabitha A; Kramer, William L M

    2015-01-01

    Each year 9,900 equestrians present at Accident and Emergency Departments, 40% of them 10-19 year old females. The most common horse-riding injuries are to the head, brain, neck and face, torso and extremities. Because of the relatively larger head, children more often fall on their head. Wearing a helmet gives considerable protection. Despite the common use of a helmet by horseback riders, serious head injury still occurs regularly. Further research into improvement of the protective function of the helmet is indicated. The current safety vest (body protector) does not significantly reduce the risk of torso injury. Improvement of its protective function is necessary. Injury to the lower extremities is caused when they become trapped in the stirrup in a fall from or with the horse. Safety stirrups and sturdy footwear are possible preventive measures. Investment in the quality and promotion of preventive measures could reduce the frequency and severity of equestrian injuries. PMID:25923496

  2. Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    PubMed Central

    Kang, Bong Gu; Lee, Se Jeong; Kim, Kang Ho; Yang, Heekyoung; Lee, Young-Ae; Cho, Yu Jin; Im, Yong-Seok; Lee, Dong-Sup; Lim, Do-Hoon; Kim, Dong Hyun; Um, Hong-Duck; Lee, Sang-Hun; Lee, Jung-II; Nam, Do-Hyun

    2012-01-01

    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases. PMID:22347993

  3. The neuropathology of alcohol-related brain damage.

    PubMed

    Harper, Clive

    2009-01-01

    Excessive alcohol use can cause structural and functional abnormalities of the brain and this has significant health, social and economic implications for most countries in the world. Even heavy social drinkers who have no specific neurological or hepatic problems show signs of regional brain damage and cognitive dysfunction. Changes are more severe and other brain regions are damaged in patients who have additional vitamin B1 (thiamine) deficiency (Wernicke-Korsakoff syndrome). Quantitative studies and improvements in neuroimaging have contributed significantly to the documentation of these changes but mechanisms underlying the damage are not understood. A human brain bank targeting alcohol cases has been established in Sydney, Australia, and tissues can be used for structural and molecular studies and to test hypotheses developed from animal models and in vivo studies. The recognition of potentially reversible changes and preventative medical approaches are important public health issues. PMID:19147798

  4. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery. PMID:27032917

  5. Third International Congress on Epilepsy, Brain, and Mind: Part 2.

    PubMed

    Rektor, Ivan; Schachter, Steven C; Arya, Ravindra; Arzy, Shahar; Braakman, Hilde; Brodie, Martin J; Brugger, Peter; Chang, Bernard S; Guekht, Alla; Hermann, Bruce; Hesdorffer, Dale C; Jones-Gotman, Marilyn; Kanner, Andres M; Garcia-Larrea, Luis; Mareš, Pavel; Mula, Marco; Neufeld, Miri; Risse, Gail L; Ryvlin, Philippe; Seeck, Margitta; Tomson, Torbjörn; Korczyn, Amos D

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the second of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Humanistic, biologic, and therapeutic aspects of epilepsy, particularly those related to the mind, were discussed. The extended summaries provide current overviews of epilepsy, cognitive impairment, and treatment, including brain functional connectivity and functional organization; juvenile myoclonic epilepsy; cognitive problems in newly diagnosed epilepsy; SUDEP including studies on prevention and involvement of the serotoninergic system; aggression and antiepileptic drugs; body, mind, and brain, including pain, orientation, the "self-location", Gourmand syndrome, and obesity; euphoria, obsessions, and compulsions; and circumstantiality and psychiatric comorbidities. PMID:26264466

  6. [Prevention of alcohol dependence].

    PubMed

    Trova, A C; Paparrigopoulos, Th; Liappas, I; Ginieri-Coccossis, M

    2015-01-01

    With the exception of cardiovascular diseases, no other medical condition causes more serious dysfunction or premature deaths than alcohol-related problems. Research results indicate that alcohol dependent individuals present an exceptionally poor level of quality of life. This is an outcome that highlights the necessity of planning and implementing preventive interventions on biological, psychological or social level, to be provided to individuals who make alcohol abuse, as well as to their families. Preventive interventions can be considered on three levels of prevention: (a) primary prevention, which is focused on the protection of healthy individuals from alcohol abuse and dependence, and may be provided on a universal, selective or indicated level, (b) secondary prevention, which aims at the prevention of deterioration regarding alcoholic dependence and relapse, in the cases of individuals already diagnosed with the condition and (c) tertiary prevention, which is focused at minimizing deterioration of functioning in chronically sufferers from alcoholic dependence. The term "quaternary prevention" can be used for the prevention of relapse. As for primary prevention, interventions focus on assessing the risk of falling into problematic use, enhancing protective factors and providing information and health education in general. These interventions can be delivered in schools or in places of work and recreation for young people. In this context, various programs have been applied in different countries, including Greece with positive results (Preventure, Alcolocks, LST, SFP, Alcohol Ignition Interlock Device). Secondary prevention includes counseling and structured help with the delivery of programs in schools and in high risk groups for alcohol dependence (SAP, LST). These programs aim at the development of alcohol refusal skills and behaviors, the adoption of models of behaviors resisting alcohol use, as well as reinforcement of general social skills. In the

