Science.gov

Sample records for 4-cell stage embryos

  1. Demands for carbohydrates as major energy substrates depend on the preimplantation developmental stage in pig embryos: Differential use of fructose by parthenogenetic diploids before and after the 4-cell stage in the pig

    PubMed Central

    SHIBUTANI, Mihiro; LEE, Jibak; MIYANO, Takashi; MIYAKE, Masashi

    2015-01-01

    The embryo culture technique has been improving, but the detailed demands for energy substrates such as glucose, fructose, pyruvate and lactate of preimplantation embryos are still unclear. In the present study, the demands of pig preimplantation embryos at each different developmental stage were investigated by use of parthenogenetic diploids as a model of pig preimplantation embryos. Pig parthenogenetic diploids showed different use of glucose and fructose before and after the 4-cell stage. Although glucose supported the development of pig embryos throughout the preimplantation stages and even maintained the expansion and hatching of blastocysts, it suppressed development to the blastocyst stage when glucose coexisted with pyruvate and lactate from 4 h after activation, but not after 48 h (early 4-cell stage). Since ketohexokinase that metabolizes fructose was not expressed in 2-cell and 4-cell diploids, a medium that included only fructose as a major energy substrate did not support early cleavage of pig diploids beyond the 4-cell stage, and almost no diploids developed to the morula stage just as in a medium without carbohydrates. These results may explain the different suppressive effects on pig preimplantation development between glucose and fructose when pyruvate and lactate were present in a medium. In addition, 4-cell diploids that had been cultured in a medium with pyruvate and lactate developed to the expanded blastocyst stage without any carbohydrates as a major energy substrate. These results show that the demands for carbohydrates are different depending on the developmental stage in pig preimplantation embryos. PMID:25736264

  2. Production of viable cloned miniature pigs by aggregation of handmade cloned embryos at the 4-cell stage.

    PubMed

    Siriboon, Chawalit; Tu, Ching-Fu; Kere, Michel; Liu, Ming-Sing; Chang, Hui-Jung; Ho, Lin-Lin; Tai, Miao-En; Fang, Wen-Der; Lo, Neng-Wen; Tseng, Jung-Kai; Ju, Jyh-Cherng

    2014-03-01

    The aim of the present study was to improve the quality of handmade cloned porcine embryos by multiple embryo aggregations. Embryos derived from aggregation of three cloned embryos (3×) had a better blastocyst rate than cloned control (1×) embryos (73.6% vs 35.1%, respectively; P<0.05), but did not differ from those produced by aggregation of two cloned embryos (2×; 63.0%). Total cell numbers differed among treatments (P<0.05), with the greatest cell numbers (126) in the 3× group and the lowest (55) in the control group. The ratio of inner cell mass:total cell number was comparable in the 2× and 3× groups (25.1% vs 26.1%, respectively) and was significantly better than that in the control group (15.3%). The proportion of apoptotic cells in 2× and 3× groups was lower than that in the control group (2.7% and 2.2% vs 4.7%, respectively; P<0.05). Expression of Oct4 and Cdx2 was higher, whereas that of Bax was lower (P<0.05), in the 3× compared with non-aggregate group. Seven piglets were born to two surrogate mothers after embryo transfer of 3× aggregated blastocysts. In conclusion, aggregated embryos had greater total cell numbers and better pluripotency gene expression, with reduced expression of the pro-apoptosis gene Bax. Collectively, these improvement may be associated with the development of cloned embryos to term. PMID:23544704

  3. Differential expression of microRNAs in 2-cell and 4-cell mouse embryos.

    PubMed

    Wang, Pei; Cui, Ji; Zhao, Chun; Zhou, Lin; Guo, Xirong; Shen, Rong; Zhang, Junqiang; Ling, Xiufeng

    2014-11-01

    In vitro fertilized (IVF) human embryos have a high incidence of developmental arrest before the blastocyst stage, therefore characterization of the molecular mechanisms that regulate embryo development is urgently required. Post-transcriptional control by microRNAs (miRNAs) is one of the most investigated RNA control mechanisms, and is hypothesized to be involved actively in developmental arrest in preimplantation embryos. In this study, we extracted total RNA from mouse 2-cell and 4-cell embryos. Using a miRNA microarray, 192 miRNAs were found to be differentially expressed in 4-cell embryos and 2-cell embryos; 122 miRNAs were upregulated and 70 were downregulated in 4-cell embryos. The microarray results were confirmed by real-time quantitative RT-PCR for six miRNAs (mmu-miR-467h, mmu-miR-466d-3p, mmu-miR-292-5p, mmu-miR-154, mmu-miR-2145, and mmu-miR-706). Cdca4 and Tcf12 were identified as miR-154 target genes by target prediction analysis. This study provides a developmental map for a large number of miRNAs in 2-cell and 4-cell embryos. The function of these miRNAs and the mechanisms by which they modulate embryonic developmental arrest require further study. The results of this study have potential applications in the field of reproductive medicine. PMID:23731853

  4. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.

    PubMed

    Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J L; Macaulay, Iain C; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C; Zernicka-Goetz, Magdalena

    2016-03-24

    The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. PMID:27015307

  5. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos

    PubMed Central

    Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J.L.; Macaulay, Iain C.; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C.; Zernicka-Goetz, Magdalena

    2016-01-01

    Summary The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. PMID:27015307

  6. Should we be promoting embryo transfer at blastocyst stage?

    PubMed

    Maheshwari, Abha; Hamilton, Mark; Bhattacharya, Siladitya

    2016-02-01

    Improved laboratory standards and better culture media have made extended culture to blastocyst stage a reality to identify embryos with maximum implantation potential. The strategy of extended culture has become more popular across the world at a time when regulatory bodies have emphasized the need to increase the uptake of elective single embryo transfer, minimize complications associated with multiple births and aim for a healthy singleton live-birth as the preferred outcome in IVF. New data on perinatal outcomes suggest that pregnancies after embryo transfer at blastocyst stage are associated with a higher risk of preterm delivery, large for gestational age babies, monozygotic twins and altered sex ratio compared with those following embryo transfers at cleavage stage. In addition, concerns have been raised of increased congenital anomalies and epigenetic modifications with embryo transfer at blastocyst stage. Twenty-four years on from the first embryo transfer at blastocyst stage, we examine the reasons for extended embryo culture, evaluate the risks and benefits of this strategy and suggest the need to reconsider this policy in the interests of fetal safety. PMID:26673100

  7. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  8. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2016-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  9. Developmental stages in human embryos: revised and new measurements.

    PubMed

    O'Rahilly, Ronan; Müller, Fabiola

    2010-01-01

    The staging of human embryos, as distinct from seriation, depends on a morphological scheme devised by Streeter and completed by O'Rahilly, who proposed the term Carnegie stages. To avoid misconceptions and errors, and to place new findings in perspective, it is necessary to summarize the essentials of the Carnegie system: (1) Twenty-three stages cover the embryonic period, i. e. the first 8 postfertilizational weeks of development. (2) The system is based on internal as well as external features, and the use of only external criteria is subject to serious limitations. For example, precise delineation of stages 19-23 and of the embryonic-fetal transition depends on histological examination. (3) Prenatal measurements are not an integral component of the staging system, and hence a stage should never be assigned merely on the basis of embryonic length. A 20-mm embryo, for example, could belong to any of three stages. Measurements, however, are important for the assessment of age, and very few measurements are available for staged embryos. Presented here and based on accurate staging are the maximum diameter of the chorionic sac, the crown-heel length, the greatest length exclusive of the lower limbs, the biparietal diameter, the head circumference, the length of the hindbrain, the total length of the brain, and the lengths of the limbs as well as of their segments, including the foot length. (4) Prenatal ages are also not an integral part of the staging system and hence a stage should never be assigned merely on the basis of prenatal age. Ages, however, are of clinical importance and their estimate has been rendered more precise by accurate timing of fertilization followed by ultrasonography. Prenatal age is postfertilizational and hence some 2 weeks less than the postmenstrual interval. The term gestational age is ambiguous and should be discarded. Presented here is a new graph showing proposed estimates of age in relation to stages and based on current information

  10. Stage-dependent uptake of cadmium by Bufo arenarum embryos

    SciTech Connect

    Preez-Coll, C.S.; Herkovits, J.

    1996-04-01

    Over the last several years, environmental contamination with cadmium has significantly increased because of its extensive use In anthropogenic activities. This heavy metal is a very toxic xenobiotic producing reproductive and developmental impairments in a wide spectrum of organisms. Within the life cycle of organisms, the embryo is the most sensitive period to adverse conditions. Moreover, stage-dependent susceptibilities to toxic agents in amphibian embryos treated with lead, cadmium and aluminium were described. In the case of cadmium, this differential sensitivity could be related to changes in the metal accumulation through development or in the induction of defense mechanisms against cadmium toxicity, such as metallothionein (Mt) synthesis, which seems to be developmentally regulated. In the case of the toad Bufo arenarum, susceptibility to cadmium seems to follow a biphasic pattern during embryonic development. From the two-cell stage to the neurula stage an increase in susceptibility occurs, whereas from the last stage onwards a gradual increase in the resistance against this heavy metal seems to be achieved. This stage reports the uptake profile of cadmium at different post-hatching stages. 20 refs., 3 figs.

  11. Evaluation of propanediol, ethylene glycol, sucrose and antifreeze proteins on the survival of slow-cooled mouse pronuclear and 4-cell embryos.

    PubMed

    Shaw, J M; Ward, C; Trounson, A O

    1995-02-01

    Mouse pronuclear and 4-cell embryos were cryopreserved by slow cooling to -33 degrees C in 1.5 M 1,2-propanediol or 1.5 M ethylene glycol, with or without 0.1 M sucrose. Straws were thawed by immersion into a 37 degrees C water bath, immediately after their removal from liquid nitrogen (protocol 1), or after being held in air for 15 (protocol 2) or 30 s (protocol 3). Others were held in air until the ice melted (protocol 4). Embryos which formed blastocysts that hatched and attached to the Petri dish in vitro (plated) were considered viable. The thawing protocol did not significantly influence the viability of embryos frozen in propanediol with 0.1 M sucrose (52-72% of pronuclear and 69-97% of 4-cell embryos plated). In the other solutions tested, propanediol without sucrose and ethylene glycol with/without sucrose, only protocol 2 resulted in uniformly high development of both pronuclear (45-65% plating) and 4-cell embryos (70-97% plating). Thawing protocol 4 significantly reduced development, in particular for embryos frozen in ethylene glycol (0% 1-cell; 0-25% 4-cell plating). The difference between thawing protocols 2 and 4 was reduced by continuing slow cooling of ethylene glycol solutions to lower temperatures (-41 degrees C). Adding antifreeze proteins type I or III did not improve survival or development. Thus, although mouse pronuclear and 4-cell embryos can be frozen-thawed in either ethylene glycol or propanediol without significant loss of viability, an appropriate thawing protocol is essential for embryos frozen in ethylene glycol or propanediol-sucrose. PMID:7769070

  12. Gibberellins in Embryo-Suspensor of Phaseolus coccineus Seeds at the Heart Stage of Embryo Development 1

    PubMed Central

    Piaggesi, Alberto; Picciarelli, Piero; Lorenzi, Roberto; Alpi, Amedeo

    1989-01-01

    Gibberellins (GAs) in suspensors and embryos of Phaseolus coccineus seeds at the heart stage of embryo development were analyzed by combined gas chromatography-mass spectrometry (GC-MS). From the suspensor four C19-GAs, GA1, GA4, GA5, GA6, and one C20 GA, GA44, were identified. From the embryo, five C19-GAs GA1, GA4, GA5, GA6, GA60 and two C20 GAs, GA19 and GA44 were identified. The data, in relation to previous results, suggest a dependence of the embryo on the suspensor during early stages of development. PMID:16667026

  13. In-vitro co-culture of early stage caprine embryos with oviduct and uterine epithelial cells.

    PubMed

    Prichard, J F; Thibodeaux, J K; Pool, S H; Blakewood, E G; Menezo, Y; Godke, R A

    1992-04-01

    Early stage caprine embryos were incubated with goat oviduct and uterine cells to evaluate whether these cells could be used as a somatic cell culture system to enhance development through the developmental block at the 8- to 16-cell stage during in-vitro culture. Following gonadotrophin treatment and natural mating, 2- to 4-cell embryos were surgically recovered from donor females for in-vitro culture studies. In Experiment 1, embryos were equally and randomly allotted to culture treatments of either culture medium plus caprine oviduct cells or culture medium alone. In both treatment groups, embryos were incubated in Medium-199 with 10% fetal bovine serum, 0.25% lactalbumin and 1% antibiotic-antimycotic at 37 degrees C in a humidified atmosphere of 5% CO2 in air. In Experiment 2, similar embryos were cultured in the same medium with either caprine oviduct cells, caprine uterine cells or sequentially incubated with oviduct cells and then uterine cells during a corresponding incubation interval. The culture conditions in Experiment 2 were the same as in Experiment 1. Following 72 h in culture, (Experiment 1), significantly more embryos developed through the in-vitro developmental block into blastocysts and hatched blastocysts when cultured with oviduct cells compared with no embryos developing through the in-vitro block when incubated with medium alone. In Experiment 2, caprine embryos co-cultured with oviduct cells alone resulted in more embryos developing into blastocysts and hatched blastocysts compared with those co-cultured with uterine cells alone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1522202

  14. Effect of Maternal Age on the Ratio of Cleavage and Mitochondrial DNA Copy Number in Early Developmental Stage Bovine Embryos

    PubMed Central

    TAKEO, Shun; GOTO, Hiroya; KUWAYAMA, Takehito; MONJI, Yasunori; IWATA, Hisataka

    2012-01-01

    Abstract Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease. PMID:23269452

  15. Efficient harvesting methods for early-stage snake and turtle embryos.

    PubMed

    Matsubara, Yoshiyuki; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-04-01

    Reptile development is an intriguing research target for understating the unique morphogenesis of reptiles as well as the evolution of vertebrates. However, there are numerous difficulties associated with studying development in reptiles. The number of available reptile eggs is usually quite limited. In addition, the reptile embryo is tightly adhered to the eggshell, making it a challenge to isolate reptile embryos intact. Furthermore, there have been few reports describing efficient procedures for isolating intact embryos especially prior to pharyngula stage. Thus, the aim of this review is to present efficient procedures for obtaining early-stage reptilian embryos intact. We first describe the method for isolating early-stage embryos of the Japanese striped snake. This is the first detailed method for obtaining embryos prior to oviposition in oviparous snake species. Second, we describe an efficient strategy for isolating early-stage embryos of the soft-shelled turtle. PMID:27059539

  16. PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis.

    PubMed Central

    Li, Z; Thomas, T L

    1998-01-01

    We used virtual subtraction, a new gene isolation strategy, to isolate several genes of interest that are expressed in Arabidopsis embryos. These genes have demonstrated biological properties or have the potential to be involved in important biological processes. One gene isolated by virtual subtraction is PEI. It encodes a protein containing a Cys3His zinc finger domain associated with a number of animal and fungal transcription factors. In situ hybridization results showed that PEI1 is expressed throughout the embryo from globular to late cotyledon stage. Transgenic Arabidopsis plants expressing a PEI1 antisense gene produced white seeds in which embryo development did not progress through heart stage. Aberrant embryos failed to form cotyledons, but the embryonic root appeared to be normal. Aberrant embryos did not turn green, and the expression of genes involved in photomorphogenesis was drastically attenuated. In culture, aberrant embryos did not form true leaves, but root formation was apparently normal. These results suggest that PEI1 is an embryo-specific transcription factor that plays an important role during Arabidopsis embryogenesis, functioning primarily in the apical domain of the embryo. PMID:9501112

  17. Cryotop vitrification of porcine parthenogenetic embryos at the early developmental stages.

    PubMed

    Wu, Guo-Quan; Quan, Guo-Bo; Shao, Qing-Yong; Lv, Chun-Rong; Jiang, Yan-Ting; Zhao, Zhi-Yong; Hong, Qiong-Hua

    2016-02-01

    The objective of this study was to evaluate the effects of early developmental stages at which Cryotop vitrification is performed on subsequent survival and in vitro development of porcine parthenogenetic activation embryos. The zygotes that were cultured for 4, 8, and 18 hours post electric activation (h.p.a.) and two- and four-cell embryos were vitrified, warmed, and continuously cultured for the remaining period. The zygotes vitrified at 4, 8, and 18 h.p.a. showed similar percentages of survival, cleavage, and blastocyst formation. No difference in viability was observed after vitrification of two- and four-cell embryos, but the embryos vitrified at the two-cell stage exhibited significantly higher blastocyst formation rate than those vitrified at the four-cell stage. However, vitrifying embryos resulted in significantly decreased survival and development rates, regardless of the developmental stage of the embryos. In addition, the final developmental stage, diameter, apoptotic index, and the number of inner cell mass, trophectoderm, and total cells of blastocysts derived from embryos vitrified at any stage of the early culture were similar to those of fresh blastocysts. In conclusion, our data indicate that the early-stage porcine parthenogenetically activated embryos including the zygote, two cells, and four cells have a high ability to survive cryopreservation; these viable embryos after vitrification can produce respectable development rates and good-quality blastocysts. PMID:26462660

  18. Cryopreservation of In Vitro-Produced Early-Stage Porcine Embryos in a Closed System

    PubMed Central

    Men, Hongsheng; Spate, Lee D.; Murphy, Clifton N.; Prather, Randall S.

    2015-01-01

    Abstract Cryostorage of porcine embryos in a closed pathogen-free system is essential for the maintenance and safeguard of swine models. Previously, we reported a protocol for the successful cryopreservation of porcine embryos at the blastocyst stage in 0.25 mL ministraws. In this experiment, we aimed at developing a protocol to apply the same concept for the cryopreservation of early-stage porcine embryos. Porcine embryos from day 2 through day 4 were delipidated by using a modified two-step centrifugation method and were then cryopreserved in sealed 0.25 mL straws by using a slow cooling method. Control groups included open pulled straw (OPS) vitrified embryos after delipidation and noncryopreserved embryos without delipidation. There were no significant differences in cryosurvival between embryos frozen in 0.25 mL straws and OPS vitrified embryos across all the stages (two cell to morula) examined (p>0.05). Similarly, in all groups examined, the blastocyst rates were not different between the two cryopreserved groups. However, the blastocyst rates from the cryopreserved groups were significantly lower than the noncryopreserved controls (p<0.05). This experiment demonstrated that early-stage porcine embryos can survive cryopreservation in a closed system by using a slow cooling method at a comparable rate to those vitrified by using an ultrarapid cooling method (p>0.05). However, the developmental competence was significantly reduced after cryopreservation compared to noncryopreserved embryos. Further research is needed to optimize the protocol to improve the developmental potential of cryopreserved early-stage porcine embryos in sealed straws. PMID:26309801

  19. Application of hollow fiber vitrification for cryopreservation of bovine early cleavage stage embryos and porcine morula-blastomeres.

    PubMed

    Uchikura, Ayuko; Matsunari, Hitomi; Nakano, Kazuaki; Hatae, Shota; Nagashima, Hiroshi

    2016-04-22

    A novel hollow fiber vitrification (HFV) method was applied to materials that have previously been difficult to cryopreserve, thereby expanding the potential application of this method. The results showed that zona-free porcine morulae and their isolated blastomeres remained viable even after vitrification. The rate of development to blastocysts after vitrification was similar for zona-free and zona-intact morulae (21/23, 91.3% for both). Vitrified blastomeres had a developmental potential equal to that of non-vitrified blastomeres (blastocyst formation rate after reaggregation: 16/17, 94.1% for both). The HFV method was also effective for the cryopreservation of in vitro matured/fertilized bovine embryos at the 2- to 4-cell, 8- to 16-cell and morula stages. The blastocyst formation rates of vitrified embryos (66.1-82.5%) were similar to those of non-vitrified embryos (74.5-82.5%). These results indicate that this novel HFV method is an effective tool for embryo cryopreservation that can enhance current practices in reproductive biology. PMID:26875691

  20. Application of hollow fiber vitrification for cryopreservation of bovine early cleavage stage embryos and porcine morula-blastomeres

    PubMed Central

    UCHIKURA, Ayuko; MATSUNARI, Hitomi; NAKANO, Kazuaki; HATAE, Shota; NAGASHIMA, Hiroshi

    2016-01-01

    A novel hollow fiber vitrification (HFV) method was applied to materials that have previously been difficult to cryopreserve, thereby expanding the potential application of this method. The results showed that zona-free porcine morulae and their isolated blastomeres remained viable even after vitrification. The rate of development to blastocysts after vitrification was similar for zona-free and zona-intact morulae (21/23, 91.3% for both). Vitrified blastomeres had a developmental potential equal to that of non-vitrified blastomeres (blastocyst formation rate after reaggregation: 16/17, 94.1% for both). The HFV method was also effective for the cryopreservation of in vitro matured/fertilized bovine embryos at the 2- to 4-cell, 8- to 16-cell and morula stages. The blastocyst formation rates of vitrified embryos (66.1–82.5%) were similar to those of non-vitrified embryos (74.5–82.5%). These results indicate that this novel HFV method is an effective tool for embryo cryopreservation that can enhance current practices in reproductive biology. PMID:26875691

  1. Live imaging reveals spatial separation of parental chromatin until the four-cell stage in Caenorhabditis elegans embryos.

    PubMed

    Bolková, Jitka; Lanctôt, Christian

    2016-01-01

    The parental genomes are initially spatially separated in each pronucleus after fertilization. Here we have used green-to-red photoconversion of Dendra2-H2B-labeled pronuclei to distinguish maternal and paternal chromatin domains and to track their spatial distribution in living Caenorhabditis elegans embryos starting shortly after fertilization. Intermingling of the parental chromatin did not occur until after the division of the AB and P1 blastomeres, at the 4-cell stage. Unexpectedly, we observed that the intermingling of chromatin did not take place during mitosis or during chromatin decondensation, but rather ∼ 3-5 minutes into the cell cycle. Furthermore, unlike what has been observed in mammalian cells, the relative spatial positioning of chromatin domains remained largely unchanged during prometaphase in the early C. elegans embryo. Live imaging of photoconverted chromatin also allowed us to detect a reproducible 180° rotation of the nuclei during cytokinesis of the one-cell embryo. Imaging of fluorescently-labeled P granules and polar bodies showed that the entire embryo rotates during the first cell division. To our knowledge, we report here the first live observation of the initial separation and subsequent mixing of parental chromatin domains during embryogenesis. PMID:26934289

  2. New observations regarding staging turkey embryos from oviposition through primitive streak formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The normal developmental sequence of the turkey embryo from the initial cleavage divisions through hypoblast formation has been described previously in eleven separate stages based on the progressive morphological differentiation of the embryo (Gupta and Bakst, 1993). However, in recent preliminar...

  3. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  4. Developmental Stages of Early Dead Embryos after Prolonged Egg Storage and Incubation in Broiler Breeders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold egg storage is a common practice prior to incubation in the broiler industry.  However, cold storage longer than 10 days is associated with an increase in early embryo mortality. We were interested in determining the developmental stages of early dead embryos after prolonged egg storage and inc...

  5. The expression and localization of Crb3 in developmental stages of the mice embryos and in different organs of 1-week-old female mice.

    PubMed

    Yin, Y; Sheng, J; Hu, R; Yang, Y; Qing, S

    2014-10-01

    Crumbs homolog 3 (Crb3) is a member of the Crumbs family of proteins. This protein may play a role in epithelial cell polarity and is associated with tight junctions at the apical surface of epithelial cells. Alternative transcriptional splice variants that encode different Crb3 isoforms have been characterized. The expression of Crb3 mRNA and protein was observed in the pre-implantation mouse embryos and different organs of 1-week-old mouse, and Crb3 expression was primarily observed in the cytoplasm. Crb3 was expressed in a unique temporal pattern in pre-implantation embryos. The main characteristic of Crb3 expression was that the positive signals were stronger in the mature oocytes and zygotes than in the 2-cell, 4-cell, and 8-cell stages and the morula, but a similar level of high expression was observed in blastocysts. Therefore, the Crb3 expression signal during the course of development process grew gradually stronger from the 2-cell stage to blastocyst. In addition, Crb3 protein was widely distributed in each stage of the post-implantation embryos. Crb3 expression was observed in the inner cell mass, trophoblast cells and endoderm of E4.5d embryos; in the chorion, amnion, trophoblast cells, yolk sac endoderm and embryo ectoderm of E7.5d embryos; in the amnion and limb bud of E8.0d embryos; and in the semicircular canal epithelium, retina, lens vesicle and liver tissue of E13.5d embryos. Crb3 was expressed at different levels in different organs of 1-week-old mouse with the strengths in the following order: kidney > small intestine > stomach > uterus > liver > skeletal muscle > cerebellum > brain. The presence of Crb3 in many organs and the regularity of Crb3 distribution in the process of mouse embryonic development indicate that Crb3 protein plays an important role in establishing and maintaining the polarity of mouse embryos. PMID:25131306

  6. Efficient and Rapid Isolation of Early-stage Embryos from Arabidopsis thaliana Seeds

    PubMed Central

    Raissig, Michael T.; Gagliardini, Valeria; Jaenisch, Johan; Grossniklaus, Ueli; Baroux, Célia

    2013-01-01

    In flowering plants, the embryo develops within a nourishing tissue - the endosperm - surrounded by the maternal seed integuments (or seed coat). As a consequence, the isolation of plant embryos at early stages (1 cell to globular stage) is technically challenging due to their relative inaccessibility. Efficient manual dissection at early stages is strongly impaired by the small size of young Arabidopsis seeds and the adhesiveness of the embryo to the surrounding tissues. Here, we describe a method that allows the efficient isolation of young Arabidopsis embryos, yielding up to 40 embryos in 1 hr to 4 hr, depending on the downstream application. Embryos are released into isolation buffer by slightly crushing 250-750 seeds with a plastic pestle in an Eppendorf tube. A glass microcapillary attached to either a standard laboratory pipette (via a rubber tube) or a hydraulically controlled microinjector is used to collect embryos from droplets placed on a multi-well slide on an inverted light microscope. The technical skills required are simple and easily transferable, and the basic setup does not require costly equipment. Collected embryos are suitable for a variety of downstream applications such as RT-PCR, RNA sequencing, DNA methylation analyses, fluorescence in situ hybridization (FISH), immunostaining, and reporter gene assays. PMID:23770918

  7. Automatic Dissection Position Selection for Cleavage-Stage Embryo Biopsy.

    PubMed

    Wang, Zenan; Ang, Wei Tech

    2016-03-01

    Embryo biopsies are routinely performed for preimplantation genetic diagnosis (PGD). In order to avoid blastomere membrane rupture and cell lysis, correct selection of a suitable dissection position on the zona pellucida (ZP) is necessary. Although, the technology for automated cell manipulation has advanced greatly over the past decade, fully automated embryo biopsy in PGD has not been realized yet. Automated PGD may ultimately set a new clinical standard that improves the consistency of outcomes, increases cell survival rates, flattens the learning curve of the manual procedure, and reduces the effects of human fatigue. In this paper, we present the first approach to automatically select a suitable ZP dissection position prior to embryo biopsy from a single focused embryo image based on edge detection. The proposed method consists of a technique that estimates the elliptical ZP boundaries and another two techniques that select the suitable position for ZP dissection. These techniques achieved success rates of 96%, 94%, and 94% respectively. In addition, the proposed ZP boundary estimation technique has the potential to perform ZP thickness variation (ZPTV) test and other ZP morphology measurements with further improvement in the future. Our methods provide a starting point for fast position selection prior to automatic embryo biopsy. PMID:26259216

  8. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy

    PubMed Central

    2014-01-01

    Background Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. Methods In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. Results The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9–11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert’s membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and

  9. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    SciTech Connect

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  10. Intrafallopian transfer of gametes and early stage embryos for in vivo culture in cattle.

    PubMed

    Wetscher, F; Havlicek, V; Huber, T; Gilles, M; Tesfaye, D; Griese, J; Wimmers, K; Schellander, K; Müller, M; Brem, G; Besenfelder, U

    2005-07-01

    It may be possible to avoid inadequate in vitro culture conditions by incubating gametes or embryos in the oviducts for a short time. Ideally, an optimized procedure should be devised, combining in vitro and in vivo systems, in order to achieve synchronization in cattle. We transferred gametes as well as embryos in various stages of development and placed them into the oviducts. Embryos were recovered on Day 7 by flushing of oviducts and uterine horns. Blastocyst rates were determined on Day 7 and on Day 8. Experimental designs included transfer of in vitro matured cumulus oocyte complexes into previously inseminated heifers (COCs group), transfer of in vitro matured COCs simultaneously with capacitated spermatozoa (GIFTs group), transfer of four to eight cell stage embryos developed in vitro after IVM/IVF (Cleaved Stages group) and a group of solely in vitro produced embryos (IVP control group). Our results indicate that in vivo culture of IVM/IVF embryos in the homologous bovine oviduct has a positive influence on subsequent pre-implantation development. In addition, we have evidence that in vitro maturation and in vivo fertilization cannot be synchronized. PMID:15935840

  11. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. PMID:26487781

  12. Effects of cigarette smoke exposure on early stage embryos in the rat

    SciTech Connect

    Tachi, Norihide; Aoyama, Mitsuko )

    1989-09-01

    It is well recognized that cigarette smoking in pregnant women exerts many deleterious effects on their progenies; intrauterine growth retardation, and increases in perinatal mortality and premature births. The fetal growth retardation also has been reported in animals exposed to cigarette smoke. The authors previously demonstrated that cigarette smoke exposure in pregnant rats retarded the growth of fetuses from mid to late stages of pregnancy. In addition, the weight of uteri containing embryos in animals inhaling the smoke was smaller, although not significant, than that in the control on day 7 of pregnancy. Based on these findings, it was suggested that the growth of embryos in early stage seemed to be harmfully affected as well as during mid and late stages of pregnancy. However, since the uterine weight in early pregnancy was measured in the previous study instead of the direct observation of early stage embryos, it remained unclear whether the early development of embryos was really influenced by cigarette smoke exposure or not. The present study was designed to observe the effects of cigarette smoke inhalation by pregnant rats on early development of embryos from fertilization to implantation.

  13. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage

    PubMed Central

    Chavez, Shawn L.; Loewke, Kevin E.; Han, Jinnuo; Moussavi, Farshid; Colls, Pere; Munne, Santiago; Behr, Barry; Reijo Pera, Renee A.

    2012-01-01

    Previous studies have demonstrated that aneuploidy in human embryos is surprisingly frequent with 50–80% of cleavage-stage human embryos carrying an abnormal chromosome number. Here we combine non-invasive time-lapse imaging with karyotypic reconstruction of all blastomeres in four-cell human embryos to address the hypothesis that blastomere behaviour may reflect ploidy during the first two cleavage divisions. We demonstrate that precise cell cycle parameter timing is observed in all euploid embryos to the four-cell stage, whereas only 30% of aneuploid embryos exhibit parameter values within normal timing windows. Further, we observe that the generation of human embryonic aneuploidy is complex with contribution from chromosome-containing fragments/micronuclei that frequently emerge and may persist or become reabsorbed during interphase. These findings suggest that cell cycle and fragmentation parameters of individual blastomeres are diagnostic of ploidy, amenable to automated tracking algorithms, and likely of clinical relevance in reducing transfer of embryos prone to miscarriage. PMID:23212380

  14. Stage-dependent toxicity of bisphenol a on Rhinella arenarum (anura, bufonidae) embryos and larvae.

    PubMed

    Wolkowicz, Ianina R Hutler; Herkovits, Jorge; Pérez Coll, Cristina S

    2014-02-01

    The acute and chronic toxicity of bisphenol A (BPA) was evaluated on the common South American toad Rhinella arenarum embryos and larvae by means of continuous and pulse exposure treatments. Embryos were treated continuously from early blastula (S.4) up to complete operculum (S.25), during early larval stages and by means of 24 h pulse exposures of BPA in concentrations ranging between 1.25 and 40 mg L(-1) , in order to evaluate the susceptibility to this compound in different developmental stages. For lethal effects, S.25 was the most sensitive and gastrula was the most resistant to BPA. The Teratogenic Index for neurula, the most sensitive embryonic stage for sublethal effects was 4.7. The main morphological alterations during early stages were: delayed or arrested development, reduced body size, persistent yolk plug, microcephaly, axial/tail flexures, edemas, blisters, waving fin, underdeveloped gills, mouth malformations, and cellular dissociation. BPA caused a remarkable narcotic effect from gill circulation stage (S.20) onwards in all the organisms exposed after 3 h of treatment with 10 mg L(-1) BPA. After recovering, the embryos exhibited scarce response to stimuli, erratic or circular swimming, and spasmodic contractions from 5 mg L(-1) onwards. Our results highlight the lethal and sublethal effectsof BPA on R. arenarum embryos and larvae, in the last case both at structural and functional levels. PMID:22052622

  15. (14)C METHANOL INCORPORATION INTO DNA AND SPECIFIC PROTEINS OF ORGANOGENESIS STAGE MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    Methanol (MeOH), a widely used industrial solvent and alternative motor fuel, has been shown to be mutagenic and teratogenic. We have demonstrated that methanol is teratogenic in mice in vivo and causes dysmorphogenesis in cultured organogenesis stage mouse embryos. Methanol is ...

  16. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  17. Semiautomated analysis of embryoscope images: Using localized variance of image intensity to detect embryo developmental stages.

    PubMed

    Mölder, Anna; Drury, Sarah; Costen, Nicholas; Hartshorne, Geraldine M; Czanner, Silvester

    2015-02-01

    Embryo selection in in vitro fertilization (IVF) treatment has traditionally been done manually using microscopy at intermittent time points during embryo development. Novel technique has made it possible to monitor embryos using time lapse for long periods of time and together with the reduced cost of data storage, this has opened the door to long-term time-lapse monitoring, and large amounts of image material is now routinely gathered. However, the analysis is still to a large extent performed manually, and images are mostly used as qualitative reference. To make full use of the increased amount of microscopic image material, (semi)automated computer-aided tools are needed. An additional benefit of automation is the establishment of standardization tools for embryo selection and transfer, making decisions more transparent and less subjective. Another is the possibility to gather and analyze data in a high-throughput manner, gathering data from multiple clinics and increasing our knowledge of early human embryo development. In this study, the extraction of data to automatically select and track spatio-temporal events and features from sets of embryo images has been achieved using localized variance based on the distribution of image grey scale levels. A retrospective cohort study was performed using time-lapse imaging data derived from 39 human embryos from seven couples, covering the time from fertilization up to 6.3 days. The profile of localized variance has been used to characterize syngamy, mitotic division and stages of cleavage, compaction, and blastocoel formation. Prior to analysis, focal plane and embryo location were automatically detected, limiting precomputational user interaction to a calibration step and usable for automatic detection of region of interest (ROI) regardless of the method of analysis. The results were validated against the opinion of clinical experts. © 2015 International Society for Advancement of Cytometry. PMID:25614363

  18. Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages

    PubMed Central

    Liu, Mengyang; Maurer, Barbara; Hermann, Boris; Zabihian, Behrooz; Sandrian, Michelle G.; Unterhuber, Angelika; Baumann, Bernhard; Zhang, Edward Z.; Beard, Paul C.; Weninger, Wolfgang J.; Drexler, Wolfgang

    2014-01-01

    Chick embryos are an important animal model for biomedical studies. The visualization of chick embryos, however, is limited mostly to postmortem sectional imaging methods. In this work, we present a dual modality optical imaging system that combines swept-source optical coherence tomography and whole-body photoacoustic tomography, and apply it to image chick embryos at three different development stages. The explanted chick embryos were imaged in toto with complementary contrast from both optical scattering and optical absorption. The results serve as a prelude to the use of the dual modality system in longitudinal whole-body monitoring of chick embryos in ovo. PMID:25401028

  19. Cryopreservation of the late stage embryos of Spodoptera exigua (Lepidoptera: Noctuidae).

    PubMed

    Luo, Li; Pang, Yi; Chen, Qijin; Li, Guanghong

    2006-01-01

    Genetic devolution, genetic drift and contamination are all threats to maintain germplasm stability during mass rearing of many insects. Cryopreservation of beet armworm (Spodoptera exigua) embryos was studied to provide information to improve mass rearing. A series of experiments was conducted on late-stage embryos (45-48 h at 27 degree C) of the beet armyworm, which included evaluation of cryoprotectants (CPAs), their toxicity and glass-forming tendency and optimization of experimental procedures. The results showed that ethylene glycol (EG) was the best CPA with comparatively low toxicity compared to the other six CPAs tested (methanol, 1,3-propanediol, glycerol, 2-amino-1-ethanol, 3-amino-1-propanol 3-methoxy-1 and 2-propanediol). The highest hatching rate of 8.8 degree was attained after freezing with a 3-step loading procedure and a 1-step unloading procedure, but the hatched larvae from frozen-thawed embryos did not actively feed and could not develop to a later stage. This was attributed to injuries from freezing in late stage embryos of S. exigua which had formed midguts. PMID:17256068

  20. Correlation of external ear auricle formation with staging of human embryos.

    PubMed

    Ozeki-Sato, Maimi; Yamada, Shigehito; Uwabe, Chigako; Ishizu, Koichi; Takakuwa, Tetsuya

    2016-03-01

    The formation of auricles in human embryos was evaluated between Carnegie stage (CS)19 and CS23, and the findings were correlated across the stages. The auricle was categorized into 11 steps according to Streeter's criteria with modifications. Mesenchyme cell condensation was observed at Step 7, and two layers of cartilage consisting of the auricle were recognized at Step11. The representative steps at each CS shifted from Step 3 to Step11 during CS16 and CS23, although several steps overlapped between adjacent CSs. These results indicate that observations of the auricle between CS19 and CS23 may be utilized for determining embryo staging as convincing supportive evidence of external features reflecting the internal histological structure, although other findings should also be taken into account. PMID:26508543

  1. Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development.

    PubMed

    Nagai, Hiroki; Sezaki, Maiko; Kakiguchi, Kisa; Nakaya, Yukiko; Lee, Hyung Chul; Ladher, Raj; Sasanami, Tomohiro; Han, Jae Yong; Yonemura, Shigenobu; Sheng, Guojun

    2015-04-01

    Birds and mammals, phylogenetically close amniotes with similar post-gastrula development, exhibit little conservation in their post-fertilization cleavage patterns. Data from the mouse suggest that cellular morphogenesis and molecular signaling at the cleavage stage play important roles in lineage specification at later (blastula and gastrula) stages. Very little is known, however, about cleavage-stage chick embryos, owing to their poor accessibility. This period of chick development takes place before egg-laying and encompasses several fundamental processes of avian embryology, including zygotic gene activation (ZGA) and blastoderm cell-layer increase. We have carried out morphological and cellular analyses of cleavage-stage chick embryos covering the first half of pre-ovipositional development, from Eyal-Giladi and Kochav stage (EGK-) I to EGK-V. Scanning electron microscopy revealed remarkable subcellular details of blastomere cellularization and subgerminal cavity formation. Phosphorylated RNA polymerase II immunostaining showed that ZGA in the chick starts at early EGK-III during the 7th to 8th nuclear division cycle, comparable with the time reported for other yolk-rich vertebrates (e.g. zebrafish and Xenopus). The increase in the number of cell layers after EGK-III is not a direct consequence of oriented cell division. Finally, we present evidence that, as in the zebrafish embryo, a yolk syncytial layer is formed in the avian embryo after EGK-V. Our data suggest that several fundamental features of cleavage-stage development in birds resemble those in yolk-rich anamniote species, revealing conservation in vertebrate early development. Whether this conservation lends morphogenetic support to the anamniote-to-amniote transition in evolution or reflects developmental plasticity in convergent evolution awaits further investigation. PMID:25742796

  2. Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development

    PubMed Central

    Nagai, Hiroki; Sezaki, Maiko; Kakiguchi, Kisa; Nakaya, Yukiko; Lee, Hyung Chul; Ladher, Raj; Sasanami, Tomohiro; Han, Jae Yong; Yonemura, Shigenobu; Sheng, Guojun

    2015-01-01

    Birds and mammals, phylogenetically close amniotes with similar post-gastrula development, exhibit little conservation in their post-fertilization cleavage patterns. Data from the mouse suggest that cellular morphogenesis and molecular signaling at the cleavage stage play important roles in lineage specification at later (blastula and gastrula) stages. Very little is known, however, about cleavage-stage chick embryos, owing to their poor accessibility. This period of chick development takes place before egg-laying and encompasses several fundamental processes of avian embryology, including zygotic gene activation (ZGA) and blastoderm cell-layer increase. We have carried out morphological and cellular analyses of cleavage-stage chick embryos covering the first half of pre-ovipositional development, from Eyal-Giladi and Kochav stage (EGK-) I to EGK-V. Scanning electron microscopy revealed remarkable subcellular details of blastomere cellularization and subgerminal cavity formation. Phosphorylated RNA polymerase II immunostaining showed that ZGA in the chick starts at early EGK-III during the 7th to 8th nuclear division cycle, comparable with the time reported for other yolk-rich vertebrates (e.g. zebrafish and Xenopus). The increase in the number of cell layers after EGK-III is not a direct consequence of oriented cell division. Finally, we present evidence that, as in the zebrafish embryo, a yolk syncytial layer is formed in the avian embryo after EGK-V. Our data suggest that several fundamental features of cleavage-stage development in birds resemble those in yolk-rich anamniote species, revealing conservation in vertebrate early development. Whether this conservation lends morphogenetic support to the anamniote-to-amniote transition in evolution or reflects developmental plasticity in convergent evolution awaits further investigation. PMID:25742796

  3. The early development of the nervous system in staged insectivore and primate embryos.

    PubMed

    Müller, F; O'Rahilly, R

    1980-10-01

    The early development of the nervous system was studied in stage embryos of hemicentetes semispinosus, Microcebus murinus, Alouatta seniculus, Cebus appella, Cebus albifrons, macaca mulatta, and Homo sapiens. The specimens were assigned to Carnegie stages 11-13. Serial transverse sections were examined and graphic reconstructions were prepared. The early development of the neural tube is basically similar in all the species investigated but differences in detail are noticeable. The mesencephalic flexure serves in all cases as a landmark for malpighi's tripartite subdivision of the brain. The nonhuman embryos seem to show a little more variation than the human in the closure of the neuropores in relation to somitic count. With the exception of the later-appearing terminal-vomeronasal component, all major portions of the neural crest as classified by O'Rahilly ('65) are represented in both the nonhuman and the human embryos studied. No crest is present at the level of rhombomere 1, nor at rhombomere 3 except in the platyrrhines and some human embryos, nor at rhombomere 5 except in certain human specimens. An indication of the division of the trigeminal ganglion into its primary divisions is rare at stage 11 (C. apella), may be visible at stage 12 (Alouatta, macaca, Homo), and is definite (in Homo) at stage 13. Ganglionic contributions from head ectoderm (epipharyngeal placodes), as previously described in the human and some other vertebrate embryos, were sought and found in Cebus apella. In both nonhuman and human, a tendency is noted whereby the rostral limit of the occipitospinal crest, high at stage 11, seems to descend relatively at stage 12, and ascend again at stage 13 (at least in the human) to become associated with the appearance of the accessory and hypoglossal nerves. In general, the motor components of the nerves are identifiable before the sensory elements, and, in the present study, nerve fibers were first observed in the human at stage 13 in some of

  4. Granzyme G is expressed in the two-cell stage mouse embryo and is required for the maternal-zygotic transition

    PubMed Central

    2010-01-01

    Background Detailed knowledge of the molecular and cellular mechanisms that direct spatial and temporal gene expression in pre-implantation embryos is critical for understanding the control of the maternal-zygotic transition and cell differentiation in early embryonic development. In this study, twenty-three clones, expressed at different stages of early mouse development, were identified using differential display reverse transcription polymerase chain reaction (DDRT-PCR). One of these clones, which is expressed in 2-cell stage embryos at 48 hr post-hCG injection, shows a perfect sequence homology to the gene encoding the granzyme G protein. The granzyme family members are serine proteases that are present in the secretory granules of cytolytic T lymphocytes. However, the pattern of granzyme G expression and its function in early mouse embryos are entirely unknown. Results Upon the introduction of an antisense morpholino (2 mM) against granzyme G to knock-down endogenous gene function, all embryos were arrested at the 2- to 4-cell stages of egg cleavage, and the de novo synthesis of zygotic RNAs was decreased. The embryonic survival rate was dramatically decreased at the late 2-cell stage when serine protease-specific inhibitors, 0.1 mM 3,4-dichloroisocoumarin (3,4-DCI), and 2 mM phenyl methanesulphonyl fluoride (PMSF), were added to the in vitro embryonic culture medium. Survival was not affected by the addition of 0.5 mM EDTA, a metalloproteinase inhibitor. Conclusion We characterized for the first time the expression and function of granzyme G during early stage embryogenesis. Our data suggest that granzyme G is an important factor in early mouse embryonic development and may play a novel role in the elimination of maternal proteins and the triggering of zygotic gene expression during the maternal-zygotic transition. PMID:20704734

  5. Selection and Expression Profiles of Reference Genes in Mouse Preimplantation Embryos of Different Ploidies at Various Developmental Stages

    PubMed Central

    Gu, Yanli; Shen, Xinghui; Zhou, Dongjie; Wang, Zhendong; Zhang, Na; Shan, Zhiyan; Jin, Lianhong; Lei, Lei

    2014-01-01

    Real-time reverse transcription quantitative polymerase chain reaction (qPCR) has become the most frequently used system for studies of gene expression. Manystudies have provided reliable evidence that the transcription levels of reference genes are not constant at different developmental stages and in different experimental conditions. However, suitable reference genes which are stably expressed in polyploid preimplantation embryos of different developmental stages have not yet been identified. Therefore, it is critical to verify candidate reference genes to analyze gene expression accurately in both diploid and polyploid embryos. We examined the expression levels of 12 candidate reference genes in preimplantation embryos of four different ploidies at six developmental stages. Stability analysis of the reference genes was performed by four independent software programs, and the stability of three genes was evaluated by comparison with the Oct4 expression level during preimplantation development in diploid embryos. The expression levels of most genes in the polyploid embryos were higher than that in the diploid embryos, but the increasing degree were disproportionate with the ploidies. There were no significant difference in reference gene expressions among embryos of different ploidies when they reached the morula stage, and the expression level remained flat until the blastocyst stage. Ubc, Ppia, and Pgk1 were the three most stable reference genes in diploid and polyploid embryos. PMID:24927500

  6. A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells.

    PubMed

    Em, Sadeesh; Shah, Fozia; Kataria, Meena; Yadav, P S

    2016-08-01

    Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT. PMID:26224482

  7. Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing

    PubMed Central

    De Domenico, Elena; Owens, Nick D.L.; Grant, Ian M.; Gomes-Faria, Rosa; Gilchrist, Michael J.

    2015-01-01

    Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal–ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal–ventral or left–right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal–ventral or left–right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos. PMID:26100918

  8. Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing.

    PubMed

    De Domenico, Elena; Owens, Nick D L; Grant, Ian M; Gomes-Faria, Rosa; Gilchrist, Michael J

    2015-12-15

    Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos. PMID:26100918

  9. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems.

    PubMed

    Asano, Yuka; Matsuura, Koji

    2014-06-01

    We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida. PMID:23697534

  10. Karyomapping identifies second polar body DNA persisting to the blastocyst stage: implications for embryo biopsy.

    PubMed

    Ottolini, Christian S; Rogers, Shaun; Sage, Karen; Summers, Michael C; Capalbo, Antonio; Griffin, Darren K; Sarasa, Jonas; Wells, Dagan; Handyside, Alan H

    2015-12-01

    Blastocyst biopsy is now widely used for both preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). Although this approach yields good results, variable embryo quality and rates of development remain a challenge. Here, a case is reported in which a blastocyst was biopsied for PGS by array comparative genomic hybridization on day 6 after insemination, having hatched completely. In addition to a small trophectoderm sample, excluded cell fragments from the subzonal space from this embryo were also sampled. Unexpectedly, the array comparative genomic hybridization results from the fragments and trophectoderm sample were non-concordant: 47,XX,+19 and 46,XY, respectively. DNA fingerprinting by short tandem repeat and amelogenin analysis confirmed the sex chromosome difference but seemed to show that the two samples were related but non-identical. Genome-wide single nucleotide polymorphism genotyping and karyomapping identified that the origin of the DNA amplified from the fragments was that of the second polar body corresponding to the oocyte from which the biopsied embryo developed. The fact that polar body DNA can persist to the blastocyst stage provides evidence that excluded cell fragments should not be used for diagnostic purposes and should be avoided when performing embryo biopsies as there is a risk of diagnostic errors. PMID:26380865

  11. Activin/Nodal signalling before implantation: setting the stage for embryo patterning

    PubMed Central

    Papanayotou, Costis; Collignon, Jérôme

    2014-01-01

    Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression. PMID:25349448

  12. Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development

    PubMed Central

    Murray, Jessica R.; Stanciauskas, Monika E.; Aralere, Tejas S.; Saha, Margaret S.

    2014-01-01

    The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access. PMID:24999108

  13. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.

    PubMed

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F

    2012-06-01

    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence. PMID:22454429

  14. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro

    PubMed Central

    Salilew-Wondim, Dessie; Fournier, Eric; Hoelker, Michael; Saeed-Zidane, Mohammed; Tholen, Ernst; Looft, Christian; Neuhoff, Christiane; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; A. Shojaei Saadi, Habib; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and

  15. A Novel Strategy to Reveal the Latent Abnormalities in Human Embryonic Stages from a Large Embryo Collection.

    PubMed

    Kanahashi, Tohoru; Yamada, Shigehito; Tanaka, Mire; Hirose, Ayumi; Uwabe, Chigako; Kose, Katsumi; Yoneyama, Akio; Takeda, Tohoru; Takakuwa, Tetsuya

    2016-01-01

    The cause of spontaneous abortion of normal conceptuses remains unknown in most cases. The study was aimed to reveal the latent abnormalities by using a large collection of embryo images from a magnetic resonance imaging (MRI) database and novel phase-contrast radiographic computed tomography (PXCT). MRI from 1,156 embryos between Carnegie stage (CS) 14 and CS23 from the Kyoto Collection were screened by using the volume of the liver as the target organ. Embryos with liver volumes ≥2 SD above or below the mean for the stage of development were screened and examined precisely on MRI. Embryos with potentially abnormal livers were further analyzed by using PXCT. Liver abnormality was detected in all 7 embryos in the extra-small liver group and in 2 of 8 embryos in the extra-large liver group. The abnormalities in the extra-small liver group consisted of hepatic agenesis (2 embryos), hepatic hypogenesis (4), and liver lobe defect (1). Among the 7 extra-small liver group, 2 had only liver abnormalities and 5 exhibited complications in other organs. Of the 2 embryos in the extra-large liver group, one had only a single liver abnormality and the other had a morphologically abnormal liver with complications in other organs. Most of such liver abnormality cases are not survive, as liver function becomes essential. The prevalence of liver malformations in CS18 and CS21 in the intrauterine population of externally normal embryos is approximately 1.7%. The present study is the first step toward the elucidation of the latent abnormalities resulting in spontaneous abortion in externally normal embryos. PMID:26474800

  16. Experimental model for determining developmental stage of chicken embryo using infrared images and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jung, Seung Kwon "Paul"; Hsieh, Sheng-Jen "Tony"; Chen, Che-Hao

    2013-05-01

    Development of a chicken embryo is conventionally assumed to follow a set growth pattern over the course of 21 days. However, despite identical incubation settings, many factors may contribute to an egg developing at a different rate from those around it. Being able to determine an embryo's actual development instead of relying on chronological assumptions of normal growth should prove to be a useful tool in the poultry industry for responding early to abnormal development and improving hatch rates. Previous studies have used infrared imaging to enhance candling observation, but relatively little has been done to implement infrared imaging in problem-solving. The purpose of this research is to construct a quantitative model for predicting the development stage and early viability of a chicken embryo during incubation. It may be noted that a similar project was conducted previously using different input parameters. This study seeks to improve upon the results from the earlier project. In this project, infrared images of eggs were processed to calculate air cell volumes and cooling rates, and daily measurements of egg weight and ambient temperature were compiled. Artificial neural networks (ANNs) were "trained" using multiple input parameters to recognize patterns in the data. Various training functions and topologies were evaluated in order to optimize prediction rates and consistency. The prediction rates obtained for the ANNs were around 81% for development stage and around 92% for viability. It is recommended for future research to expand the potential combinations of input parameters used in order to increase this model's versatility in the field.

