Science.gov

Sample records for 4-hydroxy-3-2-hydroxynapthalene-1-ylphenyl-arylsulfonamides heat shock

  1. Bacterial Heat Shock Protein Activity

    PubMed Central

    Maleki, Farajollah; Khosravi, Afra; Nasser, Ahmad; Taghinejad, Hamid

    2016-01-01

    Bacteria are exposed to different types of stress in their growth conditions. They have developed appropriate responses, modulated by the re-modeling of protein complexes and by phosphorylation dependent signal transduction systems, to adapt and to survive in a variety range of nature. Proteins are essential components for biologic activity in the eukaryotic and prokaryotic cell. Heat Shock Proteins (HSP) have been identified from various organisms and have critical role in cell hemostasis. Chaperone can sense environment and have different potential role in the organism evolution. PMID:27134861

  2. Shock interference heating in scramjet engines

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1990-01-01

    Experimental and analytical research sponsored by the NASA Langley Research center and the NASP Structures Technology Maturation Program to define critical aerothermal loads for the NASP engine is summarized. Presented is a review of (1) shock-shock interaction on the engine cowl leading edge that results in a supersonic jet impinging on the leading edge surface and causes the heat transfer rate to be amplified by a factor of 30 or more over the undisturbed (no shock interaction) flow stagnation point heat transfer rate, (2) the effectiveness of supersonic film cooling with and without the effects of an impinging oblique shock wave, and (3) oblique shock impingement in an axial compression corner.

  3. Heat-shock Proteins and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Baylis, Joanne; Downs, Craig A.; Jones, Linda R.; Heckathorn, Scott A.

    1998-11-01

    Many cancer treatments, such as photodynamic therapy, generate active oxygen species, often in the mitochondria. These oxygen species adversely react with cellular processes, thereby destroying cancer cells and tissue. Heat-shock proteins are up-regulated in response to heat stress or other environmental stresses and are known to protect cells from active oxygen species. In tumor cells, heat-shock proteins accumulate in the mitochondria under non-stress conditions at higher levels than in normal cells. The objective of our work is to determine whether specific mitochondrial heat-shock proteins are responsible for the increased resistance of cancer cells to oxidative-based anti-cancer therapies. We will first determine which heat-shock proteins accumulate in the mitochondria of cancer cells (lung carcinomas). We will determine if the over-expression of specific heat-shock proteins in the mitochondria can protect cells from Photofrin®-mediated photodynamic therapy through protection of mitochondrial electron transport.

  4. Ultrafast collisional ion heating by electrostatic shocks.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  5. Ultrafast collisional ion heating by electrostatic shocks

    PubMed Central

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  6. Ultrafast collisional ion heating by electrostatic shocks

    NASA Astrophysics Data System (ADS)

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-11-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ~keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

  7. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  8. Heat shock proteins of higher plants

    PubMed Central

    Key, Joe L.; Lin, C. Y.; Chen, Y. M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperature of soybean seedling tissue is increased from 28°C (normal) to about 40°C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, “heat shock proteins,” is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO4 gels; a more complex pattern is observed on two-dimensional gels. When the tissue is returned to 28°C after 4 hr at 40°C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A)+RNAs isolated from tissues grown at 28 and 40°C shows that the heat shock proteins are translated from a new set of mRNAs induced at 40°C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5°C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila. Images PMID:16593032

  9. Fever, hyperthermia and the heat shock response.

    PubMed

    Singh, Ishwar S; Hasday, Jeffrey D

    2013-08-01

    The heat shock response is a highly conserved primitive response that is essential for survival against a wide range of stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms raise their core body temperature and temporarily subject themselves to thermal stress in the face of infections. The present review documents studies showing the potential overlap between the febrile response and the heat shock response and how both activate the same common transcriptional programme (although with different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to modify host defences in the context of infection, inflammation and injury. The review focuses primarily on how hyperthermia within the febrile range that often accompanies infections and inflammation acts as a biological response modifier and modifies innate immune responses. The characteristic 2-3 °C increase in core body temperature during fever activates and utilises elements of the heat shock response pathway to modify cytokine and chemokine gene expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists modify the heat shock-induced transcriptional programme and expression of HSP genes following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex reciprocal regulation between the inflammatory pathway and the heat shock response pathway. PMID:23863046

  10. Heat shock response of murine Chlamydia trachomatis.

    PubMed Central

    Engel, J N; Pollack, J; Perara, E; Ganem, D

    1990-01-01

    We have investigated the heat shock response in the mouse pneumonitis strain of Chlamydia trachomatis. The kinetics of the chlamydial heat shock response resembled that of other procaryotes: the induction was rapid, occurring over a 5- to 10-min time period, and was regulated at the level of transcription. Immunoblot analysis and immunoprecipitations with heterologous antisera to the heat shock proteins DnaK and GroEL demonstrated that the rate of synthesis, but not the absolute amount of these two proteins, increased after heat shock. Using a general screen for genes whose mRNAs are induced by heat shock, we identified and cloned two of these. DNA sequence analysis demonstrated that one of the genes is a homolog of dnaK. Further sequence analysis of the region upstream of the dnaK gene revealed that the chlamydial homolog of the grpE gene is located just adjacent to the dnaK gene. The second locus encoded three potential nonoverlapping open reading frames. One of the open reading frames was 52% homologous to the ribosomal protein S18 of Escherichia coli and thus presumably encodes the chlamydial homolog. Interestingly, this ribosomal protein is not known to be induced by heat shock in E. coli. S1 nuclease and primer extension analyses located the start site of the dnaK transcript to the last nucleotide of the grpE coding sequence, suggesting that these two genes, although tandemly arranged, are transcribed separately. No promoter sequences resembling the E. coli consensus heat shock promoter could be identified upstream of either the C. trachomatis dnaK, grpE, or S18 gene. The induction of the dnaK and S18 mRNAs by heat shock occurred at a transcriptional level; their induction could be blocked by rifampin. The mechanisms of induction for these two loci were not the same, however; they were differentially sensitive to chloramphenicol. Whereas the induction of dnaK mRNA required de novo protein synthesis, the induction of the S18 mRNA did not. Thus, C. trachomatis

  11. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  12. Heat shock proteins in multiple myeloma

    PubMed Central

    Zhang, Lei; Fok, Jacqueline H.L.; Davies, Faith E.

    2014-01-01

    Heat shock proteins are molecular chaperones with a central role in protein folding and cellular protein homeostasis. They also play major roles in the development of cancer and in recent years have emerged as promising therapeutic targets. In this review, we discuss the known molecular mechanisms of various heat shock protein families and their involvement in cancer and in particular, multiple myeloma. In addition, we address the current progress and challenges in pharmacologically targeting these proteins as anti-cancer therapeutic strategies PMID:24675290

  13. Heat shock triggers rapid protein phosphorylation in soybean seedings

    SciTech Connect

    Krishnan, H.B.; Pueppke, S.G.

    1987-10-29

    Heat shock arrests the synthesis of many cellular proteins and simultaneously initiates expression of a unique set of proteins, termed heat shock proteins. We have found that heat shock rapidly triggers phosphorylation of a set of proteins in soybean seedlings. Although the kinetics of phosphorylation and the heat shock response are similar, the major identified phosphorylation products do not comigrate with heat shock proteins on polyacrylamide gels. Cadmium, which is known to induce the heat shock response, stimulates phosphorylation of the same set of proteins. The rapidity of phosphorylation suggests that it may play a pivotal role in sensing and transducing elevated temperature stress in plants.

  14. Ancient heat shock gene is dispensable.

    PubMed Central

    Bardwell, J C; Craig, E A

    1988-01-01

    Hsp83 is a major eucaryotic heat shock protein and one of the most conserved proteins known. We have isolated an Escherichia coli gene homologous to eucaryotic Hsp83 and used it to construct a deletion mutation. The E. coli mutant was viable but had a slight growth disadvantage that increased with temperature. Images PMID:3290192

  15. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  16. Infrared Images of Shock-Heated Tin

    SciTech Connect

    Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

    2004-09-01

    High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

  17. Localization of small heat shock proteins to the higher plant endomembrane system. [Low-molecular-weight heat shock proteins

    SciTech Connect

    Helm, K.W.; Vierling, E. ); LaFayette, P.R.; Nagao, R.T.; Key, J.L. )

    1993-01-01

    Most eukaryotic cells respond to high temperature and other stresses with the production of heat shock proteins, which aid in cell survival. There are four major classes of heat shock proteins HSP90, HSP70, HSP60 and low-molecular weight HSP. The data from this research indicate that members of the low-molecular weight heat shock proteins are most likely resident endoplasmic reticulum (ER) proteins and may be similar in function to related low-molecular weight heat shock proteins in the cytoplasm. The low-molecular weight heat shock proteins, the HSP90 and the HSP70 all appear to localize to the endoplasmic reticulum. Since the ER-localized low-molecular weight heat shock proteins are physically separated from their counterparts in other cell compartments, investigations of the ER-localized heat shock proteins provides a simplified model system for determining the functions of low-molecular weight heat shock proteins in eukaryotes.

  18. Heat-Shock Factor 1 Controls Genome-wide Acetylation in Heat-shocked Cells

    PubMed Central

    Fritah, Sabrina; Col, Edwige; Boyault, Cyril; Govin, Jérôme; Sadoul, Karin; Chiocca, Susanna; Christians, Elisabeth; Khochbin, Saadi; Jolly, Caroline

    2009-01-01

    A major regulatory function has been evidenced here for HSF1, the key transcription factor of the heat-shock response, in a large-scale remodeling of the cell epigenome. Indeed, upon heat shock, HSF1, in addition to its well-known transactivating activities, mediates a genome-wide and massive histone deacetylation. Investigating the underlying mechanisms, we show that HSF1 specifically associates with and uses HDAC1 and HDAC2 to trigger this heat-shock–dependent histone deacetylation. This work therefore identifies HSF1 as a master regulator of global chromatin acetylation and reveals a cross-talk between HSF1 and histone deacetylases in the general control of genome organization in response to heat shock. PMID:19793920

  19. Heat Shock-Independent Induction of Multidrug Resistance by Heat Shock Factor 1†

    PubMed Central

    Tchénio, Thierry; Havard, Marilyne; Martinez, Luis A.; Dautry, François

    2006-01-01

    The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the constitutive activation of the multidrug resistance gene 1 (MDR-1). This drug resistance phenotype does not correlate with an increased expression of heat shock-responsive genes (heat shock protein genes, or HSPs). In addition, HSF1 mutants lacking HSP gene activation are also capable of conferring multidrug resistance, and only hypophosphorylated HSF1 complexes accumulate in transduced cells. Our results indicate that HSF1 can activate MDR-1 expression in a stress-independent manner that differs from the canonical heat shock-activated mechanism involved in HSP induction. We further provide evidence that the induction of MDR-1 expression occurs at a posttranscriptional level, revealing a novel undocumented role for hypophosphorylated HSF1 in posttranscriptional gene regulation. PMID:16382149

  20. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  1. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1.

    PubMed Central

    Kim, D; Ouyang, H; Li, G C

    1995-01-01

    The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7892235

  2. Heat shock proteins in the kidney.

    PubMed

    Sreedharan, Rajasree; Van Why, Scott K

    2016-10-01

    Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease. PMID:26913726

  3. Intracellular trafficking of heat shock factor 2.

    PubMed

    Le Goff, Pascale; Le Dréan, Yves; Le Péron, Christine; Le Jossic-Corcos, Catherine; Ainouche, Abdelkadder; Michel, Denis

    2004-04-01

    HSF2 is an enigmatic member of the heat shock factor family, identified in the homeotherm classes of birds and mammals. We report the characterization of HSF2 from an evolutionary ancient vertebrate, the fish rainbow trout (rtHSF2). rtHSF2 appears closely related to its mammalian counterparts at structural and functional levels. The conservation of the distinctive features of HSF2 from fish to human suggests that it should ensure important biological functions, not redundant with those of HSF1. Proteasome inhibition, reported as a potent stimulator of HSF2, leads to the stabilization and to a striking nuclear trafficking of rtHSF2-GFP fusion protein. Upon treatment with the proteasome inhibitor MG132, rtHSF2-GFP accumulates into PML nuclear bodies (NBs) independently of its sumoylation and, if expressed at moderate level, moves to nucleoli. The translocation of rtHSF2-GFP from NBs to nucleoli is greatly favored by overexpression of the heat shock protein Hsp70. The mammalian counterpart mouse HSF2 (mHSF2) also exhibited changes in intracellular distribution upon MG132 treatment. mHSF2 partitioned between a juxtanuclear area that we characterized as an aggresome and the nucleoli. These relocalizations are likely to reflect common structural changes of mouse and trout HSF2 upon activation. PMID:15023536

  4. Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element.

    PubMed Central

    Molina, A; Di Martino, E; Martial, J A; Muller, M

    2001-01-01

    We reported previously that a tilapia (Oreochromis mossambicus) heat shock protein 70 (HSP70) promoter is able to confer heat shock response on a reporter gene after transient expression both in cell culture and in microinjected zebrafish embryos. Here we present the first functional analysis of a fish HSP70 promoter, the tiHSP70 promoter. Using transient expression experiments in carp EPC (epithelioma papulosum cyprini) cells and in microinjected zebrafish embryos, we show that a distal heat shock response element (HSE1) at approx. -800 is predominantly responsible for the heat shock response of the tiHSP70 promoter. This element specifically binds an inducible transcription factor, most probably heat shock factor, and a constitutive factor. The constitutive complex is not observed with the non-functional, proximal HSE3 sequence, suggesting that both factors are required for the heat shock response mediated by HSE1. PMID:11368761

  5. Modulation of Alloimmunity by Heat Shock Proteins

    PubMed Central

    Borges, Thiago J.; Lang, Benjamin J.; Lopes, Rafael L.; Bonorino, Cristina

    2016-01-01

    The immunological mechanisms that evolved for host defense against pathogens and injury are also responsible for transplant rejection. Host rejection of foreign tissue was originally thought to be mediated mainly by T cell recognition of foreign MHC alleles. Management of solid organ transplant rejection has thus focused mainly on inhibition of T cell function and matching MHC alleles between donor and host. Recently, however, it has been demonstrated that the magnitude of the initial innate immune responses upon transplantation has a decisive impact on rejection. The exact mechanisms underlying this phenomenon have yet to be characterized. Ischemic cell death and inflammation that occur upon transplantation are synonymous with extracellular release of various heat shock proteins (Hsps), many of which have been shown to have immune-modulatory properties. Here, we review the impact of Hsps upon alloimmunity and discuss the potential use of Hsps as accessory agents to improve solid organ transplant outcomes. PMID:27555846

  6. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  7. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update

    PubMed Central

    2013-01-01

    Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participates in many of the traits that permit the malignant phenotype. Thus cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at: (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1 / HSP in malignant transformation and, (3) discovering approaches to therapy based on disrupting the influence of the HSF1 controlled transcriptome in cancer. PMID:22885793

  8. Infrared Emissions from Shock Heated Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Stephens, K. M.; Bauer, S. H.

    1994-01-01

    The primary objective of this study was to ascertain whether low molecular weight hydrocarbons (LMWH) in the range C4 to C7, upon heating to temperatures above 900 K, emit IR radiations at frequencies that correspond to the 'unidentified infrared' (UIR) features - the recorded emissions from a variety of astronomical sources - reflection nebulae, HII regions, planetary nebulae, spiral galaxies and other extra galactic objects. We describe IR emission spectra recorded from shock-heated gases (C2H2; (H3C)2C = CH2; H2C = C(CH3) - C(CH3) = CH2; (H3C)2C = CH - C(CH3) = CH2), that arise from excitation of the fundamental C-H stretching vibrations. While the IR emissions from LMWH, anticipated over the entire spectra range, do not present a perfect match to UIR, the correspondence over several wavelength regions is better than the emissions anticipated from polycyclic aromatic hydrocarbon (PAH) species. Finally, we briefly review the range of proposals that have been presented for the origin of the UIR bands.

  9. Structure of fast shocks in the presence of heat conduction

    SciTech Connect

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-12-15

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V{sub d} in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K{sub 0}, the ratio of upstream plasma pressure to magnetic pressure {beta}{sub 1}, Alfven Mach number M{sub A1}, and the angle {theta}{sub 1} between shock normal and magnetic field. It is found that as the upstream shock parameters K{sub 0}, {beta}{sub 1}, and M{sub A1} increase or {theta}{sub 1} decreases, the width of foreshock L{sub d} increases. The present results can be applied to fast shocks in the solar corona, solar wind

  10. Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat.

    PubMed

    Driedonks, Nicky; Xu, Jiemeng; Peters, Janny L; Park, Sunghun; Rieu, Ivo

    2015-01-01

    High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation. PMID:26635827

  11. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2015-08-01

    Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (> 37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0-38.3°C, mean ± SD = 38.1°C ± 0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV] = 0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments. PMID:25942613

  12. Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems

    PubMed Central

    Saera-Vila, Alfonso; Kish, Phillip E.

    2015-01-01

    Abstract Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (>37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0–38.3°C, mean±SD=38.1°C±0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV]=0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments. PMID:25942613

  13. Fever and the heat shock response: distinct, partially overlapping processes

    PubMed Central

    Hasday, Jeffrey D.; Singh, Ishwar S.

    2000-01-01

    The heat shock response is an ancient and highly conserved process that is essential for surviving environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review studies showing that fever is beneficial in the infected host. We show that core temperatures achieved during fever can activate the heat shock response and discuss some of the biochemical consequences of such an effect. We present data suggesting 4 possible mechanisms by which fever might confer protection: (1) directly killing or inhibiting growth of pathogens; (2) inducing cytoprotective heat shock proteins (Hsps) in host cells; (3) inducing expression of pathogen Hsps, an activator of host defenses; and (4) modifying and orchestrating host defenses. Two of these mechanisms directly involve the heat shock response. We describe how heat shock factor-1, the predominant heat-induced transcriptional enhancer not only activates transcription of Hsps but also regulates expression of pivotal cytokines and early response genes. The relationship between fever and the heat shock response is an illuminating example of how a more recently evolved response might exploit preexisting biochemical pathways for a new function. PMID:11189454

  14. Three light-inducible heat shock genes of Chlamydomonas reinhardtii.

    PubMed Central

    von Gromoff, E D; Treier, U; Beck, C F

    1989-01-01

    Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light. Images PMID:2779571

  15. Heat shock response and autophagy—cooperation and control

    PubMed Central

    Dokladny, Karol; Myers, Orrin B; Moseley, Pope L

    2015-01-01

    Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems. PMID:25714619

  16. Saccharomyces cerevisiae Genes Involved in Survival of Heat Shock

    PubMed Central

    Jarolim, Stefanie; Ayer, Anita; Pillay, Bethany; Gee, Allison C.; Phrakaysone, Alex; Perrone, Gabriel G.; Breitenbach, Michael; Dawes, Ian W.

    2013-01-01

    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance. PMID:24142923

  17. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response

    PubMed Central

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    2014-01-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) – and thus generally restoring the disturbed protein homeostasis associated with such diseases – has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or ‘barcoded’ by a different set of HSPs that can rescue specific types of aggregation. Some of these ‘non-canonical’ HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated – so-called chaperonopathies – which are also discussed in this Review. PMID:24719117

  18. Heavy Ion Heating at Shocks in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Korreck, K. E.; Stevens, M. L.; Lepri, S. T.; Kasper, J. C.