  7. Prevention of food allergy.

    PubMed

    du Toit, George; Tsakok, Teresa; Lack, Simon; Lack, Gideon

    2016-04-01

    The past few decades have witnessed an increase in the prevalence of IgE-mediated food allergy (FA). For prevention strategies to be effective, we need to understand the causative factors underpinning this rise. Genetic factors are clearly important in the development of FA, but given the dramatic increase in prevalence over a short period of human evolution, it is unlikely that FA arises through germline genetic changes alone. A plausible hypothesis is that 1 or more environmental exposures, or lack thereof, induce epigenetic changes that result in interruption of the default immunologic state of tolerance. Strategies for the prevention of FA might include primary prevention, which seeks to prevent the onset of IgE sensitization; secondary prevention, which seeks to interrupt the development of FA in IgE-sensitized children; and tertiary prevention, which seeks to reduce the expression of end-organ allergic disease in children with established FA. This review emphasizes the prevention of IgE-mediated FA through dietary manipulation, among other strategies; in particular, we focus on recent interventional studies in this field. PMID:27059727

  8. A translational neuroscience perspective on mindfulness meditation as a prevention strategy.

    PubMed

    Tang, Yi-Yuan; Leve, Leslie D

    2016-03-01

    Mindfulness meditation research mainly focuses on psychological outcomes such as behavioral, cognitive, and emotional functioning. However, the neuroscience literature on mindfulness meditation has grown in recent years. This paper provides an overview of relevant neuroscience and psychological research on the effects of mindfulness meditation. We propose a translational prevention framework of mindfulness and its effects. Drawing upon the principles of prevention science, this framework integrates neuroscience and prevention research and postulates underlying brain regulatory mechanisms that explain the impact of mindfulness on psychological outcomes via self-regulation mechanisms linked to underlying brain systems. We conclude by discussing potential clinical and practice implications of this model and directions for future research. PMID:27012254

  9. Brain Plasticity and Behaviour in the Developing Brain

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2011-01-01

    Objective: To review general principles of brain development, identify basic principles of brain plasticity, and discuss factors that influence brain development and plasticity. Method: A literature review of relevant English-language manuscripts on brain development and plasticity was conducted. Results: Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. Eight basic principles of brain plasticity are identified. Evidence that brain development and function is influenced by different environmental events such as sensory stimuli, psychoactive drugs, gonadal hormones, parental-child relationships, peer relationships, early stress, intestinal flora, and diet. Conclusions: The development of the brain reflects more than the simple unfolding of a genetic blueprint but rather reflects a complex dance of genetic and experiential factors that shape the emerging brain. Understanding the dance provides insight into both normal and abnormal development. PMID:22114608

  10. The problematic symmetry between brain birth and brain death.

    PubMed Central

    Jones, D G

    1998-01-01

    The possible symmetry between the concepts of brain death and brain birth (life) is explored. Since the symmetry argument has tended to overlook the most appropriate definition of brain death, the fundamental concepts of whole brain death and higher brain death are assessed. In this way, a context is provided for a discussion of brain birth. Different writers have placed brain birth at numerous points: 25-40 days, eight weeks, 22-24 weeks, and 32-36 weeks gestation. For others, the concept itself is open to question. Apart from this, it needs to be asked whether a unitary concept is an oversimplification. The merits of defining two stages of brain birth, to parallel the two definitions of brain death, are discussed. An attempt is then made to map these various stages of brain birth and brain death onto a developmental continuum. Although the results hold biological interest, their ethical significance is less evident. Development and degeneration are not interchangeable, and definitions of death apply specifically to those who are dying, not those who are developing. I conclude that while a dual concept of brain death has proved helpful, a dual concept of brain birth still has problems, and the underlying concept of brain birth itself continues to be elusive. PMID:9752625

  11. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  12. Brain death declaration

    PubMed Central

    Wahlster, Sarah; Wijdicks, Eelco F.M.; Patel, Pratik V.; Greer, David M.; Hemphill, J. Claude; Carone, Marco