  17. Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos.

    PubMed

    Kempisty, Bartosz; Antosik, Paweł; Bukowska, Dorota; Jackowska, Marta; Lianeri, Margarita; Jaśkowski, Jedrzej M; Jagodziński, Paweł P

    2008-01-01

    It has been suggested that spermatozoa can deliver mRNAs to the oocyte during fertilisation. Using reverse transcription and real-time quantitative polymerase chain reaction analysis (RQ-PCR), we evaluated the presence of clusterin (CLU), protamine 2 (PRM2), calmegin (CLGN), cAMP-response element modulator protein (CREM), methyltransferase 1 (DNMT1), linker histone 1 (H1), protamine 1 (PRM1), TATA box-binding protein associated factor 1 (TAF1) and TATA box-binding protein (TBP) in porcine mature oocytes, zygotes and two-cell stage embryos. Spermatozoa isolated from semen samples of boars contained all transcripts investigated, whereas oocytes contained only CREM, H1, TAF1, and TBP mRNAs. The zygote and two-cell stage embryos contained CLU, CREM, H1, PRM1, PRM2, TAF1 and TBP transcripts. Our observations suggest that porcine spermatozoa may delivery CLU, PRM1 and PRM2 mRNAs to the oocyte, which may contribute to zygotic and early embryonic development. PMID:18462614

  18. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  19. Initial stages of calcium uptake and mineral deposition in sea urchin embryos

    PubMed Central

    Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia

    2014-01-01

    Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5–1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20–30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule. PMID:24344263

  20. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  1. Two-staged nuclear transfer can enhance the developmental ability of goat-sheep interspecies nuclear transfer embryos in vitro.

    PubMed

    Ma, Li-Bing; Cai, Lu; Li, Jia-Jia; Chen, Xiu-Li; Ji, Feng-Yu

    2011-02-01

    The technique of interspecies somatic cell nuclear transfer, in which interspecies cloned embryos can be reconstructed by using domestic animal oocytes as nuclear recipients and endangered animal or human somatic cells as nuclear donors, can afford more opportunities in endangered animal rescue and human tissue transplantation, but the application of this technique is limited by extremely low efficiency which may be attributed to donor nucleus not fully reprogrammed by xenogenic cytoplasm. In this study, goat fetal fibroblasts (GFFs) were used as nuclear donors, in vitro-matured sheep oocytes were used as nuclear recipients, and a two-stage nuclear transfer procedure was performed to improve the developmental ability of goat-sheep interspecies clone embryos. In the first stage nuclear transfer (FSNT), GFFs were injected into the ooplasm of enucleated sheep metaphase-II oocytes, then non-activated reconstructed embryos were cultured in vitro, so that the donor nucleus could be exposed to the ooplasm for a period of time. Subsequently, in the second stage nuclear transfer, FSNT-derived non-activated reconstructed embryo was centrifuged, and the donor nucleus was then transferred into another freshly enucleated sheep oocyte. Compared with the one-stage nuclear transfer, two-stage nuclear transfer could significantly enhance the blastocyst rate of goat-sheep interspecies clone embryos, and this result indicated that longtime exposure to xenogenic ooplasm benefits the donor nucleus to be reprogrammed. The two-stage nuclear transfer procedure has two advantages, one is that the donor nucleus can be exposed to the ooplasm for a long time, the other is that the problem of oocyte aging can be solved. PMID:21082282

  2. The Chromosomes of Turkey Embryos during Early Stages of Parthenogenetic Development

    PubMed Central

    Harada, Ko; Buss, Edward G.

    1981-01-01

    In the early stages of parthenogenetic development in turkey eggs, many blastoderms are mosaics of haploid, diploid and polyploid cells. The genome composition of these blastoderms can be identified by C-banding. They may be generally described as either A-Z/2A-ZZ/nA-nZ or A-W/2A-WW/nA-nW and are found in a nearly 1:1 ratio. The blastoderms showing the W body (W+) become lethal within two days of incubation. The haploid cell proportion decreases rapidly during the early stage of development, and, as haploid cells decrease, the proportion of polyploid cells appears to increase. At six days of incubation, various kinds of parthenogenetic development can be observed. Their genome compositions are either diploid (2A-ZZ) or mosaic (A-Z/2A-ZZ). These findings suggest that diploid parthenogenesis occurs by either suppression of meiosis II or chromosome doubling some time after the first cleavage division. The frequent occurrence of mosaic blastoderms indicates that the majority, if not all, of the parthenogenetic embryos initiate their development in haploid ova. PMID:7327389

  3. Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos.

    PubMed

    Gato, A; Martín, P; Alonso, M I; Martín, C; Pulgar, M A; Moro, J A

    2004-04-01

    Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick development there is a progressive increase in CSF protein concentration until foetal values are attained. In addition, by performing electrophoretic separation and high-sensitivity silver staining, we were able to identify a total of 21 different protein fractions in the chick embryo CSF. In accordance with the developmental pattern of their concentration, these can be classified as follows: A: high-concentration fractions which corresponded with the ones described in foetal CSF by other authors; B: low-concentration fractions which remained stable throughout the period studied; C: low-concentration fractions which show changes during this period. The evolution and molecular weight of the latter group suggest the possibility of an important biological role. Our data demonstrate that all the CSF protein fractions are present in embryonic serum; this could mean that the specific transport mechanisms in neuroepithelial cells described in the foetal period evolve in very early stages of development. In conclusion, this paper offers an accurate study of the protein composition of chick embryonic CSF, which will help the understanding of the influences on neuroepithelial stem cells during development and, as a result, the appropriate conditions for the in vitro study of embryonic/foetal nervous tissue cells. PMID:15039986

  4. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios).

    PubMed

    Kohn, Yair Y; Symonds, Jane E; Kleffmann, Torsten; Nakagawa, Shinichi; Lagisz, Malgorzata; Lokman, P Mark

    2015-12-01

    In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku. PMID:26183261

  5. Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages

    SciTech Connect

    Francis, P.C.; Birge, W.J.; Black, J.A.

    1984-08-01

    Aquatic toxicity tests were conducted to evaluate the effects of cadmium-enriched sediment on embryo-larval stages of the goldfish (Carassius auratus), leopard frog (Rana pipiens), and largemouth bass (Micropterus salmoides). Natural stream sediment was collected and enriched with cadmium to nominal concentrations of 1.0, 10.0, 100, and 1000 mg/kg. Enriched sediments were placed in Pyrex dishes and covered with 350 ml of reconstituted water. Fertilized eggs were placed in the dishes and maintained through 4 days posthatching, giving a total exposure time of 6 to 7 days. For all tests the cadmium concentrations ranged from 1.1 to 76.5 micrograms/liter in water above sediments containing 1 to 1000 mg Cd/kg, respectively. Although low frequencies of mortality were observed in all tests, goldfish, leopard frog, and bass exposed to sediments enriched to 1000 mg Cd/kg accumulated 4.61, 12.55, and 60.0 micrograms Cd/g, respectively. No significant correlations were found between mortality of the goldfish and leopard frog and the cadmium concentrations in either water or sediment. However, all three species showed strong correlations between cadmium concentrations in water and tissue, sediment and tissue, and water and sediment. Tissue cadmium concentrations were related to the length of time test organisms were in direct contact with cadmium-enriched sediment.

  6. In vivo imaging of zebrafish from embryo to adult stage with optical projection tomography

    NASA Astrophysics Data System (ADS)

    Bassi, Andrea; Fieramonti, Luca; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Foglia, Efrem; Cotelli, Franco

    2013-02-01

    Optical Projection Tomography (OPT) is a three dimensional imaging technique that is particularly suitable for studying millimeter sized biological samples and organisms. Similarly to x-ray computed tomography, OPT is based on the acquisition of a sequence of images taken through the sample at many angles (projections). Assuming the linearity of the optical absorption process, the projections are combined to reconstruct the 3-D volume of the sample, typically using a filtered back-projection algorithm. OPT has been applied to in-vivo imaging of zebrafish (Danio rerio). The instrument and the protocol for in vivo imaging of zebrafish embryos and juvenile specimens are described. Light scattering remains a challenge for in vivo OPT, especially when samples at the upper size limit, like zebrafish at the adult stage, are under study. We describe Time-Gated Optical Projection Tomography (TGOPT), a technique able to reconstruct adult zebrafish internal structures by counteracting the scattering effects through a fast time-gate. The time gating mechanism is based on non-linear optical upconversion of an infrared ultrashort laser pulse and allows the detection of quasi-ballistic photons within a 100 fs temporal gate. This results in a strong improvement in contrast and resolution with respect to conventional OPT. Artifacts in the reconstructed images are reduced as well. We show that TGOPT is suited for imaging the skeletal system and nervous structures of adult zebrafish.

  7. Automatic segmentation of zona pellucida and its application in cleavage-stage embryo biopsy position selection.

    PubMed

    Wang, Zenan; Ang, Wei Tech; Tan, Steven Yih Min; Latt, Win Tun

    2015-08-01

    A very important step of Pre-implantation genetic diagnosis (PGD) is embryo biopsy, in which process the zona pellucida (ZP) is cut open partially and a part of cellular material is extracted from the embryo. Recognition of the ZP is necessary not only for embryo biopsy, but also for other applications such as zona pellucida thickness variation (ZPTV), embryo dissection, etc. The ZP opening position is closely related to the cell survival rate after the biopsy. Selection of an unsuitable position may cause blastomere lysis after the ZP opening. Normal procedures of ZP recognition and biopsy position selection involve a skilled human embryologist. In order to make the process automatic, we introduce an automatic segmentation method for ZP recognition by using edge detection and ellipse fitting with a value adjustment algorithm in this paper. An application of ZP recognition in embryo biopsy position selection is also introduced. Our ZP recognition algorithm was able to correctly segment 43 out of 45 sample embryo images, achieving a success rate of 96%. Its application in embryo biopsy position selection achieved a success rate of 93%. PMID:26737136

  8. Embryonic hematopoietic stem cells and interstitial Cajal cells in the hindgut of late stage human embryos: evidence and hypotheses.

    PubMed

    Ilie, C A; Rusu, M C; Didilescu, A C; Motoc, A G M; Mogoantă, L

    2015-07-01

    There have been few studies on human embryos describing a specific pattern of hindgut colonization by hematopoietic stem cells (HSCs) and interstitial Cajal cells (ICCs). We aimed to study CD34, CD45 and CD117/c-kit expression in late stage human embryos, to attain observational data that could be related to studies on the aorta-gonad-mesonephros (AGM)-derived HSCs, and data on hindgut ICCs. Antibodies were also applied to identify alpha-smooth muscle actin and neurofilaments. Six human embryos of 48-56 days were used. In the 48 day embryo, the hindgut was sporadically populated by c-kit+ ICCs, but, in all other embryos, a layer of myenteric ICCs had been established. Intraneural c-kit+ cells were found in pelvic nerves and vagal trunks, suggesting that the theory of Ramon y Cajal assuming that ICCs may be primitive neurons may not be so invalid. Also in the 48 day embryo, c-kit+/CD45+ perivascular cells were found along the pelvic neurovascular axes, suggesting that not only liver, but also other organs could be seeded with HSCs from the AGM region. CD45+ cells with dendritic morphologies were found in all hindgut layers, including the epithelium. This last evidence is suggestive of an AGM contribution to the tissue resident macrophages and could be related to processes of sprouting angiogenesis which, in turn, have been found to be guided by filopodia of endothelial tip cells. Further studies on human embryonic and fetal material should be performed to attempt to clarify whether the hindgut colonization with HSCs is a transitory or definitive process. PMID:25723517

  9. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  10. Laser Doppler microscopy of blood flows in fish embryos at different stages of ontogenesis

    NASA Astrophysics Data System (ADS)

    Savchenko, Natalia B.; Priezzhev, Alexander V.; Levenko, Borislav A.

    1995-02-01

    Laser Doppler microscopy is an efficient method of in vivo measurements of flow velocities in different biological objects. It is based on the registration of frequency shifts in light quasielastically scattered from particles moving in the flows. To study the embryonic development of the cardiac-vascular system in embryos of warm water fishes, embryos of Macropodus opercularis have been used. Doppler spectra from pulsatile blood flows in selected vessels and their changes in the process of ontogenesis have been registered. The recording of the successive spectra and their computer processing yield the varying dynamics of blood flows. Typical age dependencies of velocity patterns in the embryos are presented.

  11. A novel application of motion analysis for detecting stress responses in embryos at different stages of development

    PubMed Central

    2013-01-01

    Background Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM. Results Spectral frequency analysis of these motion parameters was able to distinguish stage-specific effects of environmental stressors in most cases, including Xenopus laevis at stages 24, 32 and 34 exposed to a salinity of 20, Danio rerio at 33 hpf exposed to 1.5% ethanol, and Radix balthica at stages E4, E9 and E11 exposed to salinities of 5, 10 and 15. This technique was better able to distinguish embryos exposed to stressors than analysis of manual quantification of movement and within species distinguished most of the developmental stages

  12. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  13. Morphological and Gene Expression Changes in Cattle Embryos from Hatched Blastocyst to Early Gastrulation Stages after Transfer of In Vitro Produced Embryos

    PubMed Central

    van Leeuwen, Jessica; Berg, Debra K.; Pfeffer, Peter L.

    2015-01-01

    A detailed morphological staging system for cattle embryos at stages following blastocyst hatching and preceding gastrulation is presented here together with spatiotemporal mapping of gene expression for BMP4, BRACHYURY, CERBERUS1 (CER1), CRIPTO, EOMESODERMIN, FURIN and NODAL. Five stages are defined based on distinct developmental events. The first of these is the differentiation of the visceral hypoblast underlying the epiblast, from the parietal hypoblast underlying the mural trophoblast. The second concerns the formation of an asymmetrically positioned, morphologically recognisable region within the visceral hypoblast that is marked by the presence of CER1 and absence of BMP4 expression. We have termed this the anterior visceral hypoblast or AVH. Intra-epiblast cavity formation and the disappearance of the polar trophoblast overlying the epiblast (Rauber’s layer) have been mapped in relation to AVH formation. The third chronological event involves the transition of the epiblast into the embryonic ectoderm with concomitant onset of posterior NODAL, EOMES and BRACHYURY expression. Lastly, gastrulation commences as the posterior medial embryonic ectoderm layer thickens to form the primitive streak and cells ingress between the embryonic ectoderm and hypoblast. At this stage a novel domain of CER1 expression is seen whereas the AVH disappears. Comparison with the mouse reveals that while gene expression patterns at the onset of gastrulation are well conserved, asymmetry establishment, which relies on extraembryonic tissues such as the hypoblast and trophoblast, has diverged in terms of both gene expression and morphology. PMID:26076128

  14. Effects of T-2 mycotoxin on in vitro development and chromatin status of mouse embryos in preimplantation stages.

    PubMed

    Somoskői, Bence; Kovács, Melinda; Cseh, Sándor

    2016-07-01

    T-2 toxin is a mycotoxin produced by phytopathogenic fungi of the Fusarium genus and has many well-studied deleterious effects on mammalian cells and reproductive tract. Despite the wide scale studies, the effects on preimplantation stage embryos are lacking. The aim of our study was to investigate the impact of T-2 on the cleavage stage of mouse embryos with regard to development to blastocysts and nuclear chromatin status.Six-weeks-old BDF1 female mice were superovulated and placed together overnight with mature males. Zygotes were flushed 20 h after human chorionic gonadotropin injection and divided randomly into treated (supplemented with 0.5, 0.75, and 1 ng/ml T-2) and nontreated (control) groups. Embryos were cultured in vitro for 96 h. Developmental stage was evaluated in the 72(nd)- and 96(th)-h for assessment of development dynamics. At the end of culture period, blastocysts from treated and control groups with normal morphology were selected for nuclear chromatin analysis. Blastocysts were categorized (grade A, B, and C) depending on the proportion of blasomeres with micronuclei and/or lobulated nuclei.Our data show significant decrease in the proportions of blastocysts in the 0.75 and 1 ng/ml toxin-supplemented groups compared with the control group. Blastocyst rate did not differ in embryos treated with 0.5 ng/ml T-2 but 24 h delay was found in blastocoel formation in all the treated groups. Only grade A (21.1%) and B (78.9%) blastocysts were found in low-toxin-contaminated group similar to the control ones (50-50%). Grade C embryos appeared in the 0.75 ng/ml (10%) treated group and the rate increased significantly (33.3%) in the highest contaminated group.T-2 mycotoxin has a harmful effect on early embryo development which results in decreased blastocyst proportion, delayed blastulation, and increased rate of chromatin damage. PMID:25425537

  15. Comparison between Cleavage Stage versus Blastocyst Stage Embryo Transfer in an Egyptian Cohort Undergoing in vitro Fertilization: A Possible Role for Laser Assisted Hatching

    PubMed Central

    Hendawy, Sherif F.; Raafat, TA

    2011-01-01

    Background Extended in vitro embryo culture and blastocyst transfer have emerged as essential components of the advanced reproductive technology armamentarium, permitting selection of more advanced embryos considered best suited for transfer. Aim of study The aim of this study was to compare between cleavage stage and blastocyst stage embryo transfer in patients undergoing intracytoplasmic sperm injection, and to assess the role of assisted hatching technique in patients undergoing blastocyst transfer. Patients and methods This study was carried out on two groups. Group I: 110 patients who underwent 120 cycles of intracytoplasmic sperm injection with day 2–3 embryo transfer—for unexplained infertility or male factor within the previous 3 years. Their data obtained retrospectively from medical records. Group II: 46 age matched infertile female patients undergoing 51 intracytoplasmic sperm injection cycles for similar causes. Patients in Group II were further subdivided into 2 equal subgroups; Group IIa (23 patients), which had laser assisted hatching and Group IIb (23 patients), which did not have assisted hatching. All patients had an infertility workup including basal hormonal profile, pelvic ultrasound, hysterosalpingogram and/or laparoscope and semen analysis of the patient’s partner. All patients underwent controlled ovarian hyperstimulation: Using long protocol of ovulation induction. Laser assisted hatching was done for blastocysts of 23 patients. Results Comparison between both groups as regards the reproductive outcome showed a significant difference in pregnancy and implantation rates, both being higher in group II (P < 0.05) Comparison between both subgroups as regards the reproductive outcome showed a highly significant difference in pregnancy and implantation rates, both being higher in Group IIa (P < 0.01). There was also a significantly higher rate of multiple pregnancies among Group IIa (P < 0.05). Conclusion Blastocyst transfer is a successful

  16. A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans

    PubMed Central

    Seidel, Hannah S.; Ailion, Michael; Li, Jialing; van Oudenaarden, Alexander; Rockman, Matthew V.; Kruglyak, Leonid

    2011-01-01

    The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it. PMID:21814493

  17. Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos.

    PubMed

    Peuchen, Elizabeth H; Sun, Liangliang; Dovichi, Norman J

    2016-07-01

    Xenopus laevis is an important model organism in developmental biology. While there is a large literature on changes in the organism's transcriptome during development, the study of its proteome is at an embryonic state. Several papers have been published recently that characterize the proteome of X. laevis eggs and early-stage embryos; however, proteomic sample preparation optimizations have not been reported. Sample preparation is challenging because a large fraction (~90 % by weight) of the egg or early-stage embryo is yolk. We compared three common protein extraction buffer systems, mammalian Cell-PE LB(TM) lysing buffer (NP40), sodium dodecyl sulfate (SDS), and 8 M urea, in terms of protein extraction efficiency and protein identifications. SDS extracts contained the highest concentration of proteins, but this extract was dominated by a high concentration of yolk proteins. In contrast, NP40 extracts contained ~30 % of the protein concentration as SDS extracts, but excelled in discriminating against yolk proteins, which resulted in more protein and peptide identifications. We then compared digestion methods using both SDS and NP40 extraction methods with one-dimensional reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS). NP40 coupled to a filter-aided sample preparation (FASP) procedure produced nearly twice the number of protein and peptide identifications compared to alternatives. When NP40-FASP samples were subjected to two-dimensional RPLC-ESI-MS/MS, a total of 5171 proteins and 38,885 peptides were identified from a single stage of embryos (stage 2), increasing the number of protein identifications by 23 % in comparison to other traditional protein extraction methods. PMID:27137514

  18. Stage selection and restricted oviposition period improves cryopreservation of Dipteran embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Embryos of two dipteran species (Musca domestica, and Lucilia sericata) were assessed for an effective sampling time that would result in the highest post cryopreservation hatch proportion. Additionally, the effects of cryopreservation pretreatment viz. permeabilization, on the embryonic age and the...

  19. The Digestive Tract and Derived Primordia Differentiate by Following a Precise Timeline in Human Embryos Between Carnegie Stages 11 and 13.

    PubMed

    Ueno, Saki; Yamada, Shigehito; Uwabe, Chigako; Männer, Jörg; Shiraki, Naoto; Takakuwa, Tetsuya

    2016-04-01

    The precise mechanisms through which the digestive tract develops during the somite stage remain undefined. In this study, we examined the morphology and precise timeline of differentiation of digestive tract-derived primordia in human somite-stage embryos. We selected 37 human embryos at Carnegie Stage (CS) 11-CS13 (28-33 days after fertilization) and three-dimensionally analyzed the morphology and positioning of the digestive tract and derived primordia in all samples, using images reconstructed from histological serial sections. The digestive tract was initially formed by a narrowing of the yolk sac, and then several derived primordia such as the pharynx, lung, stomach, liver, and dorsal pancreas primordia differentiated during CS12 (21-29 somites) and CS13 (≥ 30 somites). The differentiation of four pairs of pharyngeal pouches was complete in all CS13 embryos. The respiratory primordium was recognized in ≥ 26-somite embryos and it flattened and then branched at CS13. The trachea formed and then elongated in ≥ 35-somite embryos. The stomach adopted a spindle shape in all ≥ 34-somite embryos, and the liver bud was recognized in ≥ 27-somite embryos. The dorsal pancreas appeared as definitive buddings in all but three CS13 embryos, and around these buddings, the small intestine bent in ≥ 33-somite embryos. In ≥ 35-somite embryos, the small intestine rotated around the cranial-caudal axis and had begun to form a primitive intestinal loop, which led to umbilical herniation. These data indicate that the digestive tract and derived primordia differentiate by following a precise timeline and exhibit limited individual variations. Anat Rec, 299:439-449, 2016. © 2016 Wiley Periodicals, Inc. PMID:26995337

  20. Molecular cloning of five individual stage- and tissue-specific mRNA sequences from sea urchin pluteus embryos.

    PubMed Central

    Fregien, N; Dolecki, G J; Mandel, M; Humphreys, T

    1983-01-01

    Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA. Images PMID:6688291

  1. Myo-inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of early-stage somatic embryos.

    PubMed

    Wu, Di; Sullards, M Cameron; Oldham, Charlie D; Gelbaum, Les; Lucrezi, Jacob; Pullman, Gerald S; May, Sheldon W

    2012-01-01

    • Myo-inositol hexakisphosphate (InsP(6)), abundant in animals and plants, is well known for its anticancer activity. However, many aspects of InsP(6) function in plants remain undefined. We now report the first evidence that InsP(6) can inhibit cellular proliferation in plants under growth conditions where phosphorus is not limited. • A highly anionic molecule inhibitory to early-stage somatic embryo growth of loblolly pine (LP) was purified chromatographically from late-stage LP female gametophytes (FGs), and then characterized structurally using mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. • Exact mass and mass spectrometry-mass spectrometry (MS-MS) fragmentation identified the bioactive molecule as an inositol hexakisphosphate. It was then identified as the myo-isomer (i.e. InsP(6)) on the basis of (1)H-, (31)P- and (13)C-NMR, (1)H-(1)H correlation spectroscopy (COSY), (1)H-(31)P heteronuclear single quantum correlation (HSQC) and (1)H-(13)C HSQC. Topical application of InsP(6) to early-stage somatic embryos indeed inhibits embryonic growth. • Recently evidence has begun to emerge that InsP(6) may also play a regulatory role in plant cells. We anticipate that our findings will help to stimulate additional investigations aimed at elucidating the roles of inositol phosphates in cellular growth and development in plants. PMID:22023391

  2. Time-lapse monitoring reveals that vitrification increases the frequency of contraction during the pre-hatching stage in mouse embryos.

    PubMed

    Shimoda, Yuki; Kumagai, Jin; Anzai, Mibuki; Kabashima, Katsuya; Togashi, Kazue; Miura, Yasuko; Shirasawa, Hiromitsu; Sato, Wataru; Kumazawa, Yukiyo; Terada, Yukihiro

    2016-04-22

    Contraction during the blastocyst stage is observed during embryonic development of various mammals, including humans, but the physiological role of this process is not well understood. Using time-lapse monitoring (TLM), we studied the influence of vitrification and contractions on embryonic development in mice. Mouse embryos were cultured at the 2-cell stage. At the 8-cell stage, embryos were randomly divided into a fresh group (FG) and vitrified group (VG) and observed for up to 144 h. Strong contractions (i.e., contractions causing a decrease in volume of more than 20% and expansion of the perivitelline space) occurred significantly more often in unhatched embryos than hatching embryos in both groups. Regarding hatching embryos, contractions in the pre-hatching stage were significantly more frequent in the VG than the FG. Furthermore, mRNA expression levels of genes related to contractions were determined at three time points, the 8-cell stage, early blastocyst stage, and 20 h after blastocoel formation, with quantitative reverse transcription-polymerase chain reaction. There was no significant difference in Hspa1a expression between the FG and VG, but Hspa1a overexpression was observed just after thawing and tended to decrease gradually thereafter in some blastocysts. Furthermore, in the VG, Atp1a1 tended to show higher expression in the strong contraction group than in the weak contraction group. Overall, vitrification is an excellent method for cryopreservation but could increase contractions in the pre-hatching stage and may increase energy demands of the embryo. Observation of contraction by TLM may improve the evaluation of embryo quality. PMID:26806421

  3. Time-lapse monitoring reveals that vitrification increases the frequency of contraction during the pre-hatching stage in mouse embryos

    PubMed Central

    SHIMODA, Yuki; KUMAGAI, Jin; ANZAI, Mibuki; KABASHIMA, Katsuya; TOGASHI, Kazue; MIURA, Yasuko; SHIRASAWA, Hiromitsu; SATO, Wataru; KUMAZAWA, Yukiyo; TERADA, Yukihiro

    2016-01-01

    Contraction during the blastocyst stage is observed during embryonic development of various mammals, including humans, but the physiological role of this process is not well understood. Using time-lapse monitoring (TLM), we studied the influence of vitrification and contractions on embryonic development in mice. Mouse embryos were cultured at the 2-cell stage. At the 8-cell stage, embryos were randomly divided into a fresh group (FG) and vitrified group (VG) and observed for up to 144 h. Strong contractions (i.e., contractions causing a decrease in volume of more than 20% and expansion of the perivitelline space) occurred significantly more often in unhatched embryos than hatching embryos in both groups. Regarding hatching embryos, contractions in the pre-hatching stage were significantly more frequent in the VG than the FG. Furthermore, mRNA expression levels of genes related to contractions were determined at three time points, the 8-cell stage, early blastocyst stage, and 20 h after blastocoel formation, with quantitative reverse transcription-polymerase chain reaction. There was no significant difference in Hspa1a expression between the FG and VG, but Hspa1a overexpression was observed just after thawing and tended to decrease gradually thereafter in some blastocysts. Furthermore, in the VG, Atp1a1 tended to show higher expression in the strong contraction group than in the weak contraction group. Overall, vitrification is an excellent method for cryopreservation but could increase contractions in the pre-hatching stage and may increase energy demands of the embryo. Observation of contraction by TLM may improve the evaluation of embryo quality. PMID:26806421

  4. Expression pattern of Chlamys farreri sox2 in eggs, embryos and larvae of various stages

    NASA Astrophysics Data System (ADS)

    Liang, Shaoshuai; Ma, Xiaoshi; Han, Tiantian; Yang, Dandan; Zhang, Zhifeng

    2015-08-01

    The SOX2 protein is an important transcription factor functioning during the early development of animals. In this study, we isolated a full-length cDNA sequence of scallop Chlamys farreri sox2, Cf-sox2 which was 2194 bp in length with a 981 bp open reading frame encoding 327 amino acids. With real-time PCR analysis, it was detected that Cf-sox2 was expressed in unfertilized oocytes, fertilized eggs and all the tested embryos and larvae. The expression level increased significantly ( P < 0.01) in embryos from 2-cell to blastula, and then decreased significantly ( P < 0.01) and reached the minimum in umbo larva. Moreover, location of the Cf-sox2 expression was revealed using whole mount in situ hybridization technique. Positive hybridization signal could be detected in the central region of unfertilized oocytes and fertilized eggs, and then strong signals dispersed throughout the embryos from 2-cell to gastrula. During larval development, the signals were concentrated and strong signals were restricted to 4 regions of viscera mass in veliger larva. In umbo larva, weak signals could be detected in regions where presumptive visceral and pedal ganglia may be formed. The expression pattern of Cf-sox2 during embryogenesis was similar to that of mammal sox2, which implied that Cf-SOX2 may participate in the regulation of early development of C. farreri.

  5. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    PubMed

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-01

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development. PMID:27314579

  6. Effects of taurine on human embryo development in vitro.

    PubMed

    Devreker, F; Van den Bergh, M; Biramane, J; Winston, R L; Englert, Y; Hardy, K

    1999-09-01

    Glutamine and taurine are reported to be beneficial for mouse embryo development in vitro, and we have recently shown that glutamine improves human blastocyst formation in vitro. This randomized study compared the development of supernumerary human embryos in the presence of 1 mmol/l glutamine and/or 5 mmol/l taurine from the 2-4-cell stage to the blastocyst stage. Blastocyst development and cell numbers were similar in the presence of glutamine or taurine: 52.6% and 58.3% of the embryos reached the blastocyst stage, respectively. Pyruvate uptake was similar in the presence of glutamine or taurine throughout development, as was lactate production after the 8-cell stage. Before this stage, lactate production was 4-fold higher in the presence of taurine (P < 0.001). The proportion of embryos reaching the blastocyst stage was similar with glutamine alone or with glutamine and taurine (62.5% and 47.2% respectively), as were the blastocyst cell numbers (63.0 +/- 4.6 and 61.0 +/- 5.1 respectively). In conclusion, taurine supports development of 2-4-cell human embryos to the blastocyst stage, although it does not further augment the beneficial effects of glutamine. PMID:10469709

  7. The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage

    PubMed Central

    2013-01-01

    Background The Rapid-i is a new FDA cleared closed carrier for embryo vitrification. The cooling rate of - 1220°C/min is far lower than that reported with open vitrification systems such as the cryoloop (−15,000°C/min). Little published data is currently available on this device. This study presents our initial clinical data, as well as live birth outcomes, with the Rapid-i. The efficacy of this device for the cryopreservation of cleavage, as well as blastocyst stage human embryos is also analyzed. We further compare outcomes to those achieved with the cryoloop, an “open” vitrification system routinely used in our laboratory. Methods Human embryos were vitrified at either the 8–10 cell stage or else the blastocyst stage. The vitrification protocol was: 7.5% DMSO/7.5% ethylene glycol (EG) (2–3 min) followed by incubation in 15% DMSO /15% EG (45 sec) before loading on the vitrification carrier. Cryoprotectant was removed during warming by sequential washes in 0.25 M and 0.125 M sucrose in culture medium. Clinical outcome data for frozen cycles between January 2011 and August 2012 were stratified according to carrier and cell stage. The student t-test and chi square test were used to compare results. P value of < 0.05 was considered significant. Results A total of 486 vitrified-warmed embryos were assessed and 92% of them were transferred. The clinical pregnancy rate (CPR) and implantation rate (IR) with Rapid-i vitrified blastocysts were 59% and 49%, versus 47% and 37%, respectively for cleavage stage embryos. This was not statistically different from results with the cryoloop vitrified blastocysts (CPR 46%, IR 38%) nor the cleavage stage vitrified embryos (CPR 49%, IR 35%). To date, there have been 31 deliveries of 34 healthy infants from Rapid-i vitrified embryos, with another 12 pregnancies still on-going. Conclusions The Rapid-i offers an excellent alternative to existing open vitrification devices for embryo cryopreservation at the 8–10 cell

  8. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination

    PubMed Central

    He, Dongli; Wang, Qiong; Wang, Kun; Yang, Pingfang

    2015-01-01

    The first 24 hours after imbibition (HAI) is pivotal for rice seed germination, during which embryo cells switch from a quiescent state to a metabolically active state rapidly. MicroRNAs (miRNAs) have increasingly been shown to play important roles in rice development. Nevertheless, limited knowledge about miRNA regulation has been obtained in the early stages of rice seed germination. In this study, the small RNAs (sRNAs) from embryos of 0, 12, and 24 HAI rice seeds were sequenced to investigate the composition and expression patterns of miRNAs. The bioinformatics analysis identified 289 miRNA loci, including 59 known and 230 novel miRNAs, and 35 selected miRNAs were confirmed by stem-loop real-time RT-PCR. Expression analysis revealed that the dry and imbibed seeds have unique miRNA expression patterns compared with other tissues, particularly for the dry seeds. Using three methods, Mireap, psRNATarget and degradome analyses, 1197 potential target genes of identified miRNAs involved in various molecular functions were predicted. Among these target genes, 39 had significantly negative correlations with their corresponding miRNAs as inferred from published transcriptome data, and 6 inversely expressed miRNA-target pairs were confirmed by 5ʹ-RACE assay. Our work provides an inventory of miRNA expression profiles and miRNA-target interactions in rice embryos, and lays a foundation for further studies of miRNA-mediated regulation in initial seed germination. PMID:26681181

  9. Necropsy findings in American alligator late-stage embryos and hatchlings from northcentral Florida lakes contaminated with organochlorine pesticides

    USGS Publications Warehouse

    Sepulveda, M.S.; Del, Piero F.; Wiebe, J.J.; Rauschenberger, H.R.; Gross, T.S.

    2006-01-01

    Increased American alligator (Alligator mississippiensis) embryo and neonatal mortality has been reported from several northcentral Florida lakes contaminated with old-use organochlorine pesticides (OCPs). However, a clear relationship among these contaminants and egg viability has not been established, suggesting the involvement of additional factors in these mortalities. Thus, the main objective of this study was to determine the ultimate cause of mortality of American alligator late-stage embryos and hatchlings through the conduction of detailed pathological examinations, and to evaluate better the role of OCPs in these mortalities. Between 2000 and 2001, 236 dead alligators were necropsied at or near hatching (after ???65 days of artificial incubation and up to 1 mo of age posthatch). Dead animals were collected from 18 clutches ranging in viability from 0% to 95%. Total OCP concentrations in yolk ranged from ???100 to 52,000 ??g/kg, wet weight. The most common gross findings were generalized edema (34%) and organ hyperemia (29%), followed by severe emaciation (14%) and gross deformities (3%). Histopathologic examination revealed lesions in 35% of the animals, with over half of the cases being pneumonia, pulmonary edema, and atelectasis. Within and across clutches, dead embryos and hatchlings compared with their live cohorts were significantly smaller and lighter. Although alterations in growth and development were not related to yolk OCPs, there was an increase in prevalence of histologic lesions in clutches with high OCPs. Overall, these results indicate that general growth retardation and respiratory abnormalities were a major contributing factor in observed mortalities and that contaminants may increase the susceptibility of animals to developing certain pathologic conditions. ?? Wildlife Disease Association 2006.

  10. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination.

    PubMed

    He, Dongli; Wang, Qiong; Wang, Kun; Yang, Pingfang

    2015-01-01

    The first 24 hours after imbibition (HAI) is pivotal for rice seed germination, during which embryo cells switch from a quiescent state to a metabolically active state rapidly. MicroRNAs (miRNAs) have increasingly been shown to play important roles in rice development. Nevertheless, limited knowledge about miRNA regulation has been obtained in the early stages of rice seed germination. In this study, the small RNAs (sRNAs) from embryos of 0, 12, and 24 HAI rice seeds were sequenced to investigate the composition and expression patterns of miRNAs. The bioinformatics analysis identified 289 miRNA loci, including 59 known and 230 novel miRNAs, and 35 selected miRNAs were confirmed by stem-loop real-time RT-PCR. Expression analysis revealed that the dry and imbibed seeds have unique miRNA expression patterns compared with other tissues, particularly for the dry seeds. Using three methods, Mireap, psRNATarget and degradome analyses, 1197 potential target genes of identified miRNAs involved in various molecular functions were predicted. Among these target genes, 39 had significantly negative correlations with their corresponding miRNAs as inferred from published transcriptome data, and 6 inversely expressed miRNA-target pairs were confirmed by 5'-RACE assay. Our work provides an inventory of miRNA expression profiles and miRNA-target interactions in rice embryos, and lays a foundation for further studies of miRNA-mediated regulation in initial seed germination. PMID:26681181

  11. Stage-Specific Profiling of Transforming Growth Factor-β, Fibroblast Growth Factor and Wingless-int Signaling Pathways during Early Embryo Development in The Goat

    PubMed Central

    HosseinNia, Pouria; Tahmoorespur, Mojtaba; Hosseini, Sayyed Morteza; Hajian, Mehdi; Ostadhosseini, Somayeh; Nasiri, Mohammad Reza; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective This research intends to unravel the temporal expression profiles of genes in- volved in three developmentally important signaling pathways [transforming growth factor-β (TGF-β), fibroblast growth factor (FGF) and wingless/int (WNT)] during preand peri-implan- tation goat embryo development. Materials and Methods In this experimental study, we examined the transcripts that encoded the ligand, receptor, intracellular signal transducer and modifier, and the down- stream effector, for each signaling pathway. In vitro mature MII oocytes and embryos at three distinctive stages [8-16 cell stage, day-7 (D7) blastocysts and day-14 (D14) blas- tocysts] were separately prepared in triplicate for comparative real-time reverse tran- scriptase polymerase chain reaction (RT-PCR) using the selected gene sets. Results Most components of the three signaling pathways were present at more or less stable levels throughout the assessed oocyte and embryo developmental stages. The transcripts for TGF-β, FGF and WNT signaling pathways were all induced in unfertilized MII-oocytes. However, developing embryos showed gradual patterns of decrease in the activities of TGF-β, FGF and WNT components with renewal thereafter. Conclusion The results suggested that TGF-β, FGF and WNT are maternally active signaling pathways required during earlier, rather than later, stages of preand peri- implantation goat embryo development. PMID:26862524

  12. Three-dimensional computer-assisted reconstruction of ductal plate in the rat embryo (Carnegie stages 19-23).

    PubMed

    Godlewski, G; Gaubert, J; Gaubert-Cristol, R; Dauzat, M; Aldréa, F; Prudhomme, M

    2004-10-01

    In bile duct morphogenesis it has been established that the extrahepatic bile ducts in human originate from hepatic diverticulum while intrahepatic bile ducts arise from the ductal plate (DP), a network of primitive biliary epithelium that develops in the periportal connective tissue. The aim of this work was to reconstruct in rat embryos, stages 19-23, the three-dimensional (3D) distribution of the DP by means of a computer-assisted method. Six specimens, stages 19-23, fixed, dehydrated and paraffin-embedded, were submitted to serial histological sections and stained by hematoxylin-eosin and Heidenhain techniques. The images were directly digitalized with a CCD camera. The serial views were aligned anatomically by software and the data were analyzed following segmentation and thresholding. At stage 19, the DP was not yet organized. The periportal mesoderm (M) was gaining ground with some cords of cubic cells evoking primitive ductal cells. At stage 20, a row of ductal cubic cells went around the transverse portal sinus at the junction between M and liver cells. At stage 21, the DP developed at the periphery of periportal connective tissue and appeared in direct continuity with the hepatic duct (HDu). Four evaginations emerged from the DP and were growing up in the hepatic parenchyma. At stage 23, the DP appeared as a large network in continuity with the HDu located at the periphery of periportal M and presenting several evaginations radiating in the liver parenchyma. This work in the rat embryo permits the clear visualization of the development of the junctional zone in the hepatic hilum. Three phenomena are observed: (1) proximal left and right hepatic ducts and their segmental branches are derived from DP and not from the HDu; (2) the extrahepatic biliary system is in contact with the developing hilar ducts; (3) ductal maturation begins at the hilum and proceeds centrifugally. These observations are of great relevance in explaining pathological changes appearing

  13. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos.

    PubMed

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  14. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos

    PubMed Central

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  15. Absence of Sperm Factors as in the Parthenogenesis Does Not Interfere on Bovine Embryo Sensitiveness to Heat Shock at Pre-Implantation Stage.

    PubMed

    Camargo, L S A; Paludo, F; Pereira, M M; Wohlres-Viana, S; Gioso, M M; Carvalho, B C; Quintao, C C R; Viana, J H M

    2016-02-01

    Oocyte has been considered the major contributor for embryo thermo-tolerance. However, it was shown that sperm factors can be transferred to the oocyte during fertilization, raising the question of whether the absence of such factors could interfere on embryo thermo-tolerance. In this study, we used parthenogenesis to generate bovine embryos without spermatozoa in order to test whether the absence of sperm factors could influence their thermo-sensitiveness at early stages. In vitro fertilized (IVF) and parthenogenetic (PA) embryos at 44 h post-insemination/chemical activation were exposed to 38.5°C (control) or 41°C (heat shock) for 12 h and then developed for 48 h and up to blastocyst stage. Apoptosis index and expression of PRDX1, GLUT1, GLUT5 and IGF1r genes in blastocysts derived from heat-shocked embryos were also evaluated. The heat shock decreased the blastocyst rate at day seven (p < 0.05) for IVF embryos and at day eight (p < 0.01) for both IVF and PA embryos. Total cell number was not affected by heat shock in IVF and PA blastocysts, but there was an increased proportion (p < 0.05) of apoptotic cells in heat-shocked embryos when compared to controls. There was no interaction (p > 0.05) between method of activation (IVF and PA) and temperature (38.5°C or 41.5°C) for all developmental parameters evaluated. Expression of GLUT1 gene was downregulated (p < 0.05) by heat shock in both IVF and PA blastocyst whereas expression of GLUT5 and IGF1r genes was downregulated (p < 0.05) by heat shock in PA blastocysts. Those data show that the heat shock affects negatively the embryo development towards blastocysts stage, increases the apoptotic index and disturbed the expression of some genes in both IVF and PA embryos, indicating that the presence or absence of sperm factors does not influence the sensitivity of the bovine embryo to heat shock. PMID:26514548

  16. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    SciTech Connect

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current

  17. Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes

    PubMed Central

    Mak, Siu-Shan; Alev, Cantas; Nagai, Hiroki; Wrabel, Anna; Matsuoka, Yoko; Honda, Akira; Sheng, Guojun; Ladher, Raj K

    2015-01-01

    Innate pluripotency of mouse embryos transits from naive to primed state as the inner cell mass differentiates into epiblast. In vitro, their counterparts are embryonic (ESCs) and epiblast stem cells (EpiSCs), respectively. Activation of the FGF signaling cascade results in mouse ESCs differentiating into mEpiSCs, indicative of its requirement in the shift between these states. However, only mouse ESCs correspond to the naive state; ESCs from other mammals and from chick show primed state characteristics. Thus, the significance of the naive state is unclear. In this study, we use zebra finch as a model for comparative ESC studies. The finch blastoderm has mESC-like properties, while chick blastoderm exhibits EpiSC features. In the absence of FGF signaling, finch cells retained expression of pluripotent markers, which were lost in cells from chick or aged finch epiblasts. Our data suggest that the naive state of pluripotency is evolutionarily conserved among amniotes. DOI: http://dx.doi.org/10.7554/eLife.07178.001 PMID:26359635

  18. Permanent embryo arrest: molecular and cellular concepts.

    PubMed

    Betts, D H; Madan, P

    2008-08-01

    Developmental arrest is one of the mechanisms responsible for the elevated levels of embryo demise during the first week of in vitro development. Approximately 10-15% of IVF embryos permanently arrest in mitosis at the 2- to 4-cell cleavage stage showing no indication of apoptosis. Reactive oxygen species (ROS) are implicated in this process and must be controlled in order to optimize embryo production. A stress sensor that can provide a key understanding of permanent cell cycle arrest and link ROS with cellular signaling pathway(s) is p66Shc, an adaptor protein for apoptotic-response to oxidative stress. Deletion of the p66Shc gene in mice results in extended lifespan, which is linked to their enhanced resistance to oxidative stress and reduced levels of apoptosis. p66Shc has been shown to generate mitochondrial H(2)O(2) to trigger apoptosis, but may also serve as an integration point for many signaling pathways that affect mitochondrial function. We have detected elevated levels of p66Shc and ROS within arrested embryos and believe that p66Shc plays a central role in regulating permanent embryo arrest. In this paper, we review the cellular and molecular aspects of permanent embryo arrest and speculate on the mechanism(s) and etiology of this method of embryo demise. PMID:18511487

  19. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles.

    PubMed

    Bradley, Nina S; Ryu, Young U; Yeseta, Marie C

    2014-03-15

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  20. Development of the Superaltricial Monk Parakeet (Aves, Psittaciformes): Embryo Staging, Growth, and Heterochronies.

    PubMed

    Carril, Julieta; Tambussi, Claudia P

    2015-11-01

    Knowledge about the embryonic stages of birds is important in answering many questions about development and evolution. We give the first description of 41 embryological stages of the monk parakeet (Myiopsitta monachus) on the basis of external morphology and comparison with the chicken. We also provide measurements of some external morphological characters (i.e. body mass, crown-rump, beak, forelimb, and third toe lengths) and perform comparisons with other precocial and altricial birds with the aim of identifying heterochronous developmental features. The following differences in the development of characters in the monk parakeet when compared with other birds were found: (1) delay of the feathers primordia, (2) wing buds initially greater than leg buds, (3) forelimbs and hindlimbs with similar relative size, (4) retroversion of the toe IV, (5) ventral curvature of the upper jaw, (6) positive regressions between stages and beak length with acceleration and higher values and III toe lengths with deceleration and lower values in the monk parakeet compared to the chicken. The growth pattern of the monk paraket Myiopsitta monachus could be influenced by some heterochronic processes like post-displacement, acceleration and/or deceleration. Results of this research allow the standard identification of stages in different species of parrots, recognize similarities and differences between precocial (the chicken) and altricial species (Myiopsitta), and provide planning data for future studies. PMID:26267228

  1. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  2. Vitamin A deficiency in the late gastrula stage rat embryo results in a one to two vertebral anteriorization that extends throughout the axial skeleton.

    PubMed

    Kaiser, Mary E; Merrill, Ronald A; Stein, Adam C; Breburda, Edith; Clagett-Dame, Margaret

    2003-05-01

    Vitamin A and its metabolites are known to be involved in patterning the vertebrate embryo. Study of the effect of vitamin A on axial skeletal patterning has been hindered by the fact that deficient embryos do not survive past midgestation. In this study, pregnant vitamin A-deficient rats were maintained on a purified diet containing limiting amounts of all-trans retinoic acid (12 microg atRA/g diet) and given a daily oral bolus dose of retinol starting at embryonic day 0.5, 8.25, 8.5, 8.75, 9.25, 9.5, 9.75, or 10.5. Embryos were recovered at E21.5 for analysis of the skeleton and at earlier times for analysis of select mRNAs. Normal axial skeletal development and patterning were observed in embryos from pregnant animals receiving retinol starting on or before E8.75. Delay of retinol supplementation to E9.5 or later resulted in a marked increase in both occurrence and severity of skeletal malformations, extending from the craniocervical to sacral regions. Embryos from the groups receiving retinol starting at E9.5 and E9.75 had one-vertebral anterior transformations of the cervical, thoracic, lumbar, and sacral vertebrae. Few embryos survived in the E10.5 group, but these embryos yielded the most severe and extensive anteriorization events. The skeletal alterations seen in vitamin A deficiency are associated with posterior shifts in the mesodermal expression of Hoxa-4, Hoxb-3, Hoxd-3, Hoxd-4, and Hoxa-9 mRNAs, whereas the anterior domains of Hoxb-4 and Cdx2 expression are unaltered. This work defines a critical window of development in the late gastrula-stage embryo when vitamin A is essential for normal axial skeletal patterning and shows that vitamin A deficiency causes anterior homeotic transformations extending from the cervical to lumbosacral regions. PMID:12710954

  3. Identification of a paternal developmental effect on the cytoplasm of one-cell-stage mouse embryos.

    PubMed Central

    Renard, J P; Babinet, C

    1986-01-01

    Matings of female DDK mice with males of the BALB/c strain are sterile, whereas reciprocal crosses are normally fertile. We used nuclear transplantation between the hybrid eggs of these two strains to investigate the basis of this effect. We demonstrate that the observed sterility results from early embryonic mortality, that the mortality is due to a modification of the egg cytoplasm, and that the modification is mediated by the male pronucleus. Once established, this modification may affect female pronuclei of unrelated genotype such as C57BL/6. These results support the notion that a product derived from the male genome acts at the pronuclear stage and can affect later stages of embryonic development. Images PMID:3462735

  4. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study

    PubMed Central

    Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (< 5C; n = 111); 5–6 cells (5–6C; n = 97); 7–8 cells (7–8C; n = 442), 9–10 cells (9–10C; n = 107) and more than 10 cells (>10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In <5C and 5–6C embryos, fragmentation (FR; 62.2% and 30.9%, respectively) was the main cause for low cell number. The majority of 7–8C embryos exhibited obvious normal behaviors (NB; 85.7%) during development. However, the incidence of DC in 9–10C and >10C embryos increased compared to 7–8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas <5C embryos showed little potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (<5C) to 89.3% (>10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number

  5. Culture of Individually Required Number of 2-Pronuclei-Stage Oocytes – Patient Participation in Decision-Making is in Accordance with the Aim of Avoiding Surplus Embryo Freezing

    PubMed Central

    Cupisti, S.; Müller, A.; Hildebrandt, T.; Hackl, J.; Beckmann, M. W.; Dittrich, R.