    2014-12-01

    Ions heavier than protons can be used as tracers for heating mechamisms in solar wind plasma. Measurments by the ACE and WIND satellites provide information on the relative heating of the heavy ions versus the protons. Greater than mass proportional heating has been seen at coronal mass ejections (CME) shock fronts. Using ACE SWICS heavy ions data from CME associated shocks, heavy ion heating and the non-thermal nature of helium and oxygen distributions at 1AU is examined. The WIND SWE data set is used to examine the helium distributions at the shock fronts observed at the spacecraft. Understanding the heating and source of energetic particles and their evolution through the heliosphere is relevant to predicting space weather events and the evolution of the solar wind.

  19. Ion heating and energy redistribution across supercritical perpendicular shocks: Application to planetary and interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Liu, Y. D.; Richardson, J. D.; Parks, G. K.

    2013-12-01

    We investigate how the ion dissipative process across supercritical perpendicular shocks depends on the shock front micro-structures. At a collisionless plasma shock, the dissipation and micro-structure of the shock font are dominated by wave-particle interactions. Comparison of the ion thermalization at different kinds of shocks, e.g., planetary and interplanetary shocks, can quantify how much interaction is occurring at the shock boundary. Investigation of this problem for diverse solar wind (SW) conditions will yield important information on the dependences of the ion thermalization and energy redistribution on plasma parameters. With the aid of a successful automatic separation method [Yang et al., 2009], the incident ions at the shock can be divided into two parts: reflected (R) ions and directly transmitted (DT) ions. Corresponding heating efficiency of each population of ions at the shock can be calculated respectively. Wilkinson & Schwartz [1990] have theorized that the amount of reflected ions at perpendicular shocks depends on plasma parameters. Based on the Rankine-Hugoniot (R-H) conservation laws, they found that the fraction reflected is strongly dependent on the magnitude of the ratio of specific heat capacities γ chosen in the R-H relations. The main goal of this work is to investigate how the plasma parameters, e.g. the particle velocity distribution, the plasma beta value, seed populations, etc. (from a particle dynamic point of view), control the amount of reflected ions by using one-dimensional (1-D) full-particle-cell simulations. The simulation results may help to explain the ion heating efficiency and energy redistribution at shocks observed by Cluster, Wind, Voyager, etc.

  20. Heat shock increases survival in rats exposed to hyperbaric pressure.

    PubMed

    Medby, Christian; Bye, Anja; Wisløff, Ulrik; Brubakk, Alf O

    2008-12-01

    It has been shown that a single bout of exercise performed 20 hours prior to hyperbaric exposure reduces bubble formation and increases survival in rats. Heat shock proteins (HSPs) are stress proteins expressed in cells that are exposed to different stressors. HSPs are known to protect cells, by binding to proteins and stabilizing them. As it is known that a single bout of exercise induces HSPs, and that HSPs exert their protective effects 20-24 hours after the stimulus for induction, we hypothesized that HSPs might be one mechanism behind the observed exercise-induced protection. We hypothesized that rats that expressed HSPs would develop fewer bubbles and have a lower mortality than their non-stressed control group. Twenty-four female Sprague-Dawley rats (300-330 g) were divided into a heat-shock group and a control group and anaesthetized. The rats in the heat-shock group were heated to 42 ± 0.5 degrees Celsius for 15 min. The following day, all rats were compressed to 700 kPa for 45 min in a hyperbaric chamber. The right ventricles were insonated and bubbles were identified and graded. Six of 12 rats in the heat-shock group survive d, while 1 of 12 control rats survived (Chi square = 5.042, P = 0.034). There was no difference in bubble grade between the groups. The study suggests that the effect of heat shock on survival is not the same as observed after exercise, as the heat-shocked rats developed bubbles. However, heat shock appears to protect rats against the effects of bubbles by an independent mechanism. PMID:22692750

  1. Simple, economical heat-shock devices for zebrafish housing racks.

    PubMed

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish. PMID:21913856

  2. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    SciTech Connect

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-08-15

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B{sub y}=0). For the B{sub y}=0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B{sub y}{ne}0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B{sub y}{ne}0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B{sub y}, the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B{sub y}. The results can be applied to the shock heating

  3. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  4. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  5. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  6. Wavelet transform analysis of chromatin texture changes during heat shock.

    PubMed

    Herbomel, G; Grichine, A; Fertin, A; Delon, A; Vourc'h, C; Souchier, C; Usson, Y

    2016-06-01

    Texture analysis can be a useful tool to investigate the organization of chromatin. Approaches based on multiscale analysis and in particular the 'à trou' wavelet analysis has already been used for microscopy (Olivo Marin). In order to analyse texture changes, the statistical properties of the wavelet coefficient images were summarized by the first four statistical orders: mean, standard deviation, skewness and kurtosis of the coefficient image histogram. The 'à trou' transform provided a representation of the wavelet coefficients and texture parameters with the same statistical robustness throughout the scale spaces. It was applied for quantifying chromatin texture and heat-induced chromatin changes in living cells. We investigated the changes by both laser scanning and spinning disk confocal microscopies and compared the texture parameters before and after increasing duration of heat shock exposure (15 min, 30 min and 1 h). Furthermore, as activation of the heat shock response also correlates with a rapid localization of HSF1 within a few nuclear structures termed nuclear stress bodies (nSBs), we compared the dynamics of nSBs formation with that of textural changes during 1 h of continuous heat shock. Next, we studied the recovery phase following a 1-h heat shock. Significant differences were observed, particularly affecting the perinucleolar region, even for the shortest heat shock time affecting mostly the skewness and standard deviation. Furthermore, progressive changes could be observed according to the duration of heat shock, mostly affecting fine details (pixel-wise changes) as revealed by the parameters, obtained from the first- and second-order wavelet coefficients. 'A trou' wavelet texture analysis provided a sensitive and efficient tool to investigate minute changes of chromatin. PMID:26694695

  7. Chromosome behavior of heat shock induced triploid in Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2003-09-01

    Triploidy was induced in Chinese shrimp Fenneropenaeus chinensis by 30±0.5°C heat shock treatment (initiated at 20 min after fertilization) for 10 min to inhibit the release of PB2 at 18.0°C. The highest triploid rate obtained was 84.5% in nauplius stage. The effect of heat shock treatment on meiosis and cleavage of eggs was investigated in this work aimed to establish efficient procedures for triploid induction and to gain understanding of the mechanism of triploid production. Three pronuclei that could be observed in the treated eggs under fluorescence microscope developed into triploid embryos. Some abnormal chromosome behavior was observed in heat shocked eggs.

  8. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  9. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  10. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%. PMID:17368395

  11. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations. PMID:26962762

  12. The small heat shock proteins family: the long forgotten chaperones.

    PubMed

    Garrido, C; Paul, C; Seigneuric, R; Kampinga, H H

    2012-10-01

    Small heat shock proteins are a rather heterogeneous family of ATP-independent chaperones, some of which have been proven to block protein aggregation and help the cells to survive stressful conditions. Although much less studied than high molecular weight HSPs like HSP70/HSPA or HSP90/HSPC, their implication in physio-pathological processes and human diseases is now well evidenced, as it will be discussed in the different reviews of this special issue. In this mini-review we will just present a general introduction about the small heat shock proteins family. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. PMID:22449631

  13. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    SciTech Connect

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation.

  14. Inbreeding interferes with the heat-shock response

    PubMed Central

    Franke, Kristin; Fischer, Klaus

    2015-01-01

    Inbreeding is typically detrimental to individual fitness, with negative effects being often exaggerated in stressful environments. However, the causal mechanisms underlying inbreeding depression in general and the often increased susceptibility to stress in particular are not well understood. We here test whether inbreeding interferes with the heat-shock response, comprising an important component of the stress response which may therefore underscore sensitivity to stress. To this end we subjected the tropical butterfly Bicyclus anynana to a full-factorial design with three temperatures and three levels of inbreeding, and measured the expression of heat-shock protein (HSP) 70 via qPCR. HSP70 expression increased after exposure to heat as compared with cold or control conditions. Most strikingly, inbreeding strongly interfered with the heat-shock response, with inbred individuals showing a very weak upregulation of HSP70 only. Our results thus indicate that, in our study organism, interference with the heat-shock response may be one mechanism underlying reduced fitness of inbred individuals, especially when exposed to stressful conditions. However, these indications need to be corroborated using a broader range of different temperatures, genes and taxa. PMID:25074571

  15. Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions.

    PubMed

    Horowitz, Michal; Robinson, Sharon D M

    2007-01-01

    The fundamental functions of heat shock proteins (HSPs) are molecular chaperoning and cellular repair. There is little literature on the association between the numerous functions of HSPs and systemic integrative responses, particularly those controlled by the central nervous system. This chapter focuses on the role played by members of the HSP70 superfamily, universally recognized as cytoprotectants during heat stress, within the physiological context of hyperthermia and with its superimposition on situations of chronic stress. In the nucleus tractus solitarius, HSP70 levels enhance the sensitivity of sympathetic and parasympathetic arms of the autonomic nervous system to attenuate heat stroke-induced cerebral ischemia and hypotension. Chronic stressors that alter the heat shock response may affect the physiological profile during hyperthermic conditions. Upon aging, significantly lower HSP70 production is noted in the ventral paraventricular and lateral magnocellular nuclei. Likewise, results from cultured cells suggest that the age-related decline in HSP70 expression is constitutive and is due to decreased binding of the heat shock factor 1 (HSF-1) to the heat shock element (HSE) and diminished HSP70 transcription. These changes may be associated with decreased thermotolerance upon aging, although HSP70 production in response to other stressors is not affected. Heat acclimation (AC), in contrast, increases tissue reserves of HSP70 and accelerates the heat shock response. AC protects epithelial integrity, vascular reactivity and interactions with cellular signaling networks, enhancing protection and delaying thermal injury. The link between HSP70 and the immune system is discussed with respect to exercise. Exercise enhances the immune response via production of HSP72 in central and peripheral structures. At least in part, the effects of HSP72 in the brain are mediated via eHSP72-circulating HSPs providing a "danger signal" to activate the immune response. In

  16. Inhibition of Heat Shock Induction of Heat Shock Protein 70 and Enhancement of Heat Shock Protein 27 Phosphorylation by Quercetin Derivatives

    PubMed Central

    Wang, Rongsheng E.; Kao, Jeffrey L.-F.; Hilliard, Carolyn A.; Pandita, Raj K.; Roti, Joseph L. Roti; Hunt, Clayton R.; Taylor, John-Stephen

    2009-01-01

    Inhibitors of heat-induced heat shock protein 70 (HSP70)a expression have the potential to enhance the therapeutic effectiveness of heat induced radiosensitization of tumors. Among known small molecule inhibitors, quercetin has the advantage of being easily modified for structure-activity studies. Herein, we report the ability of five mono-methyl and five carbomethoxymethyl derivatives of quercetin to inhibit heat-induced HSP70 expression and enhance HSP27 phosphorylation in human cells. While quercetin and several derivatives inhibit HSP70 induction and enhance HSP27 phosphorylation at Ser78, other analogs selectively inhibit HSP70 induction without enhancing HSP27 phosphorylation that would otherwise aid in cell survival. We also show that good inhibitors of HSP70 induction are also good inhibitors of both CK2 and CamKII, kinases that are known to activate HSP70 expression by phosphorylation of heat shock transcription factor 1. Derivatives that show poor inhibition of either or both kinases are not good inhibitors of HSP70 induction, suggesting that quercetin’s effectiveness is due to its ability to inhibit both kinases. PMID:19296652

  17. The effect of a type 3 and type 4 shock/shock interaction on heat transfer in the stagnation region

    NASA Technical Reports Server (NTRS)

    Wilson, Dennis

    1991-01-01

    One of the major engineering challenges in designing the National Aerospace Plane, NASP, is to overcome augmented heating on the intake cowl lip from shock/shock interactions. The shock/shock interaction arises when the bow shock from the craft's nose interferes with the bow shock from the cowl lip. Considering only the region immediately around the cowl lip, the problem geometry may be simplified as that of an oblique shock impinging on a bow shock from a circular cylinder. Edney classified six different interference patterns resulting from an oblique-shock/curved bow-shock interaction. Of these six types, type 3 and 4 are most significant in that augmented surface heat transfer may be ten to thirty times greater than the case without the shock/shock interaction. The objective was to begin to develop a mathematical model which is capable of predicting the effect of a type 3 and 4 shock/shock interaction in the stagnation region of an arbitrary 2-D body. This model must be capable of predicting the maximum surface heat flux and the surface stagnation point pressure once the outer (effectively inviscid) flowfield is given. Therefore, it must capture the unsteady physics of the impinging shear layer.

  18. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum.

    PubMed

    Bui, Duc-Cuong; Lee, Yoonji; Lim, Jae Yun; Fu, Minmin; Kim, Jin-Cheol; Choi, Gyung Ja; Son, Hokyoung; Lee, Yin-Won

    2016-01-01

    Eukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F. graminearum. Among these proteins, heat shock protein 90 (FgHsp90) was revealed to play a central role in heat shock stress responses in this fungus. FgHsp90 was highly expressed and exclusively localised to nuclei in response to heat stress. Moreover, our comprehensive functional characterisation of FgHsp90 provides clear genetic evidence supporting its crucial roles in the vegetative growth, reproduction, and virulence of F. graminearum. In particular, FgHsp90 performs multiple functions as a transcriptional regulator of conidiation. Our findings provide new insight into the mechanisms underlying adaptation to heat shock and the roles of Hsp90 in fungal development. PMID:27306495

  19. Heat shock protein 90 is required for sexual and asexual development, virulence, and heat shock response in Fusarium graminearum

    PubMed Central

    Bui, Duc-Cuong; Lee, Yoonji; Lim, Jae Yun; Fu, Minmin; Kim, Jin-Cheol; Choi, Gyung Ja; Son, Hokyoung; Lee, Yin-Won

    2016-01-01

    Eukaryotic cells repress global translation and selectively upregulate stress response proteins by altering multiple steps in gene expression. In this study, genome-wide transcriptome analysis of cellular adaptation to thermal stress was performed on the plant pathogenic fungus Fusarium graminearum. The results revealed that profound alterations in gene expression were required for heat shock responses in F. graminearum. Among these proteins, heat shock protein 90 (FgHsp90) was revealed to play a central role in heat shock stress responses in this fungus. FgHsp90 was highly expressed and exclusively localised to nuclei in response to heat stress. Moreover, our comprehensive functional characterisation of FgHsp90 provides clear genetic evidence supporting its crucial roles in the vegetative growth, reproduction, and virulence of F. graminearum. In particular, FgHsp90 performs multiple functions as a transcriptional regulator of conidiation. Our findings provide new insight into the mechanisms underlying adaptation to heat shock and the roles of Hsp90 in fungal development. PMID:27306495

  20. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  1. Circuit architecture explains functional similarity of bacterial heat shock responses

    NASA Astrophysics Data System (ADS)

    Inoue, Masayo; Mitarai, Namiko; Trusina, Ala

    2012-12-01

    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TFs). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator σ32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical models of the two systems focusing on the negative feedbacks, where free chaperones suppress σ32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constraints on chaperone-TF binding affinities: the binding constant of free σ32 to chaperone DnaK, known to be in 100 nM range, set the lower limit of amount of free chaperone that the system can sense the change at the heat shock, while the binding affinity of HrcA to chaperone GroE set the upper limit and have to be rather large extending into the micromolar range.

  2. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound.

    PubMed

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A

    2016-05-01

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4(+) T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ(-/-) bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. PMID:26957545

  3. Inhibition of Heat Shock Protein 90 Prevents HIV Rebound*

    PubMed Central

    Joshi, Pheroze; Maidji, Ekaterina; Stoddart, Cheryl A.

    2016-01-01

    HIV evades eradication because transcriptionally dormant proviral genomes persist in long-lived reservoirs of resting CD4+ T cells and myeloid cells, which are the source of viral rebound after cessation of antiretroviral therapy. Dormant HIV genomes readily produce infectious virus upon cellular activation because host transcription factors activated specifically by cell stress and heat shock mediate full-length HIV transcription. The molecular chaperone heat shock protein 90 (Hsp90) is overexpressed during heat shock and activates inducible cellular transcription factors. Here we show that heat shock accelerates HIV transcription through induction of Hsp90 activity, which activates essential HIV-specific cellular transcription factors (NF-κB, NFAT, and STAT5), and that inhibition of Hsp90 greatly reduces gene expression mediated by these factors. More importantly, we show that Hsp90 controls virus transcription in vivo by specific Hsp90 inhibitors in clinical development, tanespimycin (17-(allylamino)-17-demethoxygeldanamycin) and AUY922, which durably prevented viral rebound in HIV-infected humanized NOD scid IL-2Rγ−/− bone marrow-liver-thymus mice up to 11 weeks after treatment cessation. Despite the absence of rebound viremia, we were able to recover infectious HIV from PBMC with heat shock. Replication-competent virus was detected in spleen cells from these nonviremic Hsp90 inhibitor-treated mice, indicating the presence of a tissue reservoir of persistent infection. Our novel findings provide in vivo evidence that inhibition of Hsp90 activity prevents HIV gene expression in replication-competent cellular reservoirs that would typically cause rebound in plasma viremia after antiretroviral therapy cessation. Alternating or supplementing Hsp90 inhibitors with current antiretroviral therapy regimens could conceivably suppress rebound viremia from persistent HIV reservoirs. PMID:26957545

  4. SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-02-10

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 {+-} 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  5. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  6. Shock-Bubble Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Friedman, Samuel H.; Heinz, S.; Churazov, E.

    2011-01-01

    Active galactic nuclei (AGN) Feedback via extragalactic jets requires a thermalization of the energy injected into the intracluster medium (ICM) in order for energy feedback to occur. Heinz and Churazov (2005) proposed a method using shock waves and previously inflated bubbles in the ICM to extract energy from the shock waves and turn the energy into rotational kinetic energy. This energy would decay and allow heating to occur elsewhere throughout the galaxy cluster. In this paper, we extend to three dimensions (3D) the previous work using hydrodynamic simulations. We also compare our results to previous related work done performed experimentally.

  7. Guidelines for the nomenclature of the human heat shock proteins

    PubMed Central

    Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, Bin; Hightower, Lawrence E.