    2015-01-01

    Objective: To assess the practices and perceptions of brain death determination worldwide and analyze the extent and nature of variations among countries. Methods: An electronic survey was distributed globally to physicians with expertise in neurocritical care, neurology, or related disciplines who would encounter patients at risk of brain death. Results: Most countries (n = 91, response rate 76%) reported a legal provision (n = 63, 70%) and an institutional protocol (n = 70, 77%) for brain death. Institutional protocols were less common in lower-income countries (2/9 of low [22%], 9/18 lower-middle [50%], 22/26 upper-middle [85%], and 37/38 high-income countries [97%], p < 0.001). Countries with an organized transplant network were more likely to have a brain death provision compared with countries without one (53/64 [83%] vs 6/25 [24%], p < 0.001). Among institutions with a formalized brain death protocol, marked variability occurred in requisite examination findings (n = 37, 53% of respondents deviated from the American Academy of Neurology criteria), apnea testing, necessity and type of ancillary testing (most commonly required test: EEG [n = 37, 53%]), time to declaration, number and qualifications of physicians present, and criteria in children (distinct pediatric criteria: n = 38, 56%). Conclusions: Substantial differences in perceptions and practices of brain death exist worldwide. The identification of discrepancies, improvement of gaps in medical education, and formalization of protocols in lower-income countries provide first pragmatic steps to reconciling these variations. Whether a harmonized, uniform standard for brain death worldwide can be achieved remains questionable. PMID:25854866

  13. The limits of prevention.

    PubMed Central

    McGinnis, J M

    1985-01-01

    Recent years have been marked by unprecedented accomplishments in preventing disease and reducing mortality. More gains can be expected, but there are limits. The forces shaping the nature and potential of prevention programs can be characterized as points falling along a spectrum ranging from the purely scientific to the purely social. This paper focuses on four elements of that spectrum, discussing some of the limitations to prevention that are presented by biological, technical, ethical, and economic factors. The author concludes with an essentially optimistic perspective on the prospects, special opportunities, and imperatives inherent in each of the categories of limitations discussed. PMID:3923530

  14. Guideline Implementation: Preventing Hypothermia.

    PubMed

    Bashaw, Marie A

    2016-03-01

    The updated AORN "Guideline for prevention of unplanned patient hypothermia" provides guidance for identifying factors associated with intraoperative hypothermia, preventing hypothermia, educating perioperative personnel on this topic, and developing relevant policies and procedures. This article focuses on key points of the guideline, which addresses performing a preoperative assessment for factors that may contribute to hypothermia, measuring and monitoring the patient's temperature in all phases of perioperative care, and implementing interventions to prevent hypothermia. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. PMID:26924369

  15. Prevention of lipohypertrophy.

    PubMed

    Kalra, Sanjay; Kumar, Arun; Gupta, Yashdeep

    2016-07-01

    Lipohypertrophy is an important insulin injection site reaction, which has clinically significant sequelae, including a greater risk of glycaemic variability and higher insulin dose requirement. This article describes the prevention of lipohypertrophy, using the concept of levels of prevention. It enumerates methods of primordial, primary, secondary, tertiary and quaternary prevention of lipohypertrophy. Focus on patient education, site rotation, avoidance of needle reuse, and dose titration when shifting from injection in lipohypertrophic lesions to normal subcutaneous tissue, helps minimize the development and impact of lipohypertrophy. PMID:27427150

  16. [Preventive medicine in geriatrics].

    PubMed

    Namias, B

    2003-01-01

    This paper gives a summary of check-up and preventive recommendations for elderly. It concerns screening, vaccination, chemoprophylaxy, and counseling. It is mainly based on the recommendations of the U.S. Preventive services Task force. It approaches the screening of hypertention, visual and auditive impairment, breast, colorectal, cervical, prostate cancers, about dyslipidemia, depression, osteoporosis, vaccination against influenza, pneumococcal infection,and chemoprophylaxy by estrogen, raloxifene, acetyisalicyclic acid. There is also counseling in the prevention of falls, exercises, and diet. This summary underlines the multiple recent changes compared with the 1996 recommendations. PMID:14983902

  17. [Guidelines for the management of severe traumatic brain injury. Part 3. Surgical management of severe traumatic brain injury (Options)].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the main causes of mortality and severe disability in young and middle age patients. Patients with severe TBI, who are in coma, are of particular concern. Adequate diagnosis of primary brain injuries and timely prevention and treatment of secondary injury mechanisms markedly affect the possibility of reducing mortality and severe disability. The present guidelines are based on the authors' experience in developing international and national recommendations for the diagnosis and treatment of mild TBI, penetrating gunshot wounds of the skull and brain, severe TBI, and severe consequences of brain injury, including a vegetative state. In addition, we used the materials of international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe TBI, which were published in recent years. The proposed recommendations for surgical treatment of severe TBI in adults are addressed primarily to neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in treating these patients. PMID:27070263

  18. The arteries of brain base in species of Bovini tribe.

    PubMed

    Zdun, Maciej; Frąckowiak, Hieronim; Kiełtyka-Kurc, Agata; Kowalczyk, Karolina; Nabzdyk, Maria; Timm, Anita