    2014-01-01

    Background: The aim of this study was to evaluate how many embryos will develop if more than 3 2-pronuclei-stage oocytes (2-PNOs) are cultured at the patientʼs request and in accordance with the Germany Embryo Protection Law. Methods: A total of 106 cycles of patients undergoing their 1st, 2nd or 3rd cycle of IVF or ICSI treatment in 2010 were prospectively included in the study. In each individual case, a decision was taken prior to treatment about the number of 2-PNOs to be cultured after each cycle. Results: Ninety female patients were treated for a total of 106 cycles. A mean of two to six 2-PNOs were cultivated for a period of between 3 and 6 days for each patient. After culture, no viable embryo was identified for 5 patients (4.7 %), a single viable embryo was identified for 37 cycles (34.7 %), and 2 viable embryos were identified for 52 cycles (48.8 %). Eleven patients (10.3 %) had 3 viable embryos after a further 11 cycles and 1 patient had 4 viable embryos in a single cycle. Ten of the patients with 3 embryos each opted to have all 3 embryos transferred in the same cycle. This meant that a single embryo from one patient with 3 viable embryos and a single embryo of the patient with 4 viable embryos were cryopreserved after culture. The pregnancy rate was 19 % per embryo transfer and 25 % per blastocyst transfer (20 pregnancies in total). All cryopreserved embryos were transferred in a subsequent cycle. Discussion: Based on this study it is possible to make a statement about the number of viable embryos which should be cultivated to obtain, at best, two embryos for transfer without running an unacceptably high risk of producing too many embryos which would then need to be cryopreserved. Only 12 patients (13.3 %) had more than 2 viable embryos. The number of supernumerary pre-implantation-stage embryos was acceptably low (only 2 patients had additional viable embryos, 2.2 %). This means that it is possible to fulfil the wishes of individual

  6. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development.

    PubMed

    Wang, Jianle; Zhang, Miao; Zhang, Yu; Kou, Zhaohui; Han, Zhiming; Chen, Da-Yuan; Sun, Qing-Yuan; Gao, Shaorong

    2010-01-01

    Epigenetic modifications play a pivotal role in embryonic development by dynamically regulating DNA methylation and chromatin modifications. Although recent studies have shown that core histone methylation is reversible, very few studies have investigated the functions of the newly discovered histone demethylases during embryonic development. In the present study, we investigated the expression characteristics and function of JMJD2C, a histone demethylase that belongs to the JmjC-domain-containing histone demethylases, during preimplantation embryonic development of the mouse. We found that JMJD2C is stage-specifically expressed during preimplantation development, with the highest activity being observed from the two-cell to the eight-cell stage. Depletion of JMJD2C in metaphase II oocytes followed by parthenogenetic activation causes a developmental arrest before the blastocyst stage. Moreover, consistent with a previous finding in embryonic stem (ES) cells, depletion of JMJD2C causes a significant down-regulation of the pluripotency gene Nanog in embryos. However, contrary to a previous report in ES cells, we observed that other pluripotency genes, Pou5f1 and Sox2, are also significantly down-regulated in JMJD2C-depleted embryos. Furthermore, the depletion of JMJD2C in early embryos also caused significant down-regulation of the Myc and Klf4 genes, which are associated with cell proliferation. Our data suggest that the deregulation of these critical genes synergistically causes the developmental defects observed in JMJD2C-depleted embryos. PMID:19696013

  7. Chimerism in piglets developed from aggregated cloned embryos.

    PubMed

    Huang, Yongye; Li, Zhanjun; Wang, Anfeng; Han, Xiaolei; Song, Yuning; Yuan, Lin; Li, Tianye; Wang, Bing; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2016-04-01

    Porcine chimeras are valuable in the study of pluripotency, embryogenesis and development. It would be meaningful to generate chimeric piglets from somatic cell nuclear transfer embryos. In this study, two cell lines expressing the fluorescent markers enhanced green fluorescent protein (EGFP) and tdTomato were used as donor cells to produce reconstructed embryos. Chimeric embryos were generated by aggregating two EGFP-cell derived embryos with two tdTomato-cell derived embryos at the 4-cell stage, and embryo transfer was performed when the aggregated embryos developed into blastocysts. Live porcine chimeras were successfully born and chimerism was observed by their skin color, gene integration, microsatellite loci composition and fluorescent protein expression. The chimeric piglets were largely composed of EGFP-expressing cells, and this phenomenon was possibly due to the hyper-methylation of the promoter of the tdTomato gene. In addition, the expression levels of tumorigenicity-related genes were altered after tdTomato transfection in bladder cancer cells. The results show that chimeric pigs can be produced by aggregating cloned embryos and that the developmental capability of the cloned embryo in the subsequent chimeric development could be affected by the growth characteristics of its donor cell. PMID:27239442

  8. Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos

    PubMed Central

    Kobolak, Julianna; Kiss, Katalin; Polgar, Zsuzsanna; Mamo, Solomon; Rogel-Gaillard, Claire; Tancos, Zsuzsanna; Bock, Istvan; Baji, Arpad G; Tar, Krisztina; Pirity, Melinda K; Dinnyes, Andras

    2009-01-01

    Background The POU5F1 gene encodes the octamer-binding transcription factor-4 (Oct4). It is crucial in the regulation of pluripotency during embryonic development and widely used as molecular marker of embryonic stem cells (ESCs). The objective of this study was to identify and to analyse the promoter region of rabbit POU5F1 gene; furthermore to examine its expression pattern in preimplantation stage rabbit embryos. Results The upstream region of rabbit POU5F1 was subcloned sequenced and four highly conserved promoter regions (CR1-4) were identified. The highest degree of similarity on sequence level was found among the conserved domains between rabbit and human. Among the enhancers the proximal enhancer region (PE-1A) exhibited the highest degree of homology (96.4%). Furthermore, the CR4 regulator domain containing the distal enhancer (DE-2A) was responsible for stem cell-specific expression. Also, BAC library screen revealed the existence of a processed pseudogene of rabbit POU5F1. The results of quantitative real-time PCR experiments showed that POU5F1 mRNA was abundantly present in oocytes and zygotes, but it was gradually reduced until the activation of the embryonic genome, thereafter a continuous increase in POU5F1 mRNA level was observed until blastocyst stage. By using the XYClone laser system the inner cell mass (ICM) and trophoblast portions of embryos were microdissected and examined separately and POU5F1 mRNA was detected in both cell types. Conclusion In this study we provide a comparative sequence analysis of the regulatory region of rabbit POU5F1 gene. Our data suggest that the POU5F1 gene is strictly regulated during early mammalian development. We proposed that the well conserved CR4 region containing the DE-2A enhancer is responsible for the highly conserved ESC specific gene expression. Notably, we are the first to report that the rabbit POU5F1 is not restricted to ICM cells only, but it is expressed in trophoblast cells as well. This

  9. Outcomes of vitrified-warmed cleavage-stage embryo hatching after in vitro laser-assisted zona pellucida thinning in patients

    PubMed Central

    Wang, En-Hua; Wang, An-Cong; Wang, Bao-Song; Li, Bin

    2016-01-01

    The aim of the present study was to determine whether the size of the zona pellucida (ZP) thinning area by laser-assisted hatching affected the potential development of vitrified-warmed embryos. A total of 196 vitrified-warmed cleavage-stage embryos (from 49 patients, four sister embryos per patient) were used in the study, i.e., four sister embryos from each patient were randomly assigned to four groups: a control group of embryos that were not zona-manipulated (zona intact, group A); one experimental group of embryos in which a quarter of the zona pellucida was thinned using laser-assisted ZP thinning (group B); a second experimental group of embryos in which half of ZP was thinned (group C); and a third group in which two-thirds of the ZP was thinned (group D). Subsequent blastocyst development was assessed. Microscopy was performed to study the hatching process of the embryos after zona thinning. The blastocyst formation rates were 71.43% in group A, 67.35% in group B, 65.31% in group C, and 51.02% in group D (groups B-D vs. group A, P=0.661, P=0.515, P=0.038, respectively). The rates of complete hatching were 30.61% in group A, 38.78% in group B, 61.22% in group C, and 48.98% in group D (groups B-D vs. group A, P=0.396, P=0.002, P=0.063, respectively). For a subgroup of patients, there was a significant difference in the complete hatching in all the groups for women aged <35 years (P=0.011), and there was a significant difference in the complete hatching in all the groups for secondary infertility women (P=0.022). There was no significant difference in the blastocyst formation rates in the different groups of women aged ≥35 years (P=0.340). In addition, there was no significant difference in the complete hatching in the different groups among women aged ≥35 years (P=0.492). The results of the present study showed that in vitrified-warmed embryo transfers at the cleavage-stage, and the two-thirds zona pellucida thinning group demonstrated a significantly

  10. Piglets born after intrauterine laparoscopic embryo transfer.

    PubMed

    Wieczorek, J; Koseniuk, J; Mandryk, I; Poniedziałek-Kempny, K

    2015-01-01

    The aim of the study was the preliminary development of laparoscopic transfer of embryos to the uterus in the pig, which can become the alternative for more invasive surgical methods. We proposed the original method of embryo transfer. Donors (n = 40) and recipients (n = 15) of embryos were sows of age of 6-8 months. The estrus cycle of both recipients and donors was routinely synchronized. The experimental animals were divided into two groups. In the first group (10 donors and 3 recipients) embryos were transplanted according to the method described earlier and in the second group (30 donors and 12 recipients) embryos were transplanted according to our own proposed method. As the control group, we used 16 sows after insemination (AI). In animals from both experimental groups pregnancy was diagnosed between 28-31 day after transplantation and in the control group between 28-31 day after insemination. All animals were observed during pregnancy and weaning period in pig farm. Embryos at the development stage of 2-4 cell were obtained surgically and cultured in vitro for 4 days. Obtained blastocysts were transferred to donors. The original set of catheters for blastocysts transfer to pig uterus was constructed. Three trocars were placed in abdominal cavity for inserting endoscope and 2 grasps for uterus stabilization. After uterus stabilization, the slide was inserted into abdomen which was used for putting the needle to puncture uterus. Through this needle catheter with embryos was inserted into the uterus cavity. Embryos were placed by injection into lumen of the one uterine horn. From 12 recipients pregnancy was diagnosed in 6 recipients. From 6 litters, 57 piglets were born. We weaned 41 piglets (71.9%). In our study we obtained 50% efficacy, with the mean number of 9.5 alive piglets in litter and 6.8 weaned piglets. The efficacy of developed method of laparoscopic transfer of porcine embryos allows it to be used in routine practice. PMID:26172194

  11. Embryos, microscopes, and society.

    PubMed

    Maienschein, Jane

    2016-06-01

    Embryos have different meanings for different people and in different contexts. Seen under the microscope, the biological embryo starts out as one cell and then becomes a bunch of cells. Gradually these divide and differentiate to make up the embryo, which in humans becomes a fetus at eight weeks, and then eventually a baby. At least, that happens in those cases that carry through normally and successfully. Yet a popular public perception imagines the embryo as already a little person in the very earliest stages of development, as if it were predictably to become an adult. In actuality, cells can combine, pull apart, and recombine in a variety of ways and still produce embryos, whereas most embryos never develop into adults at all. Biological embryos and popular imaginations of embryos diverge. This paper looks at some of the historical reasons for and social implications of that divergence. PMID:26996410

  12. Development of the Heart Endocardium at an Early Stage of Chick Embryos Evaluated at Light- and Electron-Microscopic Levels.

    PubMed

    Hara, Yaiko; Wake, Kenjiro; Inoue, Kouji; Kuroda, Noriyuki; Sato, Akie; Inamatsu, Mutsumi; Tateno, Chise; Sato, Tetsuji

    2016-08-01

    Development of the endocardium in the heart of 4 to 4·1/2-day-incubated chick embryos was observed light and electron microscopically, and these results were evaluated by immunohistochemistry for desmin, FLK1 (VEGFR-2) or CD31, and by in situ hybridization assays for flk1-mRNA expression. At this developmental stage, the atrium and the ventricle were already discriminated by formation of the atrio-ventricular junction. The cardiac wall consisted of three layers; the inner endocardium, the middle myocardium, and the outer epicardium. The developing endocardium was seen as a chain of single-layered endocardial cells. Along its inner surface, numerous clusters of blood corpuscles were distributed, which seemed to contain some undifferentiated endocardial cells estimated from their characteristic ultrastructure and histological topography. Several blood corpuscles were in directly contact with the myocardium at the missing portions of the developing endocardial cell-chains. Differentiating endocardial cells individually showed roundish, small and large crescent, or flat in shapes. Such a prominent change of cell shapes appeared to be in parallel with their secretory activity during the transformation from the undifferentiated cells to the endocardial cells. Furthermore, immunohistochemistry for FLK1 or CD31, and in situ hybridization assays for flk1-mRNA labeled the cells composing developing endocardial cell-chains. Though these expressional analyses could not document clearly the transition of precursor cells into endocardial cells, the present study provided for the first time some important information regarding the morphological transition process toward endocardial cells at ultrastructural levels. Anat Rec, 299:1080-1089, 2016. © 2016 Wiley Periodicals, Inc. PMID:27178481

  13. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos.

    PubMed

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-06-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. PMID:24659575

  14. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos

    PubMed Central

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-01-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. Mol. Reprod. Dev. 81: 552–556, 2014. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:24659575

  15. Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos

    PubMed Central

    Cheng, De; Guo, Yanjie; Li, Zhenzhen; Liu, Yajun; Gao, Xing; Gao, Yi; Cheng, Xiang; Hu, Junhe; Wang, Huayan

    2012-01-01

    Porcine induced pluripotent stem (piPS) cell lines have been generated recently by using a cocktail of defined transcription factors, however, the features of authentic piPS cells have not been agreed upon and most of published iPS clones did not meet the stringent requirements of pluripotency. Here, we report the generation of piPS cells from fibroblasts using retrovirus carrying four mouse transcription factors (mOct4, mSox2, mKlf4 and mc-Myc, 4F). Multiple LIF-dependent piPS cell lines were generated and these cells showed the morphology similar to mouse embryonic stem cells and other pluripotent stem cells. In addition to the routine characterization, piPS cells were injected into porcine pre-compacted embryos to generate chimera embryos and nuclear transfer (NT) embryos. The results showed that piPS cells retain the ability to integrate into inner and outer layers of the blastocysts, and support the NT embryos development to blastocysts. The generations of chimera embryos and NT embryos derived from piPS clones are a practical means to determine the quality of iPS cells ex vivo. PMID:23251622

  16. The reduction of calcium current associated with early differentiation of the murine embryo.

    PubMed Central

    Mitani, S

    1985-01-01

    Membrane currents of intact oocytes and early embryos of the mouse and the hamster were analysed with voltage-clamp techniques. In both mouse and hamster the amplitude of Ca inward currents decreased with time during early development, and they were undetectable by the 8-cell stage, while the threshold potential, alkaline earth cation selectivity, and activation-inactivation kinetics remained unchanged. The reduction of Ca currents was further confirmed in the 2-cell embryo whose cleavage was arrested with use of cytochalasin D, but the process was slightly delayed by comparison with that of the intact embryo. Early differentiation of cytochalasin-D-treated embryos was comparable to that of the intact embryo in terms of intercellular couplings and intercellular fluid accumulation. But these processes were also delayed as in the case of Ca current reduction. The outward current in the hamster embryo which was reflected in the resting membrane conductance began to increase abruptly after the 2-cell stage and seemed to reach the maximum at the end of the 4-cell or 8-cell stage. The increase apparently occurred reciprocally with the decrease in Ca inward current. A similar but much smaller increase in resting membrane conductance also occurred in the cleavage-arrested mouse 2-cell embryo almost at the same development stage at which the abolition of Ca current was found. The possibility is discussed that Ca channels have a role in cell differentiation in early murine embryos. Images Plate 1 PMID:2410611

  17. Effect of mitotic inducers and retinoic acid blocker on expression of pluripotent genes in ES cells derived from early stage in vitro-produced embryos in buffalo.

    PubMed

    Kumar, Ashok; Kumar, Kuldeep; Singh, Renu; Puri, Gopal; Ranjan, R; Yasotha, T; Singh, R K; Sarkar, M; Bag, Sadhan

    2012-12-01

    So far, it has been difficult to generate embryonic stem (ES) cell from early stage preimplantation embryos of buffalo. These ES cells will be more helpful for efficient embryo cloning and generation of body cells as they are more primitive than inner cell mass (ICM)-derived ES cells. The present study was conducted to find the effect of lipopolysaccharide (LPS), melatonin (N-acetyl-5-methoxytryptamine, a pineal gland product), and citral (3,7-dimethyl-2,6-octadienal and a retinoic acid synthesis blocker) on establishment of primary ES cell colonies, the comparative size of the ES cell colonies, and expression of pluripotent genes during extended period of culture in buffalo. Zona-free eight-cell stage in vitro fertilization (IVF) embryos were cultured in ES cell medium supplemented with none (media I as control), LPS (media II), citral melatonin (media III), or melatonin (media IV). The multiplication of blastomere leading to ES cell colony formation and expression of pluripotent genes were assessed up to day 20 of culture. The primary colony formation, the comparative size of the ES cell colonies, and expression of pluripotent genes in these colonies were better in the medium supplemented with melatonin in all days of culture. Within melatonin supplementation, the colony size was comparatively larger on day 8 and day 12 of culture. Further, with this supplementation, the Oct-4 and Nanog expression was comparatively higher on all days of culture. The results indicated that supplementation of melatonin helped in the formation of better primary ES cell colony as well as in the maintenance of pluripotency. The results also indicated that primary colonies developed on day 8 to day 12 of culture may be better for passaging them for establishment of ES cell line from early stage preimplantation IVF embryos of in buffalo. PMID:23093464

  18. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae).

    PubMed

    Ituarte, Romina Belén; Lignot, Jehan-Hervé; Charmantier, Guy; Spivak, Eduardo; Lorin-Nebel, Catherine

    2016-06-01

    The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp. PMID:26796205

  19. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  20. Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium.

    PubMed

    Eyestone, W H; First, N L

    1989-03-01

    In Exp. 1, 5-8-cell embryos from superovulated cattle were co-cultured with oviducal tissue suspended in Ham's F10 + 10% fetal calf serum (F10FCS) or in F10FCS alone. After 4 days, the proportion of embryos developing into compact morulae or blastocysts was greater (P less than 0.005) in co-culture (38/82; 46%) than in F10FCS (1/27; 4%). In Exp. 2, a solution of collagenase, trypsin, DNAse and EDTA was used to disperse oviducal tissue, which was then cultured in TCM199 + 10% fetal calf serum (M199FCS) to obtain monolayers. Embryos (1-8 cells) were then co-cultured with monolayers or in M199FCS alone. The proportion of embryos developing into compact morulae and blastocysts after 4-5 days was higher (P less than 0.005) in co-culture (15/34; 43%) than in M199FCS (1/37; 3%); mean numbers of cells/embryo were also higher (P less than 0.001) (27.70; range 2-82 in co-culture; 8.83; range 2-18 in M199FCS). In Exp. 3, embryos obtained from in-vitro maturation and fertilization were used to compare development between co-culture and medium conditioned by oviducal tissue. Initial cleavage rate (no. embryos greater than 1 cell/total) was 76% (611/807) and did not differ among treatments. After 5 days, the proportion cleaving to greater than 16 cells was higher (P less than 0.005) in co-culture (71/203; 35%) and conditioned medium (48/205; 23%) compared to M199FCS (14/203; 7%). Similarly, the proportion developing into compact morulae and blastocysts was greater (P less than 0.005) in co-culture (44/203; 22%) and conditioned medium (46/205; 22%) than in M199FCS (7/203; 3%).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2704004

  1. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts.

    PubMed

    Northrop, L E; Treff, N R; Levy, B; Scott, R T

    2010-08-01

    Although selection of chromosomally normal embryos has the potential to improve outcomes for patients undergoing IVF, the clinical impact of aneuploidy screening by fluorescence in situ hybridization (FISH) has been controversial. There are many putative explanations including sampling error due to mosaicism, negative impact of biopsy, a lack of comprehensive chromosome screening, the possibility of embryo self-correction and poor predictive value of the technology itself. Direct analysis of the negative predictive value of FISH-based aneuploidy screening for an embryo's reproductive potential has not been performed. Although previous studies have found that cleavage-stage FISH is poorly predictive of aneuploidy in morphologically normal blastocysts, putative explanations have not been investigated. The present study used a single nucleotide polymorphism (SNP) microarray-based 24 chromosome aneuploidy screening technology to re-evaluate morphologically normal blastocysts that were diagnosed as aneuploid by FISH at the cleavage stage. Mosaicism and preferential segregation of aneuploidy to the trophectoderm (TE) were evaluated by characterization of multiple sections of the blastocyst. SNP microarray technology also provided the first opportunity to evaluate self-correction mechanisms involving extrusion or duplication of aneuploid chromosomes resulting in uniparental disomy (UPD). Of all blastocysts evaluated (n = 50), 58% were euploid in all sections despite an aneuploid FISH result. Aneuploid blastocysts displayed no evidence of preferential segregation of abnormalities to the TE. In addition, extrusion or duplication of aneuploid chromosomes resulting in UPD did not occur. These findings support the conclusion that cleavage-stage FISH technology is poorly predictive of aneuploidy in morphologically normal blastocysts. PMID:20479065

  2. Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to -205 degrees C.

    PubMed

    Mazur, P; Cole, K W; Schreuders, P D; Mahowald, A P

    1993-02-01

    Because of their high susceptibility to chilling injury, permeabilized Drosophila embryos can not be cryobiologically preserved by slow freezing at rates low enough to prevent the formation of intraembryonic ice. Calculations indicated that to outrun the chilling injury they must be cooled and warmed rapidly at an estimated 20,000 degrees C/min or faster. Ordinarily, such cooling rates would inevitably produce lethal intracellular ice. To prevent this, embryos must contain and be surrounded by sufficiently high concentrations of glass-promoting solutes to induce vitrification on cooling and prevent devitrification on warming. Like Steponkus et al. (Nature 345, 170, 1990) we have used ethylene glycol as the solute and have exposed permeabilized 12-h embryos to it in two steps. (Permeabilization was effected by exposing dechorionated embryos to a mixture of 0.3% 1-butanol in n-heptane for 90 or 110 s.) The two steps were (i) a 30-min exposure to 2 M ethylene glycol at 23 degrees C and (ii) a 5-min exposure to 8.5 M ethylene glycol [+/- 10% polyvinylpyrrolidone (PVP)] at 5 degrees C. The volumetric response to the first step indicates that full permeation of the 2 M glycol has been approached by 30 min. The point of the second step is to raise the intraembryonic concentration of ethylene glycol to near 8.5 M ethylene glycol by osmotic dehydration. Survival based on hatching is some 45% at this point. When 12-h embryos in 8.5 M glycol containing 10% PVP are then cooled to -205 degrees C at approximately 100,000 degrees C/min and warmed at about that rate, an average of about 12% survive (hatch), although in about half the runs 15-29% survive. Survivals in the absence of PVP are usually poorer but have been as high as 40%. Currently, 5% of the surviving larvae develop to adult flies (Steponkus et al. reported 18% hatching and 3% development to adult). Embryos that develop but do not hatch show readily detectable abnormalities in mouth parts and dorsal closure. Very high

  3. Meiotic outcomes of three-way translocations ascertained in cleavage-stage embryos: refinement of reproductive risks and implications for PGD

    PubMed Central

    Scriven, Paul N; Bint, Susan M; Davies, Angela F; Ogilvie, Caroline Mackie

    2014-01-01

    Our study provides an analysis of the outcome of meiotic segregation of three-way translocations in cleavage-stage embryos and the accuracy and limitations of preimplantation genetic diagnosis (PGD) using the fluorescence in situ hybridization technique. We propose a general model for estimating reproductive risks for carriers of this class of complex chromosome rearrangement. The data presented describe six cycles for four couples where one partner has a three-way translocation. For male heterozygotes, 27.6% of embryos were consistent with 3:3 alternate segregation resulting in a normal or balanced translocation chromosome complement; 41.4% were consistent with 3:3 adjacent segregation of the translocations, comprising 6.9% reflecting adjacent-1 and 34.5% adjacent-2 segregation; 24.1% were consistent with 4:2 nondisjunction; none showed 5:1 or 6:0 segregation; the probable mode could not be ascertained for 6.9% of embryos due to complex mosaicism or nucleus fragmentation. The test accuracy for male heterozygotes was estimated to be 93.1% with 100% sensitivity and 75% specificity. With 72.4% prevalence, the predictive value was estimated to be 91.3% for an abnormal test result and 100% for a normal test result. Two of four couples had a healthy baby following PGD. The proportion of normal/balanced embryo could be significantly less for female heterozygotes, and our model indicates that this could be detrimental to the effectiveness of PGD. A 20% risk of live-born offspring with an unbalanced translocation is generally accepted, largely based on the obstetric history of female heterozygotes; we suggest that a 3% risk may be more appropriate for male carriers. PMID:24129433

  4. Nervous Necrosis Virus Replicates Following the Embryo Development and Dual Infection with Iridovirus at Juvenile Stage in Grouper

    PubMed Central

    Hsu, Hao-Hsuan; Chen, Peng-Peng; Lee, Szu-Hsien; Chen, Young-Mao; Tsai, Tieh-Jung; Wang, Chien-Kai; Ku, Hsiao-Tung; Lee, Gwo-Bin; Chen, Tzong-Yueh

    2012-01-01

    Infection of virus (such as nodavirus and iridovirus) and bacteria (such as Vibrio anguillarum) in farmed grouper has been widely reported and caused large economic losses to Taiwanese fish aquaculture industry since 1979. The multiplex assay was used to detect dual viral infection and showed that only nervous necrosis virus (NNV) can be detected till the end of experiments (100% mortality) once it appeared. In addition, iridovirus can be detected in a certain period of rearing. The results of real-time PCR and in situ PCR indicated that NNV, in fact, was not on the surface of the eggs but present in the embryo, which can continue to replicate during the embryo development. The virus may be vertically transmitted by packing into eggs during egg development (formation) or delivering into eggs by sperm during fertilization. The ozone treatment of eggs may fail to remove the virus, so a new strategy to prevent NNV is needed. PMID:22563447

  5. Blastomere removal from cleavage-stage mouse embryos alters placental function, which is associated with placental oxidative stress and inflammation.

    PubMed

    Yao, Qi; Chen, Li; Liang, Yuanjiao; Sui, Liucai; Guo, Li; Zhou, Jingwei; Fan, Kai; Jing, Jun; Zhang, Yunhai; Yao, Bing

    2016-01-01

    Blastomere biopsy is an essential technique in preimplantation genetic diagnosis (PGD), a screening test that can detect genetic abnormalities of embryos before their transfer into uterus. Our results showed that the weights of fetuses derived from biopsied embryos were lower than that of non-biopsied counterparts at E12.5, E15.5, and E18.5. The ratio of fetal/placental (F/P) weights in the biopsied group was significantly lower than that in the non-biopsied group at E18.5. At E18.5, the mRNAs for selected glucose transporters, system A amino acid transporters, system L amino acid transporters, and imprinted genes were downregulated in the placentae of biopsied group, and the GLUT1 and CAT3 protein levels were decreased too. More apoptotic cells were detected by TUNEL in the placentae of biopsied group. Placentae from biopsied embryos exhibited lower levels of SOD and GSH. Furthermore, the concentration of MDA increased in the placentae from biopsied group. The levels of IL1B, IL6, and TNFA also significantly increased in the placentae of biopsied group. This study suggested that placental function may be sensitive to blastomere biopsy procedures, and placental oxidative stress and inflammation associated with blastomere biopsy may be critical factors of abnormal placental function and further influence the fetal development. PMID:27109212

  6. Blastomere removal from cleavage-stage mouse embryos alters placental function, which is associated with placental oxidative stress and inflammation

    PubMed Central

    Yao, Qi; Chen, Li; Liang, Yuanjiao; Sui, Liucai; Guo, Li; Zhou, Jingwei; Fan, Kai; Jing, Jun; Zhang, Yunhai; Yao, Bing

    2016-01-01

    Blastomere biopsy is an essential technique in preimplantation genetic diagnosis (PGD), a screening test that can detect genetic abnormalities of embryos before their transfer into uterus. Our results showed that the weights of fetuses derived from biopsied embryos were lower than that of non-biopsied counterparts at E12.5, E15.5, and E18.5. The ratio of fetal/placental (F/P) weights in the biopsied group was significantly lower than that in the non-biopsied group at E18.5. At E18.5, the mRNAs for selected glucose transporters, system A amino acid transporters, system L amino acid transporters, and imprinted genes were downregulated in the placentae of biopsied group, and the GLUT1 and CAT3 protein levels were decreased too. More apoptotic cells were detected by TUNEL in the placentae of biopsied group. Placentae from biopsied embryos exhibited lower levels of SOD and GSH. Furthermore, the concentration of MDA increased in the placentae from biopsied group. The levels of IL1B, IL6, and TNFA also significantly increased in the placentae of biopsied group. This study suggested that placental function may be sensitive to blastomere biopsy procedures, and placental oxidative stress and inflammation associated with blastomere biopsy may be critical factors of abnormal placental function and further influence the fetal development. PMID:27109212

  7. Generation and Developmental Characteristics of Porcine Tetraploid Embryos and Tetraploid/diploid Chimeric Embryos

    PubMed Central

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-01-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P < 0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P > 0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P < 0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos. PMID:24120753

  8. Urochordate Ascidians Possess a Single Isoform of Aurora Kinase That Localizes to the Midbody via TPX2 in Eggs and Cleavage Stage Embryos

    PubMed Central

    Hebras, Celine; McDougall, Alex

    2012-01-01

    Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner) and INCENP (a vertebrate AURKB partner) and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody in eggs and

  9. Expression Pattern of Pluripotent Markers in Different Embryonic Developmental Stages of Buffalo (Bubalus bubalis) Embryos and Putative Embryonic Stem Cells Generated by Parthenogenetic Activation

    PubMed Central

    Singh, Karn P.; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K.; Manik, Radhey S.; Palta, Prabhat; Singla, Suresh K.

    2012-01-01

    Abstract In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos. PMID:23194456

  10. Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos.

    PubMed

    Wang, Zhong-Wei; Ma, Xue-Shan; Ma, Jun-Yu; Luo, Yi-Bo; Lin, Fei; Wang, Zhen-Bo; Fan, Heng-Yu; Schatten, Heide; Sun, Qing-Yuan

    2013-10-15

    DNA double-strand breaks are caused by both intracellular physiological processes and environmental stress. In this study, we used laser microbeam cut (abbreviated microcut or cut), which allows specific DNA damage in the pronucleus of a fertilized egg and in individual blastomere(s) of an early embryo, to investigate the response of early embryos to DNA double-strand breaks. Line type γH2AX foci were detected in the cut region, while Chk2 phosphorylation staining was observed in the whole nuclear region of the cut pronuclei or blastomeres. Zygotes with cut male or female pronucleus showed poor developmental capability: the percentage of cleavage embryos was significantly decreased, and the embryos failed to complete further development to blastocysts. The cut blastomeres in 2-cell, 4-cell, and 8-cell embryos ceased cleavage, and they failed to incorporate into compacted morulae, but instead underwent apoptosis and cell death at the blastocyst stage; the uncut part of embryos could develop to blastocysts, with a reduced percentage or decreased cell number. When both blastomeres of the 2-cell embryos were cut by laser microbeam, cell death occurred 24 h earlier, suggesting important functions of the uncut blastomere in delaying cell death of the cut blastomere. Taken together, we conclude that microbeam-induced DNA damage in early embryos causes compromised development, and that embryos may have their own mechanisms to exclude DNA-damaged blastomeres from participating in further development. PMID:24036543

  11. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos

    PubMed Central

    THONGKITTIDILOK, Chommanart; THARASANIT, Theerawat; SONGSASEN, Nucharin; SANANMUANG, Thanida; BUARPUNG, Sirirak; TECHAKUMPHU, Mongkol

    2015-01-01

    This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages. PMID:25985792

  12. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    PubMed

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity. PMID:25260196

  13. Lipid rafts enriched in monosialylGb5Cer carrying the stage-specific embryonic antigen-4 epitope are involved in development of mouse preimplantation embryos at cleavage stage

    PubMed Central

    2011-01-01

    Background Lipid rafts enriched in glycosphingolipids (GSLs), cholesterol and signaling molecules play an essential role not only for signal transduction started by ligand binding, but for intracellular events such as organization of actin, intracellular traffic and cell polarity, but their functions in cleavage division of preimplantation embryos are not well known. Results Here we show that monosialylGb5Cer (MSGb5Cer)-enriched raft domains are involved in development during the cleavage stage of mouse preimplantation embryos. MSGb5Cer preferentially localizes at the interfaces between blastomeres in mouse preimplantation embryos. Live-imaging analysis revealed that MSGb5Cer localizes in cleavage furrows during cytokinesis, and that by accumulating at the interfaces, it thickens them. Depletion of cholesterol from the cell membrane with methyl-beta-cyclodextrin (MbCD) reduced the expression of MSGb5Cer and stopped cleavage. Extensive accumulation of MSGb5Cer at the interfaces by cross-linking with anti-MSGb5Cer Mab (6E2) caused F-actin to aggregate at the interfaces and suppressed the localization of E-cadherin at the interfaces, which resulted in the cessation of cleavage. In addition, suppression of actin polymerization with cytochalasin D (CCD) decreased the accumulation of MSGb5Cer at the interfaces. In E-cadherin-targeted embryos, the MSGb5Cer-enriched raft membrane domains accumulated heterotopically. Conclusions These results indicate that MSGb5Cer-enriched raft membrane domains participate in cytokinesis in a close cooperation with the cortical actin network and the distribution of E-cadherin. PMID:21489308

  14. Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system.

    PubMed

    Fujimura, Koji; Okada, Norihiro

    2007-05-01

    We described the developmental stages for the embryonic, larval and early juvenile periods of Nile tilapia Oreochromis niloticus to elucidate sequential events of craniofacial development. Craniofacial development of cichlids, especially differentiation and morphogenesis of the pharyngeal skeleton, progresses until about 30 days postfertilization (dpf). Because there is no comprehensive report describing the sequential processes of craniofacial development up to 30 dpf, we newly defined 32 stages using a numbered staging system. For embryonic development, we defined 18 stages (stages 1-18), which were grouped into seven periods named the zygote, cleavage, blastula, gastrula, segmentation, pharyngula and hatching periods. For larval development, we defined seven stages (stages 19-25), which were grouped into two periods, early larval and late larval. For juvenile development until 30 dpf, we defined seven stages (stages 26-32) in the early juvenile period. This developmental staging system for Nile tilapia O. niloticus will benefit researchers investigating skeletogenesis throughout tilapia ontogeny and will also facilitate comparative evolutionary developmental biology studies of haplochromine cichlids, which comprise the species flocks of Lakes Malawi and Victoria. PMID:17501907

  15. RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming.

    PubMed

    Bai, Lin; Li, Mengqi; Sun, Junli; Yang, Xiaogan; Lu, Yangqing; Lu, Shengsheng; Lu, Kehuan

    2016-01-01

    The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes. PMID:27070804

  16. RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming

    PubMed Central

    Bai, Lin; Li, Mengqi; Sun, Junli; Yang, Xiaogan; Lu, Yangqing; Lu, Shengsheng; Lu, Kehuan

    2016-01-01

    The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes. PMID:27070804

  17. Complex N-glycans or core 1-derived O-glycans are not required for the expression of stage-specific antigens SSEA-1, SSEA-3, SSEA-4, or LeY in the preimplantation mouse embryo

    PubMed Central

    Williams, Suzannah A; Stanley, Pamela

    2010-01-01

    The glycan epitopes termed stage-specific embryonic antigens (SSEA) occur on glycoproteins and glycolipids in mammals. However, it is not known whether these epitopes are attached to N- or O-glycans on glycoproteins and/or on glycolipids in the developing mouse embryo. In this paper the expression of the antigens SSEA-1, SSEA-3, SSEA-4 and LeY was examined on ovulated eggs, early embryos and blastocysts lacking either complex and hybrid N-glycans or core-1 derived O-glycans. In all cases, antigen expression determined by fluorescence microscopy of bound monoclonal antibodies to embryos at the stage of development of maximal expression, was similar in mutant and control embryos. Thus, none of these developmental antigens are expressed solely on either complex N- or core 1-derived O-glycans attached to glycoproteins in the preimplantation mouse embryo. Furthermore, neither of these classes of glycan is essential for the expression of SSEA-1, SSEA-3, SSEA-4 or LeY on mouse embryos. PMID:18773292

  18. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    PubMed

    Guo, Baojian; Chen, Yanhong; Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis. PMID:23776561

  19. Characterization of developmental arrest in early bovine embryos cultured in vitro.

    PubMed

    Eyestone, W H; First, N L

    1991-03-01

    The susceptibility of early bovine embryos to developmental arrest ("blocking") in vitro was examined. Embryos, obtained from superovulated donors, were cultured in vitro in Ham's F10 culture medium or in vivo in sheep oviducts. Treatments were terminated on Day 7 post-donor estrus (estrus = day 0), and the embryos were evaluated for development. Experiment 1 tested whether the 8- to 16-cell block was reversible. One- to two-cell embryos were cultured in vitro to the 8-cell stage (2 d), then in vivo for 3 d; controls were cultured in vitro or in vivo for 5 d. Forty-two percent (19/45) of in vivo controls developed normally; none (0/55; 0%) of the in vitro controls cleaved past the 9- to 16-cell stage. Only 4% (2/48) of the embryos cultured to eight cells in vitro developed normally after culture in sheep oviducts, indicating that the block was irreversible. Irreversibility was not caused by overt cell death, since 33/33 (100%) of blocked embryos responded positively to fluorescein diacetate vital staining. Experiment 2 tested the effect of in vitro exposure at specific cell stages on subsequent in vivo development. Embryos at the 1- to 2-, 3- to 4-, 5- to 8- and 9- to 16-cell stages were assigned randomly to one of the following treatments: in vivo culture; in vitro culture; or 24 h in vitro culture, followed by in vivo culture. Subsequent in vivo development was affected by 24 h of in vitro culture (P<0.05) only in 3- to 4-cell embryos (11/41, 27% vs 22/41, 54% for in vivo controls). We conclude that 1) the block is a manifestation of in vitro exposure during the four- to eight-cell stage, and 2) the block, while irreversible, is not the result of overt embryonic death. PMID:16726930

  20. Rabbit antiserum to mouse embryonic stem cells delays compaction of mouse preimplantation embryos

    PubMed Central

    Cong, Yingli; Cui, Lifang; Zhang, Zhenhong; Xi, Jianzhong; Wang, Mianjuan

    2014-01-01

    Background: Mouse embryonic stem (ES) cells are derived from the inner cell mass (ICM) of the preimplantation blastocysts. So it is suggested that ES and ICM cells should have similar cellular surface molecules and antiserum to ES cells can inhibit ICM development. Objective: The objective of this study was to evaluate the effect of rabbit antiserum to ES cells on mouse preimplantation embryo development and chimera production. Materials and Methods: Mouse 4-cell embryos were matured in vitro at 37.5oC, in humidified 5% CO2 atmosphere for 12-36 h. The embryos were cultured in KSOM medium with or without antiserum for 12-36 h. The ratios of in vitro embryo development of the blastocysts, cell division, attachment potential, alkaline phosphatase activity, post-implantation development, and chimera production were assessed and compared with the control group. P<0.05 was considered as significant. Results: The rabbit antiserum to mouse ES cells showed delay in embryo compaction and induced decompaction at 8-cell stage. The development of 4-cell embryos in the presence of the antiserum for 36h did not lead to a reduced or absent ICM. These embryos still displayed positive alkaline phosphatase activity, normal cell division, embryo attachment, outgrowth formation, implantation and post-implantation development. In addition, decompaction induced by antiserum did not increase production and germline transmission of chimeric mice. Conclusion: The results showed that antiserum to ES cells delayed embryo compaction and did not affect post-implantation development and chimera production. PMID:24799859

  1. Label Free Cell-Tracking and Division Detection Based on 2D Time-Lapse Images For Lineage Analysis of Early Embryo Development

    PubMed Central

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-01-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are: (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  2. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst. PMID:26890962

  3. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos.

    PubMed

    Liu, Tiancheng; Yu, Lin; Ding, Guohui; Wang, Zhen; Liu, Lei; Li, Hong; Li, Yixue

    2015-01-01

    Evolutionary developmental biology (EVO-DEVO) tries to decode evolutionary constraints on the stages of embryonic development. Two models--the "funnel-like" model and the "hourglass" model--have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED) were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA). Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies. PMID:26273607

  4. Observations of turkey eggs stored up to 27 days and incubated for 8 days: embryo developmental stage and weight differences and the differentiation of fertilized from unfertilized germinal discs.

    PubMed

    Bakst, M R; Welch, G R; Camp, M J

    2016-05-01

    For logistical reasons, egg storage prior to incubation is a growing practice in the commercial turkey industry. Yet the consequence of increasing egg storage over 7 d is a progressive increase in embryo mortality. The objective of this study was to provide the information necessary to differentiate an early dead embryo from an unfertilized egg after 8 days of incubation (DOI). Five groups of eggs each from inseminated and virgin hens were stored for progressively increasing periods of time (5-d or less, 6 to 10 d, 11 to 15 d, 16 to 20 d, and 21 to 27 d) and incubated. At 8 DOI, eggs were examined and the stage of development (Hamburger and Hamilton, 1951) and embryo weights in normally developed eggs were determined. There was a significant negative correlation between the stage of development and embryo weight with increasing storage periods. All remaining eggs from the inseminated and virgin hens were broken-out and the appearance of the yolk and the fertilized and unfertilized germinal discs examined. The yolks of both hen groups with unfertilized ova maintained a homogeneous uniform yellow-orange color. In contrast, yolks of ova that had been fertilized, with or without early-dead embryos, and yolks from virgin hens that showed evidence of parthenogenetic development (3%) had a heterogeneous appearance. Using fluorescence microscopy, the heterogeneous appearance was due to sheets of aberrant cells and less frequently dispersed cells and folds of the perivitelline layer. It was concluded that clear egg breakouts need to be performed to more accurately assess the impact of egg storage on embryonic mortality. Furthermore, such breakouts should be performed with a high intensity light directed across the surface of the germinal disc to clearly differentiate the subtle differences between an early-dead embryo and an unfertilized germinal disc. PMID:26957633

  5. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

    PubMed

    Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

    2016-08-25

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation. PMID:27064112

  6. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure

    PubMed Central

    JEON, Yubyeol; NAM, Yeong-Hee; CHEONG, Seung-A; KWAK, Seong-Sung; LEE, Eunsong; HYUN, Sang-Hwan

    2016-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation. PMID:27064112

  7. A semi-dominant mutation in the general splicing factor SF3a66 causes anterior-posterior axis reversal in one-cell stage C. elegans embryos.

    PubMed

    Keikhaee, Mohammad R; Nash, Eric B; O'Rourke, Sean M; Bowerman, Bruce

    2014-01-01

    Establishment of anterior-posterior polarity in one-cell stage Caenorhabditis elegans embryos depends in part on astral microtubules. As the zygote enters mitosis, these microtubules promote the establishment of a posterior pole by binding to and protecting a cytoplasmic pool of the posterior polarity protein PAR-2 from phosphorylation by the cortically localized anterior polarity protein PKC-3. Prior to activation of the sperm aster, the oocyte Meiosis I and II spindles assemble and function, usually at the future anterior pole, but these meiotic spindle microtubules fail to establish posterior polarity through PAR-2. Here we show that a semi-dominant mutation in the general splicing factor SF3a66 can lead to a reversed axis of AP polarity that depends on PAR-2 and possibly on close proximity of oocyte meiotic spindles with the cell cortex. One possible explanation is that reduced levels of PKC-3, due to a general splicing defect, can result in axis reversal due to a failure to prevent oocyte meiotic spindle microtubules from interfering with AP axis formation. PMID:25188372

  8. Combined progesterone (IM + V) versus vaginal progesterone for luteal support in cleavage-stage embryo transfer cycles of good prognosis patients.

    PubMed

    Pabuccu, E G; Pabuccu, R; Evliyaoglu Ozdegirmenci, O; Bostancı Durmus, A; Keskin, M

    2016-05-01

    Many reports led to the consensus on the use of progesterone (P) for luteal-phase support. Vaginal P application is the method of choice due to its simplicity and high patient convenience but is hampered by application difficulties and personal or cultural aversions. Inappropriate vaginal P use may alter successful implantation, leading physicians to consider alternate P application routes. A worldwide survey revealed that intramuscular plus vaginal P (combined P) is the method used in nearly one-third of in vitro fertilization (IVF) cycles, particularly in Asia and North America; unfortunately, the outcomes of this approach have not been clearly elucidated. In the current analysis, we evaluated any additional benefit of short course parenteral P in addition to vaginal P capsules during a specific period in terms of implantation, pregnancy rates, miscarriages and ectopic pregnancies in cleavage stage embryo transfer (ET) cycles of good-prognosis patients. Despite significantly higher implantation rates in the combined arm, clinical and ongoing pregnancies were comparable in both groups, whereas a trend toward increased pregnancy rates was observed with combined support. The available data are too limited to draw conclusions. PMID:26732029

  9. Sterilising embryos for transgenic chimaeras.

    PubMed

    Aige-Gil, V; Simkiss, K

    1991-07-01

    1. Experiments were undertaken to attempt to sterilise fowl embryos with ultraviolet light. Such sterilised embryos would be useful as recipients of genetically manipulated germ cells. 2. The germinal crescents of embryos were exposed to a calibrated UV source at stages 4 and 8 to 10 of incubation for 30 s, 3 min and 10 min. Teratological and sterility effects were studied at periods up to 6 d of incubation. 3. Simply exposing embryos by opening the shell produced a number of abnormalities and mortalities. These decreased with the age of the embryo but increased with the dosage of irradiation. 4. Although there was abundant evidence for UV-induced cell damage, the sterility of the embryos was usually less than 75%. PMID:1893258

  10. Prion Protein and Stage Specific Embryo Antigen 1 as Selection Markers to Enrich the Fraction of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Ikeda, Nobuhito; Nakayama, Yuji; Nakazawa, Natsumi; Yoshida, Akio; Ninomiya, Haruaki; Shirayoshi, Yasuaki

    2016-01-01

    Background The prion protein (PrP) might be useful as a tool to collect cardiac progenitor cells derived from embryonic stem (ES) cells. It is also possible that PrP+ cells include undifferentiated cells with a capacity to develop into tumors. Methods PrP+ cells isolated from embryoid bodies (EB) formed by mouse AB1 ES cells were examined using RT–PCR analysis and clonogeneic cell assay. To assess their potential to differentiate into cardiomyocytes, Nkx2.5GFP/+ (hcgp7) cells, another ES cell line that carries the GFP reporter gene in the Nkx2.5 loci, were used. Results PrP+ cells isolated from EB of day 7 and 14 did not express pluripotency markers, but expressed cardiac cell markers, while PrP+ cells isolated from EB of day 21 expressed pluripotency markers. Cultured PrP+ cells isolated from EB of day 21 expressed pluripotency markers to form colonies, whereas those isolated from EB of day 7 and 14 did not. To exclude proliferating cells from PrP+ cells, stage specific embryo antigen 1 (SSEA1) was employed as a second marker. PrP+/SSEA1– cells did not proliferate and expressed cardiac cell markers, while PrP+/SSEA1+ did proliferate. Conclusion PrP+ cells isolated from EB included undifferentiated cells in day 21. PrP+/SSEA1– cells included cardiomyoctes, suggesting PrP and SSEA1 may be useful as markers to enrich the fraction of cardiomyocytes. PMID:27493483

  11. Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage

    PubMed Central

    Shankar, Madhira Bhawani; Munuswamy, Deecaraman

    2010-01-01

    Purpose To determine the effects of α-tocopherol supplementation to oocyte maturation media and embryo culture media on the yield of ovine embryos. Methods α-tocopherol, at concentrations of 0, 50, 100, 200, 400 and 500 µM was supplemented to ovine oocyte or embryo culture media and cultured at 5% or 20% O2 levels. Percentages of cleavage, morula and blastocyst, total cell count and comet assay were taken as indicators of developmental competence of embryos. Results 200 µM α-tocopherol in embryo culture medium at 20% O2 level significantly increased the rates of cleavage (P < 0.05), morulae (P < 0.05) and blastocyst (P < 0.01) formation and blastocyst total cell number (P < 0.01) when compared with control. The rates of blastocyst formation were also significantly higher in 100 µM (P < 0.01) and 400 µM (P < 0.05) supplemented groups than control. Conclusion α-tocopherol supplementation may enhance the in vitro developmental competence of ovine embryos by protecting them from oxidative damage. PMID:20454845

  12. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  13. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo

    PubMed Central

    Marikawa, Yusuke; Alarcón, Vernadeth B.