    2008-01-01

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), and HSPB (small HSP) as well as for the human chaperonin families HSPD/E (HSP60/HSP10) and CCT (TRiC). The nomenclature is based largely on the more consistent nomenclature assigned by the HUGO Gene Nomenclature Committee and used in the National Center of Biotechnology Information Entrez Gene database for the heat shock genes. In addition to this nomenclature, we provide a list of the human Entrez Gene IDs and the corresponding Entrez Gene IDs for the mouse orthologs. PMID:18663603

  8. Protein disorder reduced in Saccharomyces cerevisiae to survive heat shock.

    PubMed

    Vicedo, Esmeralda; Gasik, Zofia; Dong, Yu-An; Goldberg, Tatyana; Rost, Burkhard

    2015-01-01

    Recent experiments established that a culture of Saccharomyces cerevisiae (baker's yeast) survives sudden high temperatures by specifically duplicating the entire chromosome III and two chromosomal fragments (from IV and XII). Heat shock proteins (HSPs) are not significantly over-abundant in the duplication. In contrast, we suggest a simple algorithm to " postdict " the experimental results: Find a small enough chromosome with minimal protein disorder and duplicate this region. This algorithm largely explains all observed duplications. In particular, all regions duplicated in the experiment reduced the overall content of protein disorder. The differential analysis of the functional makeup of the duplication remained inconclusive. Gene Ontology (GO) enrichment suggested over-representation in processes related to reproduction and nutrient uptake. Analyzing the protein-protein interaction network (PPI) revealed that few network-central proteins were duplicated. The predictive hypothesis hinges upon the concept of reducing proteins with long regions of disorder in order to become less sensitive to heat shock attack. PMID:26673203

  9. Effect of heat shock on S6 phosphorylation during the development of Blastocladiella emersonii.

    PubMed

    da Silva, A M; Juliani, M H; Bonato, M C

    1987-11-01

    Changes in phosphorylation of ribosomal protein S6 during heat shock, induction of thermotolerance and recovery from heat shock at different stages of Blastocladiella emersonii development were investigated. Independently of the initial state of S6 phosphorylation (maximal or intermediate), a rapid and complete dephosphorylation of S6 is induced by heat shock and S6 remains unphosphorylated during the acquired thermotolerance. During recovery from heat shock rephosphorylation of S6 occurs always to the levels characteristic of that particular stage, coincidently with the turn off of heat shock protein synthesis. PMID:3454866

  10. Transcriptome Profiles of Populus euphratica upon Heat Shock stress

    PubMed Central

    Chen, Jinhuan; Yin, Weilun; Xia, Xinli

    2014-01-01

    Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (–40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica. PMID:25435796

  11. The Role of Heat Shock Proteins in Leukemia.

    PubMed

    Kliková, K; Pilchova, I; Stefanikova, A; Hatok, J; Dobrota, D; Racay, P

    2016-01-01

    Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are molecular chaperones; their expression is increased after exposure of cells to conditions of environmental stress, including heat shock, heavy metals, oxidative stress, or pathologic conditions, such as ischemia, infection, and inflammation. Their protective function is to help the cell cope with lethal conditions. The HSPs are a class of proteins which, in normal cells, are responsible for maintaining homeostasis, interacting with diverse protein substrates to assist in their folding, and preventing the appearance of folding intermediates that lead to misfolded or damaged molecules. They have been shown to interact with different key apoptotic proteins and play a crucial role in regulating apoptosis. Several HSPs have been demonstrated to directly interact with various components of tightly regulated caspase-dependent programmed cell death. These proteins also affect caspase-independent apoptosis by interacting with apoptogenic factors. Heat shock proteins are aberrantly expressed in hematological malignancies. Because of their prognostic implications and functional role in leukemias, HSPs represent an interesting target for antileukemic therapy. This review will describe different molecules interacting with anti-apoptotic proteins HSP70 and HSP90, which can be used in cancer therapy based on their inhibition. PMID:26879061

  12. Metabolite changes associated with heat shocked avian fibroblast mitochondria.

    PubMed

    Schlesinger, M J; Ryan, C; Chi, M M; Carter, J G; Pusateri, M E; Lowry, O H

    1997-03-01

    A previous report from our laboratory (Collier et al 1993) showed that the elongated tubules of mitochondria in the cytoplasm of cultured chicken embryo fibroblasts collapsed to irregularly shaped structures surrounding the nuclear membrane after a 1 h heat shock treatment. The normal mitochondrial morphology reappeared upon removal of the thermal stress. We have now determined that several changes occurred in mitochondrial-related metabolites under these same heat shock and recovery conditions. Among these were significant decreases in the levels of fumarate and malate and increases in the amounts of aspartate and glutamate. In contrast, other intermediates of the tri-carboxylic acid cycle were unaltered as were levels of ATP and phosphocreatine. The changes observed might result from heat shock-induced changes in enzyme activities of the mitochondria, from alterations in the membrane-embedded specialized carrier proteins that transport metabolites between cytosol and mitochondria or from a disorganization of the electron-transport system normally coupled to oxidative metabolism. The rapid recovery, however, suggested that these changes were transient and readily reversible. PMID:9250392

  13. Competition between shock and turbulent heating in coronal loop system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2016-08-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in the present study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  14. A heat shock transcription factor in pea is differentially controlled by heat and virus replication.

    PubMed

    Aranda, M A; Escaler, M; Thomas, C L; Maule, A J

    1999-10-01

    Since some heat-inducible genes [heat shock (hs) genes] can be induced by virus infection in pea [e.g. Hsp70; Aranda et al. 1996, Proc. Natl Acad. Sci. USA 93, 15289-15293], we have investigated the effect that heat and virus replication may have on the expression of a heat-shock transcription factor gene (Hsf). We have characterized what appears to be the only member of the Hsf family in pea, PsHsfA. Similar to Hsp70, PsHsfA is heat-inducible in vegetative and embryonic tissues, which is concordant with the presence of heat shock elements (HSEs) and stress responsive elements (STREs) on its promoter sequence. The expression of PsHsfA during virus replication was studied in pea cotyledons and leaves, and compared to that of Hsp70. In situ hybridization experiments showed that whereas Hsp70 is induced, there is no detectable increased accumulation of PsHsfA RNA associated with the replication of pea seed-borne mosaic potyvirus (PSbMV). These experiments indicate that there is a selective control of virus-induced hs gene expression, and suggest that different regulatory pathways control hs gene expression during heat shock and virus replication. PMID:10571875

  15. A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy.

    PubMed

    Wei, Tao; Gao, Yunhang; Wang, Rixin; Xu, Tianjun

    2013-08-01

    Heat shock protein 90 (HSP90) is highly conserved molecular chaperone that plays a critical role in cellular stress response. In this study, we reported the identification and functional analysis of a heat shock protein 90 gene from miiuy croaker (designated Mimi-HSP90). Mimi-HSP90 contained five conserved HSP90 protein family signatures and shared 89.6%-99.5% similarity with other known HSP90 β isoform. Homology analysis and structure comparison further indicated that Mimi-HSP90 should be β isoform member of the HSP90 family. The molecular evolutionary analysis showed that HSP90 was under an overall strong purifying select pressure among fish species. Mimi-HSP90 gene was constitutively expressed in ten examined tissues, and the expression level of liver was higher than in other tissues. The expression level of Mimi-HSP90 gene under bacterial infection and heat shock were analyzed by real-time quantitative RT-PCR, resulted in significant changes in liver, spleen, and kidney tissues. The purified recombinant pET-HSP90 protein was used to produce the polyclonal antibody in mice. The specificity of the antibody was determined by Western blot analysis. All results suggested that Mimi-HSP90 was involved in thermal stress and immune response in miiuy croaker. PMID:23684810

  16. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae.

    PubMed

    Hou, Jin; Osterlund, Tobias; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2013-04-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high level over-expression of HSF1-R206S increased heterologous α-amylase yield 25 and 70 % when glucose was fully consumed, and 37 and 62 % at the end of the ethanol phase, respectively. Moderate and high level over-expression also improved endogenous invertase yield 118 and 94 %, respectively. However, human insulin precursor was only improved slightly and this only by high level over-expression of HSF1-R206S, supporting our previous findings that the production of this protein in S. cerevisiae is not limited by secretion. Our results provide an effective strategy to improve protein secretion and demonstrated an approach that can induce ER and cytosolic chaperones simultaneously. PMID:23208612

  17. Heat shock response for ischemic kidney preservation and transplantation.

    PubMed

    Kaneko, H; Perdrizet, G A; Schweizer, R T

    1993-01-01

    The heat shock response (HSR) is a form of stress conditioning during which reversible changes in cellular metabolism are rapidly induced by brief exposure to supra-physiologic levels of heat. The nature of these adaptive adjustments has been widely investigated and has received much attention in molecular biology and cancer research. Recent evidence indicates that a basic form of this stress response exists at the cellular level of virtually every organism. Although the physiological phenomenon of HSR is complex, it is well known that it can induce specific proteins, known as heat shock proteins (HSP's), which are not normally synthesized. HSP's become the major proteins synthesized during the heat shock response while normal protein synthesis is suppressed. In addition, the HSR has been demonstrated to confer a transient resistance to the organism to subsequent episodes of stress. Recently it has been reported that the HSR confers protection against cold ischemic injury and extends the cold preservation time of the rat kidney to 48 hours. In this study, we have applied the concept of HSR to the preservation, and transplantation of warm ischemically injured pig kidneys. Since there is a serious shortage of cadaver kidneys available for transplantation worldwide, this number would increase if warm ischemic kidneys could be utilized. However with present methods of organ recovery and preservation, such kidneys are not likely to function after transplantation even if they were removed. We hypothesized that the application of a thermal stress to pig kidneys prior to organ procurement and preservation will enhance the organs' ability to function after warm ischemic injury. PMID:8352637

  18. The Molecular Evolution of the Small Heat-Shock Proteins in Plants

    PubMed Central

    Waters, E. R.

    1995-01-01

    The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In this study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal that gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions (in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization. PMID:8647410

  19. Alpha subunit of eukaryotic translational initiation factor-2 is a heat-shock protein.

    PubMed

    Colbert, R A; Hucul, J A; Scorsone, K A; Young, D A

    1987-12-15

    The use of ultra high resolution giant two-dimensional gel electrophoresis has expanded the number of recognizable heat-shock proteins to 68 inductions in rat thymic lymphocytes, many of which are among the less abundant cellular proteins (Maytin, E. V., Colbert, R. A., and Young, D. A. (1985) J. Biol. Chem. 260, 2384-2392). Previous studies also show that cells receiving a prior heat shock recover more rapidly from the inhibition of protein synthesis induced by a second heat shock. In this report we use a monoclonal antibody to identify the alpha subunit of eukaryotic initiation factor-2 (eIF-2 alpha) as a heat-shock protein. Its relative rate of synthesis increases approximately 40% in the 2nd h and 5-fold in the 4th h of a continuous heat shock and is stimulated more dramatically, 15-fold, in the 3rd h of recovery from a 1-h heat shock. These results suggest that the induction of eIF-2 alpha in the heat-shock response may be important for restoring the cell's ability to initiate protein synthesis. In addition to identifying a function for one of the heat-shock proteins, our findings draw attention to the likelihood that other low-abundance heat-shock proteins may play critical roles in the heat-shock response. PMID:3500171

  20. Integrative analysis of the heat shock response in Aspergillus fumigatus

    PubMed Central

    2010-01-01

    Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor

  1. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  2. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  3. Paeoniflorin, a novel heat shock protein–inducing compound

    PubMed Central

    Yan, Dai; Saito, Kiyoto; Ohmi, Yuri; Fujie, Noriyo; Ohtsuka, Kenzo

    2004-01-01

    Heat shock proteins (HSPs) are induced by various physical, chemical, and biological stresses. HSPs are known to function as molecular chaperones, and they not only regulate various processes of protein biogenesis but also function as lifeguards against proteotoxic stresses. Because it is very useful to discover nontoxic chaperone-inducing compounds, we searched for them in herbal medicines. Some herbal medicines had positive effects on the induction of HSPs (Hsp70, Hsp40, and Hsp27) in cultured mammalian cells. We next examined 2 major constituents of these herbal medicines, glycyrrhizin and paeoniflorin, with previously defined chemical structures. Glycyrrhizin had an enhancing effect on the HSP induction by heat shock but could not induce HSPs by itself. In contrast, paeoniflorin had not only an enhancing effect but also an inducing effect by itself on HSP expression. Thus, paeoniflorin might be termed a chaperone inducer and glycyrrhizin a chaperone coinducer. Treatment of cells with paeoniflorin but not glycyrrhizin resulted in enhanced phosphorylation and acquisition of the deoxyribonucleic acid–binding ability of heat shock transcription factor 1 (HSF1), as well as the formation of characteristic HSF1 granules in the nucleus, suggesting that the induction of HSPs by paeoniflorin is mediated by the activation of HSF1. Also, thermotolerance was induced by treatment with paeoniflorin but not glycyrrhizin. Paeoniflorin had no toxic effect at concentrations as high as 80 μg/ mL (166.4 μM). To our knowledge, this is the first report on the induction of HSPs by herbal medicines. PMID:15633296

  4. Associations between heat shock protein 70 genetic polymorphisms and calving traits in crossbred Brahman cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stressors such as heat, cold, toxins, and oxygen deprivation are known to induce heat shock proteins. Genetic polymorphisms associated with heat shock protein genes have been associated with decreased male and female fertility. Our objectives were to 1) confirm single nucleotide polymorphisms (SNP) ...

  5. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  6. Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure.

    PubMed

    Boone, Adrienne N; Vijayan, Mathilakath M

    2002-06-01

    The 70-kDa family of heat shock proteins plays an important role as molecular chaperones in unstressed and stressed cells. The constitutive member of the 70 family (hsc70) is crucial for the chaperoning function of unstressed cells, whereas the inducible form (hsp70) is important for allowing cells to cope with acute stressor insult, especially those affecting the protein machinery. In fish, the role of hsc70 in the cellular stress response process is less clear primarily because of the lack of a fish-specific antibody for hsc70 detection. In this study, we purified hsc70 to homogeneity from trout liver using a three-step purification protocol with differential centrifugation, ATP-agarose affinity chromatography and electroelution. Polyclonal antibodies to trout hsc70 generated in rabbits cross-reacted strongly with both purified trout hsc70 protein and also purified recombinant bovine hsc70. Two-dimensional electrophoresis followed by Western blotting confirmed that the isoelectric point of rainbow trout hsc70 was more acidic than hsp70. Using this antibody, we detected hsc70 content in the liver, heart, gill and skeletal muscle of unstressed rainbow trout. Primary cultures of trout hepatocytes subjected to a heat shock (+15 degrees C for 1 h) or exposed to either CuSO(4) (200 microM for 24 h), CdCl(2) (10 microM for 24 h) or NaAsO(2) (50 microM for 1 h) resulted in higher hsp70 accumulation over a 24-h period. However, hsc70 content showed no change with either heat shock or heavy metal exposure suggesting that hsc70 is not modulated by sublethal acute stressors in trout hepatocytes. Taken together, we have for the first time generated polyclonal antibodies specific to rainbow trout hsc70 and this antibody will allow for the characterization of the role of hsc70 in the cellular stress response process in fish. PMID:12106899

  7. Increased proteolysis of diphtheria toxin by human monocytes after heat shock: a subsidiary role for heat-shock protein 70 in antigen processing

    PubMed Central

    Polla, Barbara S; Gabert, Françoise; Peyrusse, Brigitte M-N; Jacquier-Sarlin, Muriel R

    2007-01-01

    The expression of heat-shock proteins (hsp) increases after exposure to various stresses including elevated temperatures, oxidative injury, infection and inflammation. As molecular chaperones, hsp have been shown to participate in antigen processing and presentation, in part through increasing the stability and expression of major histocompatibility complex molecules. Heat shock selectively increases human T-cell responses to processed antigen, but does not affect T-cell proliferation induced by non-processed antigens. Here, we have analysed the mechanisms by which stress such as heat shock, and the ensuing hsp over-expression affect the processing of diphtheria toxin (DT) in peripheral blood monocytes. We found that heat shock increased DT proteolysis in endosomes and lysosomes while the activities of the cathepsins B and D, classically involved in DT proteolysis, were decreased. These effects correlated with the heat-shock-mediated increase in hsp 70 expression observed in endosomes and lysosomes. Actinomycin D or blocking anti-hsp 70 antibodies abolished the heat-shock-mediated increase in DT proteolysis. These data indicate that the increased expression of hsp 70 constitutes a subsidiary mechanism that facilitates antigen proteolysis in stressed cells. Confirming these data, presentation by formaldehyde-fixed cells of DT proteolysates that were obtained with endosomes and lysosomes from heat-shocked peripheral blood monocytes showed higher stimulation of T cells than those generated with endosomes and lysosomes from control peripheral blood monocytes. PMID:17116171

  8. Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling.

    PubMed

    Palmblad, Magnus; Mills, Davinia J; Bindschedler, Laurence V

    2008-02-01

    We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing. PMID:18189342

  9. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    SciTech Connect

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-12-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation.

  10. KPNA3-knockdown eliminates the second heat shock protein peak associated with the heat shock response of male silkworm pupae (Bombyx mori) by reducing heat shock factor transport into the nucleus.

    PubMed

    Li, Jun; Wei, Guoqing; Wang, Lei; Qian, Cen; Li, Kedong; Zhang, Congfen; Dai, Lishang; Sun, Yu; Liu, Dongran; Zhu, Baojian; Liu, Chaoliang

    2016-01-10

    In this study, we investigated the role of karyopherin alpha 3 in the heat shock response in male silkworm pupae. Karyopherin alpha recognizes the classical nuclear location sequence on proteins and transports them into the nucleus by forming a trimetric complex with karyopherin beta. Three predicted karyopherin alphas (KPNA1, KPNA2 and KPNA3) have been identified from the silkworm Bombyx mori. Pull-down assay result showed that KPNA3 can pull down heat shock transcription factor (HSF) from proteins extracted from tissues using non-denature lysis buffer. After 45 °C heat shock on male B. mori pupae for 30 min, we identified two heat shock protein (HSP) mRNA expression peaks correlating with HSP19.9, HSP20.4 and HSP25.4 at 4 h (peak 1) and 24 h (peak 2). The second peak was eliminated after knockdown of KPNA3. Similar results were obtained following knockdown of HSF, which is the trans-activating factor of heat shock. However, KPNA3 knockdown was not accompanied by the decreased HSF protein levels at 24 h after heat shock which were observed following HSF knockdown. We also expressed recombinant protein GST-KPNA3 and His-HSF in Escherichia coli to perform GST pull-down assay and the result confirmed the interaction between KPNA3 and HSF. We concluded that KPNA3 knockdown eliminates the second heat shock protein peak in the heat shock response of male silkworm pupae by reducing HSF transport into the nucleus. PMID:26367326

  11. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  12. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos.

    PubMed Central

    Apuya, NR; Zimmerman, JL

    1992-01-01

    We have determined that the synthesis of heat shock proteins is regulated ultimately at the translational level in heat-shocked carrot callus cells and somatic embryos. Polysome analysis revealed that heat-shocked callus cells do not translate most heat shock transcripts, which they abundantly synthesize and accumulate. By contrast, heat-shocked globular embryos accumulate low levels of heat shock mRNA but selectively translate more of the heat shock mRNA molecules compared to callus cells and embryos of later stages. The overall result of these different translational control schemes is that undifferentiated callus cells and globular embryos synthesize comparable levels of heat shock proteins even though they have large differences in heat shock transcript levels. PMID:12297657

  13. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice.

    PubMed

    Huang, Jia-Quan; Tao, Ran; Li, Lan; Ma, Ke; Xu, Lei; Ai, Guo; Fan, Xiang-Xue; Jiao, Yun-Tao; Ning, Qin

    2014-01-01

    Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite. PMID:24295791

  14. Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster.