    2013-11-01

    Studies were conducted on 78 preparations of head and brain arteries in four species of Bos genus, that is in domestic cattle (N = 59), including 22 foetuses (CRL 36.5-78.5 cm), in banteng (Bos javanicus, N = 3), yak (Bos mutus f. grunniens, N = 2), American bison (Bison bison, N = 4), and European bison (Bison bonasus, N = 10). The comparative analysis permitted to demonstrate a similar pattern of brain base arteries in the studied animals. In the studied species, blood vessels of the arterial circle of the brain were found to form by bifurcation of intracranial segments of inner carotid arteries, which protruded from the paired rostral epidural rete mirabile. In Bovidae arterial circle of the brain was supplied with blood mainly by maxillary artery through the blood vessels of the paired rostral epidural rete mirabile. The unpaired caudal epidural rete mirabile was participating in blood supply to the arterial circle of the brain from vertebral and occipital arteries. It manifested character of a taxonomic trait for species of Bos and Bison genera. Basilar artery in all the examined animals manifested a variable diameter, with preliminary portion markedly narrowed, which prevented its participation in blood supply to the arterial circle of the brain. The results and taxonomic position of the species made the authors to suggest a hypothesis that a similar arterial pattern on the brain base might be present also in other species, not included in this analysis. PMID:24106047

  19. Quantitative analysis of drug delivery to the brain via nasal route.

    PubMed

    Kozlovskaya, Luba; Abou-Kaoud, Mohammed; Stepensky, David

    2014-09-10

    The blood-brain barrier (BBB) prevents drugs' permeability into the brain and limits the management of brain diseases. Intranasal delivery is a convenient route of drug administration that can bypass the BBB and lead to a direct delivery of the drug to the brain. Indeed, drug accumulation in the brain following intranasal application of a drug solution, or of a drug encapsulated in specialized delivery systems (DDSs), has been reported in numerous scientific publications. We aimed to analyze the available quantitative data on drug delivery to the brain via the nasal route and to reveal the efficiency of brain drug delivery and targeting by different types of nasally-administered DDSs. We searched for scientific publications published in 1970-2014 that reported delivery of drugs or model compounds to the brain via intranasal and parenteral routes, and contained quantitative data that were sufficient for calculation of brain targeting efficiency. We identified 73 publications (that reported data on 82 compounds) that matched the search criteria and analyzed their experimental settings, formulation types, analytical methods, and the claimed efficiencies of drug brain targeting: drug targeting efficiency (%DTE) and nose-to-brain direct transport (%DTP). Outcomes of this analysis indicate that efficiency of brain delivery by the nasal route differs widely between the studies, and does not correlate with the drug's physicochemical properties. Particle- and gel-based DDSs offer limited advantage for brain drug delivery in comparison to the intranasal administration of drug solution. Nevertheless, incorporation of specialized reagents (e.g., absorption enhancers, mucoadhesive compounds, targeting residues) can increase the efficiency of drug delivery to the brain via the nasal route. More elaborate and detailed methodological and analytical characterizations and standardized reporting of the experimental outcomes are required for reliable quantification of drug targeting

  20. [Roles of brain science in psychiatry].

    PubMed

    Ito, Masao

    2002-01-01

    At the opportunity of celebrating the 100th Anniversary of the Japanese Society of Psychiatry and Neurology, I am filled with deep emotion when I recall the time only a few decades ago, when mental disorders were believed to be an illness of the mind without any disorder in the brain. It has now become apparent that a mental disease emerges from the malfunction of the brain's unique biological mechanisms, so that any mental disease can be cured or prevented if the cause of the malfunction is clarified. Analyses of intercellular as well as intracellular signal transduction and the mechanisms underlying gene regulation in brain cells have recently advanced markedly and have brought a marked improvement in the methods and technology for investigating pathogenesis of neurological and psychiatric diseases. These impressive results have been derived in the search for the cause of Parkinson's disease, Alzheimer's disease and spinocerebellar degeneration. Certain minor changes in the molecular structure of sodium channels have been found to cause epilepsy. It has also been revealed that ten particular sites in chromosomes harbor the remote cause of schizophrenia and depression. These sites are probably responsible for production of certain synaptic transmitters and modulators. Another major challenge in the field of psychiatry is to understand the unique symptoms exhibited by patients with psychiatric disorders, which requires research to head in a direction different from molecular and cellular brain science. It is a challenge similar to the very fundamental challenge of determining how our brain, which is composed of numerous brain cells, yields our mind (or, should I say, supports our mind). To understand the brain as a complex system is more difficult than researching its molecular and cellular machinery, and accordingly, the progress of research in this field has been slow. However, it is gradually gaining speed thanks to the improvement in non-invasive methods for

  1. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. PMID:26135980

  2. Medicinal Effect of Nutraceutical Fruits for the Cognition and Brain Health

    PubMed Central

    Keservani, Raj K.; Sharma, Anil K.; Kesharwani, Rajesh K.