    2010-01-01

    The first cell lineage specification in mouse embryo development is the formation of trophectoderm (TE) and inner cell mass (ICM) of the blastocyst. This article is to review and discuss the current knowledge on the cellular and molecular mechanisms of this particular event. Several transcription factors have been identified as the critical regulators of the formation or maintenance of the two cell lineages. The establishment of TE manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and that function in many epithelial tissues. Distinct epithelial features start to emerge at the late 8-cell stage, but the fates of blastomeres are not fixed as TE or ICM until around 32-cell stage. The location of blastomeres at this stage, i.e., external or internal of the embryo, in effect defines the commitment towards the TE or ICM lineage, respectively. Some studies implicate the presence of a developmental bias among blastomeres at 2- or 4-cell stage, although it is unlikely to play a decisive role in the establishment of TE and ICM. The unique mode of cell lineage specification in the mouse embryo is further discussed in comparison with the formation of initial cell lineages, namely the three germ layers, in non-mammalian embryos. PMID:19479991

  14. Improving efficiencies of locus-specific DNA methylation assessment for bovine in vitro produced embryos.

    PubMed

    Wroclawska, Ewa; Brant, Jason O; Yang, Thomas P; Moore, Karen

    2010-02-01

    Characterization of DNA methylation is one assessment of chromatin remodeling in early embryos. Unfortunately, evaluation at specific loci is hindered by their small cell numbers. Our objective was to determine if bisulfite sequencing could be optimized for preimplantation embryos, comparing conversion times, primer design, and DNA amplification methods. Methylation at three loci, SATI, OCT4, and IGF2, was investigated in bovine in vitro produced (IVP) embryos, somatic cells, and no template controls. Bisulfite treatment for 15-16 h gave higher quality DNA than treatment for 18 h. Three step primer design improved bisulfite primer specificity, yielding more PCR product than primers previously reported. Following optimization, methylation data were obtained from as few as 4 cell equivalents. Finally, DNA amplification efficiencies were evaluated using miniprep, TempliPhi, or 96-well glycerol stocks with automated TempliPhi. While TempliPhi was better than standard minipreps, the 96-well format proved most efficient. Preliminary methylation profiles of bovine IVP 2-cell, 8-cell, blastocyst stage embryos and somatic cells were 25, 10, 22, and 74% for SATI and 88, 88, 79, and 88% for OCT4, respectively, suggesting that SATI is demethylated during early embryonic reprogramming, while OCT4 remains hypermethylated. IGF2 methylation was 84, 28, and 84% for bovine IVP 8-cell, blastocyst stage embryos and somatic cells; blastocyst stage embryos exhibited more variability, ranging from 0 to 80%. This new assay will enhance assessment of chromatin remodeling in embryos, and be especially useful for evaluating those produced by assisted reproductive technologies. PMID:20170282

  15. Impact of oxygen concentrations on fertilization, cleavage, implantation, and pregnancy rates of in vitro generated human embryos

    PubMed Central

    Peng, Zhao-Feng; Shi, Sen-Lin; Jin, Hai-Xia; Yao, Gui-Dong; Wang, En-Yin; Yang, Hong-Yi; Song, Wen-Yan; Sun, Ying-Pu

    2015-01-01

    The aim of the present study was to determine the impact of oxygen concentration during in vitro culture of human oocytes and embryos on fertilization, cleavage, implantation, pregnancy, multiple gestation and abortion rates. Women 20-48 years old presenting for infertility treatment and accounting for 3484 in vitro fertilization/intracytoplasmic sperm injection cycles were included in the study. Oocytes/embryos were randomly allocated to be incubated under three different oxygen tension environments: (1) 20% O2 in air; (2) initially 20% O2 in air, followed on day 2 (2-4 cells stage) by 5% CO2, 5% O2 and 90% N2; and (3) 5% CO2, 5% O2 and 90% N2 throughout. Interestingly, IVF-derived embryos cultured in 5% O2 yielded higher rates of fertilization and implantation as compared to those incubated in 20% O2 (P < 0.05). Conversely, embryos in 20% O2 yielded higher rates of fertilization, high quality embryo and implantation than those in the 20%-5% O2 group (P < 0.05). Moreover, ICSI-derived embryos cultured in 20% O2 resulted in lower rates of cleavage as compared to those from the 20%-5% O2 group (P < 0.05). These results are consistent with in vitro and subsequent in vivo embryo development being more susceptible to O2 tension fluctuations rather than the degree of O2 tension itself during culture. PMID:26131222

  16. Coxsackievirus and Adenovirus Receptor, a Tight Junction Protein, in Peri-Implantation Mouse Embryos.

    PubMed

    Oh, Yeong Seok; Nah, Won Heum; Choi, Bomi; Kim, Seok Hyun; Gye, Myung Chan

    2016-07-01

    To understand the role of Coxsackievirus and adenovirus receptor (CAR), a tight junction (TJ) protein, in peri-implantation embryos, developmental expression of CAR and its role in paracellular permeability were examined in mouse embryos. Splice variants for transmembrane CAR, Car1, Car2, and Car3 mRNA, were expressed from 2-cell, morula, and blastocyst stages onward, respectively, whereas mRNA for soluble CAR was expressed in MII oocytes and 4-cell stage onward. On Western blot, ∼46 kDa CAR proteins were detected in blastocysts. During the 4-cell embryos to morula stage, CAR was gradually concentrated at the contacts between blastomeres. In blastocysts, CAR was expressed at the cell contacts within the inner cell mass as well as in the trophectoderm (TE) where CAR was found together with ZO1 at the apical contacts, suggesting that CAR builds up apical TJs in TE and mediates cell adhesion in TE and inner cell mass. In blastocysts, CAR-blocking antibodies under Ca(2+) switching increased the dextran permeability and decreased the volume of blastocoel and H19 and Cdx2 mRNA, suggesting the pivotal role of CAR in the blastocyst development and paracellular permeability barrier in TE. CAR was expressed in TE of implanting embryos as well as endometrial epithelium, suggesting the involvement of CAR in the interaction between implanting embryos and endometrium. At 5-6 days postcoitum, CAR was expressed together with ZO1 in the primitive endoderm, visceral endoderm, and epiblasts facing the pro-amniotic cavity, suggesting that CAR TJs contribute to the separation of epiblast from the blastocoel and development of the pro-amniotic cavity within epiblasts. PMID:27226313

  17. Radiation sensitivity of the gastrula-stage embryo: Chromosome aberrations and mutation induction in lacZ transgenic mice: The roles of DNA double-strand break repair systems.

    PubMed

    Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah

    2015-10-01

    At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including

  18. Dam line and sire line effects on turkey embryo survival and thyroid hormone concentrations at the plateau stage in oxygen consumption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of embryo thyroid function was measured in lines of turkeys. Two lines that had been selected for either increased egg production (E) or increased 16-wk BW (F) and their respective randombred controls (i.e., RBC1 and RBC2) were examined. Reciprocal crosses of dams and sires from each sel...

  19. Ion currents in embryo development.

    PubMed

    Tosti, Elisabetta; Boni, Raffaele; Gallo, Alessandra

    2016-03-01

    Ion channels are proteins expressed in the plasma membrane of electrogenic cells. In the zygote and blastomeres of the developing embryo, electrical modifications result from ion currents that flow through these channels. This phenomenon implies that ion current activity exerts a specific developmental function, and plays a crucial role in signal transduction and the control of embryogenesis, from the early cleavage stages and during growth and development of the embryo. This review describes the involvement of ion currents in early embryo development, from marine invertebrates to human, focusing on the occurrence, modulation, and dynamic role of ion fluxes taking place on the zygote and blastomere plasma membrane, and at the intercellular communication between embryo cell stages. Birth Defects Research (Part C) 108:6-18, 2016. © 2016 Wiley Periodicals, Inc. PMID:26989869

  20. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos

    PubMed Central

    EMURA, Natsuko; SAKURAI, Nobuyuki; TAKAHASHI, Kazuki; HASHIZUME, Tsutomu; SAWAI, Ken

    2016-01-01

    Oct-4, a member of the POU family of transcription factors, is a key factor that regulates the segregation of the inner cell mass (ICM) and the trophectoderm (TE) during the transition from morula to blastocyst in mice. However, little is known about its role in porcine early embryogenesis. To determine the function of OCT-4 in the ICM and TE segregation of porcine embryos, we studied the developmental morphology of porcine embryos using RNA interference technology. Our experiments demonstrated that when 1-cell stage embryos were co-injected with the small interfering RNA (siRNA)for targeted knockdown of OCT-4 (OCT-4-siRNA) and tetramethylrhodamine isothiocyanate (TRITC)-dextran conjugate (Dx), they failed to form blastocysts. Therefore, in this study, we constructed chimeric embryos comprising blastomeres that either expressed OCT-4 normally or showed downregulated OCT-4 expression by co-injection of OCT-4-siRNA and Dx into one blastomere in 2- to 4-cell stage embryos. In control embryos, which were co-injected with control siRNA and Dx, Dx-positive cells contributed to the TE lineage in almost all the blastocysts examined. In contrast, Dx-positive cells derived from a blastomere co-injected with OCT-4-siRNA and Dx were degenerated in almost half the blastocysts. This was probably due to the inability of these cells to differentiate into the TE lineage. Real-time RT-PCR analysis revealed no difference in the levels of SOX2, TEAD4, FGF4 and FGFR1-IIIc, all of which are known to be regulated by OCT-4, between the OCT-4-siRNA-injected morulae and the control ones. However, the level of CDX2, a molecule specifically expressed in the TE lineage, was significantly higher in the former than in the latter. Our results indicate that continuous expression of OCT-4 in blastomeres is essential for TE formation of porcine embryos. PMID:27210587

  1. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  2. Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions

    PubMed Central

    Karja, Ni Wayan Kurniani; Kikuchi, Kazuhiro; Fahrudin, Mokhamad; Ozawa, Manabu; Somfai, Tamás; Ohnuma, Katsuhiko; Noguchi, Junko; Kaneko, Hiroyuki; Nagai, Takashi

    2006-01-01

    Background Recent work has shown that glucose may induce cell injury through the action of free radicals generated by autooxidation or through hypoxanthine phosphoribosyltransferase inhibition. The effect of glucose during early in vitro culture (IVC) period of porcine embryos on their developmental competence, contents of reactive oxygen species (ROS) and glutathione (GSH), and the quality of the blastocysts yielded was examined. Methods In vitro matured and fertilized porcine oocytes were cultured for the first 2 days (Day 0 = day of fertilization) of IVC in NCSU-37 added with 1.5 to 20 mM glucose (Gluc-1.5 to -20 groups) or pyruvate and lactate (Pyr-Lac group). The embryos in all groups were cultured subsequently until Day 6 in NCSU-37 with 5.5 mM added glucose. The ROS and GSH level were measured at Day 1 and 2. DNA-fragmented nuclei and the total cell numbers in blastocyst were evaluated by TUNEL-staining at Day 6. Results Under 5% oxygen the blastocyst rates and total cell numbers in the blastocysts in all glucose groups were significantly lower than that in the Pyr-Lac group. Similar result in blastocyst rate was found under 20% oxygen (excluding the Gluc-10 group), but total cell numbers in the blastocysts was similar among the groups. At both oxygen tensions, the H2O2 levels of Day 1 embryos in all glucose groups were significantly higher than that in the Pyr-Lac group, while only the Gluc-1.5 group of Day 2 embryos showed a significantly higher H2O2 level than that in the Pyr-Lac group. The GSH contents of either Day 1 or Day 2 embryos developed under 5% oxygen were similar among the groups. Only the content of Day 2 embryos in 1.5 mM group was significantly lower than the embryos in the Pyr-Lac group under 20% oxygen. Total cell numbers in the blastocysts (except in the Gluc-20 group) were significantly lower in the embryos cultured under 20% oxygen than 5% oxygen. Only the Gluc-20 blastocysts developed under 5% oxygen showed significantly higher DNA

  3. Intrauterine embryo transfer with canine embryos cryopreserved by the slow freezing and the Cryotop method

    PubMed Central

    HORI, Tatsuya; USHIJIMA, Hitoshi; KIMURA, Taku; KOBAYASHI, Masanori; KAWAKAMI, Eiichi; TSUTSUI, Toshihiko

    2016-01-01

    Canine embryos (8-cell to blastocyst stages) frozen-thawed using the slow-freezing method with glycerol (four recipients) or dimethyl sulfoxide (three recipients) as a cryoprotectant and vitrified-warmed using the Cryotop method (five recipients) were surgically transferred into the unilateral uterine horn of recipient bitches. As a result, the morphology of embryos frozen-thawed using the slow-freezing method was judged to be normal, but no conception occurred in any of the recipient bitches. Two of the five bitches that received transferred embryos (morula to early blastocyst stages) vitrified-warmed using the Cryotop method became pregnant and produced normal pups (1/9 embryos, 11.1% and 1/6 embryos, 17.0%). It was concluded that the Cryotop method was more appropriate for canine embryo cryopreservation than the slow-freezing method, which is used for the cryopreservation of embryos of other mammalian species. PMID:27041356

  4. Intrauterine embryo transfer with canine embryos cryopreserved by the slow freezing and the Cryotop method.

    PubMed

    Hori, Tatsuya; Ushijima, Hitoshi; Kimura, Taku; Kobayashi, Masanori; Kawakami, Eiichi; Tsutsui, Toshihiko

    2016-08-01

    Canine embryos (8-cell to blastocyst stages) frozen-thawed using the slow-freezing method with glycerol (four recipients) or dimethyl sulfoxide (three recipients) as a cryoprotectant and vitrified-warmed using the Cryotop method (five recipients) were surgically transferred into the unilateral uterine horn of recipient bitches. As a result, the morphology of embryos frozen-thawed using the slow-freezing method was judged to be normal, but no conception occurred in any of the recipient bitches. Two of the five bitches that received transferred embryos (morula to early blastocyst stages) vitrified-warmed using the Cryotop method became pregnant and produced normal pups (1/9 embryos, 11.1% and 1/6 embryos, 17.0%). It was concluded that the Cryotop method was more appropriate for canine embryo cryopreservation than the slow-freezing method, which is used for the cryopreservation of embryos of other mammalian species. PMID:27041356

  5. Radioactive labeling of proteins in cultured postimplantation mouse embryos. I. Influence of the embryo preparation method

    SciTech Connect

    Nowak, J.; Klose, J. )

    1989-07-01

    Conditions for optimum incorporation of radioactive amino acids into proteins of cultured postimplantation mouse embryos were investigated under the aspect of using these proteins for two-dimensional electrophoretic separations followed by fluorography. The aim was to obtain highly radioactive proteins under conditions as physiological as possible. Embryos at Days 10, 11, and 12 of gestation were prepared in different ways and incubated for 4 h in Tyrode's solution containing ({sup 3}H)amino acids (mixture) at a concentration of 27 microCi/ml medium. The preparations were: (a) yolk sac opened, placenta and blood circulation intact; (b) yolk sac and amnion opened, placenta and blood circulation intact (Day 10 embryos only); (c) placenta, yolk sac, and amnion removed (embryo naked); (d) naked embryos cut randomly into pieces (Day 10 embryos only). After incubation whole embryos or certain parts (tail, liver, rest body) were investigated by determining the radioactivity taken up by the protein. The results are given in dpm per mg protein per embryo. Radioactivity of proteins was about 3 times higher in naked embryos than in embryos left in their yolk sacs. This was true for all three stages investigated. However, the degree of radioactivity in the various parts of naked embryos differed by a factor of 15, whereas radioactivity was evenly distributed in embryos incubated in their yolk sacs. Therefore, embryos prepared according to the first method (see above) fulfilled the conditions required at the best.

  6. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  7. Ensoulment and IVF embryos.

    PubMed Central

    Shea, M C

    1987-01-01

    This paper examines the metaphysical question of 'ensoulment' in relation to the theory, put forward in an earlier paper, that human life begins when the newly formed body organs and systems of the embryo begin to function as an organised whole, at which stage there is evidence of a change of nature. Although Roman Catholic theology teaches that a human being is a union of physical body and spiritual soul, it is incorrect to interpret this in a dualistic sense. The meaning of 'soul' is considered and the conclusion reached that although both in the religious context and apart from it abortion is difficult to justify at any stage after conception, it does not follow that the use of 'spare' In Vitro Fertilisation (IVF) embryos should be rejected. If 'ensoulment' does not occur until the new organism functions as a whole then a decision not to make use of IVF embryos for medical purposes would be a heavy responsibility and not a 'safe' way out. PMID:3612702

  8. IN VITRO CULTURE OF POSTIMPLANTATION HAMSTER EMBRYOS

    EPA Science Inventory

    In vitro culture of intact rat and mouse embryos has been described extensively, but information on the culture of other species is sparse. The present study examined some culture requirements of early somite stage hamster embryos and assessed the embryotoxic effects of sodium sa...

  9. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  10. A differential screen for genes expressed in the extraembryonic endodermal layer of pre-primitive streak stage chick embryos reveals expression of Apolipoprotein A1 in hypoblast, endoblast and endoderm.

    PubMed

    Bertocchini, Federica; Stern, Claudio D

    2008-09-01

    The lower layer of the pre-gastrulating chick embryo is an extra-embryonic tissue made up of two different cell populations, the hypoblast and the endoblast. The hypoblast is characterized by the expression of inhibitory signalling molecules (e.g. Cerberus, Dickkopf1, Crescent) and others (e.g. Otx2, goosecoid, Hex, Hesx1/RPX, FGF8). However, no genes expressed in the endoblast have yet been found. We designed a differential screen to identify markers differentially expressed in these two cell populations. This only revealed one novel gene, Apolipoprotein A1 (APO A1) with restricted endodermal layer expression. Expression of APO A1 begins very early throughout the lower layer (both hypoblast and endoblast). At later stages it is also expressed in the endoderm and its derivatives, the anterior intestinal portal endoderm and the growing liver bud. PMID:18672094

  11. Impairment of Preimplantation Porcine Embryo Development by Histone Demethylase KDM5B Knockdown Through Disturbance of Bivalent H3K4me3-H3K27me3 Modifications1

    PubMed Central

    Huang, Jiaojiao; Zhang, Hongyong; Wang, Xianlong; Dobbs, Kyle B.; Yao, Jing; Qin, Guosong; Whitworth, Kristin; Walters, Eric M.; Prather, Randall S.; Zhao, Jianguo

    2015-01-01

    ABSTRACT KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications. PMID:25609834

  12. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro.

    PubMed

    Lane, M; Gardner, D K

    1992-04-01

    The morphology, cleavage rate and viability of preimplantation embryos from random bred Swiss mice were assessed after culture in different incubation volumes and embryo densities. Decreasing the incubation volume, from 320 to 20 microliters, significantly increased blastocyst cell number (P less than 0.01) and embryo development after transfer (P less than 0.01). Increasing the number of embryos incubated per drop from 1 to 16 significantly increased the number of two-cell embryos reaching the blastocyst stage in 5 or 320 microliters. Culturing embryos in groups significantly increased blastocyst cell numbers in all volumes employed and elevated embryo viability. Such observations are consistent with the hypothesis that the preimplantation mammalian embryo produces a factor(s) which can stimulate its own development. The results of this study have implications for clinical in-vitro fertilization, where embryos are routinely cultured individually in relatively large volumes. PMID:1522203

  13. Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos

    SciTech Connect

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

    1988-02-01

    We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos.

  14. Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle.

    PubMed

    Spell, A R; Beal, W E; Corah, L R; Lamb, G C

    2001-07-15

    The objectives of this experiment were to determine the effects of corpus luteum characteristics, progesterone concentration, donor-recipient synchrony, embryo quality, type, and developmental stage on pregnancy rates after embryo transfer. We synchronized 763 potential recipients for estrus using one of two synchronization protocols: two doses of PGF2alpha (25 mg i.m.) given 11 d apart (Location 1); and, a single norgestomet implant for 7 d with one dose of PGF2alpha (25 mg i.m.) 24 h before implant removal (Location 2). At embryo transfer, ovaries were examined by rectal palpation and ultrasonography. Of the 526 recipients presented for embryo transfer, 122 received a fresh embryo and 326 received a frozen embryo. Pregnancy rates were greater (P < 0.05) with fresh embryos (83%) than frozen-thawed embryos (69%). Pregnancy rates were not affected by embryo grade, embryo stage, donor-recipient synchrony, or the palpated integrity of the CL. Corpus luteum diameter and luteal tissue volume increased as days post-estrus for the recipients increased. However, pregnancy rates did not differ among recipients receiving embryos 6.5 to 8.5 days after estrus (P > 0.1). There was a significant, positive simple correlation between CL diameter or luteal tissue volume and plasma progesterone concentration (r = 0.15, P < 0.01 and r = 0.18, P < 0.01, respectively). There were no significant differences in mean CL diameter, luteal volume or plasma progesterone concentration among recipients that did or did not become pregnant after embryo transfer. We conclude that suitability of a potential embryo transfer recipient is determined by observed estrus and a palpable corpus luteum, regardless of size or quality. PMID:11480620

  15. Effects of Fluoxetine on Human Embryo Development.

    PubMed

    Kaihola, Helena; Yaldir, Fatma G; Hreinsson, Julius; Hörnaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D A; Åkerud, Helena; Sundström-Poromaa, Inger

    2016-01-01

    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus, the aim of the present study was to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant world-wide, exposure influences the timing of different embryo developmental stages, and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine in the early embryo development. Human embryos (n = 48) were randomly assigned to treatment with 0.25 or 0.5 μM fluoxetine in culture medium. Embryo development was evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed human embryos was analyzed by use of high-multiplex immunoassay. The lower dose of fluoxetine had no influence on embryo development. A trend toward reduced time between thawing and start of cavitation was noted in embryos treated with 0.5 μM fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45 proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins are involved in cell growth, survival, proliferation, and inflammatory response. Culturing with 0.5 μM, but not 0.25 μM fluoxetine, caused a significant increase in urokinase-type plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal effects on the timing of developmental stages in embryos, but induces expression and secretion of several proteins in a manner that depends on dose. For these reasons, and in line with current guidelines, the lowest possible dose of SSRI should be used in pregnant women who need to continue treatment. PMID:27378857

  16. Effects of Fluoxetine on Human Embryo Development

    PubMed Central

    Kaihola, Helena; Yaldir, Fatma G.; Hreinsson, Julius; Hörnaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D. A.; Åkerud, Helena; Sundström-Poromaa, Inger

    2016-01-01

    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus, the aim of the present study was to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant world-wide, exposure influences the timing of different embryo developmental stages, and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine in the early embryo development. Human embryos (n = 48) were randomly assigned to treatment with 0.25 or 0.5 μM fluoxetine in culture medium. Embryo development was evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed human embryos was analyzed by use of high-multiplex immunoassay. The lower dose of fluoxetine had no influence on embryo development. A trend toward reduced time between thawing and start of cavitation was noted in embryos treated with 0.5 μM fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45 proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins are involved in cell growth, survival, proliferation, and inflammatory response. Culturing with 0.5 μM, but not 0.25 μM fluoxetine, caused a significant increase in urokinase-type plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal effects on the timing of developmental stages in embryos, but induces expression and secretion of several proteins in a manner that depends on dose. For these reasons, and in line with current guidelines, the lowest possible dose of SSRI should be used in pregnant women who need to continue treatment. PMID:27378857

  17. Glassfrog embryos hatch early after parental desertion.

    PubMed

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  18. Glassfrog embryos hatch early after parental desertion

    PubMed Central

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  19. Comparison of clinical outcomes between fresh embryo transfers and frozen-thawed embryo transfers

    PubMed Central

    Shen, Chunjuan; Shu, Defeng; Zhao, Xiaojie; Gao, Ying

    2014-01-01

    Background: Advances in embryo culture technology and cryopreservation have led to a shift in in vitro fertilization (IVF) from early fresh or frozen-thawed cleavage embryo transfer to fresh or frozen-thawed blastocyst stage transfer. Objective: To compare the clinical outcomes of fresh embryo transfers and frozen-thawed embryo transfers. Materials and Methods: In this retrospective case control study, patients undergoing IVF cycles from January 2012 to December 2012 were enrolled in Assisted Reproduction of Wuhan Union Hospital were enrolled. A total of 1891 cycle contains 1150 fresh embryo transfers and 741 frozen-thawed embryo transfers were studied. All data were transferred directly to SPSS 18 and analyzed. Results: Clinical pregnancy rates of fresh cleavage-stage embryo transfers compared with fresh blastocyst transfers, frozen-thawed cleavage-stage embryo transfers, post thaw cleavage-stage extended blastocyst culture transfers and frozen-thawed blastocyst transfers were 52.7%, 35.88%, 35.29%, 47.75%, 59.8% in patients under 35 years of ages and 41.24%, 26.92%, 11.32%, 46.15%, 55.8% in patients older than 35 years old, respectively. The multiple pregnancy rates, abortion rates and ectopic pregnancy rates did not differ significantly among the five groups. Conclusion: The clinical pregnancy rates were not different significantly between fresh cleavage-stage embryo transfers and fresh blastocyst transfers. But the clinical pregnancy rate of frozen-thawed blastocyst transfer was the highest among fresh/frozen-thawed embryo transfers. PMID:25071849

  20. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development.

    PubMed

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. PMID:27109472

  1. RNA Profiles of Porcine Embryos during Genome Activation Reveal Complex Metabolic Switch Sensitive to In Vitro Conditions

    PubMed Central

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben; Hyttel, Poul; Collas, Philippe; Cabot, Ryan

    2013-01-01

    Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos

  2. Neural network classification of sweet potato embryos

    NASA Astrophysics Data System (ADS)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  3. Genetic Analysis of Human Preimplantation Embryos.

    PubMed

    Garcia-Herrero, S; Cervero, A; Mateu, E; Mir, P; Póo, M E; Rodrigo, L; Vera, M; Rubio, C

    2016-01-01

    Preimplantation development comprises the initial stages of mammalian development, before the embryo implants into the mother's uterus. In normal conditions, after fertilization the embryo grows until reaching blastocyst stage. The blastocyst grows as the cells divide and the cavity expands, until it arrives at the uterus, where it "hatches" from the zona pellucida to implant into the uterine wall. Nevertheless, embryo quality and viability can be affected by chromosomal abnormalities, most of which occur during gametogenesis and early embryo development; human embryos produced in vitro are especially vulnerable. Therefore, the selection of chromosomally normal embryos for transfer in assisted reproduction can improve outcomes in poor-prognosis patients. Additionally, in couples with an inherited disorder, early diagnosis could prevent pregnancy with an affected child and would, thereby, avoid the therapeutic interruption of pregnancy. These concerns have prompted advancements in the use of preimplantation genetic diagnosis (PGD). Genetic testing is applied in two different scenarios: in couples with an inherited genetic disorder or carriers of a structural chromosomal abnormality, it is termed PGD; in infertile couples with increased risk of generating embryos with de novo chromosome abnormalities, it is termed preimplantation genetic screening, or PGS. PMID:27475859

  4. Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.

    PubMed

    Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe

    2016-09-01

    The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes

  5. Housekeeping gene transcript abundance in bovine fertilized and cloned embryos.

    PubMed

    Ross, Pablo J; Wang, Kai; Kocabas, Arif; Cibelli, Jose B

    2010-12-01

    The objective of this study was to compare housekeeping gene expression levels, relative to total mRNA, across different stages of bovine preimplantation development in embryos generated by IVF and somatic cell nuclear transfer (SCNT). We first analyzed the levels of total RNA recovered from different stages of preimplantation development. A similar RNA level was observed from oocytes to 16-cell stage embryos with a significant increase at morula and blastocyst stages. Then we used an absolute mRNA determination method that accounts for the RNA level in the embryo by quantifying copies of transcripts normalized to loaded cDNA amount. The number of housekeeping genes mRNA copies per nanogram of cDNA was compared among samples obtained from different stages of preimplantation IVF-derived embryos. None of the genes analyzed (GAPDH, PPIA, ACTB, RPL15, GUSB, and Histone H2A.2) maintained constant levels throughout preimplantation development, indicating that they are not suitable for normalizing gene expression across developmental stages. We then compared expression of housekeeping genes between IVF and SCNT embryos at different embryonic stages. We found different levels of transcript abundance between IVF and SCNT embryos for GAPDH, RPL15, GUSB, and ACTB. On the other hand, Histone H2A.2 and PPIA were similar between IVF and SCNT embryos at each stage analyzed, although they varied across stages as previously mentioned. PMID:20973679

  6. In X. laevis embryos high levels of the anti-apoptotic factor p27BBP/eIF6 are stage-dependently found in BrdU and TUNEL-reactive territories.

    PubMed

    De Marco, N; Campanella, C; Carotenuto, R

    2011-05-01

    p27BBP/eIF6 (β4 binding protein/eukaryotic initiation factor 6) is a highly conserved protein necessary for cell life. In adult eIF6 mice, a 50% decrease in the protein levels in all tissues is accompanied by a reduction in cell proliferation only in the liver, fat cells and cultured fibroblasts. During X. laevis embryogenesis expression of p27BBP/eIF6 is abundant in high proliferative territories. However, in Xenopus cell proliferation appears unaffected following p27BBP/eIF6 over-expression or down-regulation. Indeed, p27BBP/eIF6 is an anti-apoptotic factor acting upstream of Bcl2 that reduces endogenous apoptosis. We studied p27BBP/eIF6 protein localization in wild type embryos and compared it to proliferation and apoptosis. At the beginning of embryogenesis, high levels of p27BBP/eIF6, proliferation and apoptosis overlap. In later development stages high proliferation levels are present in the same regions where higher p27BBP/eIF6 expression is observed, while apoptosis does not appear specifically concentrated in the same sites. The higher presence of p27BBP/eIF6 would appear related to an increased need of apoptosis control in the regions where cell death is essential for normal development. PMID:20663234

  7. Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1-EGFP expression of interspecies cloned embryos in dog.

    PubMed

    Mousai, M; Hosseini, S M; Hajian, M; Jafarpour, F; Asgari, V; Forouzanfar, M; Nasr-Esfahani, M H

    2015-10-01

    Adult canine fibroblasts stably transfected with either cytomegalovirus (CMV) or POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) were used to investigate if pre-treatment of these donor cells with two epigenetic drugs [trichostatin A (TSA), or S-adenosylhomocysteine (SAH)] can improve the efficiency of interspecies somatic cell nuclear transfer (iSCNT). Fluorescence-activated cell sorting (FACS), analyses revealed that TSA, but not SAH, treatment of both transgenic and non-transgenic fibroblasts significantly increased acetylation levels compared with untreated relatives. The expression levels of Bcl2 and P53 were significantly affected in TSA-treated cells compared with untreated cells, whereas SAH treatment had no significant effect on cell apoptosis. Irrespective of epigenetic modification, dog/bovine iSCNT embryos had overall similar rates of cleavage and development to 8-16-cell and morula stages in non-transgenic groups. For transgenic reconstructed embryos, however, TSA and SAH could significantly improve development to 8-16-cell and morula stages compared with control. Even though, irrespective of cell transgenesis and epigenetic modification, none of the iSCNT embryos developed to the blastocyst stage. The iSCNT embryos carrying CMV-EGFP expressed EGFP at all developmental stages (2-cell, 4-cell, 8-16-cell, and morula) without mosaicism, while no POU5F1-EGFP signal was observed in any stage of developing iSCNT embryos irrespective of TSA/SAH epigenetic modifications. These results indicated that bovine oocytes partially remodel canine fibroblasts and that TSA and SAH have marginal beneficial effects on this process. PMID:25314965

  8. Vitrification-based cryopreservation of Drosophila embryos

    SciTech Connect

    Schreuders, P.D.; Mazur, P.

    1994-12-31

    Currently, over 30,000 strains of Drosophila melanogaster are maintained by geneticists through regular transfer of breeding stocks. A more cost effective solution is to cryopreserve their embryos. Cooling and warming rates >10,000{degrees}C/min. are required to prevent chilling injury. To avoid the lethal intracellular ice normally produced at such high cooling rates, it is necessary to use {ge}50% (w/w) concentrations of glass-inducing solutes to vitrify the embryos. Differential scanning calorimetry (DSC) is used to develop and evaluate ethylene glycol and polyvinyl pyrrolidone based vitrification solutions. The resulting solution consists of 8.5M ethylene glycol + 10% polyvinylpyrrolidone in D-20 Drosophila culture medium. A two stage method is used for the introduction and concentration of these solutes within the embryo. The method reduces the exposure time to the solution and, consequently, reduces toxicity. Both DSC and freezing experiments suggest that, while twelve-hour embryos will vitrify using cooling rates >200{degrees}C/min., they will devitrify and be killed with even moderately rapid warming rates of {approximately}1,900{degrees}C/min. Very rapid warming ({approximately}100,000{degrees}C/min.) results in variable numbers of successfully cryopreserved embryos. This sensitivity to warming rite is typical of devitrification. The variability in survival is reduced using embryos of a precisely determined embryonic stage. The vitrification of the older, fifteen-hour, embryos yields an optimized hatching rate of 68%, with 35 - 40% of the resulting larvae developing to normal adults. This Success rite in embryos of this age may reflect a reduced sensitivity to limited devitrification or a more even distribution of the ethylene glycol within the embryo.

  9. Cryoprotectants protect medaka (Oryzias latipes) embryos from chilling injury.

    PubMed

    Zhang, Qing-Jing; Zhou, Guang-Bin; Wang, Yan-Ping; Fu, Xiang-Wei; Zhu, Shi-En

    2012-01-01

    This study was conducted to investigate the effect of six cryoprotectants (dimethyl sulfoxide (DMSO), glycerol (Gly), methanol (MeOH), ethylene glycol (EG), 1,2-propylene glycol (PG) and N,N-dimethylformamide (DMF) on the survival of medaka (Oryzias lapites) embryos at low temperatures (0 and -5C). Firstly, the embryos at 8 to 16-cell stages were exposed to different concentrations (1 to 4 mol per L) of DMSO, Gly, MeOH, EG, PG and DMF for 40min at 26C. After removal of the cryoprotectants (CPAs), the embryo survivals were assessed by their development into live fries following 9 day of culture. The results showed that the higher concentration of the CPA, the lower survival of the embryos; and that the toxicity of the six CPAs to medaka embryos is in the order of PG < MeOH = DMSO < Gly < EG < DMF (P < 0.05). Secondly, based on the results obtained above, embryos at 8 to 16-cell stages or other stages were exposed to 2 mol per L of PG, MeOH or DMSO for up to 180 min at 0C and up to 80 min at -5C respectively. The 8 to 16-cell embryos treated with MeOH at low temperatures showed highest survival. Thirdly, when embryos at different stages were treated with 2 mol per L of MeOH at -5C for 60 min, 16-somite stage embryos showed highest survival, followed by 4-somite, neurula, 50 percent epiboly, blastula, 32-cell and 8 to 16-cell embryos. These results demonstrated that PG had the lowest toxicity to medaka embryos among the six permeable CPAs at 26C, whereas MeOH showed highest cryoprotective efficiency under chilling conditions and chilling injury decreased gradually with the development of medaka embryos. PMID:22576114

  10. Timing of The First Zygotic Cleavage Affects Post-Vitrification Viability of Murine Embryos Produced In Vivo

    PubMed Central

    Jusof, Wan-Hafizah Wan; Khan, Nor-Ashikin Mohamed Noor; Rajikin, Mohd Hamim; Satar, Nuraliza Abdul; Mustafa, Mohd-Fazirul; Jusoh, Norhazlin; Dasiman, Razif

    2015-01-01

    Background Timing of the first zygotic cleavage is an accurate predictor of embryo quality. Embryos that cleaved early (EC) have been shown to exhibit higher develop- mental viability compared to those that cleaved at a later period (LC). However, the vi- ability of EC embryos in comparison to LC embryos after vitrification is unknown. The present study aims to investigate the post-vitrification developmental viability of murine EC versus LC embryos. Materials and Methods In this experimental study, female ICR mice (6-8 weeks old) were superovulated and cohabited with fertile males for 24 hours. Afterwards, their ovi- ducts were excised and embryos harvested. Embryos at the 2-cell stage were catego- rized as EC embryos, while zygotes with two pronuclei were categorized as LC embryos. Embryos were cultured in M16 medium supplemented with 3% bovine serum albumin (BSA) in a humidified 5% CO2atmosphere. Control embryos were cultured until the blastocyst stage without vitrification. Experimental embryos at the 2-cell stage were vitri- fied for one hour using 40% v/v ethylene glycol, 18% w/v Ficoll-70 and 0.5 M sucrose as the cryoprotectant. We recorded the numbers of surviving embryos from the control and experimental groups and their development until the blastocyst stage. Results were analyzed using the chi-square test. Results A significantly higher proportion of EC embryos (96.7%) from the control group developed to the blastocyst stage compared with LC embryos (57.5%, P<0.0001). Similarly, in the experimental group, a significantly higher percentage of vitrified EC embryos (69.4%) reached the blastocyst stage compared to vitrified LC embryos (27.1%, P<0.0001). Conclusion Vitrified EC embryos are more vitrification tolerant than LC embryos. Prese- lection of EC embryos may be used as a tool for selection of embryos that exhibit higher developmental competence after vitrification. PMID:26246881

  11. Live embryo imaging to follow cell cycle and chromosomes stability after nuclear transfer.

    PubMed

    Balbach, Sebastian T; Boiani, Michele

    2015-01-01

    Nuclear transfer (NT) into mouse oocytes yields a transcriptionally and functionally heterogeneous population of cloned embryos. Most studies of NT embryos consider only embryos at predefined key stages (e.g., morula or blastocyst), that is, after the bulk of reprogramming has taken place. These retrospective approaches are of limited use to elucidate mechanisms of reprogramming and to predict developmental success. Observing cloned embryo development using live embryo cinematography has the potential to reveal otherwise undetectable embryo features. However, light exposure necessary for live cell cinematography is highly toxic to cloned embryos. Here we describe a protocol for combined bright-field and fluorescence live-cell imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This protocol, which can be adapted to observe other reporters such as Oct4-GFP or Nanog-GFP, allowed us to quantitatively analyze cleavage kinetics of cloned embryos. PMID:25287344

  12. Embryo technologies in the horse.

    PubMed

    Squires, E L; Carnevale, E M; McCue, P M; Bruemmer, J E

    2003-01-01

    Recent studies demonstrated that zwitterionic buffers could be used for satisfactory storage of equine embryos at 5 degrees C. The success of freezing embryos is dependent upon size and stage of development. Morulae and blastocysts <300 microm can be slowly cooled or vitrified with acceptable pregnancy rates after transfer. The majority of equine embryos are collected from single ovulating mares, as there is no commercially available product for superovulation in equine. However, pituitary extract, rich in FSH, can be used to increase embryo recovery three- to four-fold. Similar to human medicine, assisted reproductive techniques have been developed for the older, subfertile mare. Transfer of in vivo-matured oocytes from young, healthy mares into a recipient's oviduct results in a 70-80% pregnancy rate compared with a 30-40% pregnancy rate when the oocytes are from older, subfertile mares. This procedure can also be used to evaluate in vitro maturation systems. In vitro production of embryos is still quite difficult in the horse. However, intracytoplasmic sperm injection (ICSI) has been used to produce several foals. Cleavage rates of 60% and blastocyst rates of 30% have been reported after ICSI of in vitro-matured oocytes. Gamete intrafallopian tube transfer (GIFT) is a possible treatment for subfertile stallions. Transfer of in vivo-matured oocytes with 200,000 sperm into the oviduct of normal mares resulted in a pregnancy rate of 55-82%. Oocyte freezing is a technique that has proven difficult in most species. However, equine oocytes vitrified in a solution of ethylene glycol, DMSO, and Ficoll and loaded onto a cryoloop resulted in three pregnancies of 26 transfers and two live foals produced. Production of a cloned horse appears to be likely, as several cloned pregnancies have recently been produced. PMID:12499026

  13. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  14. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  15. Effect of Embryo Density on In Vitro Development and Gene Expression in Bovine In Vitro-fertilized Embryos Cultured in a Microwell System

    PubMed Central

    SUGIMURA, Satoshi; AKAI, Tomonori; HASHIYADA, Yutaka; AIKAWA, Yoshio; OHTAKE, Masaki; MATSUDA, Hideo; KOBAYASHI, Shuji; KOBAYASHI, Eiji; KONISHI, Kazuyuki; IMAI, Kei

    2012-01-01

    Abstract To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 µl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density. PMID:23154384

  16. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system.

    PubMed

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Aikawa, Yoshio; Ohtake, Masaki; Matsuda, Hideo; Kobayashi, Shuji; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2013-01-01

    To identify embryos individually during in vitro development, we previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here we investigated the effect of embryo density (the number of embryos per volume of medium) on in vitro development and gene expression of bovine in vitro-fertilized embryos cultured in WOW dishes. Using both conventional droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 μl medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and expression of ten genes (CDX2, IFN-tau, PLAC8, NANOG, OCT4, SOX2, AKR1B1, ATP5A1, GLUT1 and IGF2R). In droplet culture, the rates of formation of >4-cell cleavage embryos and blastocysts were significantly lower in embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics and blastocyst cell numbers did not differ among any groups. IFN-tau expression in embryos cultured at 25 embryos per droplet was significantly higher than in those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived blastocysts. Moreover, IGF2R expression was significantly lower in the 25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture, these expressions were not affected by embryo density and were similar to those in AI-derived blastocysts. These results suggest that, as compared with conventional droplet culture, in vitro development and expression of IFN-tau and IGF2R in the microwell system may be insensitive to embryo density. PMID:23154384

  17. Cryopreservation of embryos of Lucilia sericata (Diptera: Calliphoridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Embryos of Lucilia (Phaenicia) sericata (Meigen) (Diptera: Calliphoridae), the green blowfly, were successfully cryopreserved by vitrification in liquid nitrogen and stored for 8 yr. Embryos incubated at 19 deg. C for 17 h after oviposition were found to be the most appropriate stage to cryopreserve...

  18. An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...

  19. Induction of autophagy improves embryo viability in cloned mouse embryos

    PubMed Central

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  20. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa.

    PubMed

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  1. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  2. Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis

    PubMed Central

    Valley, Justin K.; Swinton, Paul; Boscardin, W. John; Lue, Tom F.; Rinaudo, Paolo F.; Wu, Ming C.; Garcia, Maurice M.

    2010-01-01

    Selection of optimal quality embryos for in vitro fertilization (IVF) transfer is critical to successful live birth outcomes. Currently, embryos are chosen based on subjective assessment of morphologic developmental maturity. A non-invasive means to quantitatively measure an embryo's developmental maturity would reduce the variability introduced by the current standard. We present a method that exploits the scaling electrical properties of pre-transfer embryos to quantitatively discern embryo developmental maturity using light-induced dielectrophoresis (DEP). We show that an embryo's DEP response is highly correlated with its developmental stage. Uniquely, this technique allows one to select, in sequence and under blinded conditions, the most developmentally mature embryos among a mixed cohort of morphologically indistinguishable embryos cultured in optimized and sub-optimal culture media. Following assay, embryos continue to develop normally in vitro. Light-induced dielectrophoresis provides a non-invasive, quantitative, and reproducible means to select embryos for applications including IVF transfer and embryonic stem cell harvest. PMID:20405021

  3. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation.

    PubMed

    Polito, V S; McGranahan, G; Pinney, K; Leslie, C

    1989-04-01

    Early stages of somatic embryo development from embryogenic cultures ofJuglans regia (Persian or English walnut) are described. Histological examination reveals that secondary somatic embryos arise from cotyledons and hypocotyls of primary embryos cultured in the dark. The embryos originate by transverse to oblique divisions of surface cells. Single-cell origin of the secondary embryos confirms the potential of the repetitive embryogenesis system forAgrobacterium-mediated transformation and regeneration of non-chimeric, transgenic walnut plants. PMID:24233141

  4. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  5. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis.

    PubMed

    Du, Qian; Wang, Huanzhong

    2016-07-20

    Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth. PMID:27477025

  6. Ultrastructural study on the plical epithelium of the bursa of Fabricius in chick embryos: influence of partial decerebration and hypophyseal allografts.

    PubMed Central

    Romano, N; Baldassini, M R; Abelli, L; Aita, M; Mastrolia, L

    1996-01-01

    The bursa of Fabricius of 18 day normal and partially decerebrated chick embryos, and partially decerebrated embryos bearing a hypophyseal allograft was analysed by scanning and transmission electron microscopy, focusing on the ultrastructural characterisation of the plical epithelium. The plicae of the normal bursa consist of interfollicular (IFE) and follicle associated epithelium (FAE). The FAE is composed of typical polygonal cells and is supported by a layer of epithelial cells which appears as a continuation of the corticomedullary epithelium. Bordering cells lie between the FAE and IFE. The IFE is composed of 4 cell types: (1) undifferentiated, (2) goblet, at various stages of maturity, (3) prismatic, and (4) globular light cells. Partially decerebrated embryos showed a gross impairment of plical epithelium development and the complex of FAE and IFE cells was largely undifferentiated. Partially decerebrated embryos with a hypophyseal allograft displayed the same cellular types as observed in controls, thus indicating a restored differentiation of plical epithelium. These findings suggest that the hypophysis affects the differentiation of plical epithelium during ontogenesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Figs 8-11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 PMID:8655413

  7. Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to Drosophila fasciclin I.

    PubMed

    Huber, O; Sumper, M

    1994-09-15

    Proof that plants possess homologs of animal adhesion proteins is lacking. In this paper we describe the generation of monoclonal antibodies that interfere with cell-cell contacts in the 4-cell embryo of the multicellular alga Volvox carteri, resulting in a hole between the cells. The number of following cell divisions is reduced and the cell division pattern is altered drastically. Antibodies given at a later stage of embryogenesis specifically inhibit inversion of the embryo, a morphogenetic movement that turns the embryo inside out. Immunofluorescence microscopy localizes the antigen (Algal-CAM) at cell contact sites of the developing embryo. Algal-CAM is a protein with a three-domain structure: an N-terminal extensin-like domain characteristic for plant cell walls and two repeats with homology to fasciclin I, a cell adhesion molecule involved in the neuronal development of Drosophila. Alternatively spliced variants of Algal-CAM mRNA were detected that are produced under developmental control. Thus, Algal-CAM is the first plant homolog of animal adhesion proteins. PMID:7925267

  8. Embryo dignity: the status and juridical protection of the in vitro embryo.

    PubMed

    Raposo, Vera Lúcia; Osuna, Eduardo

    2007-12-01

    In the context of research and reproduction, the status of the human in vitro embryo ranges from being regarded as a person to being regarded as mere property. As regards the first view, one extreme of the spectrum for offering possible legal protection considers that the embryo constitutes a legal person from the moment of conception. For opponents of this view life is a continuum that runs from conception until death. In this process one of the most important stages is birth, the reason being that birth represents the transition between a potential person and a person. The term "embryo" is used to express the being that exists after fusion of the egg and a spermatozoon during the process of embryogenesis until it reaches eight weeks, after which time it is termed a foetus. The embryo's life is recognized as a constitutional value which deserves juridical protection, but not as a person. It only becomes a person with birth. PMID:18284114

  9. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase.

    PubMed

    Kim, Eunhye; Zheng, Zhong; Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently. PMID:27472781

  10. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase

    PubMed Central

    Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently. PMID:27472781

  11. Use of DNA strand damage (Comet assay) and embryo hatching effects to assess contaminant exposure in blue crab (Callinectes sapidus) embryos

    SciTech Connect

    Lee, R.F.; Steinert, S.A.; Nakayama, K.; Oshima, Y.

    1999-07-01

    After fertilization, blue crab eggs are embedded in a sponge which is attached to the female abdomen during embryo development. Embryos after 9 stages in the egg sac hatch into a swimming zoea stage (stage 10). The authors have developed a bioassay where embryo development is monitored in culture plates with and without toxicants in the water. Toxicant effects are based on determining the percentage of embryos which hatch to zoea. Hatching EC{sub 50} (toxicant concentration at which 50% of the embryos fail to hatch) for a number of pesticides, organometallics and metals were determined. The test takes from 2 to 6 days depending on the embryo stage selected for the study. In addition to embryo development effects the prevalence of DNA single-strand breaks in individual embryo cells were determined using the single cell gel electrophoresis method (Comet assay). A good correlation between DNA strand breakage and embryo defects was found after exposure to genotoxic contaminants. Thus, the bioassay linking DNA damage to embryo hatching effects is rapid, sensitive and mechanistically relevant.

  12. Live birth following early follicular phase oocyte collection and vitrified-warmed embryo transfer 8 days later.

    PubMed

    Hatırnaz, Safak; Hatırnaz, Ebru; Ata, Baris

    2015-12-01

    A 30-year-old woman with premature ovarian insufficiency had two follicles measuring 17 mm and 14 mm on day 3 of her menstrual cycle. Serum oestradiol concentration was 210 pg/ml. Recombinant human chorionic gonadotrophin was given and 5 mg/day letrozole started orally. One metaphase II oocyte was collected 36 h later. A 4-cell embryo was vitrified on the second day after fertilization. Letrozole was stopped on cycle day 8 due to absence of any other visible antral follicles. Oestradiol valerate 6 mg/day was started and the endometrium was 9.2 mm on cycle day 11. The embryo was warmed and transferred on cycle day 13, the 8th day after oocyte retrieval. Luteal phase support with progesterone, oestradiol and low molecular weight heparin was started on the day of transfer and continued until the 10th gestational week. A healthy girl weighing 3200 g was born at term. Early follicular phase oocyte collection did not result in early opening of the implantation window. Apparently secretory transformation was not started until luteal phase support, enabling a cleavage stage embryo transferred 8 days later to implant. Either corpus luteum formation could be disrupted or the endometrium could remain unresponsive to progesterone during the early follicular phase. PMID:26507278

  13. Embryo fossilization is a biological process mediated by microbial biofilms

    PubMed Central

    Raff, Elizabeth C.; Schollaert, Kaila L.; Nelson, David E.; Donoghue, Philip C. J.; Thomas, Ceri-Wyn; Turner, F. Rudolf; Stein, Barry D.; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A.

    2008-01-01

    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process. PMID:19047625

  14. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  15. Toxicity of chlorine to zebrafish embryos

    PubMed Central

    Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.

    2014-01-01

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474

  16. Conflict over moral status of embryos continues.

    PubMed

    Callahan, S

    1988-04-01

    Ethical questions are addressed that have arisen due to the rapid development of new medical technology involving the fertilized human ovum. Moral issues have arisen with the new progesterone antagonist, RU-486, and in vitro fertilization (IVF). 3 different ethical views of the embryo are presented: A permissive pro-choice position states either that the moral value of the fertilized egg depends on each pregnant woman's decision to humanize the embryo in her body or that the moral value of the fertilized egg increases as human development progresses. Some pro-life advocates argue that after implantation an irreversibly developing human being exists who has all the rights of a human being. The author suggests that some medical technological interventions and experimentation on embryos may be morally permissible to these pro-life advocates. The Vatican statement that the human being must be respected--as a person--from the very 1st instant of his existence sums up the 3d, view of an embryo's status. New knowledge of the very complex earliest stages of development, combined with other concepts and worldviews, appear to create honest doubt about the fertilized egg's status. For example, approximately 50% of fertilized ova are naturally lost, and the combination of 1 or more embryos into a mosaic casts doubt on the existence of an irreversible human. Relevant worldviews of postmodern understandings of science, the universe, and a new theology of creation must be considered to solve these ethical dilemmas. PMID:10286446

  17. Tribolium embryo morphogenesis

    PubMed Central

    Benton, Matthew A; Pavlopoulos, Anastasios

    2014-01-01

    Development of multicellular organisms depends on patterning and growth mechanisms encoded in the genome, but also on the physical properties and mechanical interactions of the constituent cells that interpret these genetic cues. This fundamental biological problem requires integrated studies at multiple levels of biological organization: from genes, to cell behaviors, to tissue morphogenesis. We have recently combined functional genetics with live imaging approaches in embryos of the insect Tribolium castaneum, in order to understand their remarkable transformation from a uniform single-layered blastoderm into a condensed multi-layered embryo covered by extensive extra-embryonic tissues. We first developed a quick and reliable methodology to fluorescently label various cell components in entire Tribolium embryos. Live imaging of labeled embryos at single cell resolution provided detailed descriptions of cell behaviors and tissue movements during normal embryogenesis. We then compared cell and tissue dynamics between wild-type and genetically perturbed embryos that exhibited altered relative proportions of constituent tissues. This systematic comparison led to a qualitative model of the molecular, cellular and tissue interactions that orchestrate the observed epithelial rearrangements. We expect this work to establish the Tribolium embryo as a powerful and attractive model system for biologists and biophysicists interested in the molecular, cellular and mechanical control of tissue morphogenesis. PMID:24451992

  18. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China

    NASA Technical Reports Server (NTRS)

    Chen, J. Y.; Oliveri, P.; Li, C. W.; Zhou, G. Q.; Gao, F.; Hagadorn, J. W.; Peterson, K. J.; Davidson, E. H.