    PubMed Central

    Drummond, I A; McClure, S A; Poenie, M; Tsien, R Y; Steinhardt, R A

    1986-01-01

    Heat shock caused significant changes in intracellular pH (pHi) and intracellular free calcium concentration [( Ca2+]i) which occurred rapidly after temperature elevation. pHi fell from a resting level value at 25 degrees C of 7.38 +/- 0.02 (mean +/- standard error of the mean, n = 15) to 6.91 +/- 0.11 (n = 7) at 35 degrees C. The resting level value of [Ca2+]i in single Drosophila melanogaster larval salivary gland cells was 198 +/- 31 nM (n = 4). It increased approximately 10-fold, to 1,870 +/- 770 nM (n = 4), during a heat shock. When salivary glands were incubated in calcium-free, ethylene glycol-bis(beta-aminoethyl ether)-N,N',N'-tetraacetic acid (EGTA)-buffered medium, the resting level value of [Ca2+]i was reduced to 80 +/- 7 nM (n = 3), and heat shock resulted in a fourfold increase in [Ca2+]i to 353 +/- 90 nM (n = 3). The intracellular free-ion concentrations of Na+, K+, Cl-, and Mg2+ were 9.6 +/- 0.8, 101.9 +/- 1.7, 36 +/- 1.5, and 2.4 +/- 0.2 mM, respectively, and remained essentially unchanged during a heat shock. Procedures were devised to mimic or block the effects of heat shock on pHi and [Ca2+]i and to assess their role in the induction of heat shock proteins. We report here that the changes in [Ca2+]i and pHi which occur during heat shock are not sufficient, nor are they required, for a complete induction of the heat shock response. Images PMID:3097504

  15. DYNAMICS OF A SPHERICAL ACCRETION SHOCK WITH NEUTRINO HEATING AND ALPHA-PARTICLE RECOMBINATION

    SciTech Connect

    Fernandez, Rodrigo; Thompson, Christopher

    2009-10-01

    We investigate the effects of neutrino heating and alpha-particle recombination on the hydrodynamics of core-collapse supernovae. Our focus is on the nonlinear dynamics of the shock wave that forms in the collapse and the assembly of positive energy material below it. To this end, we perform time-dependent hydrodynamic simulations with FLASH2.5 in spherical and axial symmetry. These generalize our previous calculations by allowing for bulk neutrino heating and for nuclear statistical equilibrium between n, p, and alpha. The heating rate is freely tunable, as is the starting radius of the shock relative to the recombination radius of alpha-particles. An explosion in spherical symmetry involves the excitation of an overstable mode, which may be viewed as the l = 0 version of the 'Standing Accretion Shock Instability'. In two-dimensional simulations, nonspherical deformations of the shock are driven by plumes of material with positive Bernoulli parameter, which are concentrated well outside the zone of strong neutrino heating. The nonspherical modes of the shock reach a large amplitude only when the heating rate is also high enough to excite convection below the shock. The critical heating rate that causes an explosion depends sensitively on the initial position of the shock relative to the recombination radius. Weaker heating is required to drive an explosion in two dimensions than in one, but the difference also depends on the size of the shock. Forcing the infalling heavy nuclei to break up into n and p below the shock only causes a slight increase in the critical heating rate, except when the shock starts out at a large radius. This shows that heating by neutrinos (or some other mechanism) must play a significant role in pushing the shock far enough out that recombination heating takes over.

  16. Heat Shock Protein 90 regulates encystation in Entamoeba

    PubMed Central

    Singh, Meetali; Sharma, Shalini; Bhattacharya, Alok; Tatu, Utpal

    2015-01-01

    Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba. PMID:26528271

  17. Immunity to heat shock proteins and arthritic disorders.

    PubMed Central

    van Eden, W

    1999-01-01

    Adjuvant arthritis (AA) is a frequently used model of experimental arthritis. Because of its histopathology, which is reminiscent of rheumatoid arthritis in humans, AA is used as a model for the development of novel anti-inflammatory drugs. Recently, it has become evident that AA is a typical T-cell-mediated autoimmune condition. Therefore, novel immunotherapies targeted to T cells can be developed in this model. Analysis of responding T cells in AA have now led to the definition of various antigens with potential relevance to arthritis, including human arthritic conditions. One such antigen defined in AA is the 60kD heat shock protein. Both T-cell vaccination approaches and active antigen immunizations and antigen toleration approaches have turned out to be effective in suppressing AA. PMID:10231009

  18. Proteomic Analysis of Trypanosoma cruzi Epimastigotes Subjected to Heat Shock

    PubMed Central

    Pérez-Morales, Deyanira; Lanz-Mendoza, Humberto; Hurtado, Gerardo; Martínez-Espinosa, Rodrigo; Espinoza, Bertha

    2012-01-01

    Trypanosoma cruzi is exposed to sudden temperature changes during its life cycle. Adaptation to these variations is crucial for parasite survival, reproduction, and transmission. Some of these conditions may change the pattern of genetic expression of proteins involved in homeostasis in the course of stress treatment. In the present study, the proteome of T. cruzi epimastigotes subjected to heat shock and epimastigotes grow normally was compared by two-dimensional gel electrophoresis followed by mass spectrometry for protein identification. Twenty-four spots differing in abundance were identified. Of the twenty-four changed spots, nineteen showed a greater intensity and five a lower intensity relative to the control. Several functional categories of the identified proteins were determined: metabolism, cell defense, hypothetical proteins, protein fate, protein synthesis, cellular transport, and cell cycle. Proteins involved in the interaction with the cellular environment were also identified, and the implications of these changes are discussed. PMID:22287837

  19. Heat Shock Protein 70: Roles in Multiple Sclerosis

    PubMed Central

    Mansilla, María José; Montalban, Xavier; Espejo, Carmen

    2012-01-01

    Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE. PMID:22669475

  20. Heat Shock Proteins Promote Cancer: It's a Protection Racket.

    PubMed

    Calderwood, Stuart K; Gong, Jianlin

    2016-04-01

    Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment. PMID:26874923

  1. Heat shock proteins: possible biomarkers in pulmonary and extrapulmonary tuberculosis.

    PubMed

    Shekhawat, Seema D; Jain, Ruchika K; Gaherwar, Hari M; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2014-02-01

    Tuberculosis (TB) and Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis (MTB) continue to be a major cause of morbidity and mortality. Therefore there is a need to explore potential biomarkers and heat shock proteins [Hsp(s)] could be one such candidate. We found that host (Hsp 25, Hsp 60, Hsp 70 and Hsp 90) and MTB Hsp(s) (Hsp 16, Hsp 65 and Hsp 71) to be an important feature of the immune response in human clinical samples of pulmonary and extrapulmonary TB patients and in MTB infected monocytes. Notably, the host (Hsp 25, Hsp 70 and Hsp 90) and MTB (Hsp 16, Hsp 65 and Hsp 71) Hsp(s) increases significantly in the clinical samples as well as in cell line model after TB infection. Collectively, results revealed that alteration in immune response leads to a change in the both host and MTB Hsp profile, highlighting them as possible biomarkers for the disease. PMID:24269695

  2. Modification of tooth development by heat shock protein 60.

    PubMed

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  3. Modification of tooth development by heat shock protein 60

    PubMed Central

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  4. The Hexameric Structures of Human Heat Shock Protein 90

    PubMed Central

    Lee, Cheng-Chung; Lin, Ta-Wei; Ko, Tzu-Ping; Wang, Andrew H.-J.

    2011-01-01

    Background The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. Principal Findings Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. Conclusions While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis. PMID:21647436

  5. SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS

    EPA Science Inventory

    SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
    Heat shock proteins (HSPs) protect cells from environm...

  6. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  7. Similarity flow in interaction of a shock wave with an inclined heated channel

    SciTech Connect

    Artemiev, V.I.; Medvedyuk, S.A.; Rybakov, V.A.

    1993-11-01

    A study is made of gasdynamic flow that initiates when a shock wave propagates along a thin heated channel. Analytical conditions of the onset of an unsteady flow precursor are obtained. The flow similarity is proved experimentally; precursor characteristics vs shock wave and heated channel parameters are analyzed.

  8. Synthesis of the low molecular weight heat shock proteins in plants

    SciTech Connect

    Mansfield, M.A.; Key, J.L. )

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.

  9. Report on the VIIth International Symposium on Heat Shock Proteins in Biology & Medicine.

    PubMed

    Calderwood, Stuart K; Hightower, Lawrence E

    2015-03-01

    This seventh symposium in a series on heat shock proteins in biology and medicine was held November 1-5, 2014, at the Hilton Hotel in Old Town Alexandria, Virginia. Approximately 70 participants including principal investigators, postdoctoral fellows, and graduate students were in attendance. The major themes were: new properties of heat shock proteins (HSPs) and heat shock factor (HSF) and role in the etiology of cancer, molecular chaperones in aging, extracellular HSPs in inflammation and immunity, role of heat shock and the heat shock response in immunity and cancer, protein aggregation disorders and HSP expression, and Hsp70 in blood cell differentiation. The next meeting is planned for the fall of 2016 in the same venue. PMID:25542250

  10. Mathematical modeling of the heat-shock response in HeLa cells.

    PubMed

    Scheff, Jeremy D; Stallings, Jonathan D; Reifman, Jaques; Rakesh, Vineet

    2015-07-21

    The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model's ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response. PMID:26200855

  11. Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells.

    PubMed

    Phanvijhitsiri, Kittiporn; Musch, Mark W; Ropeleski, Mark J; Chang, Eugene B

    2006-08-01

    Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine's effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. PMID:16554407

  12. HEAT SHOCK PROTEINS IN DIABETES AND WOUND HEALING

    PubMed Central

    Atalay, Mustafa; Oksala, Niku; Lappalainen, Jani; Laaksonen, David E.; Sen, Chandan K.; Roy, Sashwati

    2009-01-01

    The heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a highly conserved family of proteins that respond to a wide variety of stress. Although HSPs are among the most abundant intracellular proteins, they are expressed at low levels under normal physiological conditions, and show marked induction in response to various stressors. HSPs function primarily as molecular chaperones, facilitating the folding of other cellular proteins, preventing protein aggregation, or targeting improperly folded proteins to specific pathways for degradation. By modulating inflammation, wound debris clearance, cell proliferation, migration and collagen synthesis, HSPs are essential for normal wound healing of the skin. In this review, our goal is to discuss the role and clinical implications of HSP with respect to skin wound healing and diabetes. The numerous defects in the function of HSPs associated with diabetes could contribute to the commonly observed complications and delayed wound healing in diabetics. Several physical, pharmacological and genetic approaches may be considered to address HSP-directed therapies both in the laboratory and in the clinics. PMID:19275675

  13. Heat shock proteins: molecular chaperones of protein biogenesis.

    PubMed Central

    Craig, E A; Gambill, B D; Nelson, R J

    1993-01-01

    Heat shock proteins (Hsps) were first identified as proteins whose synthesis was enhanced by stresses such as an increase in temperature. Recently, several of the major Hsps have been shown to be intimately involved in protein biogenesis through a direct interaction with a wide variety of proteins. As a reflection of this role, these Hsps have been referred to as molecular chaperones. Hsp70s interact with incompletely folded proteins, such as nascent chains on ribosomes and proteins in the process of translocation from the cytosol into mitochondria and the endoplasmic reticulum. Hsp60 also binds to unfolded proteins, preventing aggregation and facilitating protein folding. Although less well defined, other Hsps such as Hsp90 also play important roles in modulating the activity of a number of proteins. The function of the proteolytic system is intertwined with that of molecular chaperones. Several components of this system, encoded by heat-inducible genes, are responsible for the degradation of abnormal or misfolded proteins. The budding yeast Saccharomyces cerevisiae has proven very useful in the analysis of the role of molecular chaperones in protein maturation, translocation, and degradation. In this review, results of experiments are discussed within the context of experiments with other organisms in an attempt to describe the current state of understanding of these ubiquitous and important proteins. PMID:8336673

  14. Electron heating by ion acoustic turbulence in simulated low Mach number shocks

    NASA Technical Reports Server (NTRS)

    Tokar, Robert L.; Gary, S. Peter; Quest, Kevin B.

    1987-01-01

    Explicit and fully electromagnetic particle-in-cell simulations of perpendicular, collisionless, and nominally subcritical shocks are performed in one and two spatial dimensions using the code wave. Shock parameters are chosen to maximixe the growth rates of the current-driven ion acoustic instability in the shock. Electron heating by ion acoustic turbulence is observed at the shocks, at rates in agreement with second-order Vlasov theory predictions. However, the amount of resistive electron heating is small and ion reflection provides the major source of dissipation. Strictly resistive shocks do not exist for the parameters suitable for explicit particle codes running on today's supercomputers, because the plasma convects through these shocks so quickly that current-driven instabilities have little time to be amplified and to heat the electrons resistively. This effect is primarily a result of the relatively small values of omega(pe)/omega(ce) that can be analyzed.

  15. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    SciTech Connect

    Gus’kov, S. Yu.; Nicolai, Ph.; Ribeyre, X.; Tikhonchuk, V. T.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.

  16. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter.

    PubMed

    Somasundaram, T; Bhat, Suraj P

    2004-10-22

    The molecular cascade of stress response in higher eukaryotes commences in the cytoplasm with the trimerization of the heat shock factor 1 (HSF1), followed by its transport to the nucleus, where it binds to the heat shock element leading to the activation of transcription from the down-stream gene(s). This well-established paradigm has been mostly studied in cultured cells. The developmental and tissue-specific control of the heat shock transcription factors (HSFs) and their interactions with heat shock promoters remain unexplored. We report here that in the rat lens, among the three mammalian HSFs, expression of HSF1 and HSF2 is largely fetal, whereas the expression of HSF4 is predominantly postnatal. Similar pattern of expression of HSF1 and HSF4 is seen in fetal and adult human lenses. This stage-specific inverse relationship between the expression of HSF1/2 and HSF4 suggests tissue-specific management of stress depending on the presence or absence of specific HSF(s). In addition to real-time PCR and immunoblotting, gel mobility shift assays, coupled with specific antibodies and HSE probes, derived from three different heat shock promoters, establish that there is no HSF1 or HSF2 binding activity in the postnatal lens nuclear extracts. Using this unique, developmentally modulated in vivo system, we demonstrate 1) specific patterns of HSF4 binding to heat shock elements derived from alphaB-crystallin, Hsp70, and Hsp82 promoters and 2) that it is HSF4 and not HSF1 or HSF2 that interacts with the canonical heat shock element of the alphaB-crystallin gene. PMID:15308659

  17. Induction of heat shock proteins in B-cell exosomes.

    PubMed

    Clayton, Aled; Turkes, Attilla; Navabi, Hossein; Mason, Malcolm D; Tabi, Zsuzsanna

    2005-08-15

    Exosomes are nanometer-sized vesicles secreted by a diverse range of live cells that probably have physiological roles in modulating cellular immunity. The extracellular factors that regulate the quantity and phenotype of exosomes produced are poorly understood, and the properties of exosomes that dictate their immune functions are not yet clear. We investigated the effect of cellular stress on the exosomes produced by B-lymphoblastoid cell lines. Under steady-state conditions, the exosomes were positive for hsp27, hsc70, hsp70 and hsp90, and other recognised exosome markers such as MHC class I, CD81, and LAMP-2. Exposing cells to heat stress (42 degrees C for up to 3 hours), resulted in a marked increase in these heat shock proteins (hsps), while the expression of other stress proteins such as hsp60 and gp96 remained negative, and other exosome markers remained unchanged. Stress also triggered a small increase in the quantity of exosomes produced [with a ratio of 1.245+/-0.07 to 1 (mean+/-s.e.m., n=20) of 3-hour-stress-exosomes to control-exosomes]. Flow-cytometric analysis of exosome-coated beads and immuno-precipitation of intact exosomes demonstrated that hsps were located within the exosome lumen, and not present at the exosome-surface, suggesting that such exosomes may not interact with target cells through cell-surface hsp-receptors. Functional studies further supported this finding, in that exosomes from control or heat-stressed B cells did not trigger dendritic cell maturation, assessed by analysis of dendritic-cell-surface phenotype, and cytokine secretion profile. Our findings demonstrate that specific alterations in exosome phenotype are a hitherto unknown component of the cellular response to environmental stress and their extracellular function does not involve the direct activation of dendritic cells. PMID:16046478

  18. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor

    SciTech Connect

    Kroes, R.A. Northwestern Univ., Evanston, IL ); Abravaya, K.; Morimoto, R.I. ); Seidenfeld, J. )

    1991-06-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or {beta}-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes.

  19. The Membrane-Associated Transient Receptor Potential Vanilloid Channel Is the Central Heat Shock Receptor Controlling the Cellular Heat Shock Response in Epithelial Cells

    PubMed Central

    Bromberg, Zohar; Goloubinoff, Pierre; Saidi, Younousse; Weiss, Yoram George

    2013-01-01

    The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging. PMID:23468922

  20. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    PubMed

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock

  1. Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy.

    PubMed

    Kloster-Landsberg, Meike; Herbomel, Gaëtan; Wang, Irène; Derouard, Jacques; Vourc'h, Claire; Usson, Yves; Souchier, Catherine; Delon, Antoine

    2012-09-19

    Heat shock triggers a transient and ubiquitous response, the function of which is to protect cells against stress-induced damage. The heat-shock response is controlled by a key transcription factor known as heat shock factor 1 (HSF1). We have developed a multiconfocal fluorescence correlation spectroscopy setup to measure the dynamics of HSF1 during the course of the heat-shock response. The system combines a spatial light modulator, to address several points of interest, and an electron-multiplying charge-coupled camera for fast multiconfocal recording of the photon streams. Autocorrelation curves with a temporal resolution of 14 μs were analyzed before and after heat shock on eGFP and HSF1-eGFP-expressing cells. Evaluation of the dynamic parameters of a diffusion-and-binding model showed a slower HSF1 diffusion after heat shock. It is also observed that the dissociation rate decreases after heat shock, whereas the association rate is not affected. In addition, thanks to the multiconfocal fluorescence correlation spectroscopy system, up to five spots could be simultaneously located in each cell nucleus. This made it possible to quantify the intracellular variability of the diffusion constant of HSF1, which is higher than that of inert eGFP molecules and increases after heat shock. This finding is consistent with the fact that heat-shock response is associated with an increase of HSF1 interactions with DNA and cannot be explained even partially by heat-induced modifications of nuclear organization. PMID:22995483

  2. Modeling and effects of nonlocal electron heat flow in planar shock waves

    SciTech Connect

    Vidal, F.; Matte, J.P.; Casanova, M.; Larroche, O.

    1995-05-01

    Electron heat flow was computed in the context of a steadily propagating shock wave. Two problems were studied: a Mach 8 shock in hydrogen, simulated with an ion kinetic code, and a Mach 5 shock in lithium, simulated with an Eulerian hydrodynamic code. The electron heat flow was calculated with Spitzer--Haerm classical conductivity, with and without a flux limit, and several nonlocal electron heat flow formulas published in the literature. To evaluate these, the shock`s density, velocity, and ion temperature profiles were fixed, and the electron temperature and heat flow were compared to those computed by an electron kinetic code. There were quantitative differences between the electron temperature profiles calculated with the various formulas. For the Mach 8 shock in hydrogen, the best agreement with the kinetic simulation was obtained with the Epperlein--Short delocalization formula [Phys. Fluids B {bold 4}, 2211 and 4190 (1992)], and the Luciani--Mora--Bendib formula [Phys. Rev. Lett. {bold 55}, 2421 (1985)] gave good agreement. For the Mach 5 shock in lithium, both of these gave good agreement. The earlier Luciani--Mora--Virmont formula [Phys. Rev. Lett. {bold 51}, 1664 (1983)] gave fair agreement, while that of San Martin {ital et} {ital al}. [Phys. Fluids B {bold 4}, 3579 (1992); {bold 5}, 1485 (1993)] was even further off than the classical Spitzer--Haerm [Phys. Rev. {bold 89}, 977 (1953)] formula for thermal conduction. To assess the effect of nonlocal electron heat flow on the shock`s hydrodynamics and ion kinetics, each of the two problems was done with two different electron heat flow models: the classical Spitzer--Haerm local heat conductivity, and the Epperlein--Short nonlocal electron heat-flow formula. In spite of the somewhat different electron temperature profiles, the effect on the shock dynamics was not important. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Escape of heated ions upstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Edmiston, J. P.; Kennel, C. F.; Eichler, D.