    2016-01-01

    The recent era is witnessing evaluation of medicinal and nutritional value of fruits and fruit juices for the management and prevention of brain diseases like headache stress, anxiety, hypertension, and Alzheimer's and Parkinson's diseases by the scientists and researchers worldwide. Fruits possess various chemicals such as antioxidants and polyphenols, which reduce and balance the effect of hormone in brain responsible for brain disease. Natural remedy is cheap, easily available, nontoxic, and easy to prepare and provides good mental health as compared to other remedies. The main objective of this review is to acknowledge medicinal benefits of fruits for the cognition and management of brain disease. PMID:26966612

  3. Bacterial Brain Abscess

    PubMed Central

    Patel, Kevin

    2014-01-01

    Significant advances in the diagnosis and management of bacterial brain abscess over the past several decades have improved the expected outcome of a disease once regarded as invariably fatal. Despite this, intraparenchymal abscess continues to present a serious and potentially life-threatening condition. Brain abscess may result from traumatic brain injury, prior neurosurgical procedure, contiguous spread from a local source, or hematogenous spread of a systemic infection. In a significant proportion of cases, an etiology cannot be identified. Clinical presentation is highly variable and routine laboratory testing lacks sensitivity. As such, a high degree of clinical suspicion is necessary for prompt diagnosis and intervention. Computed tomography and magnetic resonance imaging offer a timely and sensitive method of assessing for abscess. Appearance of abscess on routine imaging lacks specificity and will not spare biopsy in cases where the clinical context does not unequivocally indicate infectious etiology. Current work with advanced imaging modalities may yield more accurate methods of differentiation of mass lesions in the brain. Management of abscess demands a multimodal approach. Surgical intervention and medical therapy are necessary in most cases. Prognosis of brain abscess has improved significantly in the recent decades although close follow-up is required, given the potential for long-term sequelae and a risk of recurrence. PMID:25360205

  4. Immunotherapy of Brain Cancer.

    PubMed

    Roth, Patrick; Preusser, Matthias; Weller, Michael

    2016-01-01

    The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors. PMID:27260656

  5. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  6. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  7. Profiting from pollution prevention

    SciTech Connect

    LoPilato, A.J.; Eng, D.B.

    1994-12-31

    In the case of pollution prevention, national environmental goals coincide with industry`s economic interests. Most, if not all businesses have strong incentives to reduce the toxicity and quantities of wastes generated. These incentives include not only the ever increasing cost of compliance within a growing framework of regulations, but may include a firms desire to reduce the risk of criminal and civil liability, reduce overall operating costs, improve employee morale and participation, enhance corporate image in the community and insure protection of both public health and the environment. Although some businesses may invest in a pollution prevention program because it is the green thin to do, most businesses will weight their initial and long-term pollution prevention program investments on sound economic analyses. An effective pollution prevention program can provide cost savings that will more than offset the initial development and implementation costs.

  8. Household Safety: Preventing Choking

    MedlinePlus

    ... room a child shouldn't enter to prevent wandering into places that haven't been properly childproofed. ... the activities that develop your child's body and mind. Reviewed by: Mary L. Gavin, MD Date reviewed: ...

  9. Prevent Back Pain

    MedlinePlus

    ... Back Pain Print This Topic En español Prevent Back Pain Browse Sections The Basics Overview Am I at ... Health: Back Pain . There are different types of back pain. Back pain can be acute or chronic. It ...

  10. Diabetes Prevention Program (DPP)

    MedlinePlus

    ... United States. The U.S. Department of Health and Human Services estimates that about one in four U.S. ... to learn more about the study's long-term effects through the Diabetes Prevention Program Outcomes Study (DPPOS), ...

  11. Preventive treatment of migraine.

    PubMed

    Silberstein, Steven D

    2005-01-01

    Migraine preventive therapy, even in the absence of a headache, is given in an attempt to reduce the frequency, duration, or severity of attacks. Circumstances that might warrant preventive treatment include disabling migraine attacks, the overuse of acute medications or failure of or contraindication to acute medications, troublesome side effects from medication, hemiplegic migraine, or very frequent headaches (more than 2 a week). The major medication groups for preventive treatment include anticonvulsants, antidepressants, b-adrenergic blockers, calcium channel antagonists, serotonin antagonists, neurotoxins, nonsteroidal anti-inflammatory drugs, and others. If preventive medication is indicated, the agent preferentially should be chosen from one of the first-line categories, based on the drug's side-effect profile and the patient's coexistent and comorbid conditions. PMID:16622394

  12. Migraine preventive treatment.

    PubMed

    Silberstein, Stephen D

    2010-01-01

    Migraine is a chronic neurological disease. Preventive therapy is given in an attempt to reduce the frequency, duration, or severity of attacks. Circumstances that might warrant preventive treatment include recurring migraine attacks that significantly interfere with the patient's daily routines, despite appropriate acute treatment; frequent headaches; contraindication to, failure of, overuse of, or intolerance to acute therapies; patient preference; frequent, very long, or uncomfortable auras; and presence of uncommon migraine conditions. The major medication groups for preventive migraine treatment include beta-adrenergic blockers, antidepressants, calcium channel antagonists, serotonin antagonists, and anticonvulsants. The choice of preventive treatment depends on the individual drug's efficacy and adverse events, the patient's clinical features, frequency, and response to prior treatment, and the presence of any comorbid or coexistent disease. PMID:20816433