    2000-01-01

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (stage embryos of modern bilaterian forms.

  19. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    PubMed

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or <0.2% of the total protein contained in a blastomere in the 16-cell embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. PMID:27317400

  20. Avian Egg Odour Encodes Information on Embryo Sex, Fertility and Development

    PubMed Central

    Webster, Ben; Hayes, William; Pike, Thomas W.

    2015-01-01

    Avian chemical communication is a rapidly emerging field, but has been hampered by a critical lack of information on volatile chemicals that communicate ecologically relevant information (semiochemicals). A possible, but as yet unexplored, function of olfaction and chemical communication in birds is in parent-embryo and embryo-embryo communication. Communication between parents and developing embryos may act to mediate parental behaviour, while communication between embryos can control the synchronicity of hatching. Embryonic vocalisations and vibrations have been implicated as a means of communication during the later stages of development but in the early stages, before embryos are capable of independent movement and vocalisation, this is not possible. Here we show that volatiles emitted from developing eggs of Japanese quail (Coturnix japonica) convey information on egg fertility, along with the sex and developmental status of the embryo. Specifically, egg volatiles changed over the course of incubation, differed between fertile and infertile eggs, and were predictive of embryo sex as early as day 1 of incubation. Egg odours therefore have the potential to facilitate parent-embryo and embryo-embryo interactions by allowing the assessment of key measures of embryonic development long before this is possible through other modalities. It also opens up the intriguing possibility that parents may be able to glean further relevant information from egg volatiles, such as the health, viability and heritage of embryos. By determining information conveyed by egg-derived volatiles, we hope to stimulate further investigation into the ecological role of egg odours. PMID:25629413

  1. Effect of laser optoperforation of the zona pellucida on mouse embryo development in vitro.

    PubMed

    Zakharchenko, E O; Zalessky, A D; Osychenko, A A; Krivokharchenko, A S; Shakhbazyan, A K; Ryabova, A V; Nadtochenko, V A

    2015-06-01

    The effect of laser optical perforation of the zona pellucida on the viability and development of mouse embryos has been studied. Operations of zona pellucida thinning and single or double perforation were carried out on 2-cell embryo, morula, and blastocyst stages with a laser pulse (wavelength 1.48 µm, pulse duration 2 ms). Embryo development up to the blastocyst stage and hatching efficiency were statistically analyzed. It was found that 2-cell or morula stage embryo zona pellucida thinning or single perforation did not affect development to the blastocyst stage and number of hatched embryos, but it accelerated embryo hatching compared to control groups one day earlier in vitro. Double optoperforation on 2-cell embryo or morula stage did not significantly affect development to the blastocyst stage, but it strongly decreased the number of hatched embryos. Also, zona pellucida perforation at the blastocyst stage had a negative effect: hatching did not occur after this manipulation. Blastocyst cell number calculation after single zona pellucida perforation at 2-cell and morula stages showed that cell number of hatching or hatched blastocysts did not differ from the same control groups. This fact points out that the laser single optoperforation method is a useful and safe experimental tool that allows further manipulations within the zona pellucida. PMID:26531022

  2. Lipidome signatures in early bovine embryo development.

    PubMed

    Sudano, Mateus J; Rascado, Tatiana D S; Tata, Alessandra; Belaz, Katia R A; Santos, Vanessa G; Valente, Roniele S; Mesquita, Fernando S; Ferreira, Christina R; Araújo, João P; Eberlin, Marcos N; Landim-Alvarenga, Fernanda D C

    2016-07-15

    Mammalian preimplantation embryonic development is a complex, conserved, and well-orchestrated process involving dynamic molecular and structural changes. Understanding membrane lipid profile fluctuation during this crucial period is fundamental to address mechanisms governing embryogenesis. Therefore, the aim of the present work was to perform a comprehensive assessment of stage-specific lipid profiles during early bovine embryonic development and associate with the mRNA abundance of lipid metabolism-related genes (ACSL3, ELOVL5, and ELOVL6) and with the amount of cytoplasmic lipid droplets. Immature oocytes were recovered from slaughterhouse-derived ovaries, two-cell embryos, and eight- to 16-cell embryos, morula, and blastocysts that were in vitro produced under different environmental conditions. Lipid droplets content and mRNA transcript levels for ACSL3, ELOVL5, and ELOVL6, monitored by lipid staining and quantitative polymerase chain reaction, respectively, increased at morula followed by a decrease at blastocyst stage. Relative mRNA abundance changes of ACSL3 were closely related to cytoplasmic lipid droplet accumulation. Characteristic dynamic changes of phospholipid profiles were observed during early embryo development and related to unsaturation level, acyl chain length, and class composition. ELOVL5 and ELOVL6 mRNA levels were suggestive of overexpression of membrane phospholipids containing elongated fatty acids with 16, 18, and 20 carbons. In addition, putative biomarkers of key events of embryogenesis, embryo lipid accumulation, and elongation were identified. This study provides a comprehensive description of stage-specific lipidome signatures and proposes a mechanism to explain its potential relationship with the fluctuation of both cytoplasmic lipid droplets content and mRNA levels of lipid metabolism-related genes during early bovine embryo development. PMID:27107972

  3. Facial Transplants in Xenopus laevis Embryos

    PubMed Central

    Sive, Hazel

    2014-01-01

    Craniofacial birth defects occur in 1 out of every 700 live births, but etiology is rarely known due to limited understanding of craniofacial development. To identify where signaling pathways and tissues act during patterning of the developing face, a 'face transplant' technique has been developed in embryos of the frog Xenopus laevis. A region of presumptive facial tissue (the "Extreme Anterior Domain" (EAD)) is removed from a donor embryo at tailbud stage, and transplanted to a host embryo of the same stage, from which the equivalent region has been removed. This can be used to generate a chimeric face where the host or donor tissue has a loss or gain of function in a gene, and/or includes a lineage label. After healing, the outcome of development is monitored, and indicates roles of the signaling pathway within the donor or surrounding host tissues. Xenopus is a valuable model for face development, as the facial region is large and readily accessible for micromanipulation. Many embryos can be assayed, over a short time period since development occurs rapidly. Findings in the frog are relevant to human development, since craniofacial processes appear conserved between Xenopus and mammals. PMID:24748020

  4. Preliminary studies on cryopreservation of snakehead (Channa striata) embryos.

    PubMed

    Mohd Sharifuddin, M; Siti Azizah, M N

    2014-08-01

    This paper reports the findings of the ongoing studies on cryopreservation of the snakehead, Channa striata embryos. The specific objective of this study was to collect data on the sensitivity of C. striata embryo hatching rate to low temperatures at two different developmental stages in the presence of four different cryoprotectants. Embryos at morula and heartbeat stages were selected and incubated in 1M dimethyl sulfoxide (Me2SO), 1M ethylene glycol (EG), 1M methanol (MeOH) and 0.1M sucrose solutions at different temperatures for a period of time. Embryos were kept at 24 °C (control), 15 °C, 4 °C and -2 °C for 5 min, 1h and 3h. Following these treatments, the embryos were then transferred into a 24 °C water bath until hatch to evaluate the hatching rate. The results showed that there was a significant decrease of hatching rate in both developmental stages following exposure to 4 °C and -2 °C at 1h and 3h exposure in each treatment. Heartbeat stage was more tolerant against chilling at -2 °C for 3h exposure in Me2SO followed by MeOH, sucrose and EG. Further studies will be conducted to find the best method to preserve embryos for long term storage. PMID:24726775

  5. Developmental capacity and implantation potential of the embryos with multinucleated blastomeres

    PubMed Central

    EGASHIRA, Akiyoshi; YAMAUCHI, Nobuhiko; TANAKA, Keiko; MINE, Chihiro; OTSUBO, Hitomi; MURAKAMI, Masao; ISLAM, Md. Rashedul; OHTSUKA, Misako; YOSHIOKA, Naomi; KURAMOTO, Takashi

    2015-01-01

    The presence of multinucleated blastomeres (MNBs) in embryos is associated with poor developmental competence in assisted reproductive technologies. This phenomenon is observed not only in humans but also in other animal species. The purpose of the present study was to investigate the characteristics of embryos with MNBs (MNB embryos) that could be utilized in embryo transfer. The developmental rate of MNB embryos to the blastocyst stage (50.8%) was significantly lower than that of normal embryos (73.3%) (P < 0.05). The clinical pregnancy rates of fresh embryo transfer (ET) using day 2 or day 3 embryos were significantly lower in MNB embryos (5.1%) compared with normal embryos (24.0%) (P < 0.05). In the case of frozen-thawed ET using a single vitrified/warmed blastocyst, however, the clinical pregnancy rate of MNB embryos was close to that of normal embryos (59.1% vs. 52.8%). Thus, the findings of the present study suggest that the frozen-thawed ET of MNB embryos might improve the potential for implantation followed by successful pregnancy. PMID:26346255

  6. Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos.

    PubMed

    Pereira, A F; Melo, L M; Freitas, V J F; Salamone, D F

    2015-08-01

    In vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylated (γH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P < 0.05), no differences in the number of γH2AX foci or area were detected among the treatments. γH2AX is detected in bovine preimplantation embryos produced by PA, IVF and SCNT; the amount of DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development. PMID:24735637

  7. Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems--Step-by-Step Maternal Recognition of the Developing Embryo.

    PubMed

    Fujiwara, Hiroshi; Araki, Yoshihiko; Imakawa, Kazuhiko; Saito, Shigeru; Daikoku, Takiko; Shigeta, Minoru; Kanzaki, Hideharu; Mori, Takahide

    2016-03-01

    In humans, HCG secreted from the implanting embryo stimulates progesterone production of the corpus luteum to maintain embryo implantation. Along with this endocrine system, current evidence suggests that the maternal immune system positively contributes to the embryo implantation. In mice, immune cells that have been sensitized with seminal fluid and then the developing embryo induce endometrial differentiation and promote embryo implantation. After hatching, HCG activates regulatory T and B cells through LH/HCG receptors and then stimulates uterine NK cells and monocytes through sugar chain receptors, to promote and maintain pregnancy. In accordance with the above, the intrauterine administration of HCG-treated PBMC was demonstrated to improve implantation rates in women with repeated implantation failures. These findings suggest that the maternal immune system undergoes functional changes by recognizing the developing embryos in a stepwise manner even from a pre-fertilization stage and facilitates embryo implantation in cooperation with the endocrine system. PMID:26755274

  8. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    PubMed

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle. PMID:20484872

  9. Global gene transcription patterns in in vitro-cultured fertilized embryos and diploid and haploid murine parthenotes

    SciTech Connect

    Cui Xiangshun; Li Xingyu; Kim, Nam-Hyung . E-mail: nhkim@chungbuk.ac.kr

    2007-01-19

    To gain insights into the roles the paternal genome and chromosome number play in pre-implantation development, we cultured fertilized embryos and diploid and haploid parthenotes (DPs and HPs, respectively), and compared their development and gene expression patterns. The DPs and fertilized embryos did not differ in developmental ability but HPs development was slower and characterized by impaired compaction and blastocoel formation. Microarray analysis revealed that fertilized blastocysts expressed several genes at higher levels than DP blastocysts; these included the Y-chromosome-specific gene eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked (Eif2s3y) and the imprinting gene U2 small nuclear ribonucleoprotein auxiliary factor 1, related sequence 1 (U2af1-rs1). We also found that when DPs and HPs were both harvested at 44 and 58 h of culture, they differed in the expression of 38 and 665 genes, respectively. However, when DPs and HPs were harvested at the midpoints of 4-cell stage (44 and 49 h, respectively), no differences in expression was observed. Similarly, when the DPs and HPs were harvested when they became blastocysts (102 and 138 h, respectively), only 15 genes showed disparate expression. These results suggest that while transcripts needed for early development are delayed in HPs, it does progress sufficiently for the generation of the various developmental stages despite the lack of genetic components.

  10. The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.

    PubMed

    Hakman, Inger; Hallberg, Henrik; Palovaara, Joakim

    2009-04-01

    Auxin and polar auxin transport have been implicated in controlling embryo patterning and development in angiosperms but less is known from the gymnosperms. The aims of this study were to determine at what stages of conifer embryo development auxin and polar auxin transport are the most important for normal development and to analyze the changes in embryos after treatment with the polar auxin inhibitor N-1-naphthylphthalamic acid (NPA). For these studies, somatic embryos of Norway spruce (Picea abies L. Karst) were used. Growth on medium containing NPA leads to the formation of embryos with poor shoot apical meristem (SAM) and fused cotyledons, and to a pin-formed phenotype of the regenerated plantlets. The effect of NPA on embryo morphology was most severe if embryos were transferred to NPA-containing medium immediately before cotyledon initiation and SAM specification. Indole-3-acetic acid (IAA) was identified by immunolocalization in developing embryos. The highest staining intensity was seen in early staged embryos and then decreased as the embryos matured. No clear IAA-maxima was seen, although the apical parts of embryos, particularly the protoderm, and the suspensor cells appear to accumulate more IAA, as reflected by the staining pattern. The NPA treatment also caused expanded procambium and a broader root apical meristem in embryos, and a significant increase in the expression of a PIN1-like gene. Taken together, our results show that, for proper cotyledon initiation, correct auxin transport is needed only during a short period at the transition stage of embryo development, probably involving PIN efflux proteins and that a common mechanism is behind proper cotyledon formation within the species of angiosperms and conifers, despite their cotyledon number which normally differs. PMID:19203973

  11. Early embryo development in Fucus distichus is auxin sensitive

    NASA Technical Reports Server (NTRS)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  12. Early Embryo Development in Fucus distichus Is Auxin Sensitive1

    PubMed Central

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [3H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development. PMID:12226509

  13. Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique.

    PubMed

    Sun, Qiang; Dong, Juan; Yang, Wenting; Jin, Yujuan; Yang, Mingying; Wang, Yan; Wang, Philip L; Hu, Yinghe; Tsien, Joe Z

    2008-09-01

    One of the technical bottlenecks in producing nonhuman primate models is that current assisted reproductive techniques, such as in vitro culture and frozen conservation of multicell-stage embryos, often result in poor embryo quality and subsequently lead to low birth rates. We investigated whether pronuclear embryo transfer can be used as an effective means for improving pregnancy and live birth rates of nonhuman primates. We collected 174 metaphase II oocytes by laparoscopy from 22 superovulated mature females and then fertilized these eggs using either in vitro fertilization or intracytoplasmic sperm injection, resulting in a 33.3% and a 50% fertilization rate, respectively. These 66 fertilized pronuclear-stage embryos were then tubally transferred to 30 recipients and led to 7 births and 1 abortion. Importantly, we observed that the highest live birth rate of approximately 64% was obtained when the transfer of pronuclear embryos was performed in the presence of new corpus luteum in the ovary of recipients between 24 h and 36 h after estradiol peak. Therefore, our experiments demonstrate that by matching the critical time window in the recipient's reproductive cycle for achieving optimal embryo-uterine synchrony, pronuclear embryo transfer technology can significantly improve the pregnancy rate and live birth of healthy baby monkeys. This efficient method should be valuable to the systematic efforts in construction of various transgenic primate disease models. PMID:18725640

  14. The Metabolomic Profile of Spent Culture Media from Day-3 Human Embryos Cultured under Low Oxygen Tension

    PubMed Central

    de los Santos, Maria José; Gámiz, Pilar; de los Santos, José María; Romero, Josep Lluís; Prados, Nicolás; Alonso, Cristina; Remohí, José; Dominguez, Francisco

    2015-01-01

    Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos. PMID:26562014

  15. Detection of T-Cadherin Expression in Mouse Embryos

    PubMed Central

    Rubina, K. A.; Smutova, V. A.; Semenova, M. L.; Poliakov, A. A.; Gerety, S.; Wilkinson, D.; Surkova, E. I.; Semina, E. V.; Sysoeva, V. Yu.; Tkachuk, V. A.

    2015-01-01

    The aim of the present study was to evaluate T-cadherin expression at the early developmental stages of the mouse embryo. Using in situ hybridization and immunofluorescent staining of whole embryos in combination with confocal microscopy, we found that T-cadherin expression is detected in the developing brain, starting with the E8.75 stage, and in the heart, starting with the E11.5 stage. These data suggest a possible involvement of T-cadherin in the formation of blood vessels during embryogenesis. PMID:26085949

  16. The avian embryo responding to microgravity of space flight

    NASA Technical Reports Server (NTRS)

    Hullinger, Ronald L.

    1993-01-01

    Of all the many potential and real microenvironmental influences, only gravity would appear to have remained relatively constant and ubiquitous for developing organisms. Histo- and organogenesis as well as differential growth of the embryo and fetus may have evolved with a constant environmental factor of gravity. Chick embryos of 2-day and 9-day stages of incubation were flown in an incubator on the Space Shuttle during a 9-day mission. Significant differences in embryo response to this microgravity environment were observed. This paper offers an analysis and suggests mechanisms which may contribute to these results.

  17. Embryonic stem cell identity grounded in the embryo

    PubMed Central

    Plusa, Berenika; Hadjantonakis, Anna-Katerina

    2016-01-01

    Pluripotent embryonic stem cells (ESCs) can be derived from blastocyst-stage mouse embryos. However, the exact in vivo counterpart of ESCs has remained elusive. A combination of expression profiling and stem cell derivation identifies epiblast cells from late-stage blastocysts as the source, and functional equivalent, of ESCs. PMID:24875737

  18. Impact of EmbryoGlue as the embryo transfer medium.

    PubMed

    Hazlett, William David; Meyer, Liza R; Nasta, Tricia E; Mangan, Patricia A; Karande, Vishvanath C

    2008-07-01

    Routine use of EmbryoGlue did not significantly improve pregnancy or implantation rates in nonselected patients receiving either a day 3 or day 5 embryo transfer compared with standard culture media. Future prospective randomized studies need to be performed to determine whether EmbryoGlue is beneficial in a selected patient population. PMID:17765233

  19. [Apoptosis during embryo development].

    PubMed

    Jezek, Davor; Kozina, Viviana

    2009-10-01

    The development of human embryo includes two essential processes, i.e., rapid mitotic activity of cells and gradual differentiation of tissues and organs. The latter process is very often characterized by extensive migration of cells from their site of origin to the site of definitive location, inductive action of the neighboring germ layers and programmed cell death (apoptosis). This paper describes examples of proliferative and apoptotic processes during the development of human embryo. The development of trilaminar germ disk, skin, gonads, central and peripheral nerve system as well as limbs provides instructive examples of how apoptosis regulates the development and differentiation of cells. PMID:19999545

  20. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.

    PubMed

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  1. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

    PubMed Central

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  2. In vitro viability of cryopreserved equine embryos following different freezing protocols.

    PubMed Central

    Poitras, P; Guay, P; Vaillancourt, D; Zidane, N; Bigras-Poulin, M

    1994-01-01

    The main objective of this study was to evaluate two freezing protocols and the effect of agar embedding on survival of day 6.5 equine embryos. A total of 133 embryos were used, in one group (n = 51), embryos were first embedded in agar before the freezing protocol was started. A freezing protocol to -30 degrees C or -33 degrees C was used before plunging embryos into liquid nitrogen (LN2). The embryos were thawed in water at 37 degrees C, evaluated and placed in culture. After 24 h culture, the embryos were evaluated for their morphology and development. No differences were observed between embryos plunged at -30 degrees or at -33 degrees C in LN2. The analysis of the morphology and development after thawing showed that the diameter and developmental stage at freezing correlated with embryo survival. Morula and early blastocyst stages of development were associated with better quality after freezing and thawing and had a better potential to survive after in vitro culture (p < 0.05) compared to more advanced stages. The agar failed to protect embryos from zona pellucida damage, but a tendency to prevent rupture was observed in larger embedded embryos. PMID:7889453

  3. The Virtual Embryo Project

    EPA Science Inventory

    The v-Embryo™ is a far reaching new research program at the US EPA to develop a working computer model of a mammalian embryo that can be used to better understand the prenatal risks posed by environmental chemicals and to eventually predict a chemical’s potential developmental to...

  4. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis.

    PubMed

    Zhong, Jing; Ren, YuJun; Yu, Miao; Ma, TengFei; Zhang, XueLian; Zhao, Jie

    2011-07-01

    Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-D-Glc)(3) Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis. PMID:20830495

  5. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    PubMed

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming. PMID:26894831

  6. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality

    PubMed Central

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming. PMID:26894831

  7. Production of Interspecific Germline Chimeras via Embryo Replacement.

    PubMed

    Choi, Hee Jung; Lee, Hyung Chul; Kang, Kyung Soo; Lee, Hyo Gun; Ono, Tamao; Nagai, Hiroki; Sheng, Guojun; Han, Jae Yong

    2015-08-01

    In avian species, primordial germ cells (PGCs) use the vascular system to reach their destination, the genital ridge. Because of this unique migratory route of avian germ cells, germline chimera production can be achieved via germ cell transfer into a blood vessel. This study was performed to establish an alternative germ cell-transfer system for producing germline chimeras by replacing an original host embryo with a donor embryo, while retaining the host extraembryonic tissue and yolk, before circulation. First, to test the migratory capacity of PGCs after embryo replacement, Korean Oge (KO) chick embryos were used to replace GFP transgenic chick embryos. Four days after replacement, GFP-positive cells were detected in the replaced KO embryonic gonads, and genomic DNA PCR analysis with the embryonic gonads demonstrated the presence of the GFP transgene. To produce an interspecific germline chimera, the original chick embryo proper was replaced with a quail embryo onto the chick yolk. To detect the gonadal PGCs in the 5.5-day-old embryonic gonads, immunohistochemistry was performed with monoclonal antibodies specific to either quail or chick PGCs, i.e., QCR1 and anti-stage-specific embryonic antigen-1 (SSEA-1), respectively. Both the QCR1-positive and SSEA-1-positive cells were detected in the gonads of replaced quail embryos. Forty percent of the PGC population in the quail embryos was occupied by chick extraembryonically derived PGCs. In conclusion, replacement of an embryo onto the host yolk before circulation can be applied to produce interspecies germline chimeras, and this germ cell-transfer technology is potentially applicable for reproduction of wild or endangered bird species. PMID:26063873

  8. State-of-the-art embryo technologies in cattle.

    PubMed

    Lonergan, P

    2007-01-01

    Over the past 30 years, basic and applied studies on classical and advanced embryo technologies have generated a vast literature on factors regulating oocyte and embryo development and quality. In addition, over this period, commercial bovine embryo transfer has become a large international business. It is well recognised that bovine embryos derived in vivo are of superior quality to those derived from in vitro maturation, fertilization and culture. Relatively little has changed in the techniques of producing embryos in vivo although there is increasing evidence of the importance of, for example, peripheral and follicular endocrine profiles for the subsequent developmental competence of the embryo. The in vitro production of ruminant embryos is a three-step process involving oocyte maturation, oocyte fertilization and in vitro culture. Only 30-40% of such oocytes reach the blastocyst stage, at which they can be transferred to a recipient or frozen for future use. We know now that the quality of the oocyte is crucial in determining the proportion of immature oocytes that form blastocysts while the post-fertilization culture environment has a major influence on the quality of the blastocyst. Use of sexed-sorted sperm in conjunction with in vitro embryo production is a potentially efficient means of obtaining offspring of the desired sex. Concerns regarding the use of sexed semen technology include the apparent lower fertility of sorted sperm, the lower survival of sorted sperm after cryopreservation and the reduced number of sperm that could be separated in a specified time period. Assessment of embryo quality is a challenge. Morphological assessment is at present the most popular method for embryo selection prior to transfer. Other non-invasive assessment methods include the timing of the first cleavage division which has been linked to developmental ability. Quantitative examination of gene expression is an additional valuable tool to assess the viability of

  9. Molecular control of the oocyte to embryo transition.

    PubMed Central

    Knowles, Barbara B; Evsikov, Alexei V; de Vries, Wilhelmine N; Peaston, Anne E; Solter, Davor

    2003-01-01

    The elucidation of the molecular control of the initiation of mammalian embryogenesis is possible now that the transcriptomes of the full-grown oocyte and two-cell stage embryo have been prepared and analysed. Functional annotation of the transcriptomes using gene ontology vocabularies, allows comparison of the oocyte and two-cell stage embryo between themselves, and with all known mouse genes in the Mouse Genome Database. Using this methodology one can outline the general distinguishing features of the oocyte and the two-cell stage embryo. This, when combined with oocyte-specific targeted deletion of genes, allows us to dissect the molecular networks at play as the differentiated oocyte and sperm transit into blastomeres with unlimited developmental potential. PMID:14511485

  10. Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system.

    PubMed

    Men, H; Zhao, C; Si, W; Murphy, C N; Spate, L; Liu, Y; Walters, E M; Samuel, M S; Prather, R S; Critser, J K

    2011-07-15

    As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN(2)). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a "closed" system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease. PMID:21458047

  11. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    SciTech Connect

    Wang, Yingying; Hai, Tang; Liu, Zichuan; Zhou, Shuya; Lv, Zhuo; Ding, Chenhui; Liu, Lei; Niu, Yuyu; Zhao, Xiaoyang; Tong, Man; Wang, Liu; Jouneau, Alice; Zhang, Xun; Ji, Weizhi; Zhou, Qi

    2010-07-02

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.

  12. Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos

    PubMed Central

    Chung, Yu-Hsiang; Hsiao, Yi-Hsing; Kao, Wei-Lun; Hsu, Chia-Hsien; Chen, Chihchen

    2015-01-01

    A vital aspect affecting the success rate of in vitro fertilization is the culture environment of the embryo. However, what is not yet comprehensively understood is the affect the biochemical, physical, and genetic requirements have over the dynamic development of human or mouse preimplantation embryos. The conventional microdrop technique often cultures embryos in groups, which limits the investigation of the microenvironment of embryos. We report an open microwell platform, which enables micropipette manipulation and culture of embryos in defined sub-microliter volumes without valves. The fluidic environment of each microwell is secluded from others by layering oil on top, allowing for non-invasive, high-resolution time-lapse microscopy, and data collection from each individual embryo without confounding factors. We have successfully cultured mouse embryos from the two-cell stage to completely hatched blastocysts inside microwells with an 89% success rate (n = 64), which is comparable to the success rate of the contemporary practice. Development timings of mouse embryos that developed into blastocysts are statistically different to those of embryos that failed to form blastocysts (p–value < 10−10, two-tailed Student's t-test) and are robust indicators of the competence of the embryo to form a blastocyst in vitro with 94% sensitivity and 100% specificity. Embryos at the cleavage- or blastocyst-stage following the normal development timings were selected and transferred to the uteri of surrogate female mice. Fifteen of twenty-two (68%) blastocysts and four of ten (40%) embryos successfully developed into normal baby mice following embryo transfer. This microwell platform, which supports the development of preimplanted embryos and is low-cost, easy to fabricate and operate, we believe, opens opportunities for a wide range of applications in reproductive medicine and cell biology. PMID:26015830

  13. Methods for imaging individual cilia in living echinoid embryos.

    PubMed

    Morris, Robert L; Pope, Hans W; Sholi, Adam N; Williams, Leah M; Ettinger, Chelsea R; Beacham, Gwendolyn M; Shintaku, Tatsushi; Abbott, Zachary D; Doherty, Elyse M

    2015-01-01

    The embryos of echinoids (sea urchins and sand dollars) serve as excellent models for studying cilia differentiation and stages of the cilia life cycle including ciliogenic initiation, growth, maintenance, and retraction. Early in echinoid development, uniform motile cilia form on all cells simultaneously but then rapidly differentiate into multiple cilia types that differ in morphology, motility, and signaling sensitivity. Metal ion treatments that shift germ layer boundaries and thereby "animalize" or "vegetalize" embryos can be used to enrich for low-abundance cilia types rendering those specialized cilia and the differentiation processes they exhibit much easier to study. The experimental advantages of having robust cilia growth and differentiation is tempered by the challenge of restraining ciliated embryos well enough to view the process of ciliogenesis live. We have developed four observation chambers as modifications of the Kiehart chamber for long-term light microscopic imaging of ciliated echinoid embryos. One of these systems employs paramagnetic beads to render ciliated larvae magnetic so they can be gently and reversibly trapped directly under the objective lens. With this magnetic trapping system, the larva can be positioned and repositioned until they achieve the orientation with the clearest view of any cilia of interest. These methods of gentle embryo restraint allow normal embryo development and the normal ciliogenic cycle and ciliary differentiation processes to continue in direct view. Sequential image series can then be collected and analyzed to quantitatively study the wide spectrum of cilia behaviors and properties that arise in developing echinoid embryos. PMID:25837394

  14. Radial extracorporeal shock wave treatment harms developing chicken embryos

    PubMed Central

    Kiessling, Maren C.; Milz, Stefan; Frank, Hans-Georg; Korbel, Rüdiger; Schmitz, Christoph

    2015-01-01

    Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out. PMID:25655309

  15. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos

    PubMed Central

    White, Carlee R.; Denomme, Michelle M.; Tekpetey, Francis R.; Feyles, Valter; Power, Stephen G. A.; Mann, Mellissa R. W.

    2015-01-01

    Assisted reproductive technologies (ARTs) represent the best chance for infertile couples to conceive, although increased risks for morbidities exist, including imprinting disorders. This increased risk could arise from ARTs disrupting genomic imprints during gametogenesis or preimplantation. The few studies examining ART effects on genomic imprinting primarily assessed poor quality human embryos. Here, we examined day 3 and blastocyst stage, good to high quality, donated human embryos for imprinted SNRPN, KCNQ1OT1 and H19 methylation. Seventy-six percent day 3 embryos and 50% blastocysts exhibited perturbed imprinted methylation, demonstrating that extended culture did not pose greater risk for imprinting errors than short culture. Comparison of embryos with normal and abnormal methylation didn’t reveal any confounding factors. Notably, two embryos from male factor infertility patients using donor sperm harboured aberrant methylation, suggesting errors in these embryos cannot be explained by infertility alone. Overall, these results indicate that ART human preimplantation embryos possess a high frequency of imprinted methylation errors. PMID:26626153

  16. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  17. Early Aberrations in Chromatin Dynamics in Embryos Produced Under In Vitro Conditions

    PubMed Central

    Deshmukh, Rahul S.; Strejcek, Frantisek; Vejlsted, Morten; Lucas-Hahn, Andrea; Petersen, Bjorn; Li, Juan; Callesen, Henrik; Niemann, Heiner; Hyttel, Poul

    2012-01-01

    Abstract In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin–nuclear envelope interactions at the two-cell stage, delayed chromatin decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar precursors, indicating imperfections in global chromatin remodeling after fertilization/activation. Porcine IV-produced zygotes and embryos display a well-synchronized pattern of chromatin dynamics compatible with genome activation and regular nucleolar formation at the four-cell stage. Production of porcine embryos under in vitro conditions by IVF, PA, or SCNT is associated with altered chromatin remodeling, delayed nucleolar formation, and poorly defined lineage segregation at the blastocyst stage, which in turn may impair their developmental capacity. PMID:22468997

  18. Development of a new rapid measurement technique for fish embryo membrane permeability studies using impedance spectroscopy

    PubMed Central

    Zhang, T.; Wang, R.Y.; Bao, Q-Y.; Rawson, D.M.

    2006-01-01

    Information on fish embryo membrane permeability is vital in their cryopreservation. Whilst conventional volumetric measurement based assessment methods have been widely used in fish embryo membrane permeability studies, they are lengthy and reduce the capacity for multi-embryo measurement during an experimental run. A new rapid ‘real-time’ measurement technique is required to determine membrane permeability during cryoprotectant treatment. In this study, zebrafish (Danio rerio) embryo membrane permeability to cryoprotectants was investigated using impedance spectroscopy. An embryo holding cell, capable of holding up to 10 zebrafish embryos was built incorporating the original system electrods for measuring the impedance spectra. The holding cell was tested with deionised water and a series of KCl solutions with known conductance values to confirm the performance of the modified system. Untreated intact embryos were then tested to optimise the loading capacity and sensitivity of the system. To study the impedance changes of zebrafish embryos during cryoprotectant exposure, three, six or nine embryos at 50% epiboly stage were loaded into the holding cell in egg water, which was then removed and replaced by 0.5, 1.0, 2.0 or 3 M methanol or dimethyl sulfoxide (DMSO). The impedance changes of the loaded embryos in different cryoprotectant solutions were monitored over 30 min at 22 °C, immediately following embryo exposure to cryoprotectants, at the frequency range of 10–106 Hz. The impedance changes of the embryos in egg water were used as controls. Results from this study showed that the optimum embryo loading level was six embryos per cell for each experimental run. The optimum frequency was identified at 103.14 or 1380 Hz which provided good sensitivity and reproducibility. Significant impedance changes were detected after embryos were exposed to different concentrations of cryoprotectants. The results agreed well with those obtained from conventional

  19. Cells, embryos and development in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1984-01-01

    Work continues to focus on the demonstrable totipotency of cultured somatic cells of various higher plants and has examined the conditions which regulate this propensity to be controllably released. This was done with special reference to cells obtained from cultured explants of daylily and carrot. For purposes of identifying the variables in question, work was carried out almost exclusively in liquid media. The events that intervene between the aseptic isolation of tissue explants, the culture of small derived units and free cells and the propagation in large numbers of adventive or somatic embryos to plantlets were traced and certain definitive stages at which control is exercised were identified. In daylily, morphologically competent units are now propagated with a high degree of precision in rotated liquid cultures in bulk, and under the conditions of continuous neutralized gravity, the development progresses so that embryo-plantlets are obtained.

  20. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis.

    PubMed

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  1. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    PubMed Central

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  2. Identification and regulation of glycogen synthase kinase-3 during bovine embryo development.

    PubMed

    Aparicio, I M; Garcia-Herreros, M; Fair, T; Lonergan, P

    2010-07-01

    The aim of this study was to examine the presence and regulation of glycogen synthase kinase-3alpha (GSK3A) and GSK-3beta (GSK3B) in bovine embryos and their possible roles in embryo development. Our results show that GSK3A and GSK3B are present in bovine embryos at the two-cell stage to the hatched blastocyst stage. Bovine embryo development was associated with an increase in the phosphorylation of both isoforms, being statistically significant at blastocyst and hatched blastocyst stages, compared with earlier stages. Inhibition of GSK3 with CT99021 (3 microM) resulted in a significant increase in the percentage and quality of blastocysts, while inhibition of GSK3 with lithium chloride (LiCl; 20 mM) significantly reduced at the proportion of eight-cell embryos on day 3 and inhibited blastocyst formation. The use of LY294002 (10 microM), a specific inhibitor of phosphatidylinositol-3 kinase, also produced a significant decrease in embryo development. In addition, treatment with LiCl and LY294002 produced a significant decrease in the serine phosphorylation of both isoforms of GSK3. Finally, CT99021 and LiCl reduced the phosphorylation of beta-catenin on Ser45 in two-cell embryos, while LY294002 increased it. Despite the fact that LiCl inhibited GSK3 activity, as demonstrated by beta-catenin phosphorylation, its effects on the bovine embryo could be mediated through other signaling pathways leading finally to a decrease in the phosphorylation of GSK3 and a reduction in embryo development. Therefore, in conclusion, GSK3A/B serine phosphorylation was positively correlated with embryo development, indicating the importance of an accurate regulation of GSK3 activity during developmental stages to achieve normal bovine embryo development. PMID:20427566

  3. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip.

    PubMed

    Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng

    2015-01-01

    Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application. PMID:25933003

  4. Utero-tubal Embryo Transfer and Vasectomy in the Mouse Model

    PubMed Central

    Bermejo-Alvarez, Pablo; Park, Ki-Eun; Telugu, Bhanu P.

    2014-01-01

    The transfer of preimplantation embryos to a surrogate female is a required step for the production of genetically modified mice or to study the effects of epigenetic alterations originated during preimplantation development on subsequent fetal development and adult health. The use of an effective and consistent embryo transfer technique is crucial to enhance the generation of genetically modified animals and to determine the effect of different treatments on implantation rates and survival to term. Embryos at the blastocyst stage are usually transferred by uterine transfer, performing a puncture in the uterine wall to introduce the embryo manipulation pipette. The orifice performed in the uterus does not close after the pipette has been withdrawn, and the embryos can outflow to the abdominal cavity due to the positive pressure of the uterus. The puncture can also produce a hemorrhage that impairs implantation, blocks the transfer pipette and may affect embryo development, especially when embryos without zona are transferred. Consequently, this technique often results in very variable and overall low embryo survival rates. Avoiding these negative effects, utero-tubal embryo transfer take advantage of the utero-tubal junction as a natural barrier that impedes embryo outflow and avoid the puncture of the uterine wall. Vasectomized males are required for obtaining pseudopregnant recipients. A technique to perform vasectomy is described as a complement to the utero-tubal embryo transfer. PMID:24637845

  5. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip

    PubMed Central

    Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng

    2015-01-01

    Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application. PMID:25933003

  6. Competence of Immature Maize Embryos for Agrobacterium-Mediated Gene Transfer.

    PubMed Central

    Schlappi, M; Hohn, B

    1992-01-01

    Agrobacterium-mediated transfer of viral sequences to plant cells (agroinfection) was applied to study the susceptibility of immature maize embryos to the pathogen. The shoot apical meristem of immature embryos 10 to 20 days after pollination from four different maize genotypes was investigated for competence for agroinfection. There was a direct correlation between different morphological stages of the unwounded immature embryos and their competence for agroinfection. Agroinfection frequency was highest in the embryogenic line A188. All developmental stages tested showed Agrobacterium virulence gene-inducing activity, whereas bacteriocidal substances were produced at stages of the immature embryos competent for agroinfection. The results suggested that Agrobacterium may require differentiated tissue in the maize shoot apical meristem before wounding for successful T-DNA transfer. This requirement for the young maize embryo has implications for the possible use of Agrobacterium for maize transformation. PMID:12297627

  7. Developmental toxicity of cartap on zebrafish embryos.

    PubMed

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis. PMID:19923012

  8. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops. PMID:25214014

  9. In vitro development of OPU-derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozen-thawed embryos after transfer.

    PubMed

    Isobe, Tomohiro; Ikebata, Yoshihisa; Do, Lanh Thi Kim; Tanihara, Fuminori; Taniguchi, Masayasu; Otoi, Takeshige

    2015-07-01

    The optimization of single-embryo culture conditions is very important, particularly in the in vitro production of bovine embryos using the ovum pick-up (OPU) procedure. The purpose of this study was to examine the development of embryos derived from oocytes obtained by OPU that were cultured either individually or in groups in medium supplemented with or without sericin and to investigate the viability of the frozen-thawed embryos after a direct transfer. When two-cell-stage embryos were cultured either individually or in groups for 7 days in CR1aa medium supplemented with or without 0.5% sericin, the rates of development to blastocysts and freezable blastocysts were significantly lower for the embryos cultured individually without sericin than for the embryos cultured in groups with or without sericin. Moreover, the rate of development to freezable blastocysts of the embryos cultured individually with sericin was significantly higher than that of the embryos cultured without sericin. When the frozen-thawed embryos were transferred directly to recipients, the rates of pregnancy, abortion, stillbirth and normal calving in the recipients were similar among the groups, irrespective of the culture conditions and sericin supplementation. Our findings indicate that supplementation with sericin during embryo culture improves the quality of the embryos cultured individually but not the viability of the frozen-thawed embryos after transfer to recipients. PMID:25488699

  10. Morphometric parameters of living human in-vitro fertilization embryos; importance of the asynchronous division process.

    PubMed

    Roux, C; Joanne, C; Agnani, G; Fromm, M; Clavequin, M C; Bresson, J L

    1995-05-01

    A total of 304 human pronuclear zygotes and cleaved embryos from the 2- to 9-cell stages, obtained during invitro fertilization attempts, were photographed and retrospectively analysed after transfer for their morphology and size in relation to their developmental stage, using the Imagenia programme of a Biocom 500 image analyser. Morphometric parameters were calculated from the perimeters, surface measurements, theoretical diameters and circularity factors for the different structures analysed. This report provides the morphometric characteristics of living embryos. For the whole population the mean values were: 157.4 microns for the external zona pellucida diameter, 121.8 microns for the internal zona pellucida diameter, 17.9 microns for the thickness of the zona pellucida and 117.2 microns for the embryo cell mass diameter. The morphometric characteristics of the pronuclear-stage population were significantly different from the cleaved cell stages. If the zona pellucida and cell mass embryo diameters increased slowly from the 2- to 9-cell stages, embryonic external diameters were higher and zona pellucida thicknesses were lower in odd than even number blastomere embryos. Preliminary results show that in cases where implantation occurs, the embryo has a lower zona pellucida thickness. A comparison of the different embryo cell stages confirmed the existence of an asynchronous division process during early embryo development. Global results show no evidence of morphometric differences between subpopulations of the embryos according to their microscopic grading. Deviations from the normal asynchronous division process, however, appear to be a new parameter to take into account during embryo scoring.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7657766

  11. SURVIVAL OF STEELHEAD TROUT (SALMO GAIRDNERI) EGGS, EMBRYOS, AND FRY IN AIR-SUPERSATURATED WATER

    EPA Science Inventory

    Egg, embryo, fry, and swim-up stages of steelhead trout (Salmo gairdneri) were exposed to water at total gas saturation levels ranging from 130 to 115%. Eggs, embryos, and newly hatched fry were not affected at 126.7%, but at about day 16 posthatch when the fish began swimming up...

  12. Real protection for the embryo.

    PubMed

    Mazzoni, Cosimo Marco

    2005-01-01

    This article fundamentally analyses the current protection that the Italian law offers to the embryo. Likewise, the author, contrary to those who are of the opinion that the embryo is a person subject to law, exposes his polemic theory in which he places the embryo within the scope of things. Specifically, he argues that the embryo has a quasi-personal category. In order to justify this, he analyses the moral and legal history of the statute of the embryo, he makes a difference between the biological life and the legal life. The author establishes that the concept of the person has been and will continue to be a very controversial concept, concluding with a study on the Italian legislation in respect to the protection of the embryo. PMID:16385794

  13. Gender determination of avian embryo

    DOEpatents

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  14. Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat-derived carrot somatic embryos.

    PubMed

    Ogata, Yumiko; Iizuka, Misato; Nakayama, Daisuke; Ikeda, Miho; Kamada, Hiroshi; Koshiba, Tomokazu

    2005-06-01

    When seed coats (pericarps) were picked from 14-day-old carrot (Daucus carota) seedlings and cultured on agar plates, embryogenic cell clusters were produced very rapidly at a high frequency on the open side edge. Embryo induction progressed without auxin treatment; indeed treatment caused the formation of non-embryogenic callus. The embryogenic tissues (primary embryos) developed normally until the torpedo stage; however, after this a number of secondary somatic embryos were produced in the hypocotyl and root regions. "Tertiary" embryos were formed on some of the secondary embryos, but many developed into normal plantlets. The primary embryos contained significantly higher levels of abscisic acid (ABA) than the hypocotyl-derived normal and seed-coat-derived secondary embryos. Fluridone inhibited the induction of secondary embryogenesis, while exogenously supplied ABA induced not only "tertiary" embryogenesis on the seed-coat-derived secondary embryos, but also secondary embryos on the hypocotyl-derived normal somatic embryos. These results indicate that ABA is one of the important endogenous factors for the induction of secondary embryogenesis on carrot somatic embryos. Higher levels of indole-3-acetic acid (IAA) in primary embryos also suggest the presence of some concerted effect of ABA and IAA on the induction of secondary embryogenesis in primary embryos. PMID:15770487

  15. Identification and characterization of promoters specifically and strongly expressed in maize embryos.

    PubMed

    Liu, Xiaoqing; Tian, Jian; Zhou, Xiaojin; Chen, Rumei; Wang, Lei; Zhang, Chunyi; Zhao, Jun; Fan, Yunliu

    2014-12-01

    The use of maize seeds as bioreactors has several advantages for the production of recombinant proteins in plant biotechnology, but available embryo-specific and strong promoters are limited. Here, we describe a genome-scale microarray-based approach to identify embryo-specifically and strongly expressed genes and their promoters in maize. We identified 28 embryo-preferred and abundantly expressed genes based on our microarray data. These embryo-preferred genes were further analysed using the UniGene database and by quantitative reverse transcriptase-PCR leading to the identification of seven genes (Zm.2098, Zm.13387, Zm.66589, Zm.85502, Zm.68129, Zm.3896 and Zm.2941) as embryo-specific genes with higher expression levels relative to maize globulin-1. The putative promoters of five embryo-specific genes (Zm.13387, Zm.66589, Zm.85502, Zm.3896 and Zm.2941) were isolated and all exhibited strong promoter activities when transiently expressed in maize embryos of 20 DAP. The embryo specificity and expression levels of the promoters of four genes (Zm.13387, Zm.85502, Zm.3896 and Zm.2941) were further examined in transgenic maize plants, revealing that they are strong promoters in embryos of all four developmental stages tested compared with reference globulin-1 promoter. Moreover, Zm.2941 and Zm.3896 promoters are stringently embryo-specific promoters, while Zm.85502 promoter is basically embryo specific yet wounding inducible in non-seed tissues, and Zm.13387 promoter is developmentally expressed in both embryo and aleurone with wounding-induced activity in non-seed tissues. Our study provides novel embryo-specific and strong promoters that are suitable for production of high-level recombinant proteins in maize embryos. PMID:25052028

  16. Cryopreservation of primordial germ cells by rapid cooling of whole zebrafish (Danio rerio) embryos.

    PubMed

    Higaki, Shogo; Mochizuki, Kentaro; Akashi, Yuichiro; Yamaha, Etsuro; Katagiri, Seiji; Takahashi, Yoshiyuki

    2010-04-01

    The feasibility of cryopreservation of zebrafish (Danio rerio) primordial germ cells (PGCs) by rapid cooling (i.e., vitrification) of dechorionated whole embryos at the 14- to 20-somite stage was investigated. Initially, we examined the glass-forming properties and embryo toxicities of six cryoprotectants: methanol (MeOH), ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG) and 1,3-butylene glycol (1,3-BG). According to the results of glass-forming and embryo toxicity tests, pretreatment solution (PS) containing 2 or 3 M cryoprotectant and vitrification solution (VS) containing 5 M cryoprotectant and 0.5 M sucrose were prepared using each cryoprotectant. Dechorionated embryos, the PGCs of which were visualized by injection of green fluorescence protein-nos1 3'UTR mRNA, were cooled rapidly by plunging into liquid nitrogen after serial exposure to PS and VS. All embryos cooled with MeOH, PG and 1,3-BG showed ice formation during cooling, and few embryos had live PGCs after warming. Most embryos cooled with GC did not show ice formation; however, few embryos had live PGCs. All embryos cooled with EG and most embryos cooled with DMSO had live PGCs when the embryos did not show ice formation during cooling. Based on the number of live PGCs in fresh embryos, the maximum survival rates of PGCs recovered from embryos cooled with EG and DMSO were estimated to be about 40 and 20%, respectively. The present study indicates that rapid cooling of dechorionated whole embryos, especially using EG-based solutions, could be utilized as a simple and promising tool for cryopreservation of PGCs. PMID:19996550

  17. [Vitrification of oocytes and embryos: the law, the results, the future].

    PubMed

    Guérin, J-F

    2012-08-01

    The French bio ethical law published in 2004 did not authorize the transfer of embryos submitted to a research program, or even issued from gametes concerned by an experimentation. Vitrification process was still considered as an "experimental" technique; thus it was impossible to vitrify either oocytes or embryos, whereas numerous international studies emphasized the interest of this technique for both oocytes and embryos, in particular if they were vitrified at the blastocyst stage. The new revised law (7/7/2011), clearly authorizes oocyte vitrification; moreover, studies intended to improve ART efficiency, are now permitted, enabling vitrification of embryos. PMID:23141595

  18. Gonadotropin hyperstimulation influences the 35S-methionine metabolism of mouse preimplantation embryos.

    PubMed

    Wetzels, A M; Artz, M T; Goverde, H J; Bastiaans, B A; Hamilton, C J; Rolland, R

    1995-11-01

    The effects of gonadotropin stimulation on mouse embryo uptake and incorporation of 35S-methionine were studied. We found that the uptake of 35S-methionine was reduced in embryos of stimulated females in both the two-cell and the blastocyst developmental stage. The incorporation of 35S-methionine into protein was not statistically significantly different between the embryos of stimulated and those of unstimulated females. Qualitatively, protein synthesis was equal in both groups as determined with one-dimensional SDS-PAGE. The results are discussed and we conclude that mouse embryo viability in vivo is decreased by ovarian stimulation. PMID:8624434

  19. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  20. Cryopreservation of embryos: an overview.