    1982-01-01

    A simple theoretical criterion by which quasi-parallel and quasi-perpendicular collisionless shocks may be distinguished is proposed on the basis of an investigation of the free escape of ions from the post-shock plasma into the region upstream of a fast collisionless shock. It was determined that the accessibility of downstream ions to the upstream region depends on upstream magnetic field shock normal angle, in addition to the upstream plasma parameters, with post-shock ions escaping upstream for shock normal angles of less than 45 deg, in agreement with the observed transition between quasi-parallel and quasi-perpendicular shock structure. Upstream ion distribution functions resembling those of observed intermediate ions and beams are also calculated.

  4. Exercise-induced ROS in heat shock proteins response.

    PubMed

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  5. Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Winske, D.; Quest, K. B.; Tanaka, M.; Wu, C. S.

    1985-01-01

    Heating at collisionless shocks due to the kinetic cross-field streaming instability, which is the finite beta (ratio of plasma to magnetic pressure) extension of the modified two stream instability, is studied. Heating rates are derived from quasi-linear theory and compared with results from particle simulations to show that electron heating relative to ion heating and heating parallel to the magnetic field relative to perpendicular heating for both the electrons and ions increase with beta. The simulations suggest that electron dynamics determine the saturation level of the instability, which is manifested by the formation of a flattop electron distribution parallel to the magnetic field. As a result, both the saturation levels of the fluctuations and the heating rates decrease sharply with beta. Applications of these results to plasma heating in simulations of shocks and the earth's bow shock are described.

  6. The identification of a heat-shock protein complex in chloroplasts of barley leaves.

    PubMed

    Clarke, A K; Critchley, C

    1992-12-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C(3) species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the alpha-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg(2+)/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. PMID:16653243

  7. The Identification of a Heat-Shock Protein Complex in Chloroplasts of Barley Leaves 1

    PubMed Central

    Clarke, Adrian K.; Critchley, Christa

    1992-01-01

    In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C3 species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the α-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg2+/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:16653243

  8. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.

    PubMed

    Dolan, E B; Haugh, M G; Tallon, D; Casey, C; McNamara, L M

    2012-12-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors. PMID:22915633

  9. Shock

    MedlinePlus

    ... Emergencies A-Z Share this! Home » Emergency 101 Shock Shock is a serious, often life-threatening medical condition ... of death for critically ill or injured people. Shock results when the body is not getting enough ...

  10. Shock

    MedlinePlus

    ... problems) Hypovolemic shock (caused by too little blood volume) Anaphylactic shock (caused by allergic reaction) Septic shock ( ... as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in ...

  11. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives.

    PubMed

    Martinez-Rossi, Nilce M; Jacob, Tiago R; Sanches, Pablo R; Peres, Nalu T A; Lang, Elza A S; Martins, Maíra P; Rossi, Antonio

    2016-04-01

    Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5'-nGAAn-3') in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process. PMID:27226766

  12. Responses to heat shock, arsenite and cadmium in soybean

    SciTech Connect

    Edelman, L. ); Key, J.L. )

    1989-04-01

    Heat shock (HS), arsenite (As) and cadmium (Cd) treatments induced the HS response in soybean seedlings but differed in their abilities to induce stress tolerance. Pretreatment of seedlings with sub-lethal HS protected them from subsequent normally lethal HS treatment. However, the protection was much more pronounced in 1 day-old than in 2 day-old plants. Sublethal arsenite pretreatment resulted in only a low level of protection against lethal As or HS treatment and severe damage still occurred in specific tissues. Cadmium did not induce any self- or cross-protection. DNA sequence analyses revealed that HS, As and Cd induced the transcription of similar sequences. However, Northern blot analyses of HS mRNAs, and analyses of in vitro translation products and in vivo-labeled proteins by 1D and 2D SDS-PAGE demonstrated that, compared to HS, the response to the chemical stresses was slower, less intense and not as selective. Apparently any causal relationship between HS proteins and induced stress tolerance must also involve developmental-, tissue-, and/or quantitative-specificities.

  13. Urease-associated heat shock protein of Helicobacter pylori.

    PubMed Central

    Evans, D J; Evans, D G; Engstrand, L; Graham, D Y

    1992-01-01

    Helicobacter pylori urease is an extracellular, cell-bound enzyme with a molecular weight of approximately 600,000 (600K enzyme) comprising six 66K and six 31K subunits. A 62K protein is closely associated with the H. pylori urease, both in crude preparations and after gel filtration; this protein can be removed from the urease by ion-exchange chromatography without inactivating the enzyme. We purified this urease-associated protein and determined its N-terminal amino acid sequence. The sequence is 80% homologous (identical plus conserved amino acid residues) to the Escherichia coli GroEL heat shock protein (HSP), 75% homologous to the human homolog, and 84% homologous to the HSP homolog found in species of Chlamydia. Thus, the 62K urease-associated protein of H. pylori belongs to the HSP60 family of stress proteins known as chaperonins. Evidently this protein, HSP62, participates in the extracellular assembly and/or protection of the urease against inactivation in the hostile environment of the stomach. Images PMID:1348725

  14. EXTRACELLULAR HEAT SHOCK PROTEINS: A NEW LOCATION, A NEW FUNCTION

    PubMed Central

    De Maio, Antonio; Vazquez, Daniel

    2015-01-01

    The expression of heat shock proteins (hsp) is a basic and well conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Since these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that hsp can also be present outside cells where they appear to display a function different than the well understood chaperone role. Extracellular hsp act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Since the majority of hsp do not possess a secretory peptide signal, they are likely be exported by a non-classical secretory pathway. Different mechanisms have been proposed to explain the export of hsp, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular hsp appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular hsp suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular hsp. PMID:23807250

  15. Heat Shock Factor 1 Mediates Latent HIV Reactivation

    PubMed Central

    Pan, Xiao-Yan; Zhao, Wei; Zeng, Xiao-Yun; Lin, Jian; Li, Min-Min; Shen, Xin-Tian; Liu, Shu-Wen

    2016-01-01

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5′-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS. PMID:27189267

  16. Facets of heat shock protein 70 show immunotherapeutic potential

    PubMed Central

    Todryk, Stephen M; Gough, Michael J; Pockley, A Graham

    2003-01-01

    Amongst the families of intracellular molecules that chaperone and assist with the trafficking of other proteins, notably during conditions of cellular stress, heat shock protein (hsp) 70 is one of the most studied. Although its name suggests that expression is exclusively induced during cellular hyperthermia, members of the hsp70 family of proteins can be constitutively expressed and/or induced by a range of other cellular insults. The ubiquitous presence of hsp70 in eukaryotic and prokaryotic cells, combined with its high degree of sequence homology and intrinsic immunogenicity, have prompted the suggestion that inappropriate immune reactivity to hsp70 might lead to pro-inflammatory responses and the development of autoimmune disease. Indeed, hsp70 has been shown to be a potent activator of innate immunity and aberrant expression of hsp70 in certain organs promotes immunopathology. However, studies also suggest that hsp70 might have immunotherapeutic potential, as hsp70 purified from malignant and virally infected cells can transfer and deliver antigenic peptides to antigen-presenting cells to elicit peptide-specific immunity and, in contrast to its reported pro-inflammatory effects, the administration of recombinant hsp70 can attenuate experimental autoimmune disease. This review focuses on the immunoregulatory capacity of hsp70 and its potential therapeutic value. PMID:12941135

  17. Molecular chaperones and heat shock proteins in atherosclerosis

    PubMed Central

    Xu, Qingbo; Metzler, Bernhard; Jahangiri, Marjan

    2012-01-01

    In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field. PMID:22058161

  18. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    PubMed

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  19. Involvement of heat shock proteins in gluten-sensitive enteropathy

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-01-01

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier. PMID:24914370

  20. Heat Shock Proteins: Cellular and molecular mechanisms in the CNS

    PubMed Central

    Stetler, R. Anne; Gan, Yu; Zhang, Wenting; Liou, Anthony K.; Gao, Yanqin; Cao, Guodong; Chen, Jun

    2010-01-01

    Emerging evidence describe heat shock proteins (HSPs) as critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified role in protein folding and chaperoning. Now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling as well as protein chaperone and folding, manipulation of HSPs have robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and demanded the recent restructuring of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we have first discussed the HSP superfamilies in terms of protein structure, regulation and expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there discuss known and proposed HSP impact on major neurological disease states. This review article presents a three-part discussion on the array of HSPs families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases. PMID:20685377

  1. A Bipolar Planetary Nebula NGC 6537: Photoionization or Shock Heating?

    NASA Astrophysics Data System (ADS)

    Hyung, Siek

    1999-04-01

    NGC 6537 is an extremely high excitation bipolar planetary nebula. It exhibits a huge range of excitation from lines of [N I] to [Si VI] or [Fe VII], i.e. from neutral atoms to atoms requiring an ionization potential of 167eV. Its kinematical structures are of special interest. We are here primarily concerned with its high resolution spectrum as revealed by the Hamilton Echelle Spectrograph at Lick Observatory (resolution 0.2 A,) and supplemented by UV and near-UV data. Photoionization model reproduces the observed global spectrum of NGC 6537, the absolute H beta flux, and the observed visual or blue magnitude fairly well. The nebulosity of NGC 6537 is likely to be the result of photo-ionization by a very hot star of Teff 180,000 K, although the global nebular morphology and kinematics suggest an effect by strong stellar winds and resulting shock heating. NGC 6537 can be classified as a Peimbert Type I planetary nebula. It is extremely young and it may have originated from a star of about 5 M_sun.

  2. The role of heat shock proteins in gastrointestinal diseases

    PubMed Central

    Dudeja, V; Vickers, S M; Saluja, A K

    2009-01-01

    Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review. PMID:19520890

  3. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    PubMed

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  4. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    When exponentially growing diploid wild type Saccharomyces cervisiae cells were subjected to a sudden rise in temperature (heat shock) they responded by increasing their resistance to the lethal effects of ultraviolet light. We have previously reported heat shock-induced increases in heat and ionizing radiation resistance. The shock-induced rise in resistance to uv light reported here was examined in terms of DNA repair capacity, and we find that the increase is due to induction of the recombinational repair system with no significant response from the uv-excision repair process.

  5. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression. PMID:10048026

  6. Cross-tolerance in the tidepool sculpin: the role of heat shock proteins.

    PubMed

    Todgham, Anne E; Schulte, Patricia M; Iwama, George K

    2005-01-01

    Cross-tolerance, or the ability of one stressor to transiently increase tolerance to a second heterologous stressor, is thought to involve the induction of heat shock proteins (Hsp). We thus investigated the boundaries of cross-tolerance in tidepool sculpins (Oligocottus maculosus) and their relationship to Hsp70 levels. Survival of sculpins exposed to severe osmotic (90 ppt, 2 h) and hypoxic (0.33 mg O(2)/L, 2 h) stressors increased from 68% to 96%, and from 47% to 76%, respectively, following a +12 degrees C heat shock. The magnitude of this heat shock was critical for protection. A +10 degrees C heat shock did not confer cross-tolerance, while a +15 degrees C heat shock was deleterious. Sculpins required between 8 and 48 h of recovery following the +12 degrees C heat shock to develop cross-tolerance. There was no association between Hsp70 levels before the onset of the secondary stressor and cross-tolerance. However, branchial Hsp70 levels following osmotic shock were highly correlated with the time frame of cross-tolerance. Thus, Hsp70 induction by the priming stressor may be less important than the ability of the cell to mount an Hsp response to subsequent stressors. The time frame of cross-tolerance is similar to the interval between low tides, suggesting the possible relevance of this response in nature. PMID:15778933

  7. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin

    PubMed Central

    Hsu, Wen-Li; Yoshioka, Tohru

    2015-01-01

    Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure. PMID:27493511

  8. Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischaemia/hypoxia and heat shock.

    PubMed Central

    Mestril, R; Chi, S H; Sayen, M R; Dillmann, W H

    1994-01-01

    Most of the members of the mammalian heat-shock protein (HSP) gene family have been studied and isolated from human and mouse cells. Few studies have concentrated on the HSPs of rat, a commonly used experimental animal. We have isolated and characterized a novel inducible rat HSP70 gene using an HSP70 cDNA sequence obtained from an ischaemic rat heart cDNA library. The isolated rat HSP70 gene was found to be a functional gene, as indicated by RNAase-protection and Northern-blot analysis. The deduced amino acid sequence of the inducible rat HSP70 exhibits a high degree of similarity to previously isolated mammalian inducible HSP70 gene products. Expression of the inducible HSP70 gene in rat myogenic cells (H9c2) is markedly increased after relatively short periods of hypoxia as well as by heat shock. Two heat-shock elements (HSE) are present in the rat HSP70 promoter. Transient transfection of rat HSP70 promoter/chloramphenicol acetyltransferase constructs into H9c2 cells shows that the presence of either of the two HSEs is sufficient for heat-shock inducibility. In contrast, induction of the rat HSP70/chloramphenicol acetyltransferase constructs by hypoxia is only detectable when both HSEs are present. This leads us to conclude that the induction of HSP70 by hypoxia and heat shock occurs through the same regulatory HSEs but the activation of the inducible HSP70 gene by heat shock is several-fold higher than by hypoxia. Images Figure 1 Figure 5 Figure 6 Figure 8 PMID:8141767

  9. A Review of Acquired Thermotolerance, Heat Shock Proteins, and Molecular Chaperones in Archaea: Heat Shock in Archaea

    DOE R&D Accomplishments Database

    Trent, J. D.

    1996-02-09

    Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.

  10. Heat-shock Treatment-mediated Increase in Transduction by Recombinant Adeno-associated Virus 2 Vectors Is Independent of the Cellular Heat-shock Protein 90*

    PubMed Central

    Zhong, Li; Qing, Keyun; Si, Yue; Chen, Linyuan; Tan, Mengqun; Srivastava, Arun

    2007-01-01

    Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in ∼6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression

  11. Nonadiabatic electron heating at high-Mach-number perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Tokar, R. L.; Aldrich, C. H.; Forslund, D. W.; Quest, K. B.

    1986-01-01

    Fully kinetic simulations of high-Mach-number (HMN) perpendicular collisionless shocks are described. It is shown that electron acceleration in the cross-shock electron field can produce downstream electron temperature significantly higher than those expected for adiabatic compression. The momentum space for test electrons at Mach 6 is illustrated.

  12. Aerobic heat shock activates trehalose synthesis in embryos of Artemia franciscana.

    PubMed

    Clegg, J S; Jackson, S A

    1992-05-25

    Encysted embryos (cysts) of the brine shrimp, Artemia franciscana, contain large amounts of trehalose which they use as a major substrate for energy metabolism and biosynthesis for development under aerobic conditions at 25 degrees C. When cysts are placed at 42 degrees C (heat shock) these pathways stop, and the cysts re-synthesize the trehalose that was utilized during the previous incubation at 25 degrees C. Glycogen and glycerol, produced from trehalose at 25 degrees C, appear to be substrates for trehalose synthesis during heat shock. Anoxia prevents trehalose synthesis in cysts undergoing heat shock. These results are consistent with the view that trehalose may play a protective role in cells exposed to heat shock, and other environmental insults, in addition to being a storage form of energy and organic carbon for development. PMID:1592115

  13. Exploring systems affected by the heat shock response in Plasmodium falciparum via protein association networks

    PubMed Central

    Lilburn, Timothy G.; Cai, Hong; Gu, Jianying; Zhou, Zhan; Wang, Yufeng

    2015-01-01

    The heat shock response is a general mechanism by which organisms deal with physical insults such as sudden changes in temperature, osmotic and oxidative stresses, and exposure to toxic substances. Plasmodium falciparum is exposed to drastic temperature changes as a part of its life cycle and maintains an extensive repertoire of heat shock response-related proteins. As these proteins serve to maintain the parasite in the face of anti-malarial drugs as well, better understanding of the heat shock-related systems in the malaria parasite will lead to therapeutic approaches that frustrate these systems, leading to more effective use of anti-malarials. Here we use protein association networks to broaden our understanding of the systems impacted by and/or implicated in the heat shock response. PMID:25539848

  14. Tolerization against atherosclerosis using heat shock protein 60.

    PubMed

    Wick, Cecilia

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets. PMID:26577462

  15. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    PubMed

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows. PMID:18352129

  16. Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export.

    PubMed Central

    Liu, Y; Liang, S; Tartakoff, A M

    1996-01-01

    Heat shock causes major positive and negative changes in gene expression, drastically alters the appearance of the nucleolus and inhibits rRNA synthesis. We here show that it causes many yeast nucleolar proteins, including the fibrillarin homolog Nop1p, to relocate to the cytoplasm. Relocation depends on several proteins implicated in mRNA transport (Mtrps) and is reversible. Two observations indicate, surprisingly, that disassembly results from a reduction in Ssa protein (Hsp70) levels: (i) selective depletion of Ssa1p leads to disassembly of the nucleolus; (ii) preincubation at 37 degrees C protects the nucleolus against disassembly by heat shock, unless expression of Ssa proteins is specifically inhibited. We observed that heat shock or reduction of Ssa1p levels inhibits protein import into the nucleus and therefore we propose that inhibition of import leads to disassembly of the nucleolus. These observations provide a simple explanation of the effects of heat shock on the anatomy of the nucleolus and rRNA transcription. They also extend understanding of the path of nuclear export. Since a number of nucleoplasmic proteins also relocate upon heat shock, these observations can provide a general mechanism for regulation of gene expression. Relocation of the hnRNP-like protein Mtr13p (= Npl3p, Nop3p), explains the heat shock sensitivity of export of average poly(A)+ RNA. Strikingly, Hsp mRNA export appears not to be affected. Images PMID:8978700

  17. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock.