  13. Preventive migraine treatment.

    PubMed

    Silberstein, Stephen D

    2009-05-01

    The pharmacologic treatment of migraine may be acute (abortive) or preventive (prophylactic), and patients with frequent severe headaches often require both approaches. Preventive therapy is used to try to reduce the frequency, duration, or severity of attacks. The preventive medications with the best-documented efficacy are amitriptyline, divalproex, topiramate, and the beta-blockers. Choice is made based on a drug's proven efficacy, the physician's informed belief about medications not yet evaluated in controlled trials, the drug's adverse events, the patient's preferences and headache profile, and the presence or absence of coexisting disorders. Because comorbid medical and psychologic illnesses are prevalent in patients who have migraine, one must consider comorbidity when choosing preventive drugs. Drug therapy may be beneficial for both disorders; however, it is also a potential confounder of optimal treatment of either. PMID:19289224

  14. Oral Cancer Prevention

    MedlinePlus

    ... South Asia and Southeast Asia, including China and India. Personal history of head and neck cancer A ... such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [ ...

  15. Prevent Back Pain

    MedlinePlus

    ... Previous section Overview 2 of 5 sections Take Action! Take Action: Get Active Take care of your back to ... I at Risk? 3 of 5 sections Take Action: Prevent Injuries Focus on good posture. Good posture ...

  16. Osteoporosis: Preventing Falls

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Osteoporosis Preventing Falls Past Issues / Winter 2011 Table of ... next to your bed Free NIH Videos About Osteoporosis The NIHSeniorHealth Web site features five brief, informative ...

  17. Preventive Antepartum Care

    PubMed Central

    1994-01-01

    As the role of the obstetrician-gynecologist evolves to include primary care, the obstetrician must assume greater responsibility for providing prenatal preventive care, particularly regarding the STORCH5 pathogens. PMID:18475371

  18. Prevent Child Abuse America

    MedlinePlus

    ... Abuse Cases A recent report from the Indianapolis Star has revealed multiple occasions in which allegations of ... Gymnastics. In many of the cases that the Star investigated, complaint… Read more Who we are Prevent ...

  19. Head Injury Prevention Tips

    MedlinePlus

    Head Injury Prevention Tips American Association of Neurological Surgeons 5550 Meadowbrook Drive, Rolling Meadows, IL 60008-3852 ... defined as a blow or jolt to the head or a penetrating head injury that disrupts the ...

  20. Youth Suicide Prevention Programs

    ERIC Educational Resources Information Center

    Kalafat, John

    2006-01-01

    Youth suicide prevention programs are described that promote the identification and referral of at-risk youth, address risk factors, and promote protective factors. Emphasis is on programs that are both effective and sustainable in applied settings.

  1. Automating Preventive Maintenance.

    ERIC Educational Resources Information Center

    Oshier, Michael J.

    1984-01-01

    Describes the following aspects of the State University of New York-Brockport's preventive maintenance computerization project: (1) software selection, (2) project implementation; and (3) problems and benefits of the system. (MCG)

  2. Preventability of Cancer

    PubMed Central

    Colditz, Graham A.; Wei, Esther K.

    2013-01-01

    Whereas models of cancer disparities and variation in cancer burden within population groups now specify multiple levels of action from biologic processes to individual risk factors and social and physical contextual factors, approaches to estimating the preventable proportion of cancer use more traditional direct models often from single exposures to cancer at specific organ sites. These approaches are reviewed, and the strengths and limitations are presented. The need for additional multilevel data and approaches to estimation of preventability are identified. International or regional variation in cancer may offer the most integrated exposure assessment over the life course. For the four leading cancers, which account for 50% of incidence and mortality, biologic, social, and physical environments play differing roles in etiology and potential prevention. Better understanding of the interactions and contributions across these levels will help refine prevention strategies. PMID:22224878

  3. Polyp Prevention Trial

    Cancer.gov

    The primary objective of the Polyp Prevention Trial (PPT) is to determine whether a low fat, high fiber, high vegetable and fruit eating plan will decrease the recurrence of adenomatous polyps of the large bowel.

  4. Institutional Preventive Stress Management.

    ERIC Educational Resources Information Center

    Quick, James C.

    1987-01-01

    Stress is an inevitable characteristic of academic life, but colleges and universities can introduce stress management activities at the organizational level to avert excessive tension. Preventive actions are described, including flexible work schedules and social supports. (Author/MSE)

  5. Diabetes Prevention Program (DPP)

    MedlinePlus

    ... Recruiting Patients & Families Consortia, Networks & Centers Reports & Planning Diabetes Prevention Program (DPP) Page Content On this page: ... increased risk of developing diabetes. [ Top ] Type 2 Diabetes and Prediabetes Type 2 diabetes is a disorder ...

  6. Prevent Blindness America

    MedlinePlus

    ... to eNews Close Donate A Lifetime of Healthy Vision See well to learn, work, play, and live ... the sight-saving work of
 Prevent Blindness. Donate Vision Problems in the U.S. Prevalence of Adult Vision ...