    PubMed

    Engelmann, Florent

    2011-01-01

    Cryopreservation (liquid nitrogen, -196°C) is the only safe and cost-effective option for long-term -conservation of genetic resources of non-orthodox seed species. Cryopreservation protocols have been developed for various materials including seeds, dormant buds, cell suspensions, calli, apices, zygotic, and somatic embryos of numerous plant species. Zygotic embryos or embryonic axes of almost 100 different species and somatic embryos of almost 40 different species from both temperate and tropical climates, comprising crops, fruit, and forest trees as well as wild species, whose seeds displayed orthodox, intermediate, and recalcitrant storage characteristics, have been successfully cryopreserved. With zygotic embryos and embryonic axes, the desiccation technique has been used with the majority of the species tested, leading to highly variable survival and recovery after freezing, especially during earlier experiments. More recently, new cryopreservation techniques viz. encapsulation-dehydration and vitrification have been employed, leading to generally improved results. With somatic embryos, different cryopreservation methods have been used viz. desiccation, pre-growth-desiccation, encapsulation-dehydration, vitrification, encapsulation-vitrification, and droplet-vitrification. There are also a few examples of the utilisation of slow controlled freezing, which correspond to the earlier experiments performed with somatic embryos. The development and application of cryopreservation is significantly more advanced for somatic embryos, in comparison with zygotic embryos, mainly because of the different origin and characteristics of the species treated. In most cases, zygotic embryos originate from tropical, wild species, for which knowledge and techniques relevant to the development of cryopreservation protocols are limited, or even non-existent. By contrast, somatic embryos are generally produced from cultivated species, which have already been studied extensively

  1. Survival and ultrastructure of gene-microinjected rabbit embryos after vitrification.

    PubMed

    Popelková, M; Chrenek, P; Pivko, J; Makarevich, A V; Kubovicová, E; Kacmárik, J

    2005-11-01

    Morphological signs of injury and subsequent regeneration following vitrification of either rabbit gene microinjected (Gene-Mi) or intact in vitro cultured embryos derived from in vivo fertilized eggs were evaluated by post-warming recovery in culture and analysed by transmission electron microscopy (TEM). The percentages of vitrified/warmed Gene-Mi embryos that reached the blastocyst stage (69%) and hatched (57%) did not differ significantly from those of intact embryos (78% and 56%, respectively). In contrast, in vitro development of embryos to the blastocyst stage among non-vitrified intact (96%) and Gene-Mi (90%) embryos compared with both the intact vitrified (78%) and Gene-Mi vitrified (69%) groups, as well as hatching rate (94%, 90% vs 56%, 57%, respectively) varied significantly (p < 0.001). Observations by TEM showed that the vitrified/warmed intact or Gene-Mi embryos without post-culture displayed severe degenerative changes among their cells. During 24 h of culture a proportion of the embryos were able to regenerate and complete the compaction process. Nevertheless the signs of previous injury were retained, such as swollen cytoplasmic organelles and remaining cellular debris in the perivitelline space. These observations indicate that the procedure of gene Mi does not significantly compromise embryo tolerance to cryopreservation and post-warming developmental ability. Severe changes in embryo morphology, observed at the ultrastructural level, can be attributed to a direct influence of the vitrification process rather than to the Mi procedure itself. PMID:16388696

  2. Research on embryos in Turkey with ethical and legal aspects

    PubMed Central

    Vatanoğlu-Lutz, Emine Elif

    2012-01-01

    Technically, the term embryo refers to the products of conception after implantation into the wall of the womb, usually nearly two weeks after fertilization, up until the eighth week. Embryos contain stem cells which, according to scientists, could be used to cure a wide range of conditions. Stem cells can be coaxed into growing cells of any other type, which makes them potentially very useful indeed. However, removing stem cells from an embryo will kill the embryo, which some people object to. From the mid 1970s, IVF was being developed and research was carried out on the spare embryos produced. This research helped to improve IVF techniques, as well as to better understand the earliest stages of human development. Research also shed light on a variety of inheritable disorders. In Turkish Law, assisted reproduction treatment (ART) services are regulated with the Regulation of Assisted Reproductive Treatment Centers Act (RAPTCA) The Regulation was issued in 1987, but it has been amended several times since. Also, article 90 of the Turkish Penal Code covers some aspects of research on embryos. At the same time, the Biomedicine Convention (Oviedo Convention), signed by Turkey and which entered into force in 2003, has binding regulations about this issue. Different legal regulations and some ethical guidelines are in conflict with each other, creating much confusion for the researchers. In this paper these conflicts are discussed, giving some practical proposals. PMID:24592037

  3. A simple method for counting nuclei in the preimplantation mouse embryo.

    PubMed

    Ebert, K M; Hammer, R E; Papaioannou, V E

    1985-09-15

    An easy and rapid method of counting the number of cells in the preimplantation mouse embryo is described. The procedure increases the speed with which large numbers of embryos can be processed using a simple squash technique. Cell numbers are determined by exposing the embryos to the fluorescent DNA-binding dye, Hoechst 33258, removing the zona pellucida and simply squashing the embryo and counting the number of fluorescent nuclei. An increase in fluorescent intensity and maintenance of nuclear conformation of the squashed preparations are greatly improved by the use of the non-ionic detergent Triton X-100. Viability of dye-treated fertilized one-cell and blastocyst stage embryos is maintained at least up to day 13 of pregnancy following transfer of the embryos to the uteri of pseudopregnant recipients. Additional uses for this staining technique are discussed. PMID:2412884

  4. The influence of growth factors on the development of preimplantation mammalian embryos.

    PubMed

    Díaz-Cueto, L; Gerton, G L

    2001-01-01

    The development of the preimplantation mammalian embryo from a fertilized egg to a blastocyst capable of implanting in the uterus is a complex process. Cell division must be carefully programmed. The embryonic genome must be activated at the appropriate stage of development, and the pattern of gene expression must be carefully coordinated for the initiation of the correct program of differentiation. Cell fates must be chosen to establish specific cell types such as the inner cell mass and the trophectoderm, which give rise to the embryo proper and the placenta, respectively. This review summarizes recent findings concerning the influence of growth factors on the development of preimplantation mammalian embryos. Maternal factors secreted into the lumen of the female reproductive tract as well as substances synthesized by the developing embryo itself help to regulate this process. Studies of embryos in culture and investigations using homologous recombination to create embryos and animals null for specific genes have enabled the identification of several growth factors that appear essential for preimplantation mammalian embryo development. Some of the factors are required maternal factors; others are embryo-derived autocrine and paracrine factors. Studies using molecular biology are beginning to identify differences in the patterns of genes expressed by naturally derived embryos and those developing in culture. The knowledge gained from studies on growth factors, media, embryonic development, and gene expression should help improve culture conditions for embryos and will provide for safer outcomes from assisted reproductive procedures in human and animal clinics. PMID:11750739

  5. Radioactive labeling of proteins in cultured postimplantation mouse embryos. II. Dose and time dependency

    SciTech Connect

    Nowak, J.; Klose, J. )

    1989-07-01

    The conditions for optimum incorporation of radioactive amino acids into proteins of cultured postimplantation mouse embryos were investigated under the aspect of using these proteins for two-dimensional electrophoretic separations and fluorography. The aim was to obtain highly radioactively labeled proteins under conditions as physiological as possible. Mouse embryos of Days 8, 10, and 11 of gestation were cultured in Tyrode's solution. Incubation time and concentration of ({sup 3}H (or {sup 14}C))amino acids in the culture medium were varied over a broad range. Embryos were prepared with placenta and yolk sac or without any embryonic envelopes. After culturing, the physiologic-morphologic state of the embryos was registered on the basis of several criteria. The radioactivity taken up by the total protein of each embryo was determined and calculated in disintegrations per minute per milligram protein per embryo. To approach our aim, embryos of different developmental stages had to be cultured under different conditions. A good compromise for Day-8, Day-10, and Day-11 embryos was: embryos prepared with yolk sac (opened) and placenta, 150 microCi radioactive amino acids added per milliliter medium, incubation for 4 to 5 h. For maximum labeling of proteins it is advisable to culture Day-10 embryos without embryonic envelopes under particular conditions.

  6. Metabolomic assessment of embryo viability.

    PubMed

    Uyar, Asli; Seli, Emre

    2014-03-01

    Preimplantation embryo metabolism demonstrates distinctive characteristics associated with the developmental potential of embryos. On this basis, metabolite content of culture media was hypothesized to reflect the implantation potential of individual embryos. This hypothesis was tested in consecutive studies reporting a significant association between culture media metabolites and embryo development or clinical pregnancy. The need for a noninvasive, reliable, and rapid embryo assessment strategy promoted metabolomics studies in vitro fertilization (IVF) in an effort to increase success rates of single embryo transfers. With the advance of analytical techniques and bioinformatics, commercial instruments were developed to predict embryo viability using spectroscopic analysis of surplus culture media. However, despite the initial promising results from proof-of-principal studies, recent randomized controlled trials using commercial instruments failed to show a consistent benefit in improving pregnancy rates when metabolomics is used as an adjunct to morphology. At present, the application of metabolomics technology in clinical IVF laboratory requires the elimination of factors underlying inconsistent findings, when possible, and development of reliable predictive models accounting for all possible sources of bias throughout the embryo selection process. PMID:24515909

  7. Patients with polycystic ovary syndrome have successful embryo arrest

    PubMed Central

    Yin, Baoli; Hao, Haoying; Wei, Duo; Song, Xiaobing; Xie, Juanke; Zhang, Cuilian

    2015-01-01

    In this retrospective study, we investigate the relationship between embryo arrest and polycystic ovary syndrome (PCOS) during in vitro fertilization-embryo transfer (IVF-ET). In this study, 667 subjects were enrolled, including 330 patients with PCOS and 337 subjects without PCOS. The subjects underwent in vitro fertilization/intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) cycles at the Reproductive Medical Centre of Henan Provincial Hospital from January 2009 to December 2012. Four protocols were used to stimulate the ovaries, including long protocol, super-long down-regulation protocol, short protocol and antagonist protocol. Oocytes were retrieved using transvaginal ultrasound guidance. Pronuclei were checked on the next morning after IVF/ICSI. Cleavage stage embryo was assessed after 62-66 hours. Women with PCOS had significantly elevated body mass index, basal luteinizing hormone, estradiol and testosterone compared with normal women. Basal Follicle stimulating hormone level in PCOS patients was lower compared with that in control group. After IVF-ET, PCOS patients had more available oocytes than subjects in control group. PCOS patients had slightly lower fertilization rate than the controls in IVF cycles, but in ICSI cycles, fertilization rate in PCOS patients was significantly higher than that in controls. For either IVF or ICSI, the embryo arrest rate was not changed by PCOS. Moreover, there was no significant difference in embryo arrest rate between both groups adopting different stimulation protocols. Interestingly, embryo arrest rate was not correlated with testosterone for patients in PCOS group. The data indicated that patients with PCOS had successful early embryo arrest during IVF-ET. PMID:26131233

  8. Shared and Unique Patterns of Embryo Development in Extremophile Poeciliids

    PubMed Central

    Riesch, Rüdiger; Schlupp, Ingo; Langerhans, R. Brian; Plath, Martin

    2011-01-01

    Background Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. Methods and Results Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. Conclusion Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining

  9. Developmental atlas of the early first trimester human embryo.

    PubMed

    Yamada, Shigehito; Samtani, Rajeev R; Lee, Elaine S; Lockett, Elizabeth; Uwabe, Chigako; Shiota, Kohei; Anderson, Stasia A; Lo, Cecilia W

    2010-06-01

    Rapid advances in medical imaging are facilitating the clinical assessment of first-trimester human embryos at increasingly earlier stages. To obtain data on early human development, we used magnetic resonance (MR) imaging and episcopic fluorescence capture (EFIC) to acquire digital images of human embryos spanning the time of dynamic tissue remodeling and organogenesis (Carnegie stages 13 to 23). These imaging data sets are readily resectioned digitally in arbitrary planes, suitable for rapid high-resolution three-dimensional (3D) observation. Using these imaging datasets, a web-accessible digital Human Embryo Atlas (http://apps.devbio.pitt.edu/humanatlas/) was created containing serial 2D images of human embryos in three standard histological planes: sagittal, frontal, and transverse. In addition, annotations and 3D reconstructions were generated for visualizing different anatomical structures. Overall, this Human Embryo Atlas is a unique resource that provides morphologic data of human developmental anatomy that can accelerate basic research investigations into developmental mechanisms that underlie human congenital anomalies. PMID:20503356

  10. Reactive oxygen species in bovine embryo in vitro production.

    PubMed

    Dalvit, G C; Cetica, P D; Pintos, L N; Beconi, M T

    2005-08-01

    Oxidative modifications of cell components due to the action of reactive oxygen species (ROS) is one of the most potentially damaging processes for proper cell function. However, in the last few years it has been observed that ROS participate in physiological processes. The aim of this work was to determine ROS generation during in vitro production of bovine embryos. Cumulus-oocyte complexes were recovered by aspiration of antral follicles from ovaries obtained from slaughtered cows and cultured in medium 199 for 22 h at 39 degrees C in 5% CO2: 95% humidified air. In vitro fertilization was carried out in IVF-mSOF with frozen-thawed semen in the same culture conditions and embryo in vitro culture in IVC-mSOF at 90% N2: 5% CO2: 5% O2. ROS was determined in denuded oocytes and embryos at successive stages of development by the 2',7'-dichlorodihydrofluorescein diacetate fluorescent assay. ROS production was not modified during oocyte maturation. However, a gradual increase in ROS production was observed up to the late morula stage during embryo in vitro culture (P < 0.05). In expanded blastocysts, ROS level decreased to reach values similar to the corresponding in oocytes. In the bovine species, the variation in ROS level during the complete process of embryo in vitro production was determined for the first time. PMID:16187501

  11. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production.

    PubMed

    Santana, Priscila Di Paula Bessa; Silva, Thiago Velasco Guimarães; da Costa, Nathália Nogueira; da Silva, Bruno Barauna; Carter, Timothy Frederick; Cordeiro, Marcela da Silva; da Silva, Bruno José Martins; Santos, Simone do Socorro Damasceno; Herculano, Anderson Manoel; Adona, Paulo Roberto; Ohashi, Otávio Mitio; Miranda, Moysés dos Santos

    2014-10-01

    Nitric oxide (NO) is a cell-signaling molecule that regulates a variety of molecular pathways. We investigated the role of NO during preimplantation embryonic development by blocking its production with an inhibitor or supplementing in vitro bovine embryo cultures with its natural precursor, L-arginine, over different periods. Endpoints evaluated included blastocyst rates, development kinetics, and embryo quality. Supplementation with the NO synthase inhibitor N-Nitro-L-arginine-methyl ester (L-NAME) from Days 1 to 8 of culture decreased blastocyst (P < 0.05) and hatching (P < 0.05) rates. When added from Days 1 to 8, 50 mM L-arginine decreased blastocyst rates (P < 0.001); in contrast, when added from Days 5 to 8, 1 mM L-arginine improved embryo hatching rates (P < 0.05) and quality (P < 0.05) as well as increased POU5F1 gene expression (P < 0.05) as compared to the untreated control. Moreover, NO levels in the medium during this culture period positively correlated with the increased embryo hatching rates and quality (P < 0.05). These data suggest exerts its positive effects during the transition from morula to blastocyst stage, and that supplementing the embryo culture medium with L-arginine favors preimplantation development of bovine embryos. PMID:25236163

  12. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  13. Imaging Cell Shape Change in Living Drosophila Embryos

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2011-01-01

    The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)1-5. On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells. The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility6, but is instead fueled largely by exocytosis of membrane from internal stores7. Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle. Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using "embryo glue" to mount the embryo in a specific orientation (Table 1)8-19. In all cases, the workflow is basically the same (Figure 1). Standard methods for cloning and

  14. Imaging cell shape change in living Drosophila embryos.

    PubMed

    Figard, Lauren; Sokac, Anna Marie

    2011-01-01

    The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)(1-5). On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells. The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility(6), but is instead fueled largely by exocytosis of membrane from internal stores(7). Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle. Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using "embryo glue" to mount the embryo in a specific orientation (Table 1)(8-19). In all cases, the workflow is basically the same (Figure 1). Standard methods for

  15. Effect of vitrification using the Cryotop method on the gene expression profile of in vitro-produced bovine embryos.

    PubMed

    de Oliveira Leme, Ligiane; Dufort, Isabelle; Spricigo, José Felipe Warmling; Braga, Thiago Felipe; Sirard, Marc-André; Franco, Maurício Machaim; Dode, Margot Alves Nunes

    2016-03-01

    The present study analyzed the changes in gene expression induced by the Cryotop vitrification technique in bovine blastocyst-stage embryos, using Agilent EmbryoGENE microarray slides. Bovine in vitro-produced embryos were vitrified and compared with nonvitrified (control) embryos. After vitrification, embryos were warmed and cultured for an additional 4 hours. Survived embryos were used for microarray analysis and quantitative polymerase chain reaction (qPCR) quantification. Survival rates were higher (P < 0.05) in the control embryos (100%) than in the vitrified embryos (87%). Global gene expression analysis revealed that only 43 out of 21,139 genes exhibited significantly altered expression in the vitrified embryos compared to the control embryos, with a very limited fold change (P < 0.05). A total of 10 genes were assessed by qPCR. Only the FOS-like antigen 1 (FOSL1) gene presented differential expression (P < 0.05) according to both the array and qPCR methods, and it was overexpressed in vitrified embryos. Although, the major consequence of vitrification seems to be the activation of the apoptosis pathway in some cells. Indeed, FOSL1 is part of the activating protein 1 transcription factor complex and is implicated in a variety of cellular processes, including proliferation, differentiation, and apoptosis. Therefore, our results suggest that a limited increase in the rate of apoptosis was the only detectable response of the embryos to vitrification stress. PMID:26553569

  16. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    PubMed

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined. PMID:25115559

  17. Ethics and embryos.

    PubMed Central

    Poplawski, N; Gillett, G

    1991-01-01

    In this paper we argue that the human form should be seen to exist, in a longitudinal way, throughout the continuum of human growth and development. This entails that the moral value of that form, which we link analytically to the adult, interacting, social and rational being, attaches to all phases of human life to some extent. Having established this we discuss the consequences it has for the moral status of the human embryo. We then apply this argument, and the resulting moral status, to the area of reproductive technology. In doing this we show that there are certain regulations and controls which ought to apply to the use of these infertility treatments. PMID:1870084

  18. Preimplantation genetic diagnosis in Welsh pony embryos after biopsy and cryopreservation.

    PubMed

    Guignot, F; Reigner, F; Perreau, C; Tartarin, P; Babilliot, J M; Bed'hom, B; Vidament, M; Mermillod, P; Duchamp, G

    2015-11-01

    Preimplantation genetic diagnosis and embryo cryopreservation are important tools to improve genetic management in equine species with marked consequences on the economic value, health, biodiversity, and preservation of the animals. This study aimed to develop a biopsy method at the blastocyst stage that provides viable genotyped cryopreserved Welsh pony embryos. Embryos were collected at d 6.75 to 7 after ovulation. Biopsies were performed with either a microblade or a micropipette. After biopsy, embryos were cryopreserved. The survival rate of biopsied embryos was evaluated on fresh and cryopreserved embryos either 24 h after in vitro culture or after transfer to recipients. Fresh and nonbiopsied embryos were used as controls. Sex, coat color genes, myotony (neuromuscular disorder) diagnosis, and markers of parentage were investigated using PCR on biopsied cells after whole-genome amplification and on remaining embryos. The embryo survival rate after transfer was not affected by the micropipette biopsy (50%, = 8; 43%, = 7; and 50%, = 12, at d 30 for fresh biopsied embryos, vitrified biopsied embryos, and control embryos, respectively) but was significantly reduced by the use of microblade biopsy: 9 ( = 11) vs. 67% ( = 12) for control embryos. Successful sex determination was achieved for 82% ( = 28) of the micropipette biopsies and 100% ( = 50) of the microblade biopsies. Sex determined on biopsied cells was found to correspond completely (100%) with that determined on the remaining embryo ( = 37). More than 90% of the parentage checking markers, coat color, and myotony diagnosis were successfully determined on biopsies obtained with either a micropipette or a microblade. Mendelian incompatibility (7.5 and 5.5%) and embryo genotyping errors (6.6 and 8.6%) were low and not significantly different between the 2 methods. In conclusion, for the first time, pregnancy at Day 30 was obtained after transfer of Welsh pony biopsied and vitrified embryos >300 μm in

  19. Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods.

    PubMed

    Dos Santos Neto, P C; Vilariño, M; Barrera, N; Cuadro, F; Crispo, M; Menchaca, A

    2015-02-01

    This study was conducted to evaluate the cryotolerance of in vitro produced ovine embryos submitted to vitrification at different developmental stages using two methods of minimum volume and rapid cooling rate. Embryos were vitrified at early stage (2 to 8-cells) on Day 2 or at advanced stage (morulae and blastocysts) on Day 6 after in vitro fertilization. Vitrification procedure consisted of the Cryotop (Day 2, n=165; Day 6, n=174) or the Spatula method (Day 2, n=165; Day 6, n=175). Non vitrified embryos were maintained in in vitro culture as a control group (n=408). Embryo survival was determined at 3h and 24h after warming, development and hatching rates were evaluated on Day 6 and Day 8 after fertilization, and total cell number was determined on expanded blastocysts. Embryo survival at 24h after warming increased as the developmental stage progressed (P<0.05) and was not affected by the vitrification method. The ability for hatching of survived embryos was not affected by the stage of the embryos at vitrification or by the vitrification method. Thus, the proportion of hatching from vitrified embryos was determined by the survival rate and was lower for Day 2 than Day 6 vitrified embryos. The percentage of blastocysts on Day 8 was lower for the embryos vitrified on Day 2 than Day 6 (P<0.05), and was lower for both days of vitrification than for non-vitrified embryos (P<0.05). No interaction of embryo stage by vitrification method was found (P=NS) and no significant difference was found in the blastocyst cell number among vitrified and non-vitrified embryos. In conclusion, both methods using minimum volume and ultra-rapid cooling rate allow acceptable survival and development rates in Day 2 and Day 6 in vitro produced embryos in sheep. Even though early stage embryos showed lower cryotolerance, those embryos that survive the vitrification-warming process show high development and hatching rates, similar to vitrification of morulae or blastocysts. PMID:25448379

  20. Expression of Wise in chick embryos.

    PubMed

    Shigetani, Y; Itasaki, N

    2007-08-01

    We have performed in situ hybridization to study the expression of Wise in early chick embryos. Wise expression is first detectable in the ectoderm at posterior levels of late neurula. As development proceeds, Wise expression is seen in specific patterns in the ectoderm of the trunk region, pharyngeal arches, limb buds, and feather buds. In addition to these areas, particular cartilages such as the ones in the maxillary process and limbs start to express Wise at the late pharyngula stage, and the expression in these cartilages becomes stronger than that in epidermal components at later stages. Importantly, Wise is expressed in regions where other signaling molecules such as Wnt, Bmp, and Shh are known to function in morphogenesis and differentiation. Direct comparisons of the expression of Wise and these genes are also demonstrated. PMID:17654720

  1. Characterization of the Two Maize Embryo-Lethal Defective Kernel Mutants Rgh*-1210 and Fl*-1253b: Effects on Embryo and Gametophyte Development

    PubMed Central

    Clark, J. K.; Sheridan, W. F.

    1988-01-01

    We have examined the effects on embryonic and gametophytic development of two nonallelic defective-kernel mutants of maize. Earlier studies indicated that both mutants are abnormal in embryonic morphogenesis as well as in the formation of their endosperm. Mutant rgh*-1210 embryos depart from the normal embryogenic pathway at the proembryo and transition stage, by developing meristematic lobes and losing bilateral symmetry. They continue growth as irregular cell masses that enlarge and become necrotic. Somatic embryos arising in rgh*-1210 callus cultures display the rgh*-1210 mutant phenotype. Mutant fl*-1253B embryos are variably blocked from the coleoptilar stage through stage 2. Following formation of the shoot apex in the mutant embryos the leaf primordia and tissues surrounding the embryonic axis continue growth and cell division, while the scutellum ceases development and becomes hypertrophied. Mutant fl*-1253B embryos are unable to germinate, either in mutant kernels or as immature embryos in culture, and the mutant scutellar tissue does not produce regenerable callus. Expression of the fl*-1253B locus during male gametophytic development is revealed by a marked reduction in pollen transmission as a result of mutant expression during the interval between meiosis and the initiation of pollen tube growth. In both mutants, there is considerable proliferation of the aleurone cells of the endosperm. Mutant expression of rgh*-1210 in the female gametophyte is revealed by the abnormal antipodal cells of the embryo sac. These results show that these two gene loci play unique and crucial roles in normal morphogenesis of the embryo. In addition, it is evident that both mutants are pleiotropic in affecting the development of the endosperm and gametophyte as well as the embryo. These pleiotropisms suggest some commonality in the gene regulation of development in these three tissues. PMID:17246478

  2. Differential regulation of receptivity in two uterine horns of a recipient mouse following asynchronous embryo transfer.

    PubMed

    Li, Shi-Jie; Wang, Tong-Song; Qin, Fu-Niu; Huang, Zhu; Liang, Xiao-Huan; Gao, Fei; Song, Zhuo; Yang, Zeng-Ming

    2015-01-01

    Receptivity is a limited time in which uterine endometrium can establish a successful dialogue with blastocyst. This study was to investigate the effect of asynchronous embryo transfer on uterine receptivity in mice. Embryos under different stages were transferred into two oviduct sides of a recipient mouse on day 1 of pseudopregnancy. Our results showed the asynchronously transferred embryos can implant in all groups. Compared to zygote-transfer group, the length of implanted embryos is longer in 8-cell embryo- or blastocyst-transfer group. The levels of Snail and COX-2 immunostaining in blastocyst-transfer group are significantly stronger than that in zygote-transfer group. Embryos in blastocyst-transfer group migrate faster than that in zygote-transfer group within uterus. Blastocysts are in a state of developmental delay after they are transferred into oviducts, and they are reactivated and implanted rapidly in uterus. The developmental rate to newborn in zygote-transfer group is obviously higher than that in blastocyst-transfer group, suggesting that a delay in embryo development and implantation will lead to a decrease of litter size. These results indicated that the window of implantation is differentially regulated in two uterine horns of a recipient by embryos at different stages. PMID:26531680

  3. Differential regulation of receptivity in two uterine horns of a recipient mouse following asynchronous embryo transfer

    PubMed Central

    Li, Shi-Jie; Wang, Tong-Song; Qin, Fu-Niu; Huang, Zhu; Liang, Xiao-Huan; Gao, Fei; Song, Zhuo; Yang, Zeng-Ming

    2015-01-01

    Receptivity is a limited time in which uterine endometrium can establish a successful dialogue with blastocyst. This study was to investigate the effect of asynchronous embryo transfer on uterine receptivity in mice. Embryos under different stages were transferred into two oviduct sides of a recipient mouse on day 1 of pseudopregnancy. Our results showed the asynchronously transferred embryos can implant in all groups. Compared to zygote-transfer group, the length of implanted embryos is longer in 8-cell embryo- or blastocyst-transfer group. The levels of Snail and COX-2 immunostaining in blastocyst-transfer group are significantly stronger than that in zygote-transfer group. Embryos in blastocyst-transfer group migrate faster than that in zygote-transfer group within uterus. Blastocysts are in a state of developmental delay after they are transferred into oviducts, and they are reactivated and implanted rapidly in uterus. The developmental rate to newborn in zygote-transfer group is obviously higher than that in blastocyst-transfer group, suggesting that a delay in embryo development and implantation will lead to a decrease of litter size. These results indicated that the window of implantation is differentially regulated in two uterine horns of a recipient by embryos at different stages. PMID:26531680

  4. Automating fruit fly Drosophila embryo injection for high throughput transgenic studies

    NASA Astrophysics Data System (ADS)

    Cornell, E.; Fisher, W. W.; Nordmeyer, R.; Yegian, D.; Dong, M.; Biggin, M. D.; Celniker, S. E.; Jin, J.

    2008-01-01

    To decipher and manipulate the 14 000 identified Drosophila genes, there is a need to inject a large number of embryos with transgenes. We have developed an automated instrument for high throughput injection of Drosophila embryos. It was built on an inverted microscope, equipped with a motorized xy stage, autofocus, a charge coupled device camera, and an injection needle mounted on a high speed vertical stage. A novel, micromachined embryo alignment device was developed to facilitate the arrangement of a large number of eggs. The control system included intelligent and dynamic imaging and analysis software and an embryo injection algorithm imitating a human operator. Once the injection needle and embryo slide are loaded, the software automatically images and characterizes each embryo and subsequently injects DNA into all suitable embryos. The ability to program needle flushing and monitor needle status after each injection ensures reliable delivery of biomaterials. Using this instrument, we performed a set of transformation injection experiments. The robot achieved injection speeds and transformation efficiencies comparable to those of a skilled human injector. Because it can be programed to allow injection at various locations in the embryo, such as the anterior pole or along the dorsal or ventral axes, this system is also suitable for injection of general biochemicals, including drugs and RNAi.

  5. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    SciTech Connect

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  6. Establishment of Eimeria tenella (local isolate) in chicken embryos

    PubMed Central

    Jiang, L.; Zhao, Q.; Zhu, S.; Han, H.; Dong, H.; Huang, B.

    2012-01-01

    Development of an in vitro Eimeria (E.) tenella model could be valuable as a tool for vaccine, coccidiostats or molecular biology research. 1.0 × 104 sporozoites per 0.1 mL were inoculated into the allantoic cavity of ten-day-old chicken embryos. The complete lifecycle of E. tenella was accomplished in eight-nine days at 37 °C and 70% humidity. The addition of 100 U insulin to the embryos could remarkably improve the output of oocysts. The development of the parasite within the embryos was systematically observed, allowing guidelines to be set regarding the appropriate times at which different developmental stages of the parasite may be sampled. PMID:22910673

  7. High-Throughput Cryopreservation of In Vivo-Derived Swine Embryos

    PubMed Central

    Spate, Lee D.; Murphy, Clifton N.; Prather, Randall S.

    2013-01-01

    Cryopreservation of swine embryos is inefficient. Our goal was to develop a non-invasive method for “relatively” high-throughput cryopreservation of in vivo-produced swine embryos. Since removal of the lipid droplets within early swine embryos improves cryosurvival we wanted to apply a technique of high osmolality treatment followed by centrifugation that was first developed for in vitro-produced swine embryos to in vivo-produced swine embryos. The first aim was to determine how sensitive the in vivo-produced zygote and 2-cell stage embryo was to various high osmolality conditions for a short duration. Culture for 6, 12 or 18 min at 300, 400 or 500 milliosmoles (mOsm) had no detectable affect on the resulting blastocyst stage embryos (number of inner cell mass nuclei, trophectoderm nuclei, total number of nuclei, ratio of the trophectoderm to inner cell mass nuclei or percent blastocyst). However there was an effect of gilt on each of these parameters. For the second aim we focused on 300 mOsm for 6 min, 400 mOsm for 12 min, 500 mOsm for 12 min, and 500 mOsm for 18 min. The embryos were centrifuged for the duration of high osmolality treatment, then cultured to the blastocyst stage and vitrified. After vitrification and thawing the 500 mOsm for 18 min had the highest percent re-expansion with no difference in the total number of nuclei. While requiring a different base culture medium than in vitro-produced embryos, in vivo-derived embryos also survive cryopreservation without damage to their zona pellucida. PMID:23762391

  8. [How can we nowadays select the best embryo to transfer?].

    PubMed

    Alter, L; Boitrelle, F; Sifer, C

    2014-01-01

    Multiple pregnancies stand as the most common adverse outcome of assisted reproduction technologies (ART) and the dangers associated with those pregnancies have been reduced by doing elective single embryo transfers (e-SET). Many studies have shown that e-SET is compatible with a continuously high pregnancy rate per embryo transfer. Yet, it still becomes necessary to improve the selection process in order to define the quality of individual embryos - so that the ones we choose for transfer are more likely to implant. First, analysis of embryo morphology has greatly helped in this identification and remains the most relevant criterion for choosing the embryo. The introduction of time-lapse imaging provides new criteria predictive of implantation potential, but the real contribution of this system - including the benefit/cost ratio - seems to be not yet properly established. In this context, extended culture until blastocyst stage is an essential practice but it appears wise to keep it for a population showing a good prognosis. Then, the failure of aneuploid embryos to implant properly led to achieve preimplantation genetic screening (PGS) in order to increase pregnancy and delivery rates after ART. However, PGS by fluorescence in situ hybridization (FISH) at day 3 is a useless process - and may even be harmful. Another solution involves using comparative genomic hybridisation (CGH) and moving to blastocyst biopsy. Finally, it is envisaged that morphology will also be significantly aided by non-invasive analysis of biomarkers in the culture media that give a better reflection of whole-embryo physiology and function. PMID:24951187

  9. Effects of perfluorinated compounds on development of zebrafish embryos.

    PubMed

    Zheng, Xin-Mei; Liu, Hong-Ling; Shi, Wei; Wei, Si; Giesy, John P; Yu, Hong-Xia

    2011-08-01

    Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups. PMID:22828880

  10. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis

    PubMed Central

    Liu, Yuan; Li, Xinbo; Zhao, Jing; Tang, Xingchun; Tian, Shujuan; Chen, Junyi; Shi, Ce; Wang, Wei; Zhang, Liyao; Feng, Xianzhong; Sun, Meng-Xiang

    2015-01-01

    The suspensor is a temporary supporting structure of proembryos. It has been proposed that suspensor cells also possess embryogenic potential, which is suppressed by the embryo as an effect of the embryo–suspensor interaction. However, data to support this hypothesis are not yet available. In this report, using an in vivo living cell laser ablation technique, we show that Arabidopsis suspensor cells can develop into embryos after removing the embryo proper. The embryo proper plays a critical role in maintaining suspensor cell identity. However, this depends on the developmental stage; after the globular embryo stage, the suspensors no longer possess the potential to develop into embryos. We also reveal that hypophysis formation may be essential for embryo differentiation. Furthermore, we show that, after removing the embryo, auxin gradually accumulates in the top suspensor cell where cell division occurs to produce an embryo. Auxin redistribution likely reprograms the fate of the suspensor cell and triggers embryogenesis in suspensor cells. Thus, we provide direct evidence that the embryo suppresses the embryogenic potential of suspensor cells. PMID:26396256

  11. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2014-09-01

    DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences. PMID:24994815

  12. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos

    SciTech Connect

    Yukawa, Masashi; Oda, Shoji; Mitani, Hiroshi; Nagata, Masao; Aoki, Fugaku . E-mail: aokif@k.u-tokyo.ac.jp

    2007-06-29

    DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by {gamma}-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX ({gamma}-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to {gamma}-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of {gamma}-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.

  13. Expectant Fathers, Abortion, and Embryos.

    PubMed

    Purvis, Dara E

    2015-01-01

    One thread of abortion criticism, arguing that gender equality requires that men be allowed to terminate legal parental status and obligations, has reinforced the stereotype of men as uninterested in fatherhood. As courts facing disputes over stored pre-embryos weigh the equities of allowing implantation of the pre-embryos, this same gender stereotype has been increasingly incorporated into a legal balancing test, leading to troubling implications for ART and family law. PMID:26242955

  14. Embryo protection in contemporary immunology

    PubMed Central

    Fraune, Sebastian; Augustin, René

    2011-01-01

    Early embryos of many vertebrates and invertebrates develop outside the mother and are exposed to a myriad of potential microbial colonizers. Here we discuss how these embryos are protected from microbial attacks and how they might control and shape their microbiota. In essence we delineate a new role for antimicrobial peptides both in selecting particular bacterial partners during early development and in being important components of a “be prepared” strategy providing transgenerational protection. PMID:21966549

  15. Determination of escin content in androgenic embryos and hairy root culture of Aesculus hippocastanum.

    PubMed

    Calić-Dragosavac, Dusica; Zdravković-Korać, Snezana; Savikin-Fodulović, Katarina; Radojević, Ljiljana; Vinterhalter, Branka

    2010-05-01

    Escin, a group of chemically related triterpenic glycosides, is widely used in commercial preparations for the treatment of venous insufficiency. Since the zygotic embryo cotyledons accumulate the highest amount of escin, it is currently extracted from the seeds of horse chestnut, Aesculus hippocastanum L. (Hippocastanaceae), on a large scale. As this material is available during only short period of the year, we studied the possibility of using plant tissue culture to obtain escin. For this purpose, the content of escin in androgenic embryos and hairy root cultures of horse chestnut was studied. Escin content was found to be dependent on the stage of androgenic embryo development and the type of phytoregulator supplemented to the nutritive medium. In the absence of phytoregulators, androgenic embryos at the globular stage of development contained approximately four times less escin than those at the cotyledonary stage. Inclusion of various phytoregulators in the nutritive media stimulated escin production. Among them, 2,4-dichlorophenoxyacetic acid (2,4-D) showed the most pronounced effect, with escin content almost reaching that found in zygotic embryos (6.77% versus 6.96%). Two hairy root clones produced substantial amounts of escin (3.57% and 4.09%), less than zygotic embryos, but higher than cotyledonary embryos on phytoregulator-free medium. PMID:20645800

  16. Filial cannibalism improves survival and development of beaugregory damselfish embryos.

    PubMed Central

    Payne, Adam G; Smith, Carl; Campbell, Andrew C

    2002-01-01

    Cannibalism of small numbers of offspring by a parent has been proposed as an adaptive parental strategy, by providing energy to support parental care. However, there are few empirical studies to support this hypothesis. We conducted field and laboratory experiments to investigate partial filial cannibalism in Stegastes leucostictus, a coral reef fish with paternal care. Partial cannibalism was shown to be common, and males were found to remove developing embryos from throughout a clutch in a random pattern, rather than in the more aggregated pattern seen during embryo predation. Males that received a diet supplement grew faster than control males, but did not engage in less cannibalism. Also, males did not concentrate cannibalism on early embryonic stages with the highest energetic value. Experimental reduction of embryo densities was found to significantly increase embryo development rate and survival from egg deposition to hatching, and experimental reduction of oxygen levels significantly increased rates of partial filial cannibalism by males. Artificial spawning sites with low oxygen levels were avoided by spawning females, and cannibalism rates by males were higher. We propose that partial filial cannibalism serves as an adaptive parental strategy to low oxygen levels in S. leucostictus by increasing the hatching success of embryos. PMID:12396483

  17. Developmental defects in pelagic fish embryos from the western Baltic

    NASA Astrophysics Data System (ADS)

    v. Westernhagen, H.; Dethlefsen, V.; Cameron, P.; Berg, J.; Fürstenberg, G.

    1988-03-01

    In February/March 1983 and 1984 a survey of pelagic fish eggs was conducted in the western Baltic (Kiel Bight), employing a horizontally towed plankton net (1 m Ø and 300 μm mesh). Maximum egg numbers in the upper meter of the S=21×10-3 salinity layer were 200·100 m-3. The most abundant eggs were cod (up to 142 eggs·100 m-3), followed by plaice (up to 74 eggs·100 m-3) and flounder (20 eggs·100 m-3). A considerable percentage of embryos of all species displayed aberrant development. In 1983 18% of cod, 22% of flounder and 24% of plaice eggs caught contained defective embryos; in 1984 this number was larger, ranging from 28% in plaice over 32% in cod to 44% in flounder. Early developmental stages showed the highest malformation rates (up to 51% in the case of early flounder embryos). With progressive development, malformations decreased in numbers, being lowest prior to hatching. Highest rates of malformations were recorded in the Mecklenburg Bight in 1983. A second area with high incidence of malformation rates was located south and east of the island of Langeland. Several reasons, including environmental and anthropogenic factors, for the occurrence of malformed embryos in pelagic fish eggs are discussed. The potential of malformation rates in embryos of pelagic fish eggs as a tool for monitoring is considered.

  18. Filial cannibalism improves survival and development of beaugregory damselfish embryos.

    PubMed

    Payne, Adam G; Smith, Carl; Campbell, Andrew C

    2002-10-22

    Cannibalism of small numbers of offspring by a parent has been proposed as an adaptive parental strategy, by providing energy to support parental care. However, there are few empirical studies to support this hypothesis. We conducted field and laboratory experiments to investigate partial filial cannibalism in Stegastes leucostictus, a coral reef fish with paternal care. Partial cannibalism was shown to be common, and males were found to remove developing embryos from throughout a clutch in a random pattern, rather than in the more aggregated pattern seen during embryo predation. Males that received a diet supplement grew faster than control males, but did not engage in less cannibalism. Also, males did not concentrate cannibalism on early embryonic stages with the highest energetic value. Experimental reduction of embryo densities was found to significantly increase embryo development rate and survival from egg deposition to hatching, and experimental reduction of oxygen levels significantly increased rates of partial filial cannibalism by males. Artificial spawning sites with low oxygen levels were avoided by spawning females, and cannibalism rates by males were higher. We propose that partial filial cannibalism serves as an adaptive parental strategy to low oxygen levels in S. leucostictus by increasing the hatching success of embryos. PMID:12396483

  19. Live Imaging Fluorescent Proteins in Early Mouse Embryos

    PubMed Central

    Xenopoulos, Panagiotis; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina

    2016-01-01

    Mouse embryonic development comprises highly dynamic and coordinated events that drive key cell lineage specification and morphogenetic events. These processes involve cellular behaviors including proliferation, migration, apoptosis, and differentiation, each of which is regulated both spatially and temporally. Live imaging of developing embryos provides an essential tool to investigate these coordinated processes in three-dimensional space over time. For this purpose, the development and application of genetically encoded fluorescent protein (FP) reporters has accelerated over the past decade allowing for the high-resolution visualization of developmental progression. Ongoing efforts are aimed at generating improved reporters, where spectrally distinct as well as novel FPs whose optical properties can be photomodulated, are exploited for live imaging of mouse embryos. Moreover, subcellular tags in combination with using FPs allow for the visualization of multiple subcellular characteristics, such as cell position and cell morphology, in living embryos. Here, we review recent advances in the application of FPs for live imaging in the early mouse embryo, as well as some of the methods used for ex utero embryo development that facilitate on-stage time-lapse specimen visualization. PMID:22341233

  20. In vitro production of cattlexbuffalo hybrid embryos using cattle oocytes and African buffalo (Syncerus caffer caffer) epididymal sperm.

    PubMed

    Owiny, O D; Barry, D M; Agaba, M; Godke, R A

    2009-04-01

    Interspecies hybridization of bovids occurs between domestic cattle and at least three other species; American bison (Bison bison), yak (Bos grunniens) and banteng (Bos banteng). Birth of a cattlexbuffalo (Bubalus bubalis) hybrid has reportedly occurred in Russia and in China, but these reports were not authenticated. Such hybrids could be important in improving livestock production and management of diseases that impede production in tropical Africa. This study investigated hybridization between cattle and its closest African wild bovid relative, the African buffalo (Syncerus caffer caffer). In an attempt to produce cattlexbuffalo hybrid embryos in vitro, matured cattle oocytes were subjected to a standard in vitro fertilization (IVF) procedure with either homologous cattle (n=1166 oocytes) or heterologous African buffalo (n=1202 oocytes) frozen-thawed epididymal sperm. After IVF, 67.2% of the oocytes inseminated with the homologous cattle sperm cleaved. In contrast, fertilization with buffalo sperm resulted in only a 4.6% cleavage rate. The cleavage intervals were also slower in hybrid embryos than in the IVF-derived cattle embryos. Of the cleaved homologous cattle embryos 52.2% progressed to the morula stage compared with 12.7% for the buffalo hybrid embryos. No hybrid embryos developed beyond the early morula stage, while 40.1% of the cleaved cattlexcattle embryos developed to the blastocyst stage. Transfer of buffalo hybrid IVF embryos to domestic cattle surrogates resulted in no pregnancies at 60 days post-transfer. This study indicates that interspecies fertilization of cattle oocytes with African buffalo epididymal sperm can occur in vitro, and that a barrier to hybridization occurs in the early stages of embryonic development. Chromosomal disparity is likely the cause of the fertilization abnormalities, abnormal development and subsequent arrest impairing the formation of hybrid embryos beyond the early morula stage. Transfer of the buffalo hybrid embryos

  1. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    SciTech Connect

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all three post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.

  2. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo.

    PubMed

    Hu, Norman; Christensen, Douglas A; Agrawal, Amit K; Beaumont, Charity; Clark, Edward B; Hawkins, John A

    2009-05-01

    Partial left atrial ligation before cardiac septation redistributes intracardiac blood flow and produces left ventricular hypoplasia in the chick. We hypothesized that redistributed intracardiac blood flow adversely alters aortic arch development. We ligated the left atrial appendage with a 10-0 nylon suture at stage 21 chick embryos, then reincubated up to stage 34. Sham embryos had a suture tied adjacent to the atrial wall, and normal controls were unoperated. We measured simultaneous atrioventricular (AV) and dorsal aortic (DAo) blood velocities from stage 24 embryos with an ultrasound pulsed-Doppler flow meter; and the left and right third and fourth aortic arch blood flow with a laser-Doppler flow meter. Ventricular and atrial cross-sectional areas were measured from sequential video fields for planimetry. Intracardiac flow patterns were imaged on video by injecting India ink into the vitelline vein. In separate embryos, radiopaque microfil was injected into the cardiovascular system for micro-CT scanning. We analyzed the morphologic characteristics of the heart at stage 34. Active AV and DAo stroke volume (mm(3)), right third and fourth aortic arch blood flow (mm(3)/s) were all decreased in ligated embryos (P < 0.05) when compared with normal and sham embryos. Ventricular end-diastolic volume versus normal and sham embryos decreased by 45% and 46%, respectively (P < 0.05). India ink injection revealed altered right aortic arch flow patterns in the ligated embryos compared with normal embryos. micro-CT imaging confirmed altered arch morphogenesis. Alterations in intracardiac blood flow disrupt both early cardiac morphogenesis and aortic arch selection. PMID:19322826

  3. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    SciTech Connect

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  4. Morphokinetic behavior of euploid and aneuploid embryos analyzed by time-lapse in embryoscope

    PubMed Central

    Patel, Deven V.; Shah, Preeti B.; Kotdawala, Aditi P.; Herrero, Javier; Rubio, Irene; Banker, Manish R.

    2016-01-01

    BACKGROUND: Embryonic aneuploidy may result in miscarriage, implantation failure, or birth defects. Thus, it is clinically necessary to avoid the selection of aneuploid embryos during in vitro fertilization treatment. AIM: The aim of this study was to identify the morphokinetic differences by analyzing the development of euploid and aneuploid embryos using a time-lapse technology. We also checked the accuracy of a previously described model for selection of euploid embryos based on morphokinetics in our study population. MATERIALS AND METHODS: It is a retrospective study of 29 cycles undergoing preimplantation genetic screening from October 2013 to April 2015 at our center. Of 253 embryos, 167 suitable for biopsy embryos were analyzed for their chromosomal status using array-comparative genome hybridization (CGH). The morphokinetic behavior of these embryos was further analyzed in embryoscope using time-lapse technology. RESULTS: Among the analyzed embryos, 41 had normal and 126 had abnormal chromosome content. No significant difference in morphokinetics was found between euploid and aneuploid embryos. The percentage of embryos with blastulation was similar in the euploid (65.85%, 27/41) and aneuploid (60.31%, 76/126) embryos (P = 0.76). Although hard to define, majority of the chromosomal defects might be due to meiotic errors. On applying embryo selection model from Basile et al., embryos falling within optimal ranges for time to division to 5 cells (t5), time period of the third cell cycle (CC3), and time from 2 cell division to 5 cell division (t5-t2) exhibited greater proportion of normal embryos than those falling outside the optimal ranges (28.6%, 25.9%, and 26.7% vs. 17.5%, 20.8%, and 14.3%). CONCLUSION: Keeping a track of time interval between two stages can help us recognize aneuploid embryos at an earlier stage and prevent their selection of transfer. However, it cannot be used as a substitute for array CGH to select euploid embryos for transfer. PMID

  5. Ovarian response, embryo recovery and results of embryo transfer in a Hungarian native pig breed.

    PubMed

    Rátky, J; Brüssow, K P; Solti, L; Torner, H; Sarlós, P

    2001-09-15

    The objective of the study was to use embryo transfer (ET) for propagation of the Swallow Belly Mangalica population. Mangalica is a native Hungarian pig breed adapted to extreme climate and housing conditions and distinguished for excellent meat and fat quality. However, due to their weak reproductive characteristics and relatively high fat proportion, Mangalica pigs have been replaced by modern breeds. Now, there is an increased interest again to safeguard the properties of this breed. We conducted two experiments. First, we used a total of 18 puberal Mangalica gilts to determine an optimal superovulatory treatment. Following estrus synchronization with Regumate, we injected gilts with either 750, 1000 or 1250 IU PMSG, followed by 750 IU hCG 80 h later. We scanned ovaries endoscopically 3 days after hCG administration. The application of 1000 and 1250 IU PMSG resulted in a higher rate of ovulation compared to 750 IU (24.2 +/- 3.6 and 21.0 +/- 2.3 vs. 13.7 +/- 2.7 P<0.05). The number of follicular cysts increased after administration of 1250 IU PMSG compared to 750 and 1000 IU (2.0 +/- 1.3 vs. 0.3 +/- 0.7 and 0.2 +/- 0.3, P<0.05). Thus, we chose 1000 IU PMSG for further stimulation of Mangalica gilts. In the second experiment, we induced superovulation in 10 Mangalica donor gilts by 1000 IU PMSG and 750 IU hCG. Gilts were fixed-time inseminated, and then five days later embryo collection was carried out surgically (n=6) or endoscopically (n=4). Out of the 187 ova recovered, 92.5% were at the morula/blastocyst stage. The embryo recovery rate was higher following surgical flushing than following endoscopy (91.5 +/- 4.4% vs. 71.4 +/- 12.7%, P<0.05). Altogether 143 embryos were transferred surgically or endoscopically into 8 Landrace recipients. Surgical and endoscopic transfer of Mangalica embryos into Landrace gilts resulted in pregnancies in 3 and 2 gilts, respectively; thus the overall farrowing rate was 62.5%. The birth of 59 Mangalica piglets from 5 embryo

  6. [The action of catecholamine-synthesis inhibitors and of spiperone on sea urchin and mouse embryos].

    PubMed

    Markova, L N; Sakharova, N Iu; Bezuglov, V V

    2000-01-01

    We studied the effects of three inhibitors of catecholamine synthesis on the development of sea urchins Sphaerechinus granularis and Paracentrotus lividus. These drugs affected the early embryogenesis, which was expressed in inhibition of the cleavage divisions, appearance of abnormal embryos, and developmental arrest. The addition of arachidonic acid amide and dopamine to the incubation medium weakened the effects of the inhibitors. Spiperone induced developmental defects in preimplantation mouse embryos and sea urchin embryos. Arachidonic acid amide with dopamine exerted a protective effect against spiperone when introduced to sea urchin embryos at the blastula or late gastrula stages, rather than after fertilization. In murine embryos, this amide induced developmental defects and arrest itself and its effect was reversible. Possible mechanisms underlying the effects of these drugs are discussed. PMID:10732361

  7. Leptospira borgpetersenii serovar hardjo type hardjobovis in bovine embryos fertilized in vitro.

    PubMed Central

    Bielanski, A B; Surujballi, O

    1998-01-01

    The association of Leptospira borgpetersenii serovar hardjo type hardjobovis with bovine embryos produced by in vitro fertilization was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Morula stage embryos with an intact zona pellucida (ZP) were exposed to this spirochete for 24 h in culture medium, washed by the standard washing procedure as recommended by the International Embryo Transfer Society, and then examined. SEM showed typical helicoid leptospires on the surface and in the pores of the ZP. TEM showed cross and longitudinal sections of leptospires in the matrix and channels of the ZP, in the perivitelline and intercellular spaces, on the vitellus and in the embryonic cells. Some of the embryos that were penetrated showed damage to the membranes and the cytoplasm. The ineffectiveness of the washing procedure, for the removal of hardjobovis from exposed embryos may be of importance to the industry. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:9684055

  8. A genetic component of resistance to fungal infection in frog embryos

    PubMed Central

    Sagvik, Jörgen; Uller, Tobias; Olsson, Mats

    2008-01-01

    The embryo has traditionally been considered to completely rely upon parental strategies to prevent threats to survival posed by predators and pathogens, such as fungi. However, recent evidence suggests that embryos may have hitherto neglected abilities to counter pathogens. Using artificial fertilization, we show that among-family variation in the number of Saprolegnia-infected eggs and embryos in the moor frog, Rana arvalis, cannot be explained by maternal effects. However, analysed as a within-females effect, sire identity had an effect on the degree of infection. Furthermore, relatively more eggs and embryos were infected when eggs were fertilized by sperm from the same, compared with a different, population. These effects were independent of variation in fertilization success. Thus, there is likely to be a significant genetic component in embryonic resistance to fungal infection in frog embryos. Early developmental stages may show more diverse defences against pathogens than has previously been acknowledged. PMID:18319211

  9. [Specific features of the development of Siberian stone pine megagametophytes and embryos in vitro].