    PubMed Central

    Lüscher, B; Eisenman, R N

    1988-01-01

    The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells. Images PMID:3043180

  18. Effects of heat shock on survival, proliferation and differentiation of mouse neural stem cells.

    PubMed

    Omori, Hiroyuki; Otsu, Masahiro; Suzuki, Asami; Nakayama, Takashi; Akama, Kuniko; Watanabe, Masaru; Inoue, Nobuo

    2014-02-01

    Hyperthermia during pregnancy is a significant cause of reproductive problems ranging from abortion to congenital defects of the central nervous system (CNS), including neural tube defects and microcephaly. Neural stem cells (NSCs) can proliferate and differentiate into neurons and glia, playing a key role in the formation of the CNS. Here, we examined the effects of heat shock on homogeneous proliferating NSCs derived from mouse embryonic stem cells. After heat shock at 42 °C for 20 min, the proliferating NSCs continued to proliferate, although subtle changes were observed in gene expression and cell survival and proliferation. In contrast, heat shock at 43 °C caused a variety of responses: the up-regulation of genes encoding heat shock proteins (HSP), induction of apoptosis, temporal inhibition of cell proliferation and retardation of differentiation. Finally, effects of heat shock at 44 °C were severe, with almost all cells disappearing and the remaining cells losing the capacity to proliferate and differentiate. These temperature-dependent effects of heat shock on NSCs may be valuable in elucidating the mechanisms by which hyperthermia during pregnancy causes various reproductive problems. PMID:24316183

  19. Synthesis of Early Heat Shock Proteins in Young Leaves of Barley and Sorghum

    PubMed Central

    Clarke, Adrian K.; Critchley, Christa

    1990-01-01

    The in vivo synthesis of early heat-shock proteins in young leaves of barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) was studied by one- and two-dimensional electrophoresis. Analysis of whole leaf protein patterns demonstrated clearly the enhanced resolution of heat-shock proteins, especially those of low molecular weight, when separated by two-dimensional electrophoresis. Comparison between the two cereals showed that a greater number and diversity of heat-shock proteins were induced in the subtropical C4 (sorghum) species compared to the temperate C3 (barley) species. Fractionation of whole leaf proteins into soluble and membrane fractions showed the majority of heat-shock proteins to be associated with the soluble fraction in both sorghum and barley. However, several low molecular mass (17-24 kilodalton) heat-shock proteins were clearly identified in the membrane fractions, indicating a likely association with thylakoid membranes in vivo during the early stages of a heat-shock response in both species. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:16667750

  20. Aging results in an unusual expression of Drosophila heat shock proteins

    SciTech Connect

    Fleming, J.E.; Walton, J.K.; Dubitsky, R.; Bensch, K.G. )

    1988-06-01

    The authors used high-resolution two-dimensional polyacrylamide gel electrophoresis to evaluate the effect of aging on the heat shock response in Drosophila melanogaster. Although the aging process is not well understood at the molecular level, recent observations suggest that quantitative changes in gene expression occur as these fruit flies approach senescence. Such genetic alterations are in accord with our present data, which clearly show marked differences in the synthesis of heat shock proteins between young and old fruit flies. In 10-day-old flies, a heat shock of 20 min results in the expression of 14 new proteins as detectable by two-dimensional electrophoresis of ({sup 35}S)methionine-labeled polypeptides, whereas identical treatment of 45-day-old flies leads to the expression of at least 50 new or highly up-regulated proteins. In addition, there is also a concomitant increase in the rate of synthesis of a number of the normal proteins in the older animals. Microdensitometric determinations of the low molecular weight heat shock polypeptides on autoradiographs of five age groups revealed that their maximum expression occurs at 47 days for a population of flies with a mean life span of 33.7 days. Moreover, a heat shock effect similar to that observed in senescent flies occurs in young flies fed canavanine, an arginine analogue, before heat shock.

  1. Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity.

    PubMed

    Lou, Qiang; Hu, Yanzhong; Ma, Yuanfang; Dong, Zheng

    2016-07-01

    Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis. PMID:27194715

  2. Short communication: lack of breed differences in responses of bovine spermatozoa to heat shock.

    PubMed

    Chandolia, R K; Reinertsen, E M; Hansen, P J

    1999-12-01

    An experiment was conducted to test whether the magnitude of effects of heat shock on spermatozoal function were less for thermotolerant breeds (Brahman and other breeds with Brahman influence) than for breeds that evolved in northern Europe (Angus and Holstein). Frozen spermatozoa were thawed, purified by Percoll gradient centrifugation and incubated at 38.5, 41, or 42 degrees C for 4 h. Sperm motility was then analyzed with a Hamilton Thorn Motility Analyzer. Heat shock reduced the percentage of sperm that were motile, mean track speed, and mean path velocity. There were no significant breed x temperature interactions for these traits. The mean frequency of tail beat tended to be reduced by heat shock in bulls of Brahman-influenced breeds and, to a lesser extent, in Brahman bulls, but it was not affected by heat shock in Angus or Holstein bulls. For no traits were there significant temperature x bull within breed interactions. Overall, results indicate that 1) heat shock reduces motility of bovine spermatozoa and 2) genetic effects are unlikely to be an important determinant of the function of ejaculated sperm following heat shock. PMID:10629808

  3. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  4. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  5. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance. PMID:25050702

  6. A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen.

    PubMed

    Kim, D; Ouyang, H; Yang, S H; Nussenzweig, A; Burgman, P; Li, G C

    1995-06-23

    Analysis of the heat shock element (HSE)-binding proteins in extracts of rodent cells, during heat shock and their post-heat shock recovery, indicates that the regulation of heat shock response involves a constitutive HSE-binding factor (CHBF), in addition to the heat-inducible heat shock factor HSF1. We purified the CHBF to apparent homogeneity from HeLa cells using column chromatographic techniques including an HSE oligonucleotide affinity column. The purified CHBF consists of two polypeptides with apparent molecular masses of 70 and 86 kDa. Immunoblot and gel mobility shift analysis verify that CHBF is identical or closely related to the Ku autoantigen. The DNA binding characteristics of CHBF to double-stranded or single-stranded DNA are similar to that of Ku autoantigen. In gel mobility shift analysis using purified CHBF and recombinant human HSF1, CHBF competes with HSF1 for the binding of DNA sequences containing HSEs in vitro. Furthermore, when Rat-1 cells were co-transfected with human Ku expression vectors and the hsp70-promoter-driven luciferase reporter gene, thermal induction of luciferase is significantly suppressed relative to cells transfected with only the hsp70-luciferase construct. These data suggest a role of CHBF (or Ku protein) in the regulation of heat response in vivo. PMID:7797514

  7. Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers.

    PubMed

    Gabriel, J E; Ferro, J A; Stefani, R M; Ferro, M I; Gomes, S L; Macari, M

    1996-05-01

    1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated. 2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii. 3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h. 4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals. PMID:8773853

  8. Investigation of heat transfer with film cooling to a flat plate in a shock tube

    NASA Astrophysics Data System (ADS)

    Jurgelewicz, Scott A.

    1989-12-01

    The heat transfer occurring through turbulent boundary layers in modern gas turbines is not well understood. The heat transferred to a flat plate though a turbulent boundary layer presents many similarities without the complex flow patterns. The gas used in this study was air. The flow behind a passing shock wave in a shock tube was used to simulate the high temperature ratio flows found in gas turbines. Highly responsive heat flux gages were used to measure the temperature history of a flat plate exposed to the flow. High speed digital recorders were used to sample and store the information. Heat transfer rates were determined from temperature history using a computer program and a quadrature method. The temperature history was numerically averaged to filter out noise effects before it was used to calculate the heat flux. It was found that low shock Mach numbers produced measured heat flux rates that were predictable by theory. At higher Mach numbers the rounded leading edge of the plate produced reflections that increased the measured heat flux as the Mach number increased; but theory, dependent on incident shock Mach number, underpredicted these actual values. Film cooling flows were then studied under the same flow conditions. Ratios of heat transfer coefficients with blowing ratios of approximately two to three produced the best agreement with correlations. The effects of free stream turbulence on the heat flux with film cooling were also briefly studied.

  9. Osmotic regulation of the heat shock response in H4IIE rat hepatoma cells.

    PubMed

    Schliess, F; Wiese, S; Haussinger, D

    1999-09-01

    The influence of cell hydration on the heat shock response was investigated in H4IIE hepatoma cells at the levels of HSP70 expression, MAP kinase activation, induction of c-jun and the MAP kinase phosphatase MKP-1, heat resistance, and development of tolerance/sensitization to arsenite after a priming heat treatment. Induction of HSP70, MKP-1, and c-jun by heat was delayed, but more pronounced or sustained, under hyperosmotic conditions compared with normo- and hypo-osmotically exposed cells. Anisosmolarity per se was ineffective to induce HSP70; some expression of the mRNAs for MKP-1 and c-jun in response to hyperosmolarity was found, but was small compared with the response to heat. Heat-induced activation of JNK-1 was increased under hyperosmotic conditions and more sustained than the JNK-activity induced by hyperosmolarity at 37 degrees C. A prominent Erk-2 activation was found immediately after heat shock under hypo- and normo-osmotic conditions, but Erk-2 activation was weak in hyperosmolarity-exposed cells. Despite anisosmotic alterations of the heat shock response at the molecular level, the heat resistance of H4IIE cells toward heat shock was not affected by ambient osmolarity. However, an osmolarity-dependent sensitization to arsenite was induced by a priming heat shock. The osmodependence of the H4IIE cell response to heat differs from that recently found in primary rat hepatocytes. The data are discussed in terms of cellular adaption mechanisms and their physiological relevance. PMID:10463947

  10. Dynamics of heat shock factor association with native gene loci in living cells.

    PubMed

    Yao, Jie; Munson, Katherine M; Webb, Watt W; Lis, John T

    2006-08-31

    Direct observation of transcription factor action in the living cell nucleus can provide important insights into gene regulatory mechanisms. Live-cell imaging techniques have enabled the visualization of a variety of intranuclear activities, from chromosome dynamics to gene expression. However, progress in studying transcription regulation of specific native genes has been limited, primarily as a result of difficulties in resolving individual gene loci and in detecting the small number of protein molecules functioning within active transcription units. Here we report that multiphoton microscopy imaging of polytene nuclei in living Drosophila salivary glands allows real-time analysis of transcription factor recruitment and exchange on specific native genes. After heat shock, we have visualized the recruitment of RNA polymerase II (Pol II) to native hsp70 gene loci 87A and 87C in real time. We show that heat shock factor (HSF), the transcription activator of hsp70, is localized to the nucleus before heat shock and translocates from nucleoplasm to chromosomal loci after heat shock. Assays based on fluorescence recovery after photobleaching show a rapid exchange of HSF at chromosomal loci under non-heat-shock conditions but a very slow exchange after heat shock. However, this is not a consequence of a change of HSF diffusibility, as shown here directly by fluorescence correlation spectroscopy. Our results provide strong evidence that activated HSF is stably bound to DNA in vivo and that turnover or disassembly of transcription activator is not required for rounds of hsp70 transcription. This and previous studies indicate that transcription activators display diverse dynamic behaviours in their associations with targeted loci in living cells. Our method can be applied to study the dynamics of many factors involved in transcription and RNA processing, and in their regulation at native heat shock genes in vivo. PMID:16929308

  11. Purification and characterization of a heat-shock element binding protein from yeast.

    PubMed Central

    Sorger, P K; Pelham, H R

    1987-01-01

    The promoters of heat shock genes are activated when cells are stressed. Activation is dependent on a specific DNA sequence, the heat-shock element (HSE). We describe the purification to homogeneity of an HSE-binding protein from yeast (Saccharomyces cerevisiae), using sequential chromatography of whole cell extracts on heparin-agarose, calf thymus DNA-Sepharose and an affinity column consisting of a repetitive synthetic HSE sequence coupled to Sepharose. The protein runs as a closely spaced doublet of approximately 150 kd on SDS-polyacrylamide gels; mild proteolysis generates a stable 70-kd fragment which retains DNA binding activity. The relative affinities of the protein for a range of variant HSE sequences correlates with the ability of these sequences to support heat-inducible transcription in vivo, suggesting that this polypeptide is involved in the activation of heat-shock promoters. However, the protein was purified from unshocked yeast, and may therefore represent an unactivated form of heat-shock transcription factor. Study of the purified protein should help to define the mechanistic basis of the heat-shock response. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:3319580

  12. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter (Homalodisca vitripennis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat shock proteins were identified in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis. The overall importance and function of HSPs lie in their ability to maintain protein integrity and activity during stressful conditions, such as extreme heat, cold, drought, or other stresses. The G...

  13. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells 1

    PubMed Central

    Mayer, Randall R.; Cherry, Joe H.; Rhodes, David

    1990-01-01

    When cowpea (Vigna unguiculata) cells maintained at 26°C are transferred to 42°C, rapid accumulation of γ-aminobutyrate (>10-fold) is induced. Several other amino acids (including β-alanine, alanine, and proline) are also accumulated, but less extensively than γ-aminobutyrate. Total free amino acid levels are increased approximately 1.5-fold after 24 hours at 42°C. Heat shock also leads to release of amino acids into the medium, indicating heat shock damage to the integrity of the plasmalemma. Some of the changes in metabolic rates associated with heat shock were estimated by monitoring the 15N labeling kinetics of free intracellular, extracellular and protein-bound amino acids of cultures supplied with 15NH4+, and analyzing the labeling data by computer simulation. Preliminary computer simulation models of nitrogen flux suggest that heat shock induces an increase in the γ-aminobutyrate synthesis rate from 12.5 nanomoles per hour per gram fresh weight in control cells maintained at 26°C, to as high as 800 nanomoles per hour per gram fresh weight within the first 2 hours of heat shock. This 64-fold increase in the γ-aminobutyrate synthesis rate greatly exceeds the expected (Q10) change of metabolic rate of 2.5- to 3-fold due to a 16°C increase in temperature. We suggest that this metabolic response may in part involve an activation of glutamate decarboxylase in vivo, perhaps mediated by a transient cytoplasmic acidification. Proline appears to be synthesized from glutamate and not from ornithine in cowpea cells. Proline became severalfold more heavily labeled than ornithine, citrulline and arginine in both control and heat-shocked cultures. Proline synthesis rate was increased 2.7-fold by heat shock. Alanine, β-alanine, valine, leucine, and isoleucine synthesis rates were increased 1.6-, 3.5-, 2.0-, 5.0-, and 6.0-fold, respectively, by heat shock. In contrast, the phenylalanine synthesis rate was decreased by 50% in response to heat shock. The

  14. Supercritical Collisionless Shocks as a Mechanism for Preferential Heating in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.

    2009-12-01

    A long standing problem of the solar corona is that heavy ions in coronal holes are preferentially heated, that is, their temperature is larger than the proton temperature in a way that is more than mass proportional, T_i/T_p > m_i/m_p. Supercritical collisionless shocks can be generated in the reconnection outflow region due to the merging of small magnetic dipoles with the unipolar magnetic field of coronal holes. We present a new model which shows that preferential heating of heavy ions can be caused by ion reflection off quasi-perpendicular collisionless shocks. The ion energization is due to the motional electric field in the shock frame, which is perpendicular to the magnetic field by definition: this can explain the observed temperature anisotropy with large perpendicular temperature. In turn, the temperature anisotropy can cause ion cyclotron emission, as observed in proximity of the Earth's bow shock. In this respect, the paradigm of preferential heating by ion cyclotron resonance is turned upside down. Experimental evidence of heavy ion heating at interplanetary shocks by a number of spacecraft is discussed, as well as the possibility to have a sufficient number of collisionless shocks in the polar corona. The cross-disciplinary character of this study is also emphasized.

  15. INFLUENCE OF SOLAR WIND HEATING FORMULATIONS ON THE PROPERTIES OF SHOCKS IN THE CORONA

    SciTech Connect

    Pomoell, J.; Vainio, R.

    2012-02-01

    One of the challenges in constructing global magnetohydrodynamic (MHD) models of the inner heliosphere for, e.g., space weather forecasting purposes, is to correctly capture the acceleration and expansion of the solar wind. In current models, various ad hoc heating prescriptions are introduced in order to obtain a realistic steady-state solar wind solution. In this work, we demonstrate, by performing MHD simulations of erupting coronal mass ejections (CMEs) on identical solar wind solutions employing different heating formulations, that the dynamics and properties of the CME-driven shocks are significantly altered depending on the applied heating prescription. Furthermore, we show how two popular heating formulations can be altered so as to yield shock properties consistent with theory and available coronal shock observations.

  16. Heat shock protein 70 and anti–heat shock protein 70 antibodies in nasal secretions of patients with chronic rhinosinusitis

    PubMed Central

    Tsybikov, Namjil N.; Egorova, Elena V.; Kuznik, Boris I.; Fefelova, Elena V.

    2016-01-01

    Background: The issue of heat shock protein (HSP) 70 and anti-HSP70 antibodies in chronic rhinosinusitis (CRS) has never been explored. Objective: To determine the nasal secretion (NS) levels of HSP70 and anti-HSP70 antibodies in patients with CRS with nasal polyps (CRSwNP) and patients with CRS without nasal polyps (CRSsNP), and to evaluate their associations with CRS clinical severity and correlation with NS interleukin (IL), IL-5 and interferon λ. Methods: CRS severity was determined by Lund-Mackay scores. Levels of immunoglobulin E (IgE), IL-4, IL-5, interferon λ, HSP70, and anti-HSP70 antibody levels in NS were measured by enzyme-linked immunosorbent assay. Results: Forty-six patients with CRSsNP (25 women [54.3%] and 21 men [45.7%], mean [standard deviation {SD}]) age, 34.1 ± 12.3 years; 54 patients with CRSwNP (24 women [44.4%] and 30 men [55.6%], mean [SD] age, 37.9 ± 17.5 years). A group of 40 healthy subjects served as controls. Compared with the controls (with a mean [SD] NS HSP70 level of 0.05 ± 0.03 μg/mL), mean [SD] NS HSP70 levels in both the CRSsNP group (0.16 ± 0.07 μg/mL) and CRSwNP group (0.21 ± 0.10 μg/mL) were increased (p < 0.001). Similarly, the mean (SD) NS anti-HSP70 antibody levels were significantly higher in patients with CRSwNP (0.25 ± 0.09 optical density value [ODV]) compared with CRSsNP (0.13 ± 0.04 ODV) (p < 0.001) and healthy controls (0.14 ± 0.02 ODV) (p < 0.001). NS HSP70 in subjects with CRSwNP showed a significant positive correlation with the Lund-Mackay score (r = 0.31; p < 0.05). NS levels of either HSP70 or anti-HSP70 antibodies were strongly correlated with NS IL-4 in the CRSwNP group (r = 0.62, p < 0.001; and r = 0.69, p < 0.001, respectively). Conclusion: NS concentrations of HSP70 and secretory IgA anti HSP70 antibodies are increased in CRSwNP (but not in CRSsNP) and correlate positively with the Lund-Mackay score, NS IL-4, and NS IL-5. PMID:27103555

  17. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.