  7. Preventing Weight Gain

    MedlinePlus

    ... If this is the case, preventing further weight gain is a worthy goal. As people age, their body composition gradually shifts — the proportion of muscle decreases and the proportion of fat increases. This ...

  8. Infection Prevention in Transplantation.

    PubMed

    Pergam, Steven A

    2016-01-01

    The number of patients undergoing hematopoietic cell and solid organ transplantation are increasing every year, as are the number of centers both transplanting and caring for these patients. Improvements in transplant procedures, immunosuppressive regimens, and prevention of transplant-associated complications have led to marked improvements in survival in both populations. Infections remain one of the most important sources of excess morbidity and mortality in transplant, and therefore, infection prevention strategies are a critical element for avoiding these complications in centers caring for high-risk patients. This manuscript aims to provide an update of recent data on prevention of major healthcare-associated infections unique to transplantation, reviews the emergence of antimicrobial resistant infections, and discusses updated strategies to both identify and prevent transmission of these pathogens in transplant recipients. PMID:26820654

  9. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice

    PubMed Central

    Zeynalov, Emil; Jones, Susan M.; Seo, Jeong-Woo; Snell, Lawrence D.; Elliott, J. Paul

    2015-01-01

    Background Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB) disruption, and is often accompanied by increased release of arginine-vasopressin (AVP). AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2) and tolvaptan (V2) are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke. Methods Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO) with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan) or orally (tolvaptan) for 48 hours. Physiological variables, neurological deficit scores (NDS), plasma and urine sodium and osmolality were recorded. Brain water content (BWC) and Evans Blue (EB) extravasation index were evaluated at the end point. Results Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle) to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle). Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle) to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05). Conclusion Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke. PMID:26275173

  10. Imaging brain plasticity after trauma

    PubMed Central

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  11. [Prevention of oral cancer].

    PubMed

    Roodenburg, J L; Vermey, A; Nauta, J M

    1994-05-01

    Etiology control is the most important primary prevention of oral cancer. The use of tobacco and alcohol increases the risk of a squamous cell carcinoma of the oral mucosa. The dentist can play an important role in the secondary prevention or screening for premalignant lesions, asymptomatic malignancies and second primary tumours of the oral cavity. Because of their age, edentulous patients run a high risk of oral cancer. Therefore, a regular oral check-up of these patients should be recommended. PMID:11830977

  12. Compliance through pollution prevention

    SciTech Connect

    McCarty, B.D.; Coyle, S.; Kachel, W.M.

    1999-07-01

    Decreased budgetary resources have caused the Air Force Materiel Command to look for a better way to target pollution prevention investments. The new paradigm, Compliance through Pollution Prevention (CTP2), is based upon the Code of Environmental Management Principles (CEMP) for federal facilities. It provides a procedure to assure that all future AFMC P2 investments result in the greatest reduction in environmental compliance burden possible. This paper describes the evolution of this new environmental management system, both past and future.

  13. Prevention of hepatocellular carcinoma.

    PubMed

    Kew, Michael C

    2010-01-01

    Because of its frequency and grave prognosis, preventing hepatocellular carcinoma is an urgent priority. Prevention should be possible because environmental carcinogens-chronic hepatitis B and C virus infections, dietary exposure to aflatoxins, and iron overload-cause the great majority of these tumors. Chronic hepatitis B virus infection accounts for 55% of global hepatocellular carcinomas and 80% of those in the high-incidence Asia Pacific and sub-Saharan African regions. In these regions the infection that becomes chronic is predominantly acquired very early in life. A safe and effective vaccine against this virus is available and its universal inclusion in the immunization of infants has already resulted in a marked reduction of chronic infection and a 70% decrease in the occurrence of hepatocellular carcinoma in those immunized. Chronic hepatitis C virus infection is the major cause of hepatocellular carcinoma in industrialized countries. The infection is mainly acquired in adulthood and, until a vaccine becomes available, prevention will consist mainly of identifying, counselling, and treating chronically infected individuals, preventing spread of the virus by the use of safe injection practices (particularly in intravenous drug abusers), and screening all donated blood for the presence of the virus. 4.5 billion of the world.s population are exposed to dietary aflatoxins. Prevention involves treating susceptible crops to prevent fungal contamination, and handling the foodstuffs in such a way as to prevent contamination during storage. Iron overload in hereditary hemochromatosis can be prevented by repeated venesection and in African dietary iron overload by fermenting the home-brewed beer in iron-free containers. PMID:20526004

  14. Preventing Obesity through Schools

    PubMed Central

    Nihiser, Allison; Merlo, Caitlin; Lee, Sarah

    2015-01-01

    PRÉCIS This paper describes highlights from the Weight of the Nation™ 2012 Schools Track. Included is a summary of 16 presentations. Presenters shared key actions for obesity prevention through schools. The information provided at the Weight of the Nation™ can help school health practitioners access tools, apply evidence-based strategies, and model real-world examples to successfully start obesity prevention initiatives in their jurisdiction. PMID:24446995

  15. IS SUICIDE PREVENTABLE?

    PubMed Central

    Elias, Ralph B.

    1959-01-01

    Among 500 cases of suicide analyzed in Stockholm, fewer than a third were associated with depression. Most forms of psychiatric disease were represented. Nevertheless, most persons give some warning before attempting suicide, and these warnings should be the signal for preventive action. Centers with trained personnel could prevent many suicides, if the potential victims were recognized and referred early enough. Laymen too should be educated to recognize potential suicide and help avert it. PMID:13629348

  16. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    PubMed

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-01-01

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain. PMID:25407801

  17. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    PubMed Central

    Georgieva, Julia V.; Hoekstra, Dick; Zuhorn, Inge S.

    2014-01-01

    The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex”) is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain. PMID:25407801

  18. Delivery of preventive care

    PubMed Central

    Katz, Alan; Lambert-Lanning, Anita; Miller, Anthony; Kaminsky, Barbara; Enns, Jennifer

    2012-01-01

    Abstract Objective To determine family physicians’ practice of, knowledge about, and attitudes toward delivering preventive care during periodic health examinations (PHEs). Design A stratified sample of 5013 members of the College of Family Physicians of Canada were randomly selected to receive a questionnaire by mail. Descriptive analysis was performed on a national data set of 1010 respondents. Setting Canada. Participants A sample of family physicians from each Canadian province. Main outcome measures Physicians were asked questions about whether they addressed aspects of preventive care, such as tobacco smoking, nutrition, physical activity, alcohol intake, and sun exposure with patients during PHEs. The questions were designed to gauge attitudes and identify barriers to the provision of preventive care. Results Most respondents (87% to 89%) indicated that they were comfortable counseling their patients about issues such as nutrition, physical activity, and alcohol consumption; however, many of these respondents did not refer their patients to specialists or provide them with additional resources to educate patients about the health risks of their conditions. While tobacco smoking risks and cessation were addressed by most family physicians (79%) during PHEs, other topics, such as sun exposure, were often overlooked. Conclusion The results of this survey indicate that while many family physicians follow the evidence-based guidelines for preventive care, current levels of preventive care in the primary care setting are below national standards. It is critical that Canadians receive optimal preventive care to improve the outlook of the chronic disease burden on the health care system. PMID:22267643

  19. Primary prevention of asthma.

    PubMed

    Becker, Allan B; Chan-Yeung, Moira

    2002-01-01

    There has been a dramatic increase in the prevalence of asthma over the last quarter century, particularly in the industrialized world. Although our understanding of asthma continues to improve, there is no cure for the disease. Primary prevention of asthma is the focus of this review. Asthma is a disease with multiple gene-environment interactions. Candidate genes for asthma are considered, and potential interaction between one of those genes, CD14, and an environmental factor, endotoxin, is reviewed as it relates to the hygiene hypothesis. Environmental risk factors for asthma including allergens, pollutants, infectious factors, and dietary modifications are considered, particularly their potential for primary prevention of asthma. Ongoing cohort studies including the Canadian Allergy and Asthma Prevention Study, the Manchester Allergy and Asthma Study, the Children's Asthma Prevention Study from Australia, and the Prevention and Incidence of Asthma and Mite Allergy Study from the Netherlands are briefly reviewed. A more definitive understanding of genetic background and environmental triggers and their interactions is required before any specific approach to the primary prevention of asthma can be championed aggressively. PMID:11753119

  20. [Can falls be prevented?].

    PubMed

    Dubousset, Jean

    2014-06-01

    Most recommendations and measures intended to prevent falls focus on the elderly (see HAS guideline of April 2009) but, in our opinion, this isfar too late: prevention must begin much earlier, not only by identifying persons at risk, but also by providing personalized lifestyle advice adapted to each individual's biomechanical, somatic, neurological and biological characteristics. The first preventive measure is to identify a possible deterioration of balance, starting with a physical examination at the age of 45 and repeated regularly throughout life. Extrinsic preventive measures focusing on the domestic and external environments are clearly necessary. But what is most important is to detect and, if necessary, correct any degradation of intrinsic (intracorporeal or somatic) factors starting at the age of 45 years; these include vision, vestibular function and balance, proprioception, and psychological and neurological status. Chronic illnesses and their treatments must also be taken into account: treatment must be limited to indispensable drugs; sedative psychotropics must be avoided if possible; and polymedication must be tightly controlled, as it is a major risk factor for falls. Prevention also requires a diet sufficiently rich in protein, calcium and vitamin D3 (to prevent osteoporosis), and regular daily exercise adapted to the individual, if possible associated with a simultaneous cognitive task. The last key point is the absolute need for thorough functional rehabilitation after any accidental or medical trauma, regardless of age, with the aim of restoring functional status to that existing prior to the accident. PMID:26983186