    PubMed

    Tret'iakova, I N; Novoselova, N V

    2003-01-01

    Seedlings were grown in vitro from fertilized eggs and immature embryos of the Siberian stone pine. Cultivation of megagametophytes on a hormone-containing Murashige-Skoog medium from the egg formation until the globular embryo stage made it possible to manipulate fertilization and embryogenesis. Immature embryos are the most promising for in vitro cultivation. Their maturation and germination proceed within seven days of cultivation. When zygotic embryos were cultivated, adventitious buds were formed from cells at the cotyledon base and tips. When adventitious buds were subcultivated on a medium containing benzylaminopurine and naphthylacetic acid, organogenic callus and shoots were formed. Thus, cultivation of megagametophytes and embryos of the Siberian stone pine led to the completion of embryogenesis and formation of viable of seedlings. PMID:12942739

  10. Effect of Cell Cycle Interactions and Inhibition of Histone Deacetylases on Development of Porcine Embryos Produced by Nuclear Transfer.

    PubMed

    Rissi, Vitor B; Glanzner, Werner G; Mujica, Lady K S; Antoniazzi, Alfredo Q; Gonçalves, Paulo B D; Bordignon, Vilceu

    2016-02-01

    The aim of this study was to evaluate if the positive effects of inhibiting histone deacetylase enzymes on cell reprogramming and development of somatic cell nuclear transfer (SCNT) embryos is affected by the cell cycle stage of nuclear donor cells and host oocytes at the time of embryo reconstruction. SCNT embryos were produced with metaphase II (MII) or telophase II (TII) cytoplasts and nuclear donor cells that were either at the G1-0 or G2/M stages. Embryos reconstructed with the different cell cycle combinations were treated or not with the histone deacetylase inhibitor (HDACi) Scriptaid for 15 h and then cultured in vitro for 7 days. Embryos reconstructed with MII-G1-0 and TII-G2/M developed to the blastocyst stage with a higher frequency compared to the other groups, confirming the importance of cell cycle interactions on cell reprogramming and SCNT embryo development. Treatment with HDACi improved development of SCNT embryos produced with MII but not TII cytoplasts, independently of the cell cycle stage of nuclear donor cells. These findings provide evidence that the positive effect of HDACi treatment on development of SCNT embryos depends upon cell cycle interactions between the host cytoplast and the nuclear donor cells. PMID:27281695

  11. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation.

    PubMed

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12-30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  12. Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation

    PubMed Central

    Lin, Haichao; Wang, Huaizhong; Wang, Yanping; Liu, Chang; Wang, Cheng; Guo, Jianfeng

    2015-01-01

    In pigs, successful embryo implantation is an important guarantee for producing litter size, and early embryonic loss occurring on day 12–30 of gestation critically affects the potential litter size. The implantation process is regulated by the expression of numerous genes, so comprehensive analysis of the endometrium is necessary. In this study, RNA sequencing (RNA-Seq) technology is used to analyze endometrial tissues during early pregnancy. We investigated the changes of gene expression between three stages (day 12, 18, and 25) by multiple comparisons. There were 1557, 8951, and 2345 differentially expressed genes (DEGs) revealed between the different periods of implantation. We selected several genes for validation by the use of quantitative real-time RT-PCR. Bioinformatic analysis of differentially expressed genes in the endometrium revealed a number of biological processes and pathways potentially involved in embryo implantation in the pig, most noticeably cell proliferation, regulation of immune response, interaction of cytokine-cytokine receptors, and cell adhesion. These results showed that specific gene expression patterns reflect the different functions of the endometrium in three stages (maternal recognition, conceptus attachment, and embryo implantation). This study identified comprehensive transcriptomic profile in the porcine endometrium and thus could be a foundation for targeted studies of genes and pathways potentially involved in abnormal endometrial receptivity and embryo loss in early pregnancy. PMID:26703736

  13. HIV exceptionalism, CD4+ cell testing, and conscientious subversion

    PubMed Central

    Jansen, L

    2005-01-01

    In recent years, many states in the United States have passed legislation requiring laboratories to report the names of patients with low CD4 cell counts to their state Departments of Health. This name reporting is an integral part of the growing number of "HIV Reporting and Partner Notification Laws" which have emerged in response to recently revised guidelines suggested by the National Centers for Disease Control (CDC). Name reporting for patients with low CD4 cell counts allows for a more accurate tracking of the natural history of HIV disease. However, given that this test is now considered to be an "indicator" of HIV, should it be subject to the same strict consent required for HIV testing? While the CDC has recommended that each state develop its own consent requirements for CD4 cell testing, most states have continued to rely on the presumed consent standards for CD4 cell testing that were in place before the passage of name reporting statutes. This allows physicians who treat patients who refuse HIV testing to order a CD4 cell blood analysis to gather information that is indicative of their patient's HIV status. This paper examines the ethical and legal issues associated with the practice of "conscientious subversion" as it arises when clinicians use CD4 cell counts as a surrogate for HIV testing. PMID:15923478

  14. Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system

    PubMed Central

    Men, Hongsheng; Zhao, Chongbei; Wei, Si; Murphy, Clifton N.; Spate, Lee; Liu, Yang; Walters, Eric M.; Samuel, Melissa S.; Prather, Randall S.; Critser, John K.

    2011-01-01

    As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN2). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a “closed” system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease. PMID:21458047

  15. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    SciTech Connect

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-05-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group).

  16. Histone deacetylase inhibitor improves the development and acetylation levels of cat-cow interspecies cloned embryos.

    PubMed

    Wittayarat, Manita; Sato, Yoko; Do, Lanh Thi Kim; Morita, Yasuhiro; Chatdarong, Kaywalee; Techakumphu, Mongkol; Taniguchi, Masayasu; Otoi, Takeshige

    2013-08-01

    Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA-treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro-fertilized embryos and significantly higher (p<0.05) than those of non-TSA-treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9. PMID:23790014

  17. Effects of Histone Deacetylase Inhibitor Oxamflatin on In Vitro Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Hou, Liming; Ma, Fanhua; Yang, Jinzeng; Riaz, Hasan; Wang, Yongliang; Wu, Wangjun; Xia, Xiaoliang; Ma, Zhiyuan; Zhou, Ying; Zhang, Lin; Ying, Wenqin; Xu, Dequan; Zuo, Bo; Ren, Zhuqing

    2014-01-01

    Abstract Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro. PMID

  18. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  19. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box

    PubMed Central

    Tokoro, Mikiko; Fukunaga, Noritaka; Yamanaka, Kaori; Itoi, Fumiaki; Terashita, Yukari; Kamada, Yuko; Wakayama, Sayaka; Asada, Yoshimasa; Wakayama, Teruhiko

    2015-01-01

    Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes—usually used for molecular analysis—were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine. PMID:26393931

  20. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds.

    PubMed

    Hernández-Cerón, J; Chase, C C; Hansen, P J

    2004-01-01

    Exposure to 41 degrees C reduces development of embryos of heat-sensitive breeds (Holstein and Angus) more than for embryos of the heat-tolerant Brahman breed. Here it was tested whether embryonic resistance to heat shock occurs for a thermotolerant breed of different genetic origin than the Brahman. In particular, the thermal sensitivity of in vitro produced embryos of the Romosinuano, a Bos taurus, Criollo-derived breed, was compared to that for in vitro produced Brahman and Angus embryos. At d 4 after insemination, embryos > or = 8 cells were randomly assigned to control (38.5 degrees C) or heat shock (41 degrees C for 6 h) treatments. Heat shock reduced the proportion of embryos that developed to the blastocyst stage on d 8 after insemination. At 38.5 degrees C, there were no significant differences in development between breeds. Among embryos exposed to 41 degrees C, however, development was lower for Angus embryos than for Brahman and Romosinuano embryos. Furthermore, an Angus vs. (Brahman + Romosinuano) x temperature interaction occurred because heat shock reduced development more in Angus (30.3 +/- 4.6% at 38.5 degrees C vs. 4.9 +/- 4.6% at 41 degrees C) than in Brahman (25.1 +/- 4.6% vs. 13.6 +/- 4.6%) and Romosinuano (28.3 +/- 4.1% vs. 17.5 +/- 4.1%). Results demonstrate that embryos from Brahman and Romosinuano breeds are more resistant to elevated temperature than embryos from Angus. Thus, the process of adaptation of Brahman and Romosinuano breeds to hot environments resulted in both cases in selection of genes controlling thermotolerance at the cellular level. PMID:14765810

  1. A Simple Method for Transportation of Mouse Embryos Using Microtubes and a Warm Box.

    PubMed

    Tokoro, Mikiko; Fukunaga, Noritaka; Yamanaka, Kaori; Itoi, Fumiaki; Terashita, Yukari; Kamada, Yuko; Wakayama, Sayaka; Asada, Yoshimasa; Wakayama, Teruhiko

    2015-01-01

    Generally, transportation of preimplantation embryos without freezing requires incubators that can maintain an optimal culture environment with a suitable gas phase, temperature, and humidity. Such incubators are expensive to transport. We reported previously that normal offspring were obtained when the gas phase and temperature could be maintained during transportation. However, that system used plastic dishes for embryo culture and is unsuitable for long-distance transport of live embryos. Here, we developed a simple low-cost embryo transportation system. Instead of plastic dishes, several types of microtubes-usually used for molecular analysis-were tested for embryo culture. When they were washed and attached to a gas-permeable film, the rate of embryo development from the 1-cell to blastocyst stage was more than 90%. The quality of these blastocysts and the rate of full-term development after embryo transfer to recipient female mice were similar to those of a dish-cultured control group. Next, we developed a small warm box powered by a battery instead of mains power, which could maintain an optimal temperature for embryo development during transport. When 1-cell embryos derived from BDF1, C57BL/6, C3H/He and ICR mouse strains were transported by a parcel-delivery service over 3 days using microtubes and the box, they developed to blastocysts with rates similar to controls. After the embryos had been transferred into recipient female mice, healthy offspring were obtained without any losses except for the C3H/He strain. Thus, transport of mouse embryos is possible using this very simple method, which might prove useful in the field of reproductive medicine. PMID:26393931

  2. Avian embryos in hypoxic environments.

    PubMed

    León-Velarde, F; Monge-C, C

    2004-08-12

    Avian embryos at high altitude do not benefit of the maternal protection against hypoxia as in mammals. Nevertheless, avian embryos are known to hatch successfully at altitudes between 4,000 and 6,500 m. This review considers some of the processes that bring about the outstanding modifications in the pressure differences between the environment and mitochondria of avian embryos in hypoxic environments. Among species, some maintain normal levels of oxygen consumption ( VO2) have a high oxygen carrying capacity, lower the air cell-arterial pressure difference ( PAO2 - PaO2 ) with a constant pH. Other species decrease VO2, increase only slightly the oxygen carrying capacity, have a higher PAO2 - PaO2 difference than sea-level embryos and lower the PCO2 and pH. High altitude embryos, and those exposed to hypoxia have an accelerated decline of erythrocyte ATP levels during development and an earlier stimulation of 2,3-BPG synthesis. A higher Bohr effect may ensure high tissue PO2 in the presence of the high-affinity hemoglobin. Independently of the strategy used, they serve together to promote suitable rates of development and successful hatching of high altitude birds in hypoxic environments. PMID:15288603

  3. Feminists on the inalienability of human embryos.

    PubMed

    McLeod, Carolyn; Baylis, Francoise

    2006-01-01

    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos. PMID:17111554

  4. Diseases of amphibian eggs and embryos

    USGS Publications Warehouse

    Green, D.E.; Converse, K.A.

    2005-01-01

    Amphibians generally are prolific egg producers. In tropical and semi-tropical regions, deposition of eggs may occur year-round or may coincide with rainy seasons, while in temperate regions, deposition of eggs usually occurs immediately after emergence from hibernation. Numbers of eggs produced by each species may vary from a few dozen to thousands. Accordingly, some eggs may be infertile and wastage of embryos is to be expected. Fertility, viability and decomposition of eggs and embryos must be considered before it is assumed that diseases are present. An important consideration in the evaluation of egg masses is the fact that some will contain infertile and non-viable eggs. These infertile and nonviable eggs will undergo decomposition and they may appear similar to eggs that are infected by a pathogen. Evaluation of egg masses and embryos for the presence of disease may require repeated observations in a given breeding season as well as continued monitoring of egg masses during their growth and development and over successive breeding seasons. Amphibian eggs rarely are subjected to a comprehensive health (diagnostic) examination; hence, there is scant literature on the diseases of this life stage. Indeed, the eggs of some North American amphibians have yet to be described. Much basic physiology and normal biomedical baseline data on amphibian eggs is lacking. For example, it is known that the aquatic eggs of some species of shrimp quickly are coated by a protective and commensal bacterium that effectively impedes invasion of the eggs by other environmental organisms and potential pathogens. In the absence of this bacterium, shrimp eggs are rapidly killed by other bacteria and fungi (Green, 2001). The possibility that amphibian eggs also have important symbiotic or commensal bacteria needs to be investigated. Furthermore, the quantity and types of chemicals in the normal gelatinous capsules of amphibian eggs have scarcely been examined. Abnormalities of the

  5. Automated microinjection of recombinant BCL-X into mouse zygotes enhances embryo development.

    PubMed

    Liu, Xinyu; Fernandes, Roxanne; Gertsenstein, Marina; Perumalsamy, Alagammal; Lai, Ingrid; Chi, Maggie; Moley, Kelle H; Greenblatt, Ellen; Jurisica, Igor; Casper, Robert F; Sun, Yu; Jurisicova, Andrea

    2011-01-01

    Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality. PMID:21799744

  6. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis

    PubMed Central

    Chen, Hongyu; Zou, Wenxuan; Zhao, Jie

    2015-01-01

    Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development. PMID:25871650

  7. Microinjection wound assay and in vivo localization of epidermal wound response reporters in Drosophila embryos.

    PubMed

    Juarez, Michelle T; Patterson, Rachel A; Li, Wilson; McGinnis, William

    2013-01-01

    The Drosophila embryo develops a robust epidermal layer that serves both to protect the internal cells from a harsh external environment as well as to maintain cellular homeostasis. Puncture injury with glass needles provides a direct method to trigger a rapid epidermal wound response that activates wound transcriptional reporters, which can be visualized by a localized reporter signal in living embryos or larvae. Puncture or laser injury also provides signals that promote the recruitment of hemocytes to the wound site. Surprisingly, severe (through and through) puncture injury in late stage embryos only rarely disrupts normal embryonic development, as greater than 90% of such wounded embryos survive to adulthood when embryos are injected in an oil medium that minimizes immediate leakage of hemolymph from puncture sites. The wound procedure does require micromanipulation of the Drosophila embryos, including manual alignment of the embryos on agar plates and transfer of the aligned embryos to microscope slides. The Drosophila epidermal wound response assay provides a quick system to test the genetic requirements of a variety of biological functions that promote wound healing, as well as a way to screen for potential chemical compounds that promote wound healing. The short life cycle and easy culturing routine make Drosophila a powerful model organism. Drosophila clean wound healing appears to coordinate the epidermal regenerative response, with the innate immune response, in ways that are still under investigation, which provides an excellent system to find conserved regulatory mechanisms common to Drosophila and mammalian epidermal wounding. PMID:24300796

  8. Possible effect from shear stress on maturation of somatic embryos of Norway spruce (Picea abies).

    PubMed

    Sun, Hong; Aidun, Cyrus K; Egertsdotter, Ulrika

    2011-05-01

    Somatic embryogenesis is the only method with the potential for industrial scale clonal propagation of conifers. Implementation of the method has so far been hampered by the extensive manual labor required for development of the somatic embryos into plants. The utilization of bioreactors is limited since the somatic embryos will not mature and germinate under liquid culture conditions. The negative effect on mature embryo yields from liquid culture conditions has been previously described. We have described the negative effects of shear stress on the development of early stage somatic embryos (proembryogenic masses; PEMs) at shear stresses of 0.086 and 0.14 N/m(2). In the present study, additional flow rates were studied to determine the effects of shear stress at lower rates resembling shear stress in a suspension culture flask. The results showed that shear stress at 0.009, 0.014, and 0.029 N/m(2) inhibited the PEM expansions comparing with the control group without shear stress. This study also provides validation for the cross-correlation method previously developed to show the effect of shear stress on early stage embryo suspensor cell formation and polarization. Furthermore, shear stress was shown to positively affect the uptake of water into the cells. The results indicate that the plasmolyzing effect from macromolecules added to liquid culture medium to stimulate maturation of the embryos are affected by liquid culture conditions and thus can affect the conversion of PEMs into mature somatic embryos. PMID:21449024

  9. Improved Method for Ex Ovo-Cultivation of Developing Chicken Embryos for Human Stem Cell Xenografts

    PubMed Central

    Schomann, Timo; Qunneis, Firas; Widera, Darius; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-01-01

    The characterization of human stem cells for the usability in regenerative medicine is particularly based on investigations regarding their differentiation potential in vivo. In this regard, the chicken embryo model represents an ideal model organism. However, the access to the chicken embryo is only achievable by windowing the eggshell resulting in limited visibility and accessibility in subsequent experiments. On the contrary, ex ovo-culture systems avoid such negative side effects. Here, we present an improved ex ovo-cultivation method enabling the embryos to survive 13 days in vitro. Optimized cultivation of chicken embryos resulted in a normal development regarding their size and weight. Our ex ovo-approach closely resembles the development of chicken embryos in ovo, as demonstrated by properly developed nervous system, bones, and cartilage at expected time points. Finally, we investigated the usability of our method for trans-species transplantation of adult stem cells by injecting human neural crest-derived stem cells into late Hamburger and Hamilton stages (HH26–HH28/E5—E6) of ex ovo-incubated embryos. We demonstrated the integration of human cells allowing experimentally easy investigation of the differentiation potential in the proper developmental context. Taken together, this ex ovo-method supports the prolonged cultivation of properly developing chicken embryos enabling integration studies of xenografted mammalian stem cells at late developmental stages. PMID:23554818

  10. Effects of ammonium dinitramide on preimplantation embryos in Sprague-Dawley rats.

    PubMed

    Graeter, L J; Wolfe, R E; Kinkead, E R; Flemming, C D

    1998-01-01

    Ammonium dinitramide (ADN) is a class 1.1 oxidizer that may be used in rocket propellants and explosives. Previous studies have shown that ADN is a female reproductive toxicant, causing implantation failure in Sprague-Dawley rats when it is administered during the preimplantation period of gestation. The purpose of this follow-up study was to identify the mechanism(s) associated with implantation failure following exposure to ADN. Mated female rats were treated with 2.0 grams per liter (g l-1) ADN in their drinking water for 24, 48, 72, or 96 h before preimplantation embryos were harvested from the oviducts or uterine horns. On gestation day 1 (GD-1), comparable numbers of morphologically normal two-cell embryos were harvested from the oviducts of the treatment and control groups. On GD-2, the development of the embryos harvested from the treated animals was either slowed or halted when compared to the control embryos. By GD-4, 98% of the embryos harvested from the control group had developed to the morula or blastocyst stage; these were collected from the uterine horns. On GD-4 in the treated group, 41% of the harvested embryos remained at the two- to six-cell stage and 59% were degenerate; 82% of these embryos were collected from the oviducts. These data suggest that the implantation failure seen in animals treated with ADN is due to embryolethality. PMID:9891911

  11. Cadence of procreation: orchestrating embryo-uterine interactions.

    PubMed

    Cha, Jeeyeon; Dey, Sudhansu K

    2014-10-01

    Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy. PMID:24862857

  12. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    NASA Astrophysics Data System (ADS)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  13. Growth and development of cultured carrot cells and embryos under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.

    1981-01-01

    Morphogenetically competent proembryonic cells and well-developed somatic embryos of carrot at two levels of organization were exposed for 18.5 days to a hypogravity environment aboard the Soviet Biosatellite Cosmos 1129. It was confirmed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots and minimally developed shoots. It was also shown that the space hypogravity environment could support the further growth of already-organized, later somatic embryonic stages and give rise to fully developed embryo-plantlets with roots and shoots.

  14. Long-term imaging of mouse embryos using adaptive harmonic generation microscopy

    PubMed Central

    Thayil, Anisha; Watanabe, Tomoko; Jesacher, Alexander; Wilson, Tony; Srinivas, Shankar; Booth, Martin

    2012-01-01

    We present a detailed description of an adaptive harmonic generation (HG) microscope and culture techniques that permit long-term, three-dimensional imaging of mouse embryos. HG signal from both pre- and postimplantation stage (0.5–5.5 day-old) mouse embryos are fully characterized. The second HG images reveal central spindles during cytokinesis whereas third HG images show several features, such as lipid droplets, nucleoli, and plasma membranes. The embryos are found to develop normally during one-day-long discontinuous HG imaging, permitting the observation of several dynamic events, such as morula compaction and blastocyst formation. PMID:21529087

  15. Hyaluronan and hyaluronidase, which is better for embryo development?

    PubMed

    Marei, Waleed F A; Raheem, Kabir A; Salavati, Mazdak; Tremaine, Tina; Khalid, Muhammad; Fouladi-Nashta, Ali A

    2016-09-01

    Our aim was to examine size-specific effects of Hyaluronan (HA) on preimplantation embryo development. We investigated the effects of Hyalovet (HA, 500-750 kDa; the size produced by HA synthase-3, which is abundant in the oviduct), or HA treated with Hyaluronidase-2 (Hyal2; also expressed in the oviduct that breaks down HA into 20 kDa fragments). In experiment 1 (in vivo), oviducts of synchronized and superovulated ewes (n = 20) were surgically exposed on Day 2 post-mating, ligated, and infused with either Hyalovet, Hyalovet + Hyal2, Hyal2, or PBS (control). Ewes were killed 5 days later for recovery of embryos and oviductal epithelial cells (OEC). Blastocyst rates were significantly higher in Hyal2 and Hyalovet + Hyal2 oviducts. Hyaluronidase-2 infusion resulted in higher blastocyst cell numbers and hatching rates. This was associated with increased HSP70 expression in OEC. In contrast, Hyalovet resulted in the lowest development to blastocyst stage and lowest hatching rates, and decreased IGF2 and IGFBP2 expression in OEC. IGF1 and IL1α expression were not affected. In experiment 2, to rule out indirect effects of oviductal factors, ovine embryos were produced and cultured with the same treatments in vitro from Day 2 to 8. Hyaluronidase-2, but not Hyalovet, enhanced blastocyst formation and reduced inner cell mass apoptosis. Hyalovet inhibited hatching. In conclusion, the presence of large-size HA (500-750 kDa) in the vicinity of developing embryos appears to disturb the oviductal environment and embryo development in vivo and in vitro. In contrast, we show evidence that breakdown of HA into smaller fragments is required to maximize embryo development and blastocyst quality. PMID:27091071

  16. Apoptosis in mammalian preimplantation embryos: regulation by survival factors.

    PubMed

    Brison, Daniel R.

    2000-01-01

    The formation of a developmentally competent mammalian blastocyst requires the transition from a unicellular state, the fertilized zygote, to a differentiated multicellular structure. In common with other developing organisms, generation of the required cell population involves the processes of cell division, differentiation and cell death, all of which can be regulated by peptide growth factors. Cell death in the preimplantation embryo occurs by apoptosis and, by analogy with other systems, may serve to eliminate unwanted cells during the critical developmental transitions that take place during this period. Cells may be eliminated because they are abnormal or possess defects, including damaged DNA or chromosomal abnormalities. At the early cleavage stages, apoptosis may be associated with activation of the embryonic genome and may contribute to the blastomere fragmentation commonly observed in human IVF embryos. The major wave of apoptosis occurs in a number of species in the inner cell mass of the blastocyst, as identified using nuclear labelling including terminal transferase-mediated dUTP nick end labelling (TUNEL) and fluorescence and confocal microscopy. Apoptosis may protect the integrity and cellular composition of the inner cell mass, by eliminating damaged cells or possibly those with an inappropriate phenotype. Preimplantation embryos express genes involved in the regulation and execution of apoptosis and their cells can undergo this default pathway in the absence of exogenous survival signals. Evidence is now accumulating from several species that apoptosis in the embryo is regulated by soluble peptide growth factors acting as survival factors in an autocrine or paracrine manner. To date, these include transforming growth factor alpha and members of the insulin-like growth factor family. Apoptosis may also be affected by environmental factors, including culture conditions and the composition of media. The regulation of apoptosis in the preimplantation

  17. A chick embryo with a yet unclassified type of cephalothoracopagus malformation and a hypothesis for explaining its genesis.

    PubMed

    Maurer, B; Geyer, S H; Weninger, W J

    2013-06-01

    Cephalothoracopagus embryos are conjoined twins, who share parts of their heads, necks and bodies. Our study aims at presenting a detailed morphological analysis of a cephalothoracopagus chick embryo of developmental stage 31. Because none of the existing theories can explain the genesis of the phenotype of this embryo, we also suggest a hypothesis, which explains it. Beside the cephalothoracopagus embryo, we investigated five control embryos. With the aid of the high-resolution episcopic microscopy (HREM) technique, we created digital volume data and three-dimensional (3D) computer models of the organs and arteries of the embryos. We used the 3D models for topological analysis and for measuring the diameters of the great intrathoracic arteries. The malformed embryo showed two body backs, each containing a notochord, spinal cord and dorsal aorta. The body backs continued into separated lower bodies. The embryo had a single, four-chambered heart, single respiratory tract and single upper alimentary tract. The topology of the pharyngeal arch arteries was normal, and the diameters of these arteries were similar to that of the control embryos. We classified the embryo we investigated as a yet unknown malformation and suggest a hypothesis explaining its genesis. PMID:22971166

  18. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  19. Spermatozoa telomeres determine telomere length in early embryos and offspring.

    PubMed

    de Frutos, C; López-Cardona, A P; Fonseca Balvís, N; Laguna-Barraza, R; Rizos, D; Gutierrez-Adán, A; Bermejo-Álvarez, P

    2016-01-01

    Offspring telomere length (TL) has been correlated with paternal TL, but the mechanism for this parent of origin-specific inheritance remains unclear. The objective of this study has been to determine the role of spermatozoa TL in embryonic telomere lengthening by using two mouse models showing dimorphism in their spermatozoa TL: Mus musculus vs Mus spretus and old vs young Mus musculus. Mus spretus spermatozoa displayed a shorter TL than Mus musculus. Hybrid offspring exhibited lower TL compared with Mus musculus starting at the two-cell stage, before the onset of telomerase expression. To analyze the role of spermatozoa telomeres in early telomere lengthening, we compared the TL in oocytes, zygotes, two-cell embryos and blastocysts produced by parthenogenesis or by fertilization with Mus musculus or Mus spretus spermatozoa. TL was significantly higher in spermatozoa compared with oocytes, and it increased significantly from the oocyte to the zygote stage in those embryos fertilized with Mus musculus spermatozoa, but not in those fertilized with Mus spretus spermatozoa or produced by parthenogenesis. A further increase was noted from the zygote to the two-cell stage in fertilized Mus musculus embryos, whereas hybrid embryos maintained the oocyte TL. Spermatozoa TL shortened with age in Mus musculus and the offspring from young males showed a significantly higher TL compared with that fathered by old males. These significant differences were already noticeable at the two-cell stage. These results suggest that spermatozoa telomeres act as a guide for telomerase-independent telomere lengthening resulting in differences in TL that persist after birth. PMID:26475708

  20. 9 CFR 98.16 - The embryo collection unit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.16 The embryo collection unit. Ruminant and swine embryos may...

  1. 9 CFR 98.16 - The embryo collection unit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.16 The embryo collection unit. Ruminant and swine embryos may...

  2. 9 CFR 98.16 - The embryo collection unit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.16 The embryo collection unit. Ruminant and swine embryos may...

  3. 9 CFR 98.16 - The embryo collection unit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.16 The embryo collection unit. Ruminant and swine embryos may...

  4. 9 CFR 98.16 - The embryo collection unit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.16 The embryo collection unit. Ruminant and swine embryos may...

  5. Integrin beta 8 (ITGB8) regulates embryo implantation potentially via controlling the activity of TGF-B1 in mice.

    PubMed

    Kumar, Vijay; Maurya, Vineet Kumar; Joshi, Anubha; Meeran, Syed Musthapa; Jha, Rajesh Kumar

    2015-04-01

    Integrins (ITGs) are mediators of cell-cell and cell-matrix interactions, which are also associated with embryo implantation processes by controlling the interaction of blastocyst with endometrium. During early pregnancy, ITGbeta8 (ITGB8) has been shown to interact with latent transforming growth factor (TGF) beta 1 (TGFB1) at the fetomaternal interface. However, the precise role of ITGB8 in the uterus and its association with embryo implantation has not been elucidated. Therefore, we attempted to ascertain the role of ITGB8 during the window of embryo implantation process by inhibiting its function or protein expression. Uterine plasma membrane-anchored ITGB8 was augmented at peri-implantation and postimplantation stages. A similar pattern of mRNA expression was also found during the embryo implantation period. An immunolocalization study revealed the presence of ITGB8 on luminal epithelial cells along with mild expression on the stromal cells throughout the implantation period studied; however, an intense fluorescence was noted only during the peri- and postimplantation stages. Bioneutralization and mRNA silencing of the uterine Itgb8 at preimplantation stage reduced the rate/frequency of embryo implantation and subsequent pregnancy, suggesting its indispensable role during the embryo implantation period. ITGB8 can also regulate the liberation of active TGFB1 from its latent complex, which, in turn, acts on SMAD2/3 phosphorylation (activation) in the uterus during embryo implantation. This indicates involvement of ITGB8 in the embryo implantation process through regulation of activation of TGFB1. PMID:25788663

  6. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster

    PubMed Central

    2013-01-01

    Background It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Results Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning

  7. Pollination and embryo development in Brassica rapa L. in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  8. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.

    PubMed

    Bazrgar, Masood; Gourabi, Hamid; Valojerdi, Mojtaba Rezazadeh; Yazdi, Poopak Eftekhari; Baharvand, Hossein

    2013-09-01

    Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism. PMID:23557100

  9. Experimental manipulation of compaction of the mouse embryo alters patterns of protein phosphorylation

    SciTech Connect

    Bloom, T. )

    1991-03-01

    Compaction, occurring at the eight-cell stage of mouse development, is the process of cell flattening and polarisation by which cellular asymmetry is first established. Changes in the pattern of protein phosphorylation have been correlated with this early event of development. In the study reported here, groups of embryos were treated in ways known to affect particular features of compaction and were then labeled with ({sup 32}P)orthophosphate; the phosphoproteins obtained were examined following electrophoresis in one and two dimensions. Four-cell embryos were treated with protein synthesis inhibitors, which advance cell flattening. This treatment resulted in only minor differences from the phosphoprotein profile of untreated four-cell embryos. Inhibition of protein synthesis at the eight-cell stage has little effect on cell flattening or polarisation. However, some phosphoproteins that are observed normally in eight-cell but not in four-cell embryos were no longer detectable if labeling took place in the presence of protein synthesis inhibitors. Eight-cell embryos incubated in phorbol 12-myristate 13-acetate, which disrupts various features of compaction, showed a relative increase in the phosphorylation of a group of phosphoprotein spots associated with the eight-cell but not with the four-cell stage. Embryos incubated in Ca2(+)-free medium, which prevents intercellular flattening and delays polarisation, showed a relative decrease in the phosphorylation of the same group of phosphoprotein spots. The behaviour of these phosphoproteins may therefore be correlated with some of the features of compaction.

  10. Gray level Co-occurrence Matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos.

    PubMed

    Tan, Tiffany C Y; Ritter, Lesley J; Whitty, Annie; Fernandez, Renae C; Moran, Lisa J; Robertson, Sarah A; Thompson, Jeremy G; Brown, Hannah M

    2016-08-01

    The preimplantation embryo is extraordinarily sensitive to environmental signals and events such that perturbations can alter embryo metabolism and program an altered developmental trajectory, ultimately affecting the phenotype of the adult individual; indeed, the physical environment associated with in vitro embryo culture can attenuate development. Defining the underlying metabolic changes and mechanisms, however, has been limited by the imaging technology used to evaluate metabolites and structural features in the embryo. Here, we assessed the impact of in vitro fertilization and culture on mouse embryos using three metabolic markers: peroxyfluor 1 (a reporter of hydrogen peroxide), monochlorobimane (a reporter of glutathione), and Mitotracker Deep Red (a marker of mitochondria). We also evaluated the distribution pattern of histone 2AX gamma (γH2AX) in the nuclei of 2- and 8-cell embryos and blastocysts to investigate the degree of DNA damage caused by in vitro embryo culture. In vitro-fertilized embryos, in vivo-developed embryos, and in vivo-fertilized embryos recovered and cultured in vitro were compared at the 2-, 8-cell, and blastocyst stages. In addition to assessments based on fluorescence intensity, textural analysis using Gray Level Co-occurrence Matrix (GLCM), a statistical approach that assesses texture within an image, was used to evaluate peroxyfluor 1, monochlorobimane, and Mitotracker Deep Red staining in an effort to develop a robust metric of embryo quality. Our data provide strong evidence of modified metabolic parameters identifiable as altered fluorescence texture in embryos developed in vitro. Thus, texture-analysis approach may provide a means of gaining additional insight into embryo programming beyond conventional measurements of staining intensity for metabolic markers. Mol. Reprod. Dev. 83: 701-713, 2016 © 2016 Wiley Periodicals, Inc. PMID:27409576

  11. Untwisting the Caenorhabditis elegans embryo

    PubMed Central

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  12. Untwisting the Caenorhabditis elegans embryo.

    PubMed

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. PMID:26633880

  13. Embryo adoption: Some further considerations.

    PubMed

    Patterson, Colin

    2015-02-01

    Recent discussions of embryo adoption have sought to make sense of the teaching of the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae which appeared to provide a negative judgment on such a practice. This article aims to provide a personalist account of the process of fertilization and implantation that might serve as the basis for the negative judgment of the CDF document. In doing so, it relies upon the idea that a person, including an embryo, is not to be considered in isolation, but always in relation to God and to others. This approach extends the substantialist conceptualizations commonly employed in discussions of this issue. More generally, the article seeks to highlight the value of a personalist re-framing for an understanding of the moral questions surrounding the beginning of life. Lay summary: This article seeks to make sense of what appears to be a clear-cut rejection, set out in the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae, of the proposal for women to "adopt" surplus frozen embryos. It draws upon more recently developed modes of philosophical/theological reasoning to argue that, in human procreation, both fertilization and implantation represent constitutive dimensions of divine creative activity and so must be protected from manipulative technological intervention. Since embryo adoption requires this kind of technology, it makes sense for the Church document not to approve it. PMID:25698841

  14. Embryo adoption: Some further considerations

    PubMed Central

    Patterson, Colin

    2015-01-01

    Recent discussions of embryo adoption have sought to make sense of the teaching of the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae which appeared to provide a negative judgment on such a practice. This article aims to provide a personalist account of the process of fertilization and implantation that might serve as the basis for the negative judgment of the CDF document. In doing so, it relies upon the idea that a person, including an embryo, is not to be considered in isolation, but always in relation to God and to others. This approach extends the substantialist conceptualizations commonly employed in discussions of this issue. More generally, the article seeks to highlight the value of a personalist re-framing for an understanding of the moral questions surrounding the beginning of life. Lay summary: This article seeks to make sense of what appears to be a clear-cut rejection, set out in the Congregation for the Doctrine of the Faith (CDF) document Dignitas personae, of the proposal for women to “adopt” surplus frozen embryos. It draws upon more recently developed modes of philosophical/theological reasoning to argue that, in human procreation, both fertilization and implantation represent constitutive dimensions of divine creative activity and so must be protected from manipulative technological intervention. Since embryo adoption requires this kind of technology, it makes sense for the Church document not to approve it. PMID:25698841

  15. An attempt of cryopreservation of mouse embryos at the ACTREC laboratory animal facility in India.

    PubMed

    Thorat, Rahul; Ingle, Arvind

    2012-01-01

    Cryopreservation is the long-term storage of viable cells/tissue in liquid nitrogen. The present study was conducted to freeze 8-cell- to morula-stage mouse embryos from the ACTREC Laboratory Animal Facility using a "slow freezing and fast revival" method. In all, 4,088 embryos were collected from 495 donor female mice of ten different strains. An average recovery of 8 embryos per donor mouse were recorded. Of the 4,088 embryos, 3,946 embryos of normal morphology were frozen in 173 straws. They were cooled down using a controlled-rate freezing assembly, and the straws were directly plunged into liquid nitrogen for long-term storage. Out of these 3,946 frozen embryos, 2,650 were found to be viable after fast revival. The highest survival rate, 81%, was recorded in B6D2F1 hybrid mice, whereas the lowest rate, 51%, was recorded in the S/RV/Cri-ba mutant strain. Out of 2,650 viable embryos, 2,359 embryos (89%) developed to the blastocyst stage after 24 h of incubation in a CO(2) incubator. The developed blastocysts were transferred surgically into 101 pseudopregnant female mice, of which 49 (48.5%) females were found to be pregnant. The highest percentage of pregnancy, 75%, was recorded in C57BL/6NCrl and NIH-III mice, whereas no pregnant recipients were recorded in Ptch, C3H/HeNCrl and NOD SCID mice. Based on the deliveries of these 49 females, an average of 4 young were delivered per female. Improvement in efficiency of freezing, thawing, and surgical transfer of embryos into pseudopregnant females is one of the challenges in such studies. PMID:22531729

  16. Self-organization of the in vitro attached human embryo.

    PubMed

    Deglincerti, Alessia; Croft, Gist F; Pietila, Lauren N; Zernicka-Goetz, Magdalena; Siggia, Eric D; Brivanlou, Ali H

    2016-05-12

    Implantation of the blastocyst is a developmental milestone in mammalian embryonic development. At this time, a coordinated program of lineage diversification, cell-fate specification, and morphogenetic movements establishes the generation of extra-embryonic tissues and the embryo proper, and determines the conditions for successful pregnancy and gastrulation. Despite its basic and clinical importance, this process remains mysterious in humans. Here we report the use of a novel in vitro system to study the post-implantation development of the human embryo. We unveil the self-organizing abilities and autonomy of in vitro attached human embryos. We find human-specific molecular signatures of early cell lineage, timing, and architecture. Embryos display key landmarks of normal development, including epiblast expansion, lineage segregation, bi-laminar disc formation, amniotic and yolk sac cavitation, and trophoblast diversification. Our findings highlight the species-specificity of these developmental events and provide a new understanding of early human embryonic development beyond the blastocyst stage. In addition, our study establishes a new model system relevant to early human pregnancy loss. Finally, our work will also assist in the rational design of differentiation protocols of human embryonic stem cells to specific cell types for disease modelling and cell replacement therapy. PMID:27144363

  17. Bulk elastic properties of chicken embryos during somitogenesis

    PubMed Central

    2010-01-01

    We present measurements of the bulk Young's moduli of early chick embryos at Hamburger-Hamilton stage 10. Using a micropipette probe with a force constant k ~0.025 N/m, we applied a known force in the plane of the embryo in the anterior-posterior direction and imaged the resulting tissue displacements. We used a two-dimensional finite-element simulation method to model the embryo as four concentric elliptical elastic regions with dimensions matching the embryo's morphology. By correlating the measured tissue displacements to the displacements calculated from the in-plane force and the model, we obtained the approximate short time linear-elastic Young's moduli: 2.4 ± 0.1 kPa for the midline structures (notocord, neural tube, and somites), 1.3 ± 0.1 kPa for the intermediate nearly acellular region between the somites and area pellucida, 2.1 ± 0.1 kPa for the area pellucida, and 11.9 ± 0.8 kPa for the area opaca. PMID:20353597

  18. The effect of uterine fibroids on embryo implantation.

    PubMed

    Horne, Andrew W; Critchley, Hilary O D

    2007-11-01

    Uterine fibroids are common but their role in infertility and effect on embryo implantation is unclear. There is evidence that submucosal fibroids are associated with poor reproductive outcome and that treatment with myomectomy is associated with an improvement in pregnancy rates. Various theories have been proposed to explain this relationship. Fibroids cause a mechanical distortion of the endometrial cavity-their presence may alter gamete and embryo transport (due to blockage of the tubal ostia or by altering uterine contractility and peristalsis) and subsequent embryo implantation (due to compression of the endometrium). They may lead to disruption of the junctional zone within the myometrial layer, affecting general uterine function in the initial stages of embryo invasion and later placentation. Altered vasculature due to the abnormal expression of angiogenic factors by uterine fibroids (such as basic fibroblast growth factor and platelet-derived growth factor) could play a role in a reduced implantation rate in patients with fibroids. Similarly, changes in the endometrium mediated by inflammation and factors involved in the process of fibrosis (such as transforming growth factor) could also have a detrimental effect. In addition, fibroids may affect gene expression pattern in the endometrium (such as HOXA10), disrupting the window of implantation. The supporting evidence for these theories is discussed in this review. PMID:17960533

  19. Dignity, marriage and embryo adoption: a look at Dignitas Personae.

    PubMed

    Murphy, Timothy F

    2011-12-01

    The Catholic Church's 2008 Dignitas Personae discusses the moral implications of respecting the dignity of all human beings, regardless of the stage of development. In that text, the Vatican's Congregation for the Doctrine of the Faith argues that respect for this dignity is incompatible with the conception of embryos outside marriage as well as assisted reproduction treatments and certain kinds of human embryonic research. Not only that, but the Congregation also rejects efforts at embryo adoption. As a matter of secular moral philosophy, this view of dignity is disputable and this article shows how an alternate view of dignity--one that depends on interests as against status--serves as a better foundation for decisions about ways in which to help people have children. This view of dignity is entirely compatible with a wide array of assisted reproduction treatments and research and is compatible with the conception of embryos for single parents or opposite-sex couples looking to have children. Using its notion of human dignity, the Congregation makes a case against embryo adoption, but that case is unconvincing given the permissible exercise of individual conscience and the presumptive importance of rescuing human lives where they can be rescued. PMID:22023731

  20. Protocols for Obtaining Zygotic and Somatic Embryos for Studying the Regulation of Early Embryo Development in the Model Legume Medicago truncatula.

    PubMed

    Kurdyukov, Sergey; Song, Youhong; Tiew, Terence W-Y; Wang, Xin-Ding; Nolan, Kim E; Rose, Ray J

    2015-01-01

    Early embryogenesis starting from a single cell zygote goes through rapid cell division and morphogenesis, and is morphologically characterized by pre-globular, globular, heart, torpedo and cotyledon stages. This progressive development is under the tight regulation of a complex molecular network. Harvesting sufficient early embryos at a similar stage of development is essential for investigating the cellular and molecular regulation of early embryogenesis. This is not straightforward since early embryogenesis undergoes rapid morphogenesis in a short while e.g. 8 days for Medicago truncatula to reach the early cotyledon stage. Here, we address the issue by two approaches. The first one establishes a linkage between embryo development and pod morphology in helping indicate the stage of the zygotic embryo. This is particularly based on the number of pod spirals and development of the spines. An alternative way to complement the in vivo studies is via culturing leaf explants to produce somatic embryos. The medium includes an unusual hormone combination - an auxin (1-naphthaleneacetic acid), a cytokinin (6-benzylaminopurine), abscisic acid and gibberellic acid. The different stages can be discerned growing out of the callus without dissection. PMID:26131626

  1. Histochemical identification of primordial germ cells and differentiation of the gonads in homozygous tetraploid mouse embryos.

    PubMed Central

    Kaufman, M H

    1991-01-01

    This study was undertaken to establish whether primordial germ cells are differentiated by homozygous tetraploid mouse embryos produced by the technique of electrofusion, and to study the morphological features of their gonads. Tetraploid embryos were transferred to the oviducts of pseudopregnant recipients, and these were autopsied either on day 11 or days 15 or 16 of gestation. In the developmentally less advanced group, embryos in which cytogenetic analysis of their extraembryonic membranes confirmed that they had a tetraploid chromosome constitution were analysed histochemically in order to demonstrate the presence of intracellular alkaline phosphatase enzyme activity. This enabled the presence or absence of germ cells to be established. Out of a total of 9 early limb-bud stage embryos studied, all contained primordial germ cells. The latter were mostly located in association with the hindgut, though some germ cells were still present at the base of the allantois. The sex ratio in this group was close to unity. In the 2nd group in which recipients were autopsied on either day 15 or 16 of gestation, a total of 7 healthy tetraploid embryos were recovered. All displayed the characteristic craniofacial features seen in tetraploid embryos. Four of these embryos had a normal postcranial axial morphology, and their crown-rump lengths were only slightly less (81-91%) than those of developmentally matched control diploid embryos. Three of the tetraploid embryos had an abnormal postcranial axis associated with a body wall closure defect involving the anterior abdominal and lower thoracic region. In all 7 of these embryos, gonadal differentiation was consistent with their developmental age. Images Fig. 1 Fig. 2 PMID:1817135

  2. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pan, Huichin; Lin, Yu-Jun; Li, Meng-Wei; Chuang, Han-Ni; Chou, Cheng-Chung

    2011-07-01

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 μg/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 μg/ml or above. Only larvae exposed to >= 5 μg/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 μg/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 μg/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 μg/ml.

  3. Effects of brief hypoxia and hyperoxia on tissue element levels in the development chick embryo

    SciTech Connect

    Richards, M.P.; Stock, M.K.; Metcalfe, J. Oregon Health Sciences Univ., Portland )

    1991-03-15

    Brief hypoxia or hyperoxia has been shown to affect growth and metabolism of chick embryos during the later stages of development. The objective of this experiment was to alter the availability of oxygen to chick embryos developing in ovo and to determine the effects on tissue levels of Zn, Cu, Fe and Mn. Hypoxia reduced embryo, heart, brain and liver wts (wet wt), whereas, hyperoxia increased embryo, heart, lung and liver wts compared to normoxic controls. Chorioallantoic membrane (CAM) wt was increased by hypoxia and reduced by hyperoxia. Livers from hyperoxic embryos contained more Zn, Fe and Mn and less Cu than livers from hypoxic or normoxic embryos. Tissue levels of Zn, Cu, Fe and Mn were reduced in brains from hypoxic compared to hyperoxic or normoxic embryos. Hyperoxia increased the concentrations of Zn and Cu in CAM; whereas, hypoxia reduced the levels of Zn and Fe. The amounts of Zn and Cu were increased in hyperoxic compared to normoxic lungs. Hearts from hyperoxic embryos had more Zn, Cu and Mn than hypoxic or normoxic hearts. Hypoxic yolk sac contained more Zn, Cu and Mn than hyperoxic or normoxic yolk sac. Except for yolk sac, the amounts of Zn, Cu, Fe and Mn in tissues from normoxic embryos increased from day 15 to day 18 of incubation in concert with tissue growth. The authors conclude that the availability of O{sub 2} to the developing chick embryo affects tissue trace element levels either through its effects on tissue growth or via effects on the regulation of trace element uptake and assimilation by the tissues.