    PubMed Central

    Zhou, Y N; Kusukawa, N; Erickson, J W; Gross, C A; Yura, T

    1988-01-01

    The product of the Escherichia coli rpoH (htpR) gene, sigma 32, is required for heat-inducible transcription of the heat shock genes. Previous studies on the role of sigma 32 in growth at low temperature and in gene expression involved the use of nonsense and missense rpoH mutations and have led to ambiguous or conflicting results. To clarify the role of sigma 32 in cell physiology, we have constructed loss-of-function insertion and deletion mutations in rpoH. Strains lacking sigma 32 are extremely temperature sensitive and grow only at temperatures less than or equal to 20 degrees C. There is no transcription from the heat shock promoters preceding the htpG gene or the groESL and dnaKJ operons; however, several heat shock proteins are produced in the mutants. GroEL protein is present in the rpoH null mutants, but its synthesis is not inducible by a shift to high temperature. The low-level synthesis of GroEL results from transcription initiation at a minor sigma 70-controlled promoter for the groE operon. DnaK protein synthesis cannot be detected at low temperature, but can be detected after a shift to 42 degrees C. The mechanism of this heat-inducible synthesis is not known. We conclude that sigma 32 is required for cell growth at temperatures above 20 degrees C and is required for transcription from the heat shock promoters. Several heat shock proteins are synthesized in the absence of sigma 32, indicating that there are additional mechanisms controlling the synthesis of some heat shock proteins. Images PMID:2900239

  18. Heat shock protein 70 is translocated to lipid droplets in rat adipocytes upon heat stimulation.

    PubMed

    Jiang, Hongfeng; He, Jinhan; Pu, Shenshen; Tang, Chaoshu; Xu, Guoheng

    2007-01-01

    In mammalian cells, lipid storage droplets contain a triacylglycerol and cholesterol ester core surrounded by a phospholipid monolayer into which a number of proteins are imbedded. These proteins are thought to be involved in modulating the formation and metabolic functions of the lipid droplet. In this study, we show that heat stress upregulates several heat shock proteins (Hsps), including Hsp27, Hsp60, Hsp70, Hsp90, and Grp78, in primary and differentiated adipocytes. Immunostaining and immunoblotting data indicate that among the Hsps examined, only Hsp70 is induced to redirect to the lipid droplet surface in heat-stressed adipocytes. The thermal induction of Hsp70 translocation to lipid droplet does not typically happen in a temperature- or time-dependent manner and occurs abruptly at 30-40 min and rapidly achieves a steady state within 60 min after 40 degrees C stress of adipocytes. Though Hsp70 is co-localized with perilipin on the lipid droplets in stressed adipocytes, immunoprecipitation experiments suggest that Hsp70 does not directly interact with perilipin. Alkaline treatments indicate that Hsp70 associates with the droplet surface through non-hydrophobic interactions. We speculate that Hsp70 might noncovalently associate with monolayer microdomains of the lipid droplet in a manner similar to its interaction with lipid bilayer moieties composed of specific fatty acids. As an acute and specific cellular response to the heat stimulation, accumulation of Hsp70 on adipocytes lipid droplets might be involved in stabilizing the droplet monolayer, transferring nascent proteins to the lipid droplets, or chaperoning denatured proteins on the droplet for subsequent refolding. PMID:17175194

  19. Shock initiation of the TATB based explosive PBX 9502 heated to ~ 76∘C

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard; Gehr, Russell; Bucholtz, Scott; Pacheco, Adam; Bartram, Brian

    2015-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C and to 77K Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we use similar methods to warm the explosive to ~ 76°C. The explosive sample is heated by warm air flowing through channels in an aluminum sample mounting plate and a copper tubing coil surrounding the sample. Temperature in the sample is monitored using six type-E thermocouples. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman & Wackerle. Particle velocity wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  20. Corequake and shock heating model of the 5 March 1979 gamma ray burst

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Kazanas, D.

    1983-01-01

    Ramatry, et al. proposed a model to account for the 5 March 1979 gamma ray burst in terms of a neutron star corequake and subsequent shock heating of the neutron star atmosphere. This model is extended by examining the overall energetics and characteristics of these shocks, taking into account the e(+)-e(-) pair production behind the shock. The effects of a dipole magnetic field in the shock jump conditions are also examined and it is concluded that the uneven heating produced by such a field can account for the temperature difference between pole and equator implied by the pulsating phase of the burst. The overall energetics and distribution of energy between e(+)-e(-) pairs and photons appear to be in agreement with observations if this event is at a distance of 55 kpc as implied by its association with the Large Magellanic Cloud. Previously announced in STAR as N83-31568

  1. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  2. Corequake and shock heating model of the 5 March 1979 gamma ray burst

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Kazanas, D.

    1983-01-01

    Ramatry, et al. proposed a model to account for the 5 March 1979 gamma ray burst in terms of a neutron star corequake and subsequent shock heating of the neutron star atmosphere. This model is extended by examining the overall energetics and characteristics of these shocks, taking into account the e(+)-e(-) pair production behind the shock. The effects of a dipole magnetic field in the shock jump conditions are also examined and it is concluded that the uneven heating produced by such a field can account for the temperature difference between pole and equator implied by the pulsating phase of the burst. The overall energetics and distribution of energy between e(+)-(-) pairs and photons appears to be in agreement with observations if this event is at a distance of 55 kpc as implied by its association with the Large Magellanic Cloud.

  3. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.

    PubMed

    Mahat, Dig B; Salamanca, H Hans; Duarte, Fabiana M; Danko, Charles G; Lis, John T

    2016-04-01

    The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role. PMID:27052732

  4. Isolation and characterization of a small heat shock protein gene from maize.

    PubMed

    Dietrich, P S; Bouchard, R A; Casey, E S; Sinibaldi, R M

    1991-08-01

    A maize (Zea mays L.) genomic clone (Zmempr 9') was isolated on the basis of its homology to a meiotically expressed Lilium sequence. Radiolabeled probe made from the maize genomic clone detected complementary RNA at high fidelity. Furthermore, it hybridized to RNA isolated from staged (an interval that is coincident with meiotic prophase) maize tassel spikelets. Complimentary RNA was strongly (at least 50-fold) induced during heat shock of maize somatic tissue and appeared as a single size class in Northern blot hybridizations. Sequencing of the complete coding region of Zmempr 9' confirmed the homology of the inferred amino acid sequence to other small heat shock proteins. Consensus sequences found in the flanking regions corresponded to the usual signals for initiation of RNA transcription, polyadenylate addition, and the induction of heat shock genes. The latter sequences conferred heat shock-specific transient expression in electroporated protoplasts when cloned into promoterless reporter gene plasmid constructs. Hybrid-selected translations revealed specific translation products ranging from 15 to 18 kilodaltons, providing evidence that this gene is a member of a related multigene family. We therefore conclude that this maize genomic DNA clone, recovered through its homology to clones for meiotic transcripts in lily, represents a genuine maize small heat shock protein gene. PMID:16668329

  5. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells.

    PubMed

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoterregulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  6. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    PubMed Central

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  7. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers

    PubMed Central

    Mendillo, Marc L.; Santagata, Sandro; Koeva, Martina; Bell, George W.; Hu, Rong; Tamimi, Rulla M.; Fraenkel, Ernest; Ince, Tan A.; Whitesell, Luke; Lindquist, Susan

    2012-01-01

    SUMMARY Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their non-transformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications. PMID:22863008

  8. Spatial control of calcineurin in response to heat shock in fission yeast.

    PubMed

    Higa, Mari; Kita, Ayako; Hagihara, Kanako; Kitai, Yuki; Doi, Akira; Nagasoko, Rie; Satoh, Ryosuke; Sugiura, Reiko

    2015-02-01

    In fission yeast, Ppb1, the Ca2+/calmodulin-dependent protein phosphatase calcineurin regulates multiple biological processes, such as cytokinesis, Ca2+-homeostasis, membrane trafficking and cell wall integrity. Calcineurin dephosphorylates the Prz1 transcription factor, leading to its nuclear translocation and gene expression under the control of CDRE (calcineurin-dependent response element). Although the calcineurin-mediated spatial control of downstream transcription factors has been intensively studied in many organisms, less is known about the spatial regulation of calcineurin on stresses. Here, we show that heat shock stimulates calcineurin-dependent nuclear translocation of Prz1 and CDRE-dependent gene expression. Notably, calcineurin exhibited a dramatic change in subcellular localization, translocating from diffuse cytoplasmic to dot-like structures on heat shock. The calcineurin dots colocalized with Dcp2 or Pabp, the constituent of P-bodies or stress granules, respectively, thus suggesting that calcineurin is a component of RNA granules under heat shock. Importantly, the calcineurin inhibitor FK506 markedly inhibited the accumulation of calcineurin granules, whereas the constitutively active calcineurin strongly accumulated in the granules on heat shock, suggesting that phosphatase activity is important for calcineurin localization. Notably, the depletion of calcineurin induced a rapid appearance of Nrd1- and Pabp-positive RNA granules. The possible roles of calcineurin in response to heat shock will be discussed. PMID:25529221

  9. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock.

    PubMed

    Martin, Nadine; Schwamborn, Klaus; Schreiber, Valérie; Werner, Andreas; Guillier, Christelle; Zhang, Xiang-Dong; Bischof, Oliver; Seeler, Jacob-S; Dejean, Anne

    2009-11-18

    Heat shock and other environmental stresses rapidly induce transcriptional responses subject to regulation by a variety of post-translational modifications. Among these, poly(ADP-ribosyl)ation and sumoylation have received growing attention. Here we show that the SUMO E3 ligase PIASy interacts with the poly(ADP-ribose) polymerase PARP-1, and that PIASy mediates heat shock-induced poly-sumoylation of PARP-1. Furthermore, PIASy, and hence sumoylation, appears indispensable for full activation of the inducible HSP70.1 gene. Chromatin immunoprecipitation experiments show that PIASy, SUMO and the SUMO-conjugating enzyme Ubc9 are rapidly recruited to the HSP70.1 promoter upon heat shock, and that they are subsequently released with kinetics similar to PARP-1. Finally, we provide evidence that the SUMO-targeted ubiquitin ligase RNF4 mediates heat-shock-inducible ubiquitination of PARP-1, regulates the stability of PARP-1, and, like PIASy, is a positive regulator of HSP70.1 gene activity. These results, thus, point to a novel mechanism for regulating PARP-1 transcription function, and suggest crosstalk between sumoylation and RNF4-mediated ubiquitination in regulating gene expression in response to heat shock. PMID:19779455

  10. The time development of a blast wave with shock heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  11. The time development of a blast wave with shock-heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  12. The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock.

    PubMed

    Kuczyńska-Wiśnik, Dorota; Kedzierska, Sabina; Matuszewska, Ewelina; Lund, Peter; Taylor, Alina; Lipińska, Barbara; Laskowska, Ewa

    2002-06-01

    The roles of the Escherichia coli IbpA and IbpB chaperones in protection of heat-denatured proteins against irreversible aggregation in vivo were investigated. Overproduction of IbpA and IbpB resulted in stabilization of the denatured and reversibly aggregated proteins (the S fraction), which could be isolated from E. coli cells by sucrose gradient centrifugation. This finding is in agreement with the present model of the small heat-shock proteins' function, based mainly on in vitro studies. Deletion of the ibpAB operon resulted in almost twofold increase in protein aggregation and in inactivation of an enzyme (fructose-1,6-biphosphate aldolase) in cells incubated at 50 degrees C for 4 h, decreased efficiency of the removal of protein aggregates formed during prolonged incubation at 50 degrees C and affected cell viability at this temperature. IbpA/B proteins were not needed for removal of protein aggregates or for the enzyme protection/renaturation in cells heat shocked at 50 degrees C for 15 min. These results show that the IbpA/B proteins are required upon an extreme, long-term heat shock. Overproduction of IbpA but not IbpB caused an increase of the level of beta-lactamase precursor, which was localized in the S fraction, together with the IbpA protein, which suggests that the unfolded precursor binds to IbpA but not to IbpB. Although in the wild-type cells both E. coli small heat-shock proteins are known to localize in the S fraction, only 2% of total IbpB co-localized with the aggregated proteins in the absence of IbpA, while in the absence of IbpB, the majority of IbpA was present in the aggregates fraction. PMID:12055295

  13. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  14. Decreasing or increasing heat shock protein 72 exacerbates or attenuates heat-induced cell death, respectively, in rat hypothalamic cells

    PubMed Central

    Lin, Kao-Chang; Lin, Hung-Jung; Chang, Ching-Ping; Lin, Mao-Tsun

    2015-01-01

    Heat shock protein (HSP) 72 in serum was decreased to a greater degree in patients with serious heat stroke than in those with mild heat stroke. Thus, increased levels of HSP72 appeared to correlate with a better outcome for the patient. Nevertheless, the function of HSP72 in the heat-induced hypothalamic cell death has not been assessed. In this study, we found that increasing HSP72 levels with mild heat preconditioning or decreasing HSP72 levels with pSUPER plasmid expressing HSP72 small interfering RNA significantly attenuated or exacerbated heat-induced cell death in cultured primary hypothalamic cells, respectively. Our findings suggest that HSP72 plays a pivotal role in heat-induced cell death and may be associated with heat tolerance. PMID:26448905

  15. Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader.

    PubMed Central

    Klemenz, R; Hultmark, D; Gehring, W J

    1985-01-01

    One of the effects of a temperature increase above 35 degrees C on Drosophila melanogaster is a rapid switch in selectivity of the translational apparatus. Protein synthesis from normal, but not from heat shock, mRNA is much reduced. Efficient translation at high temperature might be a result of the primary sequence of heat shock genes. Alternatively a mRNA modification mechanism, altered as a consequence of heat shock, might allow for efficient high temperature translation of any mRNA synthesized during a heat shock. The gene for alcohol dehydrogenase (Adh) was fused to the controlling elements of a heat shock protein 70 (hsp70) gene. Authentic Adh mRNA, synthesized from this fusion gene at elevated temperatures was not translated during heat shock. A second Adh fusion gene in which the mRNA synthesized contained the first 95 nucleotides of the Hsp70 non-translated leader sequence gave rise, at high temperature, to mRNA which was translated during the heat shock. Thus, the signal(s) in the mRNAs controlling translation efficiency at heat shock temperatures is encoded within the heat shock genes. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 8. PMID:2933251

  16. Heat Stress- and Heat Shock Transcription Factor-Dependent Expression and Activity of Ascorbate Peroxidase in Arabidopsis1

    PubMed Central

    Panchuk, Irina I.; Volkov, Roman A.; Schöffl, Friedrich

    2002-01-01

    To find evidence for a connection between heat stress response, oxidative stress, and common stress tolerance, we studied the effects of elevated growth temperatures and heat stress on the activity and expression of ascorbate peroxidase (APX). We compared wild-type Arabidopsis with transgenic plants overexpressing heat shock transcription factor 3 (HSF3), which synthesize heat shock proteins and are improved in basal thermotolerance. Following heat stress, APX activity was positively affected in transgenic plants and correlated with a new thermostable isoform, APXS. This enzyme was present in addition to thermolabile cytosolic APX1, the prevalent isoform in unstressed cells. In HSF3-transgenic plants, APXS activity was detectable at normal temperature and persisted after severe heat stress at 44°C. In nontransgenic plants, APXS was undetectable at normal temperature, but could be induced by moderate heat stress. The mRNA expression profiles of known and three new Apx genes were determined using real-time PCR. Apx1 and Apx2 genes encoding cytosolic APX were heat stress and HSF dependently expressed, but only the representations of Apx2 mRNA met the criteria that suggest identity between APXS and APX2: not expressed at normal temperature in wild type, strong induction by heat stress, and HSF3-dependent expression in transgenic plants. Our data suggest that Apx2 is a novel heat shock gene and that the enzymatic activity of APX2/APXS is required to compensate heat stress-dependent decline of APX1 activity in the cytosol. The functional roles of modulations of APX expression and the interdependence of heat stress and oxidative stress response and signaling mechanisms are discussed. PMID:12068123

  17. Conditions for shock revival by neutrino heating in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Janka, H.-Th.

    2001-03-01

    Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can

  18. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.

    PubMed

    Sleadd, Isaac M; Lee, Marissa; Hassumani, Daniel O; Stecyk, Tonya M A; Zeitz, Otto K; Buckley, Bradley A

    2014-08-01

    The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species. PMID:25086982

  19. The influence of salinity on the heat-shock protein response of Potamocorbula amurensis (Bivalvia).

    PubMed

    Werner, Ingeborg

    2004-01-01

    For biomarkers to be useful in assessing anthropogenic impacts in field studies involving aquatic organisms, they should not be affected by naturally occurring changes in environmental parameters such as salinity. This is especially important in estuarine environments and for relatively unspecific biomarkers like heat-shock proteins (hsps, stress proteins). In this study, the heat-shock protein response was measured in the euryhaline clam, Potamocorbula amurensis, after exposure to a range of salinities reflecting normal and extreme environmental conditions in Northern San Francisco Bay, California. The ability to raise cellular hsp70 levels in response to heat-shock was significantly impaired in P. amurensis collected from a low (0.5 ppt) salinity field site, and after 14 day exposure to low salinity in the laboratory. PMID:15178117

  20. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure

    SciTech Connect

    Gillespie, L.L.; Armstrong, J.B.

    1981-12-01

    Androgenetic diploid axolotls were produced by ultraviolet inactivation of the egg pronucleus shortly after fertilization, followed by suppression of the first cleavage division by hydrostatic pressure or heat shock. After treatment at 14,000 psi for 8 minutes, diploidy was restored in 74% of the embryos, but only 0.8% survived to hatching. A 36-37 degrees C heat shock of 10-minutes duration, applied 5.5 hours after the eggs were collected, yielded a slightly lower percentage of diploids. However, the proportion surviving to hatching was significantly greater (up to 4.6%). A second generation of androgenetic diploids was produced from one of the oldest of the first generation males with a similar degree of success. The lack of significant improvement suggests that the low survival is due to the heat shock per se and not to the uncovering of recessive lethal genes carried by the parent.

  1. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1.

    PubMed

    Hentze, Nikolai; Le Breton, Laura; Wiesner, Jan; Kempf, Georg; Mayer, Matthias P

    2016-01-01

    The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization. PMID:26785146

  2. Oxidized-LDL induce the expression of heat shock protein 70 in human endothelial cells.

    PubMed

    Zhu, W; Roma, P; Pellegatta, F; Catapano, A L

    1994-04-15

    Heat shock proteins are detectable in human atherosclerotic plaques, especially in endothelial cells. In this report we show by immunofluorescence that incubation "in vitro" with OxLDL is a stress capable of inducing the expression of heat shock protein 70 in both the EAhy-926 cell line and human umbilical vein endothelial cells (HUVEC). This induction was parallel to the cytotoxicity of oxidized LDL as determined by [3H]adenine release. When cells were confluent, however, both effects were greatly reduced. We speculate that induction of hsp70 is related to the cytotoxicity of oxidized LDL and that the detection of heat shock proteins in human atherosclerotic plaques is a further indication for the presence "in vivo" of oxidized LDL. These observations may be relevant to the understanding of endothelial response to injury in proatherosclerotic events. PMID:8166710

  3. Heat flux and shock shape measurements on an Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel

    NASA Technical Reports Server (NTRS)

    Gai, S. L.; Mudford, N. R.; Hackett, C.

    1992-01-01

    This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.

  4. Thermal transport in shock wave-compressed solids using pulsed laser heating

    NASA Astrophysics Data System (ADS)

    La Lone, B. M.; Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-01

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ˜25 GPa and ˜1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  5. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  6. Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra.