  4. Developmental Block and Programmed Cell Death in Bos indicus Embryos: Effects of Protein Supplementation Source and Developmental Kinetics

    PubMed Central

    Garcia, Sheila Merlo; Marinho, Luciana Simões Rafagnin; Lunardelli, Paula Alvares; Seneda, Marcelo Marcondes; Meirelles, Flávio Vieira

    2015-01-01

    The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos. PMID:25760989

  5. Susceptibility of gametes and embryos of the eastern oyster, Crassostrea virginica, to Karenia brevis and its toxins.

    PubMed

    Rolton, Anne; Soudant, Philippe; Vignier, Julien; Pierce, Richard; Henry, Michael; Shumway, Sandra E; Bricelj, V Monica; Volety, Aswani K

    2015-06-01

    The bivalve mollusc, Crassostrea virginica, is frequently exposed to blooms of Karenia brevis along the west coast of Florida during periods of spawning and early larval development. A continuous 4-day exposure of gametes and 2-4 cell stage embryos of C. virginica to whole-cell and culture filtrate of K. brevis at 500 and 5000 cells mL(-1), was followed by a 4-day 'recovery' period. Larval growth, percent of normal, abnormal and dead larvae, and the presence of food in the larval gut were measured throughout the exposure period. Results suggest that negative effects mainly occur during embryogenesis and early development. Damage to feeding apparatus/gut may occur during embryonic development or exposure to toxins may act as a feeding deterrent on non-toxic algae. Following 2-h in vitro exposure of gametes, differences in oocyte and sperm cell parameters were investigated using flow cytometry. The reduced sperm viability in the whole-cell 5000 cells mL(-1) treatment suggests the involvement of extracellular brevetoxins (PbTx) and perhaps other harmful, uncharacterized compounds associated with the K. brevis cell membrane. The cumulative effects of reduced sperm viability, fertilization success, embryonic and larval survival, and the near-annual exposure to blooms of K. brevis could cause significant bottlenecks on oyster recruitment. PMID:25771241

  6. Killing of preimplantation mouse embryos by main ingredients of cleansers AS and LAS.

    PubMed

    Nomura, T; Hata, S; Shibata, K; Kusafuka, T

    1987-01-01

    When main ingredients of cleansers, alcohol sulfate (AS) and linear alkylbenzene sulfonate (LAS), were applied to the dorsal skin of pregnant JCL:ICR mice during preimplantation period (days 0-2), significant numbers of embryos collected from the oviducts and uteri on day 3 showed severe deformity or remained at the morula stage. Most of abnormal embryos were fragmented or remained at the 1-8 cell stages, and they were either dead or dying. Even when these abnormal embryos were cultivated in the detergent-free medium, they were not recovered, while most growth-retarded embryos (morula) could grow and hatch with one or two days lag by the further in vitro cultivation. Similar results were observed with commercially obtained kitchen detergent and hair shampoo, although such embryocidal effects were not detected with natural soap and distilled water. Fertilized eggs may be specifically sensitive to synthetic detergents. Very low doses of X-rays also induced significant yields of abnormal embryos. Major difference between X-rays and detergents was that X-ray-induced abnormality appeared at the morula or blastocyst stage, while detergent-induced one did at the earlier stages. PMID:3796668

  7. Embryos derived from the in vitro fertilization of oocytes of pregnant cows.

    PubMed

    Vajta, G; Macháty, Z; Bárándi, Z; Varga, Z

    1992-04-01

    The aim of our study was to determine if the oocytes of pregnant cattle are capable for undergoing embryonic growth following in vitro fertilization. The ovaries of nine heifers at 4 to 7 months of pregnancy were collected at an abattoir and transferred to the laboratory. A total 191 oocytes (10.6 per ovary) collected by aspiration were matured and fertilized by frozen-thawed semen. Embryos were co-cultured with granulosa cells in modified TCM 199 medium and 20% estrous cow serum. The cleavage rate of embryos was 48%, and 41% of of the cleaved embryos developed to the morula/blastocyst stage 7 days after insemination. Additionally, the ovaries of 10 nonpregnant heifers were also collected, yielding 213 oocytes (10.7 per ovary). The cleavage rate was 51%, and 35% of those which cleaved reached the morula/blastocyst stage. No significant differences were found between the two groups. The average number of transferable-stage embryos obtained from pregnant and nonpregnant animals was 4.1 and 3.7, respectively. Our results indicate that preganancy does not influence the meiotic competence of bovine oocytes, and transferable stage embryos can be obtained by the fertilization of oocytes derived from pregnant animals. PMID:16727081

  8. DNA damage in dihydroartemisinin-resistant Molt-4 cells.

    PubMed

    Park, Jungsoo; Lai, Henry C; Sasaki, Tomikazu; Singh, Narendra P

    2015-03-01

    Artemisinin generates carbon-based free radicals when it reacts with iron, and induces molecular damage and apoptosis. Its toxicity is more selective toward cancer cells because cancer cells contain a higher level of intracellular free iron. Dihydroartemisinin (DHA), an analog of artemisinin, has selective cytotoxicity toward Molt-4 human lymphoblastoid cells. A major concern is whether cancer cells could develop resistance to DHA, thus limiting its therapeutic efficacy. We have developed a DHA-resistant Molt-4 cell line (RTN) and found out that these cells exhibited resistance to DHA but no significant cross- resistance to artemisinin-tagged holotransferrin (ART-TF), a synthetic artemisinin compound. In the present study, we investigated DNA damage induced by DHA and ART-TF in both Molt-4 and RTN cells using the comet assay. RTN cells exhibited a significantly lower level of basal and X-ray-induced DNA damage compared to Molt-4 cells. Both DHA and ART-TF induced DNA damage in Molt-4 cells, whereas DNA damage was induced in RTN cells by ART-TF, and not DHA. The result of this study shows that by the cell selection method, it is possible to generate a Molt-4 cell line which is not sensitive to DHA, but sensitive to ART-TF, as measured by DNA damage. PMID:25750283

  9. Muskmelon embryo rescue techniques using in vitro embryo culture.

    PubMed

    Nuñez-Palenius, Hector Gordon; Ramírez-Malagón, Rafael; Ochoa-Alejo, Neftalí

    2011-01-01

    Among the major cucurbit vegetables, melon (Cucumis melo) has one of the greatest polymorphic fruit types and botanical varieties. Some melon fruits have excellent aroma, variety of flesh colors, deeper flavor, and more juice compared to other cucurbits. Despite numerous available melon cultivars, some of them are exceedingly susceptible to several diseases. The genetic background carrying the genes for tolerance and/or resistance for those diseases is found in wild melon landraces. Unfortunately, the commercial melon varieties are not able to produce viable hybrids when crossed with their wild melon counterparts. Plant tissue culture techniques are needed to surpass those genetic barriers. In vitro melon embryo rescue has played a main role to obtain viable hybrids originated from commercial versus wild melon crosses. In this chapter, an efficient and simple embryo rescue melon protocol is thoroughly described. PMID:21207265

  10. MicroRNA-34c Expression in Donor Cells Influences the Early Development of Somatic Cell Nuclear Transfer Bovine Embryos

    PubMed Central

    Wang, Bo; Wang, Yongsheng; Zhang, Man; Du, Yue; Zhang, Yijun; Xing, Xupeng; Zhang, Lei; Su, JianMin

    2014-01-01

    Abstract The essence of the reprogramming activity of somatic cell nuclear transfer (SCNT) embryos is to produce normal fertilized embryos. However, reprogramming of somatic cells is not as efficient as the reprogramming of sperm. In this report, we describe the effect of an inducible, specific miR-34 microRNA expression in donor cells that enables a similar level of sperm:transgene expression on the early development of SCNT embryos. Our results showed that donor cells with doxycycline (dox)-induced miR-34c expression for the preparation of SCNT embryos resulted in altered developmental rates, histone modification (H3K9ac and H3K4me3), and extent of apoptosis. The cleavage rate and blastocyst formation of the induced nuclear transfer (NT) group were significantly increased. The immunofluorescence signal of H3K9ac in embryos in the induced NT group significantly increased in two-cell- and eight-cell-stage embryos; that of H3K4me3 increased significantly in eight-cell-stage embryos. Although significant differences in staining signals of apoptosis were not detected between groups, lower apoptosis levels were observed in the induced NT group. In conclusion, miR-34c expression induced by dox treatment enhances the developmental potential of SCNT embryos, modifies the epigenetic status, and changes blastocyst quality. PMID:25437869

  11. Oct4 overexpression facilitates proliferation of porcine fibroblasts and development of cloned embryos.

    PubMed

    Kim, Su Jin; Koo, Ok Jae; Park, Hee Jung; Moon, Joon Ho; da Torre, Bego Roibas; Javaregowda, Palaksha Kanive; Kang, Jung Taek; Park, Sol Ji; Saadeldin, Islam M; Choi, Ji Yei; Lee, Byeong-Chun; Jang, Goo

    2015-10-01

    Octamer-binding transcription factor 4 (Oct4) is a critical molecule for the self-renewal and pluripotency of embryonic stem cells. Recent reports have shown that Oct4 also controls cell-cycle progression and enhances the proliferation of various types of cells. As the high proliferation of donor fibroblasts is critical to the production of transgenic pigs, using the somatic cell nuclear transfer technique, we analysed the effect of Oct4 overexpression on the proliferation of porcine fibroblasts and embryos. Porcine endogenous Oct4 cDNA was cloned, sequenced and inserted into an expression vector. The vector was transfected into porcine fibroblasts, and a stable Oct4-overexpressed cell line was established by antibiotic selection. Oct4 expression was validated by the immunostaining of Oct4. Cell morphology was changed to sharp, and both proliferation and migration abilities were enhanced in Oct4-overexpressed cells. Real-time RT-PCR results showed that p16, Bcl2 and Myc were upregulated in Oct4-overexpressed cells. Somatic cell nuclear transfer was performed using Oct4-overexpressed cells, and the development of Oct4 embryos was compared with that of wild-type cloned embryos. The cleavage and blastocyst formation rates were improved in the Oct4 embryos. Interestingly, blastocyst formation of the Oct4 embryos was observed as early as day 5 in culture, while blastocysts were observed from day 6 in wild-type cloned embryos. In conclusion, the overexpression of Oct4 enhanced the proliferation of both porcine fibroblasts and embryos. PMID:25181424

  12. Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.

    PubMed

    Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J

    2016-07-01

    Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching. PMID:27322129

  13. Cell identity in the preimplantation mammalian embryo: an epigenetic perspective from the mouse

    PubMed Central

    Torres-Padilla, Maria Elena

    2008-01-01

    The early preimplantation mouse embryo is a unique system where it is possible to explore the foundations of totipotency and differentiation. Following fertilization, a single cell, the zygote, will give rise to all tissues of the organism. The first signs of differentiation in the embryo are evident at the blastocyst stage with the formation of the trophectoderm, a differentiated tissue that envelopes the inner cell mass. The question of when and how the cells start to be different from each other in the embryo is central to developmental biology: as cell fate decisions are undertaken, loss of totipotency comes about. Although the blastomeres of the preimplantation embryo are totipotent, as the embryo develops some differences appear to develop between them which are, at least partially, related to the epigenetic information of each of these cells. The hypothesis of epigenetic asymmetries acting as driver for lineage allocation is presented. Although there are now some indications that epigenetic mechanisms are involved in cell fate determination, much work is needed to discover how such mechanisms are set in play upon fertilization and how they are transmitted through cell division. These considerations are further discussed in the context of preimplantation genetic diagnosis: does it matter to the embryo which cell is used for genetic diagnosis? The exquisite complexity and richness of chromatin-regulated events in the early embryo will certainly be the subject of exciting research in the future. PMID:18272526

  14. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    SciTech Connect

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  15. Force measurement and mechanical characterization of living Drosophila embryos for human medical study.

    PubMed

    Shen, Y; Wejinya, U C; Xi, N; Pomeroy, C A

    2007-02-01

    The objective of this paper is to investigate and characterize the force behaviour and mechanical properties of living Drosophila embryos using an in situ polyvinylidene fluoride (PVDF) piezoelectric microforce-sensing tool with a resolution in the range of sub-micro newtons. The Drosophila embryo is one of the most studied organisms in biological research, medical research, genetics, and developmental biology and has implications in the cure of human diseases. It is also used to study the wiring of the human brain and the nervous system. For a highly efficient and accurate microinjection of genetic material into a Drosophila embryo, it is absolutely necessary to allow close monitoring of the magnitude and direction of microinjection and other biomanipulation forces acting on the embryo during the injection process. In this paper, a networked microrobotic biomanipulation platform integrating a two-axis (two-dimensional) PVDF microforce-sensing tool is used to implement force sensing and injection of living Drosophila embryos. Based on the event synchronization for the feedback of injection video and microforce, the developed networked microrobotic platform can greatly advance operations in microinjection and biomanipulation. Through experiments, quantitative relationships between the applied force and membrane structural deformation of embryos in different stages of embryogenesis and their microinjection force behaviours were investigated. Ultimately, the technology will provide a critical and major step towards the development of automated biomanipulation for batch injection of living embryos in genetic and developmental studies, which will facilitate the development of medicine for the cure of human diseases. PMID:17385565

  16. Endometrium as an early sensor of in vitro embryo manipulation technologies

    PubMed Central

    Mansouri-Attia, Nadéra; Sandra, Olivier; Aubert, Julie; Degrelle, Séverine; Everts, Robin E.; Giraud-Delville, Corinne; Heyman, Yvan; Galio, Laurent; Hue, Isabelle; Yang, Xiangzhong; Tian, X. Cindy; Lewin, Harris A.; Renard, Jean-Paul

    2009-01-01

    Implantation is crucial for placental development that will subsequently impact fetal growth and pregnancy success with consequences on postnatal health. We postulated that the pattern of genes expressed by the endometrium when the embryo becomes attached to the mother uterus could account for the final outcome of a pregnancy. As a model, we used the bovine species where the embryo becomes progressively and permanently attached to the endometrium from day 20 of gestation onwards. At that stage, we compared the endometrial genes profiles in the presence of an in vivo fertilized embryo (AI) with the endometrial patterns obtained in the presence of nuclear transfer (SCNT) or in vitro fertilized embryos (IVF), both displaying lower and different potentials for term development. Our data provide evidence that the endometrium can be considered as a biological sensor able to fine-tune its physiology in response to the presence of embryos whose development will become altered much later after the implantation process. Compared with AI, numerous biological functions and several canonical pathways with a major impact on metabolism and immune function were found to be significantly altered in the endometrium of SCNT pregnancies at implantation, whereas the differences were less pronounced with IVF embryos. Determining the limits of the endometrial plasticity at the onset of implantation should bring new insights on the contribution of the maternal environment to the development of an embryo and the success of pregnancy. PMID:19297625

  17. Vitality of plaice embryos ( Pleuronectes platessa) at moderate UV-B exposure

    NASA Astrophysics Data System (ADS)

    Steeger, Hans-Ulrich; Wiemer, Marc; Freitag, Jürgen F.; Paul, Rüdiger J.

    1999-08-01

    The effects of moderate UV-B radiation (280-320 nm) on mortality and on physiologically vital parameters (heart rate, quality of respiratory control) were studied in plaice embryos ( Pleuronectes platessa L.). If UV-B exposure started at the early embryonic stage Ib (with a daily dose similar to present maximum outdoor levels in mid-April: 4.86 kJ m -2), 100% of embryos were dead after 5 days (control: 61% mortality). If light exposure started later (after gastrulation at stage II), however, mortality in test (UV-B irradiated) and control embryos (not UV-B irradiated) was not significantly different. Instantaneous or short-term effects of UV-B exposure on heart rate were absent even at high intensity (0.5 W m -2). With exposure to a daily dose of 4.86 kJ m -2, long-term accumulated effects of UV-B on heart rate were not detectable: heart rate in test and control embryos increased similarly during development from stage IIIγ to hatching. Exposure for a few days at a daily dose of 8.64 kJ m -2 (similar to present maximum outdoor levels in mid-May), however, resulted in significantly lower heart rates in test embryos than in control embryos at stage IVβ. Even 45 days after exposure, sublethal effects of UV-B on dry weight of the larvae, heart rate and quality of respiratory control were detectable in test animals. It is concluded that the vitality of plaice embryos can be impaired, either by relatively low UV-B doses during early development or by higher UV-B doses during late development.

  18. Serotonin receptors are selectively expressed in the avian germ cells and early embryos.

    PubMed

    Stępińska, Urszula; Kuwana, Takashi; Olszańska, Bożenna

    2015-06-01

    The expression of nine serotonin (5-HT) receptor transcripts was studied using reverse transcription polymerase chain reaction (RT-PCR) in germ cells, cleavage and gastrulation stages of Japanese quail, and qPCR for 5-HT3 and 5-HT4 receptors in oocytes and embryos. We show the presence/absence of nine serotonin transcripts known in birds for receptors 5-HT1A, 5-HT1F, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6 and 5-HT7A in avian germ cells and early embryos. The absence of 5-HT3 and 5-HT5A in primordial germ cells and of 5-HT3 and 5-HT7A in sperm is characteristic. All transcripts appeared in oocytes at all stages (except for 5-HT3 and 5-HT5A transcripts) and all were present in cleaving embryos and at gastrulation, except for 5-HT3, which was permanently observed as late as in stage 4. Interestingly, 5-HT3 and 5-HT5A receptors accumulated in 3-mm and F1 oocytes but were degraded at ovulation and started to be re-transcribed in cleavage stage II embryos and beyond. The selective appearance of 5-HT receptors in germ cells and early embryos supports the hypothesis that serotonin may act as a signalling molecule at early stages of germ line and embryo differentiation via individual receptors present during different stages, when specialized communication systems are not yet developed. PMID:24521994

  19. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. PMID:26687135

  20. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development

    PubMed Central

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development. PMID:27043020

  1. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    PubMed

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development. PMID:27043020

  2. Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification.

    PubMed

    Mahmoud, K Gh M; Scholkamy, T H; Darwish, S F

    2015-01-01

    Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197

  3. Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification

    PubMed Central

    Mahmoud, K. Gh. M; Scholkamy, T. H; Darwish, S. F

    2015-01-01

    Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197

  4. Parent-of-origin dependent gene-specific knock down in mouse embryos

    SciTech Connect

    Iqbal, Khursheed; Kues, Wilfried A.; Niemann, Heiner . E-mail: niemann@tzv.fal.de

    2007-07-06

    In mice hemizygous for the Oct4-GFP transgene, the F1 embryos show parent-of-origin dependent expression of the marker gene. F1 embryos with a maternally derived OG2 allele (OG2{sup mat}/-) express GFP in the oocyte and during preimplantation development until the blastocyst stage indicating a maternal and embryonic expression pattern. F1-embryos with a paternally inherited OG2 allele (OG2{sup pat}/-) express GFP from the 4- to 8-cell stage onwards showing only embryonic expression. This allows to study allele specific knock down of GFP expression. RNA interference (RNAi) was highly efficient in embryos with the paternally inherited GFP allele, whereas embryos with the maternally inherited GFP allele showed a delayed and less stringent suppression, indicating that the initial levels of the target transcript and the half life of the protein affect RNAi efficacy. RT-PCR analysis revealed only minimum of GFP mRNA. These results have implications for studies of gene silencing in mammalian embryos.

  5. Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo

    PubMed Central

    Yang, Lixin; Kemadjou, Jules R; Zinsmeister, Christian; Bauer, Matthias; Legradi, Jessica; Müller, Ferenc; Pankratz, Michael; Jäkel, Jens; Strähle, Uwe

    2007-01-01

    Background Early life stages are generally most sensitive to toxic effects. Our knowledge on the action of manmade chemicals on the developing vertebrate embryo is, however, rather limited. We addressed the toxicogenomic response of the zebrafish embryo in a systematic manner by asking whether distinct chemicals would induce specific transcriptional profiles. Results We exposed zebrafish embryos to a range of environmental toxicants and measured the changes in gene-expression profiles by hybridizing cDNA to an oligonucleotide microarray. Several hundred genes responded significantly to at least one of the 11 toxicants tested. We obtained specific expression profiles for each of the chemicals and could predict the identity of the toxicant from the expression profiles with high probability. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. The toxicogenomic profiles were highly stage specific and we detected tissue-specific gene responses, underscoring the sensitivity of the assay system. Conclusion Our results show that the genome of the zebrafish embryo responds to toxicant exposure in a highly sensitive and specific manner. Our work provides proof-of-principle for the use of the zebrafish embryo as a toxicogenomic model and highlights its potential for systematic, large-scale analysis of the effects of chemicals on the developing vertebrate embryo. PMID:17961207

  6. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis

    PubMed Central

    Vera-Rodriguez, Maria; Chavez, Shawn L.; Rubio, Carmen; Pera, Renee A. Reijo; Simon, Carlos

    2015-01-01

    Aneuploidies are prevalent in the human embryo and impair proper development, leading to cell cycle arrest. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Here we combine time-lapse, complete chromosomal assessment and single-cell RT–qPCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage (n=85). Our data indicate that the chromosomal status of aneuploid embryos (n=26), including those that are mosaic (n=3), correlates with significant differences in the duration of the first mitotic phase when compared with euploid embryos (n=28). Moreover, gene expression profiling suggests that a subset of genes is differentially expressed in aneuploid embryos during the first 30 h of development. Thus, we propose that the chromosomal fate of an embryo is likely determined as early as the pronuclear stage and may be predicted by a 12-gene transcriptomic signature. PMID:26151134

  7. Developmental kinetics of pig embryos by parthenogenetic activation or by handmade cloning.

    PubMed

    Li, J; Li, R; Liu, Y; Villemoes, K; Purup, S; Callesen, H

    2013-10-01

    The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time-lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time-lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non-viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro-handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre-implantation developmental kinetics should be observed. PMID:23617742

  8. Functional characterization of SOX2 in bovine preimplantation embryos.

    PubMed

    Goissis, Marcelo D; Cibelli, Jose B

    2014-02-01

    To date, efforts to establish pluripotent embryonic stem cells from bovine embryos have failed. The lack of reliable pluripotency markers is an important drawback when attempting to derive these cells. This study aimed to identify genes upregulated in the inner cell mass (ICM) of bovine blastocysts, and we selected SOX2 for further characterization. Spatial and temporal localization of the SOX2 protein revealed that its expression starts at the 16-cell stage and then becomes restricted to the ICMs of blastocysts. To study the role of SOX2 during the early development of bovine embryos, we designed siRNA to target SOX2. We began by injecting this siRNA into zygotes; the rate at which blastocysts developed declined compared to noninjected or scramble-injected controls. When only one blastomere of a two-cell embryo was injected with SOX2 siRNA, we observed development rates similar to those of controls. Daughter cells of the injected blastomere were tracked by TRITC fluorescence and found to contribute to the ICM, as select cells also lacked SOX2. Gene expression analysis revealed a decrease in SOX2 and NANOG gene expression in siRNA-injected embryos, but OCT4 expression remained unchanged. We conclude that SOX2 localizes exclusively in the ICM of bovine blastocysts, and its downregulation negatively impacts preimplantation development; however, it is still unclear as to why downregulation of SOX2 in one cell of a two-cell embryo does not affect the composition of the ICM. PMID:24389873

  9. In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix.

    PubMed

    Sargus-Patino, Catherine N; Wright, Elane C; Plautz, Sarah A; Miles, Jeremy R; Vallet, Jeff L; Pannier, Angela K

    2014-08-01

    Between Days 10 and 12 of gestation, porcine embryos undergo a dramatic morphological change, known as elongation, with a corresponding increase in oestrogen production that triggers maternal recognition of pregnancy. Elongation deficiencies contribute to embryonic loss, but exact mechanisms of elongation are poorly understood due to the lack of an effective in vitro culture system. Our objective was to use alginate hydrogels as three-dimensional scaffolds that can mechanically support the in vitro development of preimplantation porcine embryos. White cross-bred gilts were bred at oestrus (Day 0) to Duroc boars and embryos were recovered on Days 9, 10 or 11 of gestation. Spherical embryos were randomly assigned to be encapsulated within double-layered 0.7% alginate beads or remain as non-encapsulated controls (ENC and CONT treatment groups, respectively) and were cultured for 96h. Every 24h, half the medium was replaced with fresh medium and an image of each embryo was recorded. At the termination of culture, embryo images were used to assess morphological changes and cell survival. 17β-Oestradiol levels were measured in the removed media by radioimmunoassay. Real-time polymerase chain reaction was used to analyse steroidogenic transcript expression at 96h in ENC and CONT embryos, as well as in vivo-developed control embryos (i.e. spherical, ovoid and tubular). Although no differences in cell survival were observed, 32% (P<0.001) of the surviving ENC embryos underwent morphological changes characterised by tubal formation with subsequent flattening, whereas none of the CONT embryos exhibited morphological changes. Expression of steroidogenic transcripts STAR, CYP11A1 and CYP19A1 was greater (P<0.07) in ENC embryos with morphological changes (ENC+) compared with CONT embryos and ENC embryos with no morphological changes (ENC-), and was more similar to expression of later-stage in vivo-developed controls. Furthermore, a time-dependent increase (P<0.001) in 17

  10. Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423.

    PubMed

    Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping

    2015-07-01

    Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. PMID:25931320

  11. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  12. Further study of trichosanthin's effect on mouse embryos with confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-09-01

    Trichosanthin(TCS), a ribosome inactivating protein extracted from the root tuber of a traditional Chinese medicine herb Tian Huo Fen(THF), possessed abortifacient, anti-tumor and anti-human immunodeficiency virus(HIV) activities. For centuries in China, THF has been used as an effective folk medicine to terminate early and midtrimester pregnancies and to treat ectopic pregnancies, hydatidiform moles and trophoblastic tumor. We observed the changes in reactive oxygen species and intracellular calcium in mouse embryos induced by TCS with confocal laser scanning microscopy in combination with the fluorescene diacetate (DCFHDA) and Fluo-3-AM. The results indicated that TCS induced increase in intracellular calcium and production of reactive oxygen species in mouse embryos , and TCS inhibited the development of mouse embryos effectively. Mouse embryos of different developmental stages before implantation are used in the experiments. This provides new insight into mechanism for abortifacient activity of TCS.

  13. Development of parthenote following in vivo transfer of embryos in Capra hircus.

    PubMed

    Kharche, Suresh Dinkar; Goel, Anil Kumar; Jindal, Satish Kumar; Ranjan, Ravi; Rout, Pramod Kumar; Agarwal, Sudhir Kumar; Goel, Puja; Saraswat, Sonia; Vijh, Ramesh Kumar; Malakar, Dhruba; Bag, Sadhan; Sarkhel, Bikash; Bhanja, Subrat Kumar

    2014-12-01

    The aim of this study is to generate parthenogenetic embryos from chemically activated in vitro matured caprine oocytes and to study the in vivo developmental potency of such embryos. The parthenogenetic embryos (2-8 and 16 cells to morula stage) were surgically transferred in 26 recipients. Pregnancy in recipients following embryo transfer was monitored by ultrasonography. The recipient aborted a foetus on day 34 post transfer. Sexing of parthenogenetic foetus showed a single band of amelogenin gene indicating female cell DNA. Microsatellite analysis revealed that the recipient has not contributed genetically to the parthenogenetic foetus confirming the identity of aborted foetus of parthenogenetic origin. The authors believe that this is the first authentic report on in vivo development of parthenogenetic foetus in Capra hircus. PMID:25270684

  14. System for evaluation of oxidative stress on in-vitro-produced bovine embryos.

    PubMed

    de Assis, Patricia Monken; Castro, Leticia Signori; Siqueira, Adriano Felipe Perez; Delgado, Juliana de Carvalho; Hamilton, Thais Rose Dos Santos; Goissis, Marcelo Demarchi; Mendes, Camilla Mota; Nichi, Marcilio; Visintin, José Antonio; Assumpção, Mayra Elena Ortiz D'Ávila

    2015-10-01

    This study proposed a quantitative evaluation of oxidative status (OS) in bovine embryos. Sixteen-cell stage embryos, cultured under 5% O2, were treated with oxidative stress inducer menadione (0, 1, 2.5 and 5 µmol/l) for 24 h. Blastocyst rate (BLR) was recorded and expanded blastocysts were stained with CellROX®Green (CRG; OS evaluation) and evaluated under epifluorescence microscopy (ratio of pixel/blastomere). A significant effect of menadione was observed for BLR (P = 0.0039), number of blastomeres/embryo (P < 0.0001) and OS (P < 0.001). Strong negative correlations were found between BLR and the number of blastomeres with OS evaluation, demonstrating the efficacy of this analysis to evaluate OS levels of IVF bovine embryos. PMID:26206284

  15. Induction of α-Amylase Inhibitor Synthesis in Barley Embryos and Young Seedlings by Abscisic Acid and Dehydration Stress 1

    PubMed Central

    Robertson, Masumi; Walker-Simmons, M.; Munro, Doug; Hill, Robert D.

    1989-01-01

    An endogenous α-amylase inhibitor was found to be synthesized in embryos of developing barley grain (Hordeum vulgare cv Bonanza). Accumulation of this protein occurred late in development (stage IV), at the same time that endogenous abscisic acid (ABA) showed a large increase. The inhibitor could be induced up to 23-fold in isolated immature embryos (stage III) by culture in ABA. Precocious germination was also blocked in stage III embryos by ABA. Dehydration stress on the isolated immature embryos also induced higher levels of the inhibitor and ABA. An even greater response to dehydration stress was observed in young seedlings, where inhibitor content increased 20-fold and ABA increased 80-fold during water stress. The high degree of correlation between ABA and inhibitor contents in in situ embryos, dehydrated embryos and young seedlings, as well as the increase in inhibitor caused by exogenously applied ABA to isolated embryos, suggests that increased α-amylase inhibitor synthesis in response to dehydration stress is mediated by ABA. PMID:16667035

  16. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea. PMID:16418895

  17. [Assisted hatching for improving embryo implantation. A bibliographical review].

    PubMed

    Hernández-Nieto, Carlos Alberto; Soto-Cossio, Luz Estefhany; Basurto-Díaz, David

    2015-04-01

    Embryo implantation represents the most critical step of the reproductive process in many species, to be successful requires a receptive endometrium, functional embryo at a stage of embryonic development and proper dialogue between embryonic and maternal tissues. Hatching is the process in which the blastocyst gets rid of the zona pellucida to be implemented. The failure in this factor can lead to reproductive problems, even under assisted reproduction techniques. Assisted hatching is a technique used in assisted reproduction laboratories to improve performance in the process of fecundation or in vitro fertilization. This technique is based on impairment or section of the zona pellucida using different techniques. In this review, the most common indications and techniques used to perform this procedure and improve success rates in assisted reproduction techniques are synthesized. PMID:26727756

  18. RETARDED GROWTH OF EMBRYO1, a New Basic Helix-Loop-Helix Protein, Expresses in Endosperm to Control Embryo Growth1[W

    PubMed Central

    Kondou, Youichi; Nakazawa, Miki; Kawashima, Mika; Ichikawa, Takanari; Yoshizumi, Takeshi; Suzuki, Kumiko; Ishikawa, Akie; Koshi, Tomoko; Matsui, Ryo; Muto, Shu; Matsui, Minami

    2008-01-01

    We have isolated two dominant mutants from screening approximately 50,000 RIKEN activation-tagging lines that have short inflorescence internodes. The activation T-DNAs were inserted near a putative basic helix-loop-helix (bHLH) gene and expression of this gene was increased in the mutant lines. Overexpression of this bHLH gene produced the original mutant phenotype, indicating it was responsible for the mutants. Specific expression was observed during seed development. The loss-of-function mutation of the RETARDED GROWTH OF EMBRYO1 (RGE1) gene caused small and shriveled seeds. The embryo of the loss-of-function mutant showed retarded growth after the heart stage although abnormal morphogenesis and pattern formation of the embryo and endosperm was not observed. We named this bHLH gene RGE1. RGE1 expression was determined in endosperm cells using the β-glucuronidase reporter gene and reverse transcription-polymerase chain reaction. Microarray and real-time reverse transcription-polymerase chain reaction analysis showed specific down-regulation of putative GDSL motif lipase genes in the rge1-1 mutant, indicating possible involvement of these genes in seed morphology. These data suggest that RGE1 expression in the endosperm at the heart stage of embryo development plays an important role in controlling embryo growth. PMID:18567831

  19. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling.

    PubMed Central

    Paria, B C; Das, S K; Dey, S K

    1995-01-01

    Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the

  20. The effect of glucosamine concentration on the development and sex ratio of bovine embryos.

    PubMed

    Kimura, Koji; Iwata, Hisataka; Thompson, Jeremy G

    2008-01-30

    Glucosamine is a component of hyaluronic acid and an alternative substrate to glucose for the extracellular matrix synthesis of COCs. Its addition to an IVM medium reduces the glucose consumption of bovine COCs. Glucosamine is also metabolized to UDP-N-acetyl glucosamine (UDP-GlcNAc) via the hexosamine biosynthesis pathway and is utilized for O-linked glycosylation by the X-linked enzyme, O-linked GlcNAc transferase (OGT). Moreover, the inactivation of the second X chromosome in female embryos is influential in producing the sex ratio bias observed in vitro when embryos are cultured in the presence of glucose above 2.5mM. Accordingly, the aim of this study is to examine whether the presence of glucosamine during maturation or embryo culture causes a sex ratio bias in bovine blastocysts. Glucosamine was added to the medium in three different embryo developmental periods: in vitro maturation, the one-cell to eight-cell stage (before the maternal-zygotic transition, MZT), and the eight-cell to blastocyst stage (after MZT). When glucosamine was added during in vitro maturation, the developmental competence of oocytes was severely compromised. However, the sex ratio of embryos was not influenced. When glucosamine was added to embryo culture medium during development from one-cell to eight-cell stage (before MZT), it affected neither the development nor the sex ratio of bovine embryos. Finally, when glucosamine was added after MZT, the development rate of embryos was severely decreased, and the sex ratio was skewed toward males. Moreover, an inhibitor of OGT, benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside (BADGP), negated the effect of glucosamine on the sex ratio when it was added to embryo culture medium from the eight-cell to blastocyst stage (after MZT). These results suggest that, like glucose, the supplementation of glucosamine into the medium skewed the sex ratio to males and that OGT, an X-linked enzyme, was involved in this phenomenon. Moreover, this

  1. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    PubMed

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p < 0.05), total cell number (93.0 ± 9.9 vs. 101.0 ± 9.8, p < 0.05), ratio of inner cell mass (ICM) to trophectoderm (TE) (0.29 ± 0.006 vs. 0.39 ± 0.005, p < 0.05), and apoptosis index in day 7 blastocysts (2.5 ± 0.22 vs. 8.7 ± 0.41, p < 0.05) compared to the control group. Although no statistical difference in pregnancy rate and birth rate was observed after embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos. PMID:27135251

  2. Effect of light conditions on anatomical and biochemical aspects of somatic and zygotic embryos of hybrid larch (Larix × marschlinsii)

    PubMed Central

    von Aderkas, Patrick; Teyssier, Caroline; Charpentier, Jean-Paul; Gutmann, Markus; Pâques, Luc; Le Metté, Claire; Ader, Kevin; Label, Philippe; Kong, Lisheng; Lelu-Walter, Marie-Anne

    2015-01-01

    Background and Aims In conifers, mature somatic embryos and zygotic embryos appear to resemble one another physiologically and morphologically. However, phenotypes of cloned conifer embryos can be strongly influenced by a number of in vitro factors and in some instances clonal variation can exceed that found in nature. This study examines whether zygotic embryos that develop within light-opaque cones differ from somatic embryos developing in dark/light conditions in vitro. Embryogenesis in larch is well understood both in situ and in vitro and thus provides a suitable system for addressing this question. Methods Features of somatic and zygotic embryos of hybrid larch, Larix × marschlinsii, were quantified, including cotyledon numbers, protein concentration and phenol chemistry. Somatic embryos were placed either in light or darkness for the entire maturation period. Embryos at different developmental stages were embedded and sectioned for histological analysis. Key Results Light, and to a lesser degree abscisic acid (ABA), influenced accumulation of protein and phenolic compounds in somatic and zygotic embryos. Dark-grown mature somatic embryos had more protein (91·77 ± 11·26 µg protein mg–1 f.wt) than either dark-grown zygotic embryos (62·40 ± 5·58) or light-grown somatic embryos (58·15 ± 10·02). Zygotic embryos never accumulated phenolic compounds at any stage, whereas somatic embryos stored phenolic compounds in the embryonal root caps and suspensors. Light induced the production of quercetrin (261·13 ± 9·2 µg g–1 d.wt) in somatic embryos. Mature zygotic embryos that were removed from seeds and placed on medium in light rapidly accumulated phenolics in the embryonal root cap and hypocotyl. Delaying germination with ABA delayed phenolic compound accumulation, restricting it to the embryonal root cap. Conclusions In larch embryos, light has a negative effect on protein accumulation, but a positive effect on phenol

  3. Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton.

    PubMed

    Pinsino, Annalisa; Roccheri, Maria Carmela; Costa, Caterina; Matranga, Valeria

    2011-09-01

    Manganese (Mn) has been associated with embryo toxicity as it impairs differentiation of neural and skeletogenic cells in vertebrates. Nevertheless, information on the mechanisms operating at the cellular level remains scant. We took advantage of an amenable embryonic model to investigate the effects of Mn in biomineral formation. Sea urchin (Paracentrotus lividus) embryos were exposed to Mn from fertilization, harvested at different developmental stages, and analyzed for their content in calcium (Ca), expression of skeletogenic genes, localization of germ layer markers, and activation of the extracellular signal-regulated kinase (ERK). By optical and immunofluorescence microscopy, we found that Mn exposure produced embryos with no skeleton, by preventing the deposition of the triradiate calcitic spicules usually produced only by specialized mesoderm cells. On the contrary, ectoderm and endoderm differentiation was not impaired. Endogenous Ca content in whole embryos and its localization in Golgi regions of skeletogenic cells was strongly reduced, as measured by atomic absorption spectrometry and in vivo calcein labeling. Spicule-lacking embryos showed persistent ERK activation by immunocytochemistry and immunoblotting, contrary to the physiological oscillations observed in normal embryos. The expression of the skeletogenic genes, Pl-msp130 and Pl-sm30, was also differentially affected if compared with controls. Here, we showed for the first time the ability of Mn to interfere with Ca uptake and internalization into skeletogenic cells and demonstrate that Ca content regulates ERK activation/inactivation during sea urchin embryo morphogenesis. The use of Mn-exposed sea urchin embryos as a new model to study signaling pathways occurring during skeletogenesis will provide new insights into the mechanisms involved in Mn embryo toxicity and underlie the role of calcium in the biomineralization process in vertebrates. PMID:21659617

  4. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3.

    PubMed

    Toni, Lee S; Padilla, Pamela A

    2016-02-01

    Although vertebrate embryogenesis is typically a continuous and dynamic process, some embryos have evolved mechanisms to developmentally arrest. The embryos of Austrofundulus limnaeus, a killifish that resides in ephemeral ponds, routinely enter diapause II (DII), a reversible developmental arrest promoted by endogenous cues rather than environmental stress. DII, which starts at 24-26 days post-fertilization and can persist for months, is characterized by a significant decline in heart rate and an arrest of development and differentiation. Thus, A. limnaeus is a unique model to study epigenetic features associated with embryonic arrest. To investigate chromosome structures associated with mitosis or gene expression, we examined the post-translational modifications of histone H3 (phosphorylation of serine 10, mono-, di- and tri-methylation of lysine 4 or 27) in preDII, DII and postDII embryos. As seen by microscopy analysis, DII embryos have a significant decrease in the H3S10P marker for mitotic nuclei and an inner nuclear membrane localization of the H3K27me2 marker associated with silencing of gene expression. ELISA experiments reveal that the levels of methylation at H3K4 and H3K27 are significantly different between preDII, DII and postDII embryos, indicating that there are molecular differences between embryos of different chronological age and stage of development. Furthermore, in DII embryos relative to preDII embryos, there are differences in the level of H3K27me3 and H3K4me3, which may reflect critical chromatin remodeling that occurs prior to arrest of embryogenesis. This work helps lay a foundation for chromatin analysis of vertebrate embryo diapause, an intriguing yet greatly understudied phenomenon. PMID:26685169

  5. Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract

    PubMed Central

    Almiñana, Carmen; Heath, Paul R.; Wilkinson, Stephen; Sanchez-Osorio, Jonatan; Cuello, Cristina; Parrilla, Inmaculada; Gil, Maria A.; Vazquez, Jose L.; Vazquez, Juan Maria; Roca, Jordi; Martinez, Emilio A.; Fazeli, Alireza

    2012-01-01

    The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development. PMID:22470458

  6. Estrogen metabolism by the equine embryo proper during the fourth week of pregnancy.

    PubMed

    Raeside, James I; Christie, Heather L; Waelchli, Rudolf O; Betteridge, Keith J

    2009-12-01

    Estrogen production by the trophoblast is considered important in early equine pregnancy and leads to high concentrations in yolk-sac (Y-S) fluid. The embryo proper is a potential site for their action. We examined estrogen metabolism in the embryo proper because some actions of estrogens are derived from locally formed metabolites. The embryo proper, as well as separated extraembryonic tissues, of conceptuses collected about day 25 of pregnancy, were incubated with (3)[H]-estrone (E(1)) and (3)[H]-estradiol (E(2)). Steroids were recovered from media by solid-phase extraction and eluted separately as unconjugated and conjugated fractions. Profiles of free and sulfo-conjugated fractions were obtained by HPLC. Some differences and similarities were noted for the embryo proper as compared to the extraembryonic tissues. No reduction of E(1) to E(2) was noted for the embryo proper and allantois, but some was seen with the bilaminar Y-S wall. Less conversion of E(2) to E(1) occurred in the embryo proper than in the extraembryonic tissues. Profiles for hydrolyzed sulfates from incubation of the embryo proper were very similar for both substrates, mainly with E(1) present. Thus, low levels of reductase and high levels of oxido- activities were apparent for the 17beta-hydroxysteroid dehydrogenase enzymes. Further evidence of an active role for the embryo proper was seen as minor, polar products, and an unknown compound eluting between E(2) and E(1). These findings show, for the first time, that the embryo proper can metabolize estrogens that are found in Y-S fluid - a function of potential significance at this stage in its development. PMID:19710203

  7. The Chromosomal Constitution of Embryos Arising from Monopronuclear Oocytes in Programmes of Assisted Reproduction

    PubMed Central

    2014-01-01

    The assessment of oocytes showing only one pronucleus during assisted reproduction is associated with uncertainty. A compilation of data on the genetic constitution of different developmental stages shows that affected oocytes are able to develop into haploid, diploid, and mosaic embryos with more or less complex chromosomal compositions. In the majority of cases (~80%), haploidy appears to be caused by gynogenesis, whereas parthenogenesis or androgenesis is less common. Most of the diploid embryos result from a fertilization event involving asynchronous formation of the two pronuclei or pronuclear fusion at a very early stage. Uniparental diploidy may sometimes occur if one pronucleus fails to develop and the other pronucleus already contains a diploid genome or alternatively a haploid genome undergoes endoreduplication. In general, the chance of obtaining a biparental diploid embryo appears higher after conventional in vitro fertilization than after intracytoplasmic sperm injection. If a transfer of embryos obtained from monopronuclear oocytes is envisaged, it should be tried to culture them up to the blastocyst since most haploid embryos are not able to reach this stage. Comprehensive counselling of patients on potential risks is advisable before transfer and a preimplantation genetic diagnosis could be offered if available. PMID:25763399

  8. Freeze-all: enhanced outcomes with cryopreservation at the blastocyst stage versus pronuclear stage using slow-freeze techniques.

    PubMed

    Surrey, Eric; Keller, Jennifer; Stevens, John; Gustofson, Robert; Minjarez, Debra; Schoolcraft, William

    2010-09-01

    This retrospective cohort study compared outcomes from transfer of embryos cryopreserved at the pronuclear versus blastocyst stage following 'freeze-all' IVF cycles without fresh transfer for 87 consecutive IVF patients <40 years, who underwent cryopreservation of all viable embryos followed by at least one subsequent frozen embryo transfer (FET) between January 2003 and July 2007. Cryopreservation of all embryos from one oocyte retrieval was performed at either the pronuclear (1.5 mol/l propanediol and 0.1 mol/l sucrose) (group A) or blastocyst (10% glycerol) (group B) stage. Main outcome measures included survival, live birth and implantation rates. A total of 110 FET cycles were analysed. Live birth and implantation rates observed after the first FET were significantly higher (P=0.025 and P=0.002) in group B (67.7% and 40.8%) than in group A (41.1% and 21.5%) despite a higher survival rate in group A. After two FET cycles, 32.1% of group A had not conceived despite thaw of all available embryos, compared with 6.5% of group B. When freeze-all is necessary, blastocyst cryopreservation leads to higher implantation and live birth rates compared with pronuclear-stage cryopreservation despite lower survival rates. Prolonged embryo culture may allow for more optimal embryo selection. PMID:20638905

  9. The onset of stress response in rainbow trout Oncorhynchus mykiss embryos subjected to density and handling.

    PubMed

    Ghaedi, Gholamreza; Falahatkar, Bahram; Yavari, Vahid; Sheibani, Mohammad T; Broujeni, Gholamreza Nikbakht

    2015-04-01

    The present study made an attempt to measure the cortisol content, as an indicator of stress response, in rainbow trout embryos which were exposed to different densities and handling stress (air exposure) during incubation. The three densities of experimental embryos at early development stages were considered as 2.55 embryos/cm(2) (low density), 5.10 embryos/cm(2) (normal density) and 7.65 embryos/cm(2) (high density). The cortisol content of eggs (5.09 ± 0.12 ng/g) decreased to 3.68 ± 0.14 ng/g in newly fertilized eggs. Resting level of cortisol dropped at three densities by day 18 of post fertilization. Then, cortisol increased at hatching stage to 1.16 ± 0.11, 1.20 ± 0.12 and 1.21 ± 0.14 ng/g at low, normal and high densities, respectively. There were no statistically significant differences between cortisol concentrations in three densities. The acute handling stress test (5-min out-of-water), conducted on embryos (48 h post fertilization, organogenesis and eyed stage) in three densities, revealed no differences in whole-body cortisol levels between stressed and unstressed experimental groups. At hatching stage in low-density group, level of cortisol increased but the difference with the pre-stress levels was not statistically significant. Furthermore, significant differences in cortisol levels of stressed and unstressed embryos were detected on hatching in normal and high density groups [1.20 ± 0.12 at time 0-1.49 ± 0.11 ng/g at 1 hps (hours post stress) and from 1.21 ± 0.14 at time 0 to 1.53 ± 0.10 ng/g at 3 hps, respectively]. The results showed no difference in profile of cortisol in different densities, but acute stress conducted on embryos, incubated in different densities, revealed differences in cortisol stress response at hatching between normal and high density, which lead to cortisol increase at hatching time. It indicates that the lag time in the cortisol response to stressors immediately after hatching does not occur when the siblings

  10. An overview of the available methods for morphological scoring of pre-implantation embryos in in vitro fertilization.

    PubMed

    Nasiri, Nahid; Eftekhari-Yazdi, Poopak

    2015-01-01

    Assessment of embryo quality in order to choose the embryos that most likely result in pregnancy is the critical goal in assisted reproductive technologies (ART). The current trend in human in vitro fertilization/embryo transfer (IVF/ET) protocols is to decrease the rate of multiple pregnancies after multiple embryo transfer with maintaining the pregnancy rate at admissible levels (according to laboratory standards). Assessment of morphological feathers as a reliable non-invasive method that provides valuable information in prediction of IVF/intra cytoplasmic sperm injection (ICSI) outcome has been frequently proposed in recent years. This article describes the current status of morphological embryo evaluation at different pre-implantation stages. PMID:25685730

  11. An Overview of The Available Methods for Morphological Scoring of Pre-Implantation Embryos in In Vitro Fertilization

    PubMed Central

    Nasiri, Nahid; Eftekhari-Yazdi, Poopak

    2015-01-01

    Assessment of embryo quality in order to choose the embryos that most likely result in pregnancy is the critical goal in assisted reproductive technologies (ART). The current trend in human in vitro fertilization/embryo transfer (IVF/ET) protocols is to decrease the rate of multiple pregnancies after multiple embryo transfer with maintaining the pregnancy rate at admissible levels (according to laboratory standards). Assessment of morphological feathers as a reliable non-invasive method that provides valuable information in prediction of IVF/intra cytoplasmic sperm injection (ICSI) outcome has been frequently proposed in recent years. This article describes the current status of morphological embryo evaluation at different pre-implantation stages. PMID:25685730

  12. Comparison of prehatch C-start responses in rainbow trout and lake trout embryos by means of a tactile stimulus test

    USGS Publications Warehouse

    Wright, P.J.; Noltie, D.B.; Tillitt, D.E.

    2003-01-01

    The C-start in teleost fishes, a type of startle response, mediates the ability to respond to abrupt, unexpected stimuli and is characterized by a short-latency, C-type fast start acceleration. In prehatch fish embryos, the C-start appears necessary for mechanical breakdown of the egg chorion and successful hatching by way of increased embryo movement and distribution of the hatching enzymes. In later stages, the C-start plays an important role in predator avoidance. Using tactile stimulation, we evaluated the C-start response in rainbow trout Oncorhynchus mykiss at 170 degree-days, when 6.6% of embryos exhibited C-starts, and lake trout Salvelinus namaycush embryos at 320 degree-days, when 23% of embryos exhibited C-starts. Triplicate groups of embryos were later tested at three developmental stages: early (220 and 360 degree-days for rainbow trout and lake trout, respectively), middle (260 and 480 degree-days, respectively), and late (320 and 560 degree-days, respectively). The proportion of trout embryos exhibiting C-start increased through time, such that 100% had responded by the late stage, just prior to hatching. C-starts could be obtained by repeated stimulation, and the relative activity of the embryos (based on the number of flexures per stimulus) also increased over time. Rainbow trout and lake trout showed very similar C-start responses at parallel developmental stages, and these patterns of response were similar to those reported in other fish species.

  13. Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos

    PubMed Central

    Park, Chi-Hun; Uh, Kyung-Jun; Mulligan, Brendan P.; Jeung, Eui-Bae; Hyun, Sang-Hwan; Shin, Taeyoung; Ka, Hakhyun; Lee, Chang-Kyu

    2011-01-01

    In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos. PMID:21804912

  14. Genetic regulation of egg and embryo survival.

    PubMed

    Warner, C M; Cao, W; Exley, G E; McElhinny, A S; Alikani, M; Cohen, J; Scott, R T; Brenner, C A

    1998-06-01

    In both mice and humans, 15-50% of embryos die during the preimplantation period from mechanisms that are largely unknown. Two major criteria predict preimplantation embryo quality, the rate of development and the degree of fragmentation. We review evidence that both of these criteria have a genetic basis. Rate of development and subsequent embryo survival are controlled by a gene, Ped, we discovered in the mouse. Although progress is being made in the search for the human homologue of the mouse Ped gene, it has not yet been identified. Fragmentation, observed in both mouse and human embryos, is probably the result of apoptosis. We analysed transcription of two genes that regulate apoptosis, bcl-2 and bax, and found that both are transcribed in mouse and human preimplantation embryos. Overall, the literature reviewed and new data presented in this paper support the concept that there is a genetic basis for preimplantation egg and embryo survival. PMID:9755423

  15. Vitrification of buffalo oocytes and embryos.

    PubMed

    Parnpai, Rangsun; Liang, Yuanyuan; Ketudat-Cairns, Mariena; Somfai, Tamas; Nagai, Takashi

    2016-07-01

    During the past decade, vitrification has been acknowledged as an efficient alternative to traditional slow-rate freezing in both human and animal embryology. The buffalo is the major milk and meat producing farm animal in many developing countries. Cryopreservation of buffalo oocytes and embryos is very important in preserving this species for future use. This review discusses the recent buffalo oocytes and embryos vitrification procedures, different types of cryoinjuries, and other factors affecting the vitrification of buffalo oocytes and embryos. PMID:27160442

  16. The role of paf in embryo physiology.

    PubMed

    O'Neill, Chris

    2005-01-01

    Embryo-derived paf (1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is produced by de novo synthesis. This synthesis commences soon after fertilization and persists throughout the preimplantation phase. Paf is produced and released by the embryos of all mammalian species studied to date. Its release from the embryo involves binding to extracellular albumin in a manner that protects paf from enzymatic degradation. Released paf causes a range of alterations in maternal physiology, including platelet activation, changes in oviductal, endometrial and maternal immune function. Paf also acts in an autocrine fashion as a trophic/survival factor for the early embryo. In vitro, supplementation of culture media with paf improves embryo development. Embryo-derived paf's autocrine actions are transduced by 1-o-phosphatidylinositol-3-kinase, which induces characteristic calcium transients within the early embryo. The calcium transients require both the influx of external calcium and release of inositol trisphosphate-dependent internal calcium stores. Buffering these transients compromised embryo development in a manner that was reversed by exogenous paf. Assisted reproductive technologies compromise the production of paf by some embryos and retard the expression of the paf receptor. This deprivation of paf's action is one of the factors limiting the survivability of embryos produced by assisted reproductive technologies. Paf is one of several autocrine and paracrine trophic/survival factors that act on the early embryo. These factors probably act cooperatively and may, to some degree, be mutually redundant. As the earliest-released and the best-described embryotrophin, paf provides an important exemplar for understanding the role of ligand-mediated trophic support of the early embryo. PMID:15790601

  17. 9 CFR 98.20 - Embryos refused entry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Embryos refused entry. 98.20 Section... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.20 Embryos refused entry. If any embryos are determined to be...

  18. 9 CFR 98.20 - Embryos refused entry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Embryos refused entry. 98.20 Section... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.20 Embryos refused entry. If any embryos are determined to be...

  19. 9 CFR 98.20 - Embryos refused entry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Embryos refused entry. 98.20 Section... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.20 Embryos refused entry. If any embryos are determined to be...

  20. 9 CFR 98.20 - Embryos refused entry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Embryos refused entry. 98.20 Section... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.20 Embryos refused entry. If any embryos are determined to be...

  1. 9 CFR 98.20 - Embryos refused entry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Embryos refused entry. 98.20 Section... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.20 Embryos refused entry. If any embryos are determined to be...