    PubMed Central

    Waters, E R; Schaal, B A

    1996-01-01

    Stress-induced mutations may play an important role in the evolution of plants. Plants do not sequester a germ line, and thus any stress-induced mutations could be passed on to future generations. We report a study of the effects of heat shock on genomic components of Brassica nigra Brassicaceae. Plants were submitted to heat stress, and the copy number of two nuclear-encoded single-copy genes, rRNA-encoding DNA (rDNA) and a chloroplast DNA gene, was determined and compared to a nonstressed control group. We determined whether genomic changes were inherited by examining copy number in the selfed progeny of control and heat-treated individuals. No effects of heat shock on copy number of the single-copy nuclear genes or on chloroplast DNA are found. However, heat shock did cause a statistically significant reduction in rDNA copies inherited by the F1 generation. In addition, we propose a DNA damage-reppair hypothesis to explain the reduction in rDNA caused by heat shock. Images Fig. 1 PMID:8643652

  7. Heat shock response and groEL sequence of Bartonella henselae and Bartonella quintana.

    PubMed

    Haake, D A; Summers, T A; McCoy, A M; Schwartzman, W

    1997-08-01

    Transmission of Bartonella species from ectoparasites to the mammalian host involves adaptation to thermal and other forms of stress. In order to better understand this process, the heat shock response of Bartonella henselae and Bartonella quintana was studied. Cellular proteins synthesized after shift to higher temperatures were intrinsically labelled with [25S]methionine and analysed by gel electrophoresis and fluorography. The apparent molecular masses of three of the major heat shock proteins produced by the two Bartonella species were virtually identical, migrating at 70, 60 and 10 kDa. A fourth major heat shock protein was larger in B. quintana (20 kDa) than in B. henselae (17 kDa). The maximum heat shock response in B. quintana and B. henselae was observed at 39 degrees C and 42 degrees C, respectively. The groEL genes of both Bartonella species were amplified, sequenced and compared to other known groEL genes. The phylogenetic tree based on the groEL alignment places B. quintana and B. henselae in a monophyletic group with Bartonella bacilliformis. The deduced amino acid sequences of Bartonella GroEL homologues contain signature sequences that are uniquely shared by members of the Gram-negative alpha-purple subdivision of bacteria, which live within eukaryotic cells. Recombinant His6-GroEL fusion proteins were expressed in Escherichia coli to generate specific rabbit antisera. The GroEL antisera were used to confirm the identity of the 60 kDa Bartonella heat shock protein. These studies provide a foundation for evaluating the role of the heat shock response in the pathogenesis of Bartonella infection. PMID:9274034

  8. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1

    PubMed Central

    Moore, Christopher L.; Dewal, Mahender B.; Nekongo, Emmanuel E.; Santiago, Sebasthian; Lu, Nancy B.; Levine, Stuart S.; Shoulders, Matthew D.

    2016-01-01

    Proteostasis in the cytosol is governed by the heat shock response. The master regulator of the heat shock response, heat shock factor 1 (HSF1), and key chaperones whose levels are HSF1-regulated have emerged as high-profile targets for therapeutic applications ranging from protein misfolding-related disorders to cancer. Nonetheless, a generally applicable methodology to selectively and potently inhibit endogenous HSF1 in a small molecule-dependent manner in disease model systems remains elusive. Also problematic, the administration of even highly selective chaperone inhibitors often has the side effect of activating HSF1 and thereby inducing a compensatory heat shock response. Herein, we report a ligand-regulatable, dominant negative version of HSF1 that addresses these issues. Our approach, which required engineering a new dominant negative HSF1 variant, permits doseable inhibition of endogenous HSF1 with a selective small molecule in cell-based model systems of interest. The methodology allows us to uncouple the pleiotropic effects of chaperone inhibitors and environmental toxins from the concomitantly induced compensatory heat shock response. Integration of our method with techniques to activate HSF1 enables the creation of cell lines in which the cytosolic proteostasis network can be up- or down-regulated by orthogonal small molecules. Selective, small molecule-mediated inhibition of HSF1 has distinctive implications for the proteostasis of both chaperone-dependent globular proteins and aggregation-prone intrinsically disordered proteins. Altogether, this work provides critical methods for continued exploration of the biological roles of HSF1 and the therapeutic potential of heat shock response modulation. PMID:26502114

  9. Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Fujiwara, Takayuki; Kobayashi, Yusuke; Misumi, Osami; Miyagishima, Shin-ya

    2014-01-01

    The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage. PMID:25337786

  10. Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro

    PubMed Central

    MORI, Miyuki; HAYASHI, Takeshi; ISOZAKI, Yoshihiro; TAKENOUCHI, Naoki; SAKATANI, Miki

    2015-01-01

    In this study, the effect of heat shock on frozen-thawed blastocysts was evaluated using in vitro-produced (IVP) bovine embryos. In experiment 1, the effects of 6 h of heat shock at 41.0 C on fresh blastocysts were evaluated. HSPA1A expression as a reflection of stress was increased by heat shock (P < 0.05), but the expressions of the quality markers IFNT and POU5F1 were not affected. In experiment 2, frozen-thawed blastocysts were incubated at 38.5 C for 6 h (cryo-con) or exposed to heat shock at 41.0 C for 6 h (cryo-HS). Then, blastocysts were cultured at 38.5 C until 48 h after thawing (both conditions). Cryo-HS blastocysts exhibited a decreased recovery rate: HSPA1A expression was dramatically increased compared with that in fresh or cryo-con blastocysts at 6 h, and IFNT expression was decreased compared with that in cryo-con blastocysts at 6 h (both P < 0.05). Cryo-con blastocysts at 6 h also exhibited higher HSPA1A expression than fresh blastocysts (P < 0.05). At 48 h after thawing, the number of hatched blastocysts and blastocyst diameter were lower in cryo-HS blastocysts (P < 0.05). Cryo-con blastocysts showed lower POU5F1 levels at 48 h than fresh, cryo-con or cryo-HS blastocysts at 6 h (P < 0.05), but their POU5F1 levels were not different from those of cryo-HS blastocysts at 48 h. These results indicated that application of heat shock to frozen-thawed blastocysts was highly damaging. The increase in damage by the interaction of freezing-thawing and heat shock might be one reason for the low conception rate in frozen-thawed embryo transfer in summer. PMID:26096768

  11. Heat-transfer measurements and computations of swept-shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lee, Y.; Settles, G. S.; Horstman, C. C.

    1994-01-01

    An experimental and computational research program providing new knowledge of the heat transfer in swept-shock-wave/boundary-layer interactions is described. An equilibrium turbulent boundary layer on a flat plate is subjected to impingement by a swept planar shock wave generated by a sharp fin. Five different interactions with fin angles ranging from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths ranging from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding an uncertainty of about +/- 10%. These data are compared with numerical Navier-Stokes solutions that employ a k-epsilon turbulence model. A simple peak heat transfer correlation for fin interactions is suggested.

  12. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    SciTech Connect

    Eymery, Angeline; INSERM Institut Albert Bonniot U823, La Tronche, F-38700 ; Souchier, Catherine; INSERM Institut Albert Bonniot U823, La Tronche, F-38700 ; Vourc'h, Claire; INSERM Institut Albert Bonniot U823, La Tronche, F-38700 ; Jolly, Caroline; INSERM Institut Albert Bonniot U823, La Tronche, F-38700

    2010-07-01

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  13. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

    PubMed Central

    Christians, E; Michel, E; Adenot, P; Mezger, V; Rallu, M; Morange, M; Renard, J P

    1997-01-01

    The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA. PMID:9001232

  14. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  15. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)

    PubMed Central

    Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  16. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    PubMed

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  17. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells.

    PubMed

    Andreeva, N V; Zatsepina, O G; Garbuz, D G; Evgen'ev, M B; Belyavsky, A V

    2016-07-01

    Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer's-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain "rejuvenating" effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level. PMID:27091568

  18. Characterization of twenty-six new heat shock genes of Escherichia coli.

    PubMed Central

    Chuang, S E; Blattner, F R

    1993-01-01

    Most organisms respond to heat by substantial alteration of the pattern of gene expression. This has been particularly well studied with Escherichia coli although the response has by no means been completely characterized. Here we report the characterization of 26 new heat shock genes of E. coli, termed hsl, discovered by global transcription analysis with an overlapping lambda clone bank. We have measured the molecular weights of the corresponding heat shock proteins and mapped each of them to within a few kilobases on the E. coli genome. In vitro, 16 of them can be activated by the E sigma 32 RNA polymerase, which specifically transcribes heat shock genes. In vivo expression kinetics of seven of eight examined new proteins were found to be similar to those of the four most studied heat shock proteins, DnaK, DnaJ, GroEL (MopA), and GroES (MopB). In the course of this work, we confirmed that the catalytic subunit of the ATP-dependent Clp protease (also known as Ti protease), ClpP, is derived from a larger precursor protein. Possible assignments of some of the hsl genes to known proteins are discussed. Images PMID:8349564

  19. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  20. Absolute protein quantification of the yeast chaperome under conditions of heat shock.

    PubMed

    Mackenzie, Rebecca J; Lawless, Craig; Holman, Stephen W; Lanthaler, Karin; Beynon, Robert J; Grant, Chris M; Hubbard, Simon J; Eyers, Claire E

    2016-08-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  1. Corequake and shock heating model of the 5 March 1979 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Kazanas, D.

    1983-01-01

    Ramaty et al. (1980) have proposed a model of a neutron-star corequake and subsequent shock heating of the atmosphere to account for the gamma-ray burst of March 5, 1979. This model is elaborated by examining the overall energetics and characteristics of the radiation-dominated gas shocks under the assumption of thermodynamic equilibrium, taking into account the electron-positron pair production behind the shock. Using values for the density typical of those expected for neutron-star crusts (100-10,000 g/cu cm) and shock velocities characteristic of the sound speed (40,000-100,000), shock luminosities are obtained comparable to those required if the burst originated in the LMC. In addition, the fraction of energy deposited in electron-positron pairs is in good agreement with observation. Uneven shock heating between the polar and equatorial regions of the neutron star due to the presence of a dipole magnetic field, coupled with a rotation rate of 8 s, can also naturally account for the pulsating phase of the burst.

  2. Measurement of strain heat in shock-loaded 304 stainless steel: Implications to powder consolidation

    NASA Astrophysics Data System (ADS)

    Staudhammer, K. P.

    2003-09-01

    Over the past decades there have been numerous papers on the shock response of materials and more specifically towards metal powder compaction and consolidation. In general, the shock process for powdered materials has utilized the traditional pressure-volume shock relationships proportioned to the initial packing densities of the powders. However, this approach and its resulting data are in controversy due to the lack of knowledge of its associated particle strain and strain temperature uncertainties. This paper will describe the current understanding as well as the experimental technique used to obtain the shock response for distended materials. The above parameters are described within a pressure-strain-temperature interdependence. It was found that the experimentally measured strain heat was not only a function of initial packing density but also a function of powder size and distribution.

  3. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon

    PubMed Central

    KARATO, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon. PMID:24621956

  4. Immunohistochemical evaluation of expression of heat shock proteins HSP70 and HSP90 in mammary gland neoplasms in bitches.

    PubMed

    Badowska-Kozakiewicz, A M; Malicka, E

    2012-01-01

    Heat shock proteins have essential roles in a number of pathophysiologic conditions including carcinogenesis and represent a group of novel molecular markers in cancer management. The aim of this study was to investigate heat shock protein expression in correlation with other neoplasm traits such as: histological type, differentiation grade, proliferative activity, estrogenic receptor expression, and cyclooxygenase-2 and p53 proteins. Material for the investigation comprised 133 tumors of the mammary gland collected from bitches. In total 14 adenomas, 66 complex carcinomas, 47 simple carcinomas and 6 solid carcinomas were collected. Evaluations were conducted with histopathological and immunohistochemical methods using suitable antibodies. Expression of heat shock protein 70 was observed in all types of evaluated neoplasms. A higher average number of cells undergoing expression of heat shock protein 70, which was statistically insignificant, was established in complex and simple cancers and in cancers with the 1st and the 2nd degree of histological malignancy. Expression of heat shock protein 90 was observed in all studied neoplasms; it was very insignificant in adenomas, compared to cancers, and the highest expression was established in the solid cancers, as well as in cancers with the 2nd degree of histological malignancy. This high expression of heat shock protein 90 was correlated with proliferative activity. The results suggest that heat shock protein 90 is involved in canine mammary gland carcinogenesis. The results also suggest that heat shock protein 90 may be a prognostic factor, but this requires detailed clinical confirmation. PMID:22844695

  5. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  6. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    EPA Science Inventory

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  7. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.

    PubMed

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  8. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers

    PubMed Central

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5′-untranslated region (5′-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5′-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes. PMID:24755616

  9. Uncertainty quantification of bacterial aerosol neutralization in shock heated gases

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2015-01-01

    A potential method for the neutralization of bacterial endospores is the use of explosive charges since the high thermal and mechanical stresses in the post-detonation flow are thought to be sufficient in reducing the endospore survivability to levels that pose no significant health threat. While several experiments have attempted to quantify endospore survivability by emulating such environments in shock tube configurations, numerical simulations are necessary to provide information in scenarios where experimental data are difficult to obtain. Since such numerical predictions require complex, multi-physics models, significant uncertainties could be present. This work investigates the uncertainty in determining the endospore survivability from using a reduced order model based on a critical endospore temperature. Understanding the uncertainty in such a model is necessary in quantifying the variability in predictions using large-scale, realistic simulations of bacterial endospore neutralization by explosive charges. This work extends the analysis of previous large-scale simulations of endospore neutralization [Gottiparthi et al. in (Shock Waves, 2014. doi:10.1007/s00193-014-0504-9)] by focusing on the uncertainty quantification of predicting endospore neutralization. For a given initial mass distribution of the bacterial endospore aerosol, predictions of the intact endospore percentage using nominal values of the input parameters match the experimental data well. The uncertainty in these predictions are then investigated using the Dempster-Shafer theory of evidence and polynomial chaos expansion. The studies show that the endospore survivability is governed largely by the endospore's mass distribution and their exposure or residence time at the elevated temperatures and pressures. Deviations from the nominal predictions can be as much as 20-30 % in the intermediate temperature ranges. At high temperatures, i.e., strong shocks, which are of the most interest, the

  10. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  11. Calving traits of crossbred Brahman Cows are Associated with Heat Shock Protein 70 Genetic Polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to: 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 gene, and 2) evaluate associations between Hsp70 SNP and calving rates of Brahman-influenced cows. Specific primers were designed for PCR amplification of a 539 b...

  12. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four heat shock protein transcripts were produced from the glassy-winged sharpshooter Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) which is the major vector of Xylella fastidiosa, the causal agent of Pierce’s disease of grapes. As genomic information has continued to be produced resea...

  13. Heat shock proteins as a target for phylogenetic analysis of Homalodisca vitripennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of genomic data from the glassy-winged sharpshooter has identified a set of heat shock proteins which may be used to further the understanding of leafhopper biology and genetics. The glassy-winged sharpshooter, GWSS, Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae), is the major ...

  14. PERSISTENCE OF THE HEAT-SHOCK RESPONSE OVER TIME IN A COMMON MYTILUS MUSSEL

    EPA Science Inventory

    This study uses immunological techniques to measure stress protein concentrations in Mytilus to examine the persistence of the heat-shock response over time. etabolic labeling and two-dimensional electrophoresis demonstrated that three major stress protein groups, hsp60, hsp70, a...

  15. Identification of genes differentially expressed during heat shock treatment in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Temperature is important for mosquito development and physiological response. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes and may be crucial in responding to stress induced by elevated temperature. Suppression subtractive hybridization (SSH) was used ...

  16. Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.

    PubMed Central

    Magnard, J. L.; Vergne, P.; Dumas, C.

    1996-01-01

    The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis. PMID:12226349

  17. Response of a mouse hybridoma cell line to heat shock, agitation, and sparging

    NASA Technical Reports Server (NTRS)

    Passini, Cheryl A.; Goochee, Charles F.

    1989-01-01

    A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

  18. Effect of heat shock pretreatment on apoptosis and metallothionein expression in rat cardiomyocytes

    PubMed Central

    Zhang, Xian; Sha, Ming-Lei; Yao, Yu-Ting; Da, Jia; Ni, Xiu-Shi

    2015-01-01

    To investigate the effect of heat shock pretreatment on apoptosis and mitochondrial metallothionein (MT) expression in rat cardiomyocytes. In vitro cultured H9C2 cells were randomly divided into three groups: control, hydrogen peroxide (H2O2) injury, and H2O2 injury after heat shock pretreatment (n = 6 per group). Cardiomyocyte apoptosis and caspase-3 activity were assayed after treatment. Mitochondrial cytochrome (cyt) c and MT expression was assayed by Western blotting. Compared with the control group, the H2O2 injury group had a growing number of apoptotic cardiomyocytes (P < 0.01) and significantly elevated caspase-3 activity (P < 0.01) with markedly increased mitochondrial cyt c and MT expression (P < 0.01). After heat shock pretreatment, the numbers of apoptotic and necrotic cardiomyocytes (P < 0.01) and the caspase-3 activity significantly declined (P < 0.01), while mitochondrial cyt c and MT expression continued to increase (P < 0.01) compared with the H2O2 injury group. Heat shock pretreatment inhibits cardiomyocyte apoptosis, which may have a protective effect on cardiomyocytes by increasing the expression of myocardial protective MT and reducing the release of mitochondrial cyt c. PMID:26221315

  19. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  20. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    SciTech Connect

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A. . E-mail: eshelden@wsu.edu

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.

  1. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy.

    PubMed

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-05-24

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  2. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  3. Heat Shock Factor 1: From Fire Chief to Crowd-Control Specialist.

    PubMed

    Triandafillou, Catherine G; Drummond, D Allan

    2016-07-01

    HSF1 is the supposed master regulator of the heat shock response. In this issue of Molecular Cell, Solís et al. reveal that it has a much narrower job description: organizing a small team of molecular chaperones that keep the proteome moving. PMID:27392142

  4. Identification of genes specifically expressed during heat shock treatment in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is important for mosquito development and physiological response. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes and may be crucial in responding to stress induced by elevated temperature. Suppression subtractive hybridization (SSH) was used to...

  5. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation.

    PubMed

    Hooper, Philip L; Durham, Heather D; Török, Zsolt; Hooper, Paul L; Crul, Tim; Vígh, László

    2016-09-01

    Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease. PMID:27283588

  6. Upregulation of Heat Shock Proteins is Essential for Cold Survival during Insect Diapause

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly most, but not all, of the fly’s heat shock proteins (Hsps) are upregulated. The diapause upregulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TC...

  7. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.

    PubMed Central

    Ellwood, M S; Craig, E A

    1984-01-01

    Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner. Images PMID:6436685

  8. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    SciTech Connect

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard . E-mail: Richard.Saurel@polytech.univ-mrs.fr; Le Metayer, Olivier

    2007-08-10

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  9. Oxidative Stress and Heat-Shock Responses in Desulfovibrio vulgaris by Genome-Wide Transcriptomic Analysis

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-05-30

    Abstract Sulfate-reducing bacteria, like Desulfovibrio vulgaris have developed a set of reactions allowing them to survive in environments. To obtain further knowledge of the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes responsive to heat-shock, respectively. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Metabolic analysis showed that amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. Rubrerythrin gene (rbR) were upregulated by the oxidative stress, suggesting its important role in the oxidative resistance, whereas the expression of rubredoxin oxidoreductase (rbO), superoxide ismutase (sodB) and catalase (katA) genes were not subjected to regulation by oxidative stress in D. vulgaris. In addition, the results showed that thioredoxin reductase (trxB) was responsive to oxidative stress, suggesting the thiol-specific redox system might be involved in oxidative protection in D. vulgaris. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental stimuli, implying that they might be part of the general stress response (GSR) network in D. vulgaris, which was further supported by the finding of a conserved motif upstream these common-responsive genes.

  10. Putative cis-Regulatory Elements Associated with Heat Shock Genes Activated During Excystation of Cryptosporidium parvum

    PubMed Central

    Lara, Ana M.; Serrano, Myrna; Sheth, Nihar; Buck, Gregory

    2010-01-01

    Background Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite. Methodology/Principal Findings Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock. Conclusions/Significance Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite