Science.gov

Sample records for 400s sampo em-soundings

  1. EM Sounding Characterization of Soil Environment toward Estimation of Potential Pollutant Load from Non-point Sources

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Ide, J.; Somura, H.; Morisawa, T.

    2010-12-01

    A multi-frequency electro-magnetic (EM) sounding method was applied to agriculture fields to investigate the characteristics of non-point pollution load. Soil environmental properties such as differences in land management were analyzed with electrical conductivity (EC) maps. In addition, vertical EC profiles obtained from EM soundings were compared with EC in drainage ditch or river water. As results, surface soil EC maps successfully extracted the differences in land management affected by fertilizer application. Moreover, surface EC at the vertical profiles strongly related with drainage ditch or river EC, showing most of the EC in the water was explained by surface EC maps at the EM sounding data. The proposed method has strength in obtaining EC data without sampling river water, the situation we sometimes experienced at the field survey.

  2. Gamma-Ray Spectrum Analysis Method for Minicomputers.

    Energy Science and Technology Software Center (ESTSC)

    1984-01-24

    Version 00 SAMPO80 is a rapid and accurate analysis program for gamma-ray spectra measured with Ge(Li) or HPGe detectors. SAMPO80 consists of three separate parts, the shape calibration part SAMPOSHAPE, the peak search and fitting part SAMPOFIT, and the nuclide identification part SAMPOID.

  3. PyMidas--A Python Interface to ESO-MIDAS

    NASA Astrophysics Data System (ADS)

    Hook, R. N.; Maisala, S.; Oittinen, T.; Ullgren, M.; Vasko, K.; Savolainen, V.; Lindroos, J.; Anttila, M.; Solin, O.; Møller, P. M.; Banse, K.; Peron, M.

    2006-07-01

    Finland joined the European Southern Observatory in 2004, providing a contribution in kind of software expertise as part of its joining fee. This significant resource, called the Sampo project, will be devoted to exploring the options for the future of data reduction and analysis in an ESO context, to understanding user requirements and to performing a series of major pilot projects to investigate different technologies, approaches and architectures. The Sampo project {http://www.eso.org/sampo} will run for three years and aims to prepare the ESO community for the data analysis and reduction challenges of the next decades. The first major Sampo project is PyMidas, an interface from Python to the ESO-MIDAS data analysis and reduction system. This paper describes the motivation for this project, how it has been implemented and gives some examples of PyMidas in action.

  4. Electromagnetic Sounding of the Moon from ARTEMIS

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Delory, G. T.; Angelopoulos, V.; Artemis Team

    2011-12-01

    ARTEMIS is a twin-satellite, two-year lunar orbital mission, formed by retasking two of the THEMIS constellation (Angelopoulos, Space Sci. Rev.2010). The two spacecraft achieved lunar orbit in summer 2011. Although conceived for heliospheric science, investigations of the exosphere, crustal magnetic fields, and interior are enabled by the electromagnetic (EM) instruments of ARTEMIS (Sibeck et al., Space Sci. Rev, 2011). EM sounding of the interior will be improved over Apollo-era investigations due to the larger bandwidth, longer mission duration, and geographic coverage. Science objectives include (1) structure and heterogeneity of the outermost 500 km (crust and upper mantle), a region that may contain key information on the lunar magma ocean and the origin of the anomalous Procellarum KREEP Terrane (PKT); (2) tighter bounds on the conductivity of the lower mantle (500-1400 km depth), in order to constrain the temperature and nature of trace elements that control electrical conduction, particularly water; and (3) size of the metallic core, and whether a surrounding layer of molten silicate is present. EM sounding from ARTEMIS can be performed in at least two ways. In the transfer-function (TF) method derived during Apollo, the magnetic fields at a distant platform are compared to a (near) surface sensor to derive the source and sum of source and induced fields, respectively. From these data the internal conductivity structure giving rise to the induced field can be derived. However, source-field heterogeneity disturbs TF responses > 0.01 Hz. These high frequencies are necessary to resolve the crust and upper mantle. In contrast, the magnetotelluric (MT) method derives internal structure from the horizontal components of electric and magnetic fields at a single near-surface sensor, and therefore does not depend strongly on source-field geometry. MT has been used for more than a half-century in terrestrial exploration, but ARTEMIS marks its first planetary

  5. ESO Reflex: A Graphical Workflow Engine for Astronomical Data Reduction

    NASA Astrophysics Data System (ADS)

    Hook, Richard; Romaniello, Martino; Ullgrén, Marko; Maisala, Sami; Solin, Otto; Oittinen, Tero; Savolainen, Villa; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Izzo, Carlo; Ballester, Pascal; Gabasch, Armin

    2008-03-01

    ESO Reflex is a software tool that provides a novel approach to astronomical data reduction. The reduction sequence is rendered and controlled as a graphical workflow. Users can follow and interact with the processing in an intuitive manner, without the need for complex scripting. The graphical interface also allows the modification of existing workflows and the creation of new ones. ESO Reflex can invoke standard ESO data reduction recipes in a flexible way. Python scripts, IDL procedures and shell commands can also be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. ESO Reflex was developed in the context of the Sampo project, a three-year effort led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. It is planned that the software will be released to the community in late 2008.

  6. In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Green, C Paul; Stromberg, Arnold J; Chen, Kuey-Chu; Mattson, Mark P; Getchell, Marilyn L

    2004-08-01

    We utilized high-density Affymetrix oligonucleotide arrays to investigate gene expression in the olfactory mucosae of near age-matched aging senescence-accelerated mice (SAM). The senescence-prone (SAMP) strain has a significantly shorter lifespan than does the senescence-resistant (SAMR) strain. To analyze our data, we applied biostatistical methods that included a correlation analysis to evaluate sources of methodologic and biological variability; a two-sided t-test to identify a subpopulation of Present genes with a biologically relevant P-value <0.05; and a false discovery rate (FDR) analysis adjusted to a stringent 5% level that yielded 127 genes with a P-value of <0.001 that were differentially regulated in near age-matched SAMPs (SAMP-Os; 13.75 months) compared to SAMRs (SAMR-Os, 12.5 months). Volcano plots related the variability in the mean hybridization signals as determined by the two-sided t-test to fold changes in gene expression. The genes were categorized into the six functional groups used previously in gene profiling experiments to identify candidate genes that may be relevant for senescence at the genomic and cellular levels in the aging mouse brain (Lee et al. [2000] Nat Genet 25:294-297) and in the olfactory mucosa (Getchell et al. [2003] Ageing Res Rev 2:211-243), which serves several functions that include chemosensory detection, immune barrier function, xenobiotic metabolism, and neurogenesis. Because SAMR-Os and SAMP-Os have substantially different median lifespans, we related the rate constant alpha in the Gompertz equation on aging to intrinsic as opposed to environmental mechanisms of senescence based on our analysis of genes modulated during aging in the olfactory mucosa. PMID:15248299

  7. Comprehending how visual context influences incremental sentence processing: insights from ERPs and picture-sentence verification

    PubMed Central

    Knoeferle, Pia; Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    To re-establish picture-sentence verification – discredited possibly for its over-reliance on post-sentence response time (RT) measures - as a task for situated comprehension, we collected event-related brain potentials (ERPs) as participants read a subject-verb-object sentence, and RTs indicating whether or not the verb matched a previously depicted action. For mismatches (vs matches), speeded RTs were longer, verb N400s over centro-parietal scalp larger, and ERPs to the object noun more negative. RTs (congruence effect) correlated inversely with the centro-parietal verb N400s, and positively with the object ERP congruence effects. Verb N400s, object ERPs, and verbal working memory scores predicted more variance in RT effects (50%) than N400s alone. Thus, (1) verification processing is not all post-sentence; (2) simple priming cannot account for these results; and (3) verification tasks can inform studies of situated comprehension. PMID:20701712

  8. Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada

    SciTech Connect

    Wilt, M.J.; Goldstein, N.E.

    1985-03-01

    An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

  9. Areal rainfall construction and estimation of extreme quantiles.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    Areal rainfall estimation and extrapolation to extremes is a key issue for catchment flood study. It is a tricky problem which deals with spatial interpolation (to build an estimate at the catchment's scale based on few rain gauges only), and probabilistic extrapolation (for extreme values estimation). In this study, several methods to build an areal rainfall estimation are compared. The first method is the commonly used Thiessen polygons. A second way to build an areal rainfall relies on the SPAZM method [Gottardi, 2012], in which daily rain fields are reconstructed at a 1km2 resolution, with an interpolation scheme integrating the altitude of the pixel and the weather type of the day. These two methods are compared to the stochastic rain field simulator SAMPO [Leblois et Creutin, 2013], which is an adaptation of the turning band method allowing to generate over 50 years of realistic rain fields. Several questions are tackled in this study: In a Thiessen estimation, how many rain gauges should be selected ? Which weighting scheme should be used ? SPAZM is an interpolator designed to produce unbiased mean annual precipitation (MAP) at a catchment's scale. So if a Thiessen areal rainfall is scaled to fit the MAP given by SPAZM, how does it affect its extreme rainfall estimation ? If a virtual rain gauges network is extracted from the rain fields generated by SAMPO, how do behave the Thiessen and SPAZM areal rainfall estimations based on these point values ? At the end, some abatement functions are obtained, showing the influence of the catchment's area and the options chosen to build the areal rainfall estimations. References: F. Gottardi, C. Obled, J. Gailhard, and E. Paquet, Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154 - 167, 2012. ISSN 0022-1694. E. Leblois and J-D. Creutin, Space-time simulation of intermittent rainfall with prescribed

  10. The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Arnold, Dirk; Blaauw, Menno; Fazinic, Stjepko; Kolotov, Vladimir P.

    2005-01-01

    The IAEA 2002 set of test spectra for low-level γ-ray spectrometry, reported on in a separate paper, was used in an intercomparison of widely available software packages, i.e. Anges 1.0, GammaVision 5.3, Gamma-W 1.68 for Windows, Ganaas 3.11, Genie2000 2.1, Hyperlab 2002.3.2.18, Interwinner 5.0 and UniSampo 1.97. With each program, efficiency curves were obtained for the two counting geometries (a 500 ml Marinelli beaker on a 33% relative efficiency HPGe detector, and a 100 ml pillbox on a 96.3% HPGe detector) and subsequently used to obtain radionuclide activities for the unknown samples. Both the calibration sources and the unknown samples contained radionuclides giving rise to cascade summing effects. Cascade summing correction factors as obtained with some of these programs, as well as with GESPECOR, were compared directly. After the intercomparison meeting, the activities obtained were compared with the certified activities that had been kept secret until then. In this paper, the results will be presented and suggestions made for further improvement of the software.

  11. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  12. Probabilistic modeling of financial exposure to flood in France

    NASA Astrophysics Data System (ADS)

    Moncoulon, David; Quantin, Antoine; Leblois, Etienne

    2014-05-01

    CCR is a French reinsurance company which offers natural catastrophe covers with the State guarantee. Within this framework, CCR develops its own models to assess its financial exposure to floods, droughts, earthquakes and other perils, and thus the exposure of insurers and the French State. A probabilistic flood model has been developed in order to estimate the financial exposure of the Nat Cat insurance market to flood events, depending on their annual occurrence probability. This presentation is organized in two parts. The first part is dedicated to the development of a flood hazard and damage model (ARTEMIS). The model calibration and validation on historical events are then described. In the second part, the coupling of ARTEMIS with two generators of probabilistic events is achieved: a stochastic flow generator and a stochastic spatialized precipitation generator, adapted from the SAMPO model developed by IRSTEA. The analysis of the complementary nature of these two generators is proposed: the first one allows generating floods on the French hydrological station network; the second allows simulating surface water runoff and Small River floods, even on ungauged rivers. Thus, the simulation of thousands of non-occured, but possible events allows us to provide for the first time an estimate of the financial exposure to flooding in France at different scales (commune, department, country) and from different points of view (hazard, vulnerability and damages).

  13. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  14. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  15. IBM Application System/400 as the foundation of the Mayo Clinic/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Rothman, Melvyn L.; Morin, Richard L.; Persons, Kenneth R.; Gibbons, Patricia S.

    1990-08-01

    An IBM Application System/400 (AS/400) anchors the Mayo Clinic/IBM joint development PACS project. This paper highlights some of the AS/400's features and the resulting benefits which make it a strong foundation for a medical image archival and review system. Among the AS/400's key features are: 1. A high-level machine architecture 2. Object orientation 3. Relational data base and other functions integrated into the system's architecture 4. High-function interfaces to IBM Personal Computers and IBM Personal System/2s' (pS/2TM).

  16. Quantifiers More or Less Quantify On-Line: ERP Evidence for Partial Incremental Interpretation

    ERIC Educational Resources Information Center

    Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge ("Farmers grow crops/worms as their primary source of income"), Experiment 1 found larger N400s for atypical ("worms") than typical objects…

  17. Distinguishing lexical- versus discourse-level processing using event-related potentials

    PubMed Central

    Huang, Yi Ting; Hopfinger, Joseph; Gordon, Peter C.

    2013-01-01

    Two experiments examine the links between neural patterns in EEG (e.g., N400s, P600s) and their corresponding cognitive processes (e.g., lexical access, discourse integration) by varying the lexical and syntactic contexts of co-referential expressions. Experiment 1 examined coreferring expressions when they occurred within the same clause as their antecedents (John/Bill warmly dressed John). Experiment 2 examined between-clause co-referencing with expressions that also varied in lexical frequency (John/Weston went to the store so that John/Weston could buy milk). Evidence of facilitated lexical processing occurred after repeated names, which elicited smaller N400s, as compared with new names. N400s were also attenuated to a greater degree for low-frequency expressions than for high-frequency ones. Repeated names also triggered evidence of postlexical processing, but this emerged as larger P600s for within-clause co-referencing and delayed N400s for between-clause co-referencing. Together, these results suggest that linguistic processes can be distinguished through distinct ERP components or distinct temporal patterns. PMID:24122362

  18. Low-Frequency Electromagnetic Sounding for Planetary Volatiles (Invited)

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.

    2013-12-01

    EM sounding is divided by loss tangent << 1 (surface-penetrating radars) and >> 1 (inductive methods). The former have high resolution and responses dominated by dielectric permittivity. They have been useful for sounding the polar caps of Mars and are very promising to image the shells of icy satellites as well as the uppermost crusts of silicate bodies. The latter have poorer resolution but greater penetration depth, responses dominated by electrical conductivity, and are the subject of this talk. Low-frequency inductive methods are further divided by comparing the source-receiver separation to the skin depth. Large separations are parametric in frequency so that the variation of EM response with frequency is translated to change in conductivity with depth. Parametric soundings can exploit natural sources from the solar wind, magnetosphere, ionosphere, or atmosphere. Small source-sensor separations are geometric with transmitter-receiver positions: both conductivity and permittivity can be recovered as a function of frequency (a dielectric spectrum), but at greater resource requirements. Subsurface liquid water is an optimal low-frequency EM target because even small quantities of dissolved ions make it a powerful electrical conductor compared to dry, resistive, silicate crusts. Water at kms or even tens of kms can be detected using the magnetotelluric, geomagnetic-depth sounding, or wave-tilt methods: these are all natural-source soundings using different combinations of field components and receiver geometries. If natural sources are weak or absent, a transmitter can be used to obtain high SNR; the time-domain EM (TDEM) method has been used extensively for terrestrial groundwater exploration. Using a ballistically deployed 200-m diameter transmitter loop, TDEM can detect groundwater at depths of several km. If landed in a region of strong local crustal magnetism, the characteristic Larmor frequency of liquid water can be detected with a TDEM-like setup using

  19. Integrated interpretation of overlapping AEM datasets achieved through standardisation

    NASA Astrophysics Data System (ADS)

    Sørensen, Camilla C.; Munday, Tim; Heinson, Graham

    2015-12-01

    Numerous airborne electromagnetic surveys have been acquired in Australia using a variety of systems. It is not uncommon to find two or more surveys covering the same ground, but acquired using different systems and at different times. Being able to combine overlapping datasets and get a spatially coherent resistivity-depth image of the ground can assist geological interpretation, particularly when more subtle geophysical responses are important. Combining resistivity-depth models obtained from the inversion of airborne electromagnetic (AEM) data can be challenging, given differences in system configuration, geometry, flying height and preservation or monitoring of system acquisition parameters such as waveform. In this study, we define and apply an approach to overlapping AEM surveys, acquired by fixed wing and helicopter time domain electromagnetic (EM) systems flown in the vicinity of the Goulds Dam uranium deposit in the Frome Embayment, South Australia, with the aim of mapping the basement geometry and the extent of the Billeroo palaeovalley. Ground EM soundings were used to standardise the AEM data, although results indicated that only data from the REPTEM system needed to be corrected to bring the two surveys into agreement and to achieve coherent spatial resistivity-depth intervals.

  20. Lexical selection differences between monolingual and bilingual listeners.

    PubMed

    Friesen, Deanna C; Chung-Fat-Yim, Ashley; Bialystok, Ellen

    2016-01-01

    Three studies are reported investigating how monolinguals and bilinguals resolve within-language competition when listening to isolated words. Participants saw two pictures that were semantically-related, phonologically-related, or unrelated and heard a word naming one of them while event-related potentials were recorded. In Studies 1 and 2, the pictures and auditory cue were presented simultaneously and the related conditions produced interference for both groups. Monolinguals showed reduced N400s to the semantically-related pairs but there was no modulation in this component by bilinguals. Study 3 inserted an interval between picture and word onset. For picture onset, both groups exhibited reduced N400s to semantically-related pictures; for word onset, both groups showed larger N400s to phonologically-related pictures. Overall, bilinguals showed less integration of related items in simultaneous (but not sequential) presentation, presumably because of interference from the activated non-English language. Thus, simple lexical selection for bilinguals includes more conflict than it does for monolinguals. PMID:26684415

  1. Review of Electromagnetic Methods to Investigate Arctic and Antarctic Sea Ice and Snow

    NASA Astrophysics Data System (ADS)

    Pfaffling, A.; Haas, C.; Meil{\\Ae}Nder-Larsen, M.; Bishop, J.; Flinspach, D.; Otto, D.; Reid, J. E.; Worby, A. P.

    2007-12-01

    During the last 5 years we have applied a variety of near-surface electric (ie, resistivity) and electromagnetic methods to investigate sea ice and snow on sea ice in the Antarctic and Arctic. Here we present field cases and lessons learned on the applicability for resolving distinct target parameters. The geophysical challenges of sea ice include its composition of (a) homogeneous, vertically anisotropic, one-dimensional (level) ice 0.5 to 4 m thick, and (b) highly heterogeneous, partly water impregnated three-dimensional pressure ridge features 2 to 10 m thick. Snow on sea ice is generally dry (until melt onset) and spans a thickness range of some centimetres up to a few meters. We applied several different types of equipment covering the frequency range from DC to radar for different tasks and targets. Ground Penetrating Radar (GPR) proved to be fast and portable for snow thickness profiling with the limitation of a minimum snow thickness around 10 cm. Electromagnetic induction (EMI) is a classic sea ice thickness profiling method used hand held on the ice, ship-borne suspended from outrigger-like constructions as well as airborne as helicopter towed sensors. Mostly regional ice plus snow thickness is derived from EMI measurements. Attempts have been made to retrieve internal ice properties such as porosity or age (conductivity) from EM soundings. DC-resistivity sounding clearly shows the vertical conductivity anisotropy of level sea ice, due to its crystalline structure and aging processes. Electrical Resistivity Tomography was conducted on Baltic and Arctic sea ice to determine the porosity of pressure ridge keels. Our results show the potentials and limitations of the different methods for climate related and engineering sea ice studies. geophysics.com/projects

  2. Electrical Conductivity Imaging Using Controlled Source Electromagnetics for Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P. R.

    2004-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.

  3. Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering.

    PubMed

    Foss, Berit L; Maxwell, Thomas W; Deng, Ying

    2014-01-01

    A result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. The objective of this study is to fabricate a tissue-engineered injectable scaffold with chondroprotective supplementation in vitro to improve the mechanical properties of a degenerative NP. Tissue-engineered scaffolds were fabricated using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0µg/mL (0:0-S), 125:100µg/mL (125:100-S), 250:200µg/mL (250:200-S), and 500:400µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive aggregate moduli (HA) showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater HA compared to 0:0-S group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix. PMID:24055794

  4. The new facility for neutron tomography of IPEN-CNEN/SP and its potential to investigate hydrogenous substances.

    PubMed

    Schoueri, R M; Domienikan, C; de Toledo, F; Andrade, M L G; Stanojev Pereira, M A; Pugliesi, R

    2014-02-01

    A new facility for neutron tomography has been installed at the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. A tomography can be obtained in 400 s and the spatial resolution in the image is 263 μm. The neutron dose per tomography, in the video camera used for image capture, is only 21 μSv, assures very few damages in its CCD sensor. Some selected objects were investigated and the obtained 3D images demonstrate the capability of the facility to investigate hydrogenous substances. PMID:24292249

  5. Comparison of Hemostatic Durability between N-Butyl Cyanoacrylate and Gelatin Sponge Particles in Transcatheter Arterial Embolization for Acute Arterial Hemorrhage in a Coagulopathic Condition in a Swine Model

    SciTech Connect

    Yonemitsu, Takafumi; Kawai, Nobuyuki; Sato, Morio Sonomura, Tetsuo; Takasaka, Isao; Nakai, Motoki; Minamiguchi, Hiroki; Sahara, Shinya; Iwasaki, Yasuhiro; Naka, Toshio; Shinozaki, Masahiro

    2010-12-15

    This study was designed to compare the efficacy of transcatheter arterial embolization (TAE) with N-butyl cyanoacrylate (NBCA) or gelatin sponge particles (GSP) for acute arterial bleeding in a coagulopathic condition using a swine model. Four healthy swine were divided into two coagulopathic conditions: mild and severe. Five hemorrhages were created in each swine (10 hemorrhages per coagulopathy). Mild coagulopathy was achieved by bloodletting 10% of the total circulatory whole blood and preserving activated clotting time (ACT) less than 200 s (ACT < 200 s state); severe coagulopathy was achieved by bloodletting 30% and preserving ACT > 400 s (ACT > 400-second state). For each state, of ACT < 200 s or ACT > 400 s, TAE was conducted with GSP or NBCA to control five hemorrhages arising from artificially created renal and splenic injuries. Angiography immediately after TAE with GSP or NBCA showed complete occlusion in both coagulopathic conditions. In the ACT < 200-second state, follow-up angiography at 5-30 min after TAE with GSP or NBCA showed no evidence of recurrent hemorrhage. In the ACT > 400-second state, follow-up angiography showed recurrent hemorrhage in four (80%) of the five hemorrhages embolized with GSP and in one (20%) of the five hemorrhages embolized with NBCA. Microscopically, red thrombi were observed densely surrounding GSP in mild coagulopathy but were scarce in severe coagulopathy. In a condition with severe coagulopathy, TAE with NBCA was more effective in durability to cease active arterial bleeding than with GSP.

  6. Close, but no garlic: Perceptuomotor and event knowledge activation during language comprehension

    PubMed Central

    Amsel, Ben D.; DeLong, Katherine A.; Kutas, Marta

    2015-01-01

    Recent research has shown that language comprehension is guided by knowledge about the organization of objects and events in long-term memory. We use event-related brain potentials (ERPs) to determine the extent to which perceptuomotor object knowledge and event knowledge are immediately activated during incremental language processing. Event-related but anomalous sentence continuations preceded by single-sentence event descriptions elicited reduced N400s, despite their poor fit within local sentence contexts. Anomalous words sharing particular sensory or motor attributes with contextually expected words also elicited reduced N400s, despite being inconsistent with global context (i.e., event information). We rule out plausibility as an explanation for both relatedness effects. We show that perceptuomotor-related facilitation is not due to lexical priming between words in the local context and the target or to associative or categorical relationships between expected and unexpected targets. Overall our results are consistent with the immediate and incremental activation of perceptual and motor object knowledge and generalized event knowledge during sentence processing. PMID:25897182

  7. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application

    SciTech Connect

    Nag, S.; Mukhopadhyay, S.; Basu, R.N.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Phase pure La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) material is prepared by combustion synthesis. Black-Right-Pointing-Pointer LCZ and Ni-LCZ bulk samples are prepared with theoretical density close to 100%. Black-Right-Pointing-Pointer Bulk electrical conductivity {approx}400 S/cm is obtained for Ni-LCZ cermet at 750 Degree-Sign C. -- Abstract: La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) and Ni-LCZ cermet have been prepared by combustion synthesis and conventional solid state mixing methods respectively. Both the materials are sintered in air and controlled atmosphere (5% H{sub 2} in Ar). The density obtained for the material sintered at 1400 Degree-Sign C in controlled atmosphere is found to be more than 99.5%. This sintering temperature (1400 Degree-Sign C) is considered to be much lower compared to the conventional sintering temperature. The corresponding total conductivity for such Ni-LCZ cermet materials is {approx}400 S/cm measured at 750 Degree-Sign C having 40 vol% of Ni and 60 vol% LCZ.

  8. Is the N400 effect a neurophysiological index of associative relationships?

    PubMed

    Ortu, Daniele; Allan, Kevin; Donaldson, David I

    2013-08-01

    The N400 is one of the most widely studied ERP components and has come to be viewed as an index of the semantic processing that relates distinct stimuli. In this study, we examine whether the N400 is sensitive to the associative relationship between distinct stimuli, and not the degree to which the stimuli share semantic features. We used previously established norms to parametrically vary the strength of linguistic association between words within word-pairs, while holding constant their degree of semantic congruency. This manipulation allowed us to compare N400s elicited by unrelated prime-target word-pairs (e.g. mirror-thumb) with N400s generated by related prime-target word-pairs of either moderate (e.g. camera-lens) or high (e.g. cherry-tree) degrees of association. We observed that larger N400 effects occurred for highly associated versus moderately associated pairs despite the fact that no differences in terms of semantic congruency existed between pairs belonging to the highly and moderately associated conditions. These findings demonstrate that the N400 can be modulated by associative relationships quite independently of semantics, and suggest that the N400 effect reflects processes sensitive to the contiguity of distinct elements within one's past experience and not their semantic properties per se. PMID:23707682

  9. Quantifiers more or less quantify online: ERP evidence for partial incremental interpretation

    PubMed Central

    Urbach, Thomas P.; Kutas, Marta

    2010-01-01

    Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge (Farmers grow crops/worms as their primary source of income), Experiment 1 found larger N400s for atypical (worms) than typical objects (crops). Experiment 2 crossed object typicality with non-logical subject-noun phrase quantifiers (most, few). Off-line plausibility ratings exhibited the crossover interaction predicted by full quantifier interpretation: Most farmers grow crops and Few farmers grow worms were rated more plausible than Most farmers grow worms and Few farmers grow crops. Object N400s, although modulated in the expected direction, did not reverse. Experiment 3 replicated these findings with adverbial quantifiers (Farmers often/rarely grow crops/worms). Interpretation of quantifier expressions thus is neither fully immediate nor fully delayed. Furthermore, object atypicality was associated with a frontal slow positivity in few-type/rarely quantifier contexts, suggesting systematic processing differences among quantifier types. PMID:20640044

  10. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  11. Jupiter's and Saturn's ice moons: geophysical aspects and opportunities of geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons

    NASA Astrophysics Data System (ADS)

    Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav

    2016-04-01

    ]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone

  12. An electromagnetic sounding experiment in Germany using the vertical gradient of geomagnetic variations observed in a deep borehole

    NASA Astrophysics Data System (ADS)

    Schmucker, Ulrich; Spitzer, Klaus; Steveling, Erich

    2009-09-01

    We have recorded for 13 d, geomagnetic variations simultaneously on the Earth's surface and in a borehole at 832 m depth straight below, with a sampling rate of 1 Hz. In addition, geoelectric variations were observed at the same site near Bad Königshofen in Frankonia, Germany. The penetrated moderately conductive Triassic sediments lie above highly resistive Permian deposits. A presumably crystalline basement begins at 1500-1900 m depth. The purpose of the experiment is to determine the skin effect of geomagnetic variations and to derive from it the equivalent to the magnetotelluric (MT) surface impedance, using the vertical gradient (VG) method of electromagnetic (EM) sounding. In this way, we were able to reproduce all four elements of the MT impedance tensor, except for an unexplained but consistent downward shift of VG phases against MT phases by roughly 15° for the two off-diagonal elements. Hence, our tensor evaluation goes beyond the common practice, to express the skin effect by a single VG transfer function in response to a layered structure. The otherwise good agreement of VG and MT results implies that at our test site, the MT impedance tensor is largely distortion-free and that, for example, its pronounced anisotropy should be regarded as a genuine characteristic of the EM response for a laterally non-uniform or possibly anisotropic deep structure. The drilling site lies within the range of a widespread induction anomaly. We have observed the resulting variations of the vertical magnetic component at the surface and in the borehole and found them to be identical. The thus established absence of a skin effect for the vertical component allows us to treat the sedimentary layer down to the depth of the borehole instrument as a thin sheet, and the pertinent thin-sheet approximation for EM induction forms the basis of our analysis. We have derived the required estimate of conductance from the skin effect of horizontal components, noting that this estimate

  13. Large-scale 3D inversion of frequency domain controlled-source electromagnetic data

    NASA Astrophysics Data System (ADS)

    Miller, C. R.; Routh, P. S.; Donaldson, P.; Oldenburg, D. W.

    2005-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain EM sounding technique. The CSAMT source is a grounded horizontal electric dipole approximately one to two kilometers in length. This dipole source generates both inductive and galvanic currents so that the observed electric field arises due to both the static the vector potentials. At low frequencies, the behavior of the fields is similar to that observed in a geometric sounding such as a direct current experiment. At higher frequencies, the inductive character of the source modifies the behavior of the fields so that the experiment becomes more like a frequency sounding. Higher frequency data are useful for imaging near-surface features and lower frequency data are sensitive to deeper structure. Inversion of controlled source EM data provides a means to image the subsurface electrical conductivity structure. We consider a 3D CSAMT data set acquired over a known geothermal resource area in Western Idaho. The data are amplitudes and phases of the electric and magnetic fields acquired at 25 frequencies. The conductivity contrast between the geothermal fluid conduits and the resistive host material allows us to relate the inverted conductivity image to the distribution of fluid flow pathways in the geothermal system. Our 1D CSAMT inversion of the 3D data set indicates regions of conductive fluid pathways in the subsurface. Our next step is to invert these data using the full Maxwell's equations in 3D. Inversion of a single frequency data set at 2 Hz using the 3D frequency domain inversion algorithm (Haber et. al, 2004) shows regions of fluid circulation indicated by zones of higher conductivity. Comparing the images from different single frequency inversions allows us to identify persistent features in the conductivity image that adequately satisfy the data. With the aid of synthetic modeling we are investigating what frequencies? and what geometries? are appropriate to better resolve

  14. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  15. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  16. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOEpatents

    McLean, William J.; Thorne, Lawrence R.; Volponi, Joanne V.

    1988-01-01

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  17. Enhancing charge harvest from microbial fuel cells by controlling the charging and discharging frequency of capacitors.

    PubMed

    Ren, Shiting; Xia, Xue; Yuan, Lulu; Liang, Peng; Huang, Xia

    2013-10-01

    Capacitor is a storage device to harvest charge produced from microbial fuel cells (MFCs). In intermittent charging mode, the capacitor is charged by an MFC first, and then discharged through an external resistance. The charge harvested by capacitor is affected by the charging and discharging frequency. In the present study, the effect of the charging and discharging frequency on charge harvest was investigated. At the switching time (ts) of 100 s, the average current over each time segment reached its maximum value (1.59 mA) the earliest, higher than the other tested conditions, and the highest COD removal (63%) was also obtained, while the coulombic efficiency reached the highest of 67% at the ts of 400 s. Results suggested that lower ts led to higher current output and COD removal, but appropriate ts should be selected in consideration of charge recovery efficiency. PMID:23993288

  18. Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Moriche, R.; Marrero-López, D.; Gotor, F. J.; Sayagués, M. J.

    2014-04-01

    Mechanosynthesis of La1-xSrxMnO3 (x = 0, 0.25, 0.5, 0.75 and 1) was carried out at room temperature from stoichiometric mixtures of La2O3, Mn2O3 and SrO, obtaining monophasic powders with the perovskite structure. Physical properties of these materials and their chemical compatibility with the electrolyte yttria stabilized zirconia (YSZ), which depend strongly on the La/Sr ratio, were evaluated to corroborate availability to be implemented as cathode material in solid oxide fuel cells (SOFCs). Electrical conductivity values in air ranged between 100 and 400 S cm-1 in the temperature range of 25-850 °C. Samples presented low reactivity with YSZ in the working temperature range (600-1000 °C) maintaining the grain size small enough to preserve the catalytic activity for oxygen reduction.

  19. Theoretical and experimental study of a thruster discharging a weight

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Gany, Alon

    2014-06-01

    An innovative concept for a rocket type thruster that can be beneficial for spacecraft trajectory corrections and station keeping was investigated both experimentally and theoretically. It may also be useful for divert and attitude control systems (DACS). The thruster is based on a combustion chamber discharging a weight through an exhaust tube. Calculations with granular double-base propellant and a solid ejected weight reveal that a specific impulse based on the propellant mass of well above 400 s can be obtained. An experimental thruster was built in order to demonstrate the new idea and validate the model. The thruster impulse was measured both directly with a load cell and indirectly by using a pressure transducer and high speed photography of the weight as it exits the tube, with both ways producing very similar total impulse measurement. The good correspondence between the computations and the measured data validates the model as a useful tool for studying and designing such a thruster.

  20. VizieR Online Data Catalog: VRI LCs of BL Lac object Mrk 501 from 2010 to 2015 (Xiong+, 2016)

    NASA Astrophysics Data System (ADS)

    Xiong, D.; Zhang, H.; Zhang, X.; Yi, T.; Bai, J.; Wang, F.; Liu, H.; Zhen, Y.

    2016-03-01

    Our optical monitoring program of Mrk 501 was carried out with the 1.02m optical telescope located at the the Yunnan Astronomical Observatory of China. Our monitoring program for Mrk 501 was divided into five periods. The first period was from 2010 April 1-3, the second was from 2012 April 22-25, the third was from 2013 April 1-4, the fourth was from 2014 April 17-May 8, and the fifth was from 2015 April 6-May 25. Excluding the nights with bad weather and those devoted to other targets, the actual number of observations for Mrk 501 is 29 nights. The standard Johnson broadband filters were used. The typical integration times were 150-300s for the I and R filters and 400s for the V filter. (3 data files).

  1. Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB 980923

    NASA Technical Reports Server (NTRS)

    Giblin, T. W.; vanParadijs, J.; Kouveliotou, C.; Connaughton, V.; Wijers, R. A. M. J.; Briggs, M. S.; Preece, R. D.; Fishman, G. J.

    1999-01-01

    In this Letter, we present the first evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a gamma-ray burst, GRB 980923. The event consists of rapid variability lasting approximately 40 s followed by a smooth power-law emission tail lasting approximately 400 s. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for gamma-ray bursts. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the gamma-ray emission phase, as in the case of GRB 990123.

  2. Rate equations modeling for hydrogen inventory studies during a real tokamak material thermal cycle

    NASA Astrophysics Data System (ADS)

    Bonnin, X.; Hodille, E.; Ning, N.; Sang, C.; Grisolia, Ch.

    2015-08-01

    Prediction and control of tritium inventory in plasma-facing components (PFCs) is a critical nuclear safety issue for ITER and future fusion devices. This goal can be achieved through rate equations models as presented here. We calibrate our models with thermal desorption spectrometry results to obtain a validated set of material parameters relevant to hydrogen inventory processes in bulk tungsten. The best fits are obtained with two intrinsic trap types, deep and shallow, and an extrinsic trap created by plasma irradiation and plastic deformation of the tungsten matrix associated with blister formation. We then consider a realistic cycle of plasma discharges consisting of 400 s of plasma exposure followed by a resting period of 1000 s, repeating for several hours. This cycle is then closed by a long "overnight" period, thus providing an estimate of the amount of tritium retained in the PFCs after a full day of standard operation.

  3. Dispreferred adjective orders elicit brain responses associated with lexico-semantic rather than syntactic processing.

    PubMed

    Huang, Hsu-Wen; Federmeier, Kara D

    2012-09-26

    We examined how adjective ordering is used in language comprehension by crossing order preference and concreteness in phrases consisting of two adjectives and a noun. We used both more typical phrases in which the preferred order has a concrete second adjective ("exhaustive hardback encyclopedia") and those with a concrete first adjective in the preferred order ("heavy informative encyclopedia"). We found that concreteness-related modulations of the ERP waveform were likely responsible for prior reports of increased positivity to dispreferred orders (interpreted as a syntactic P600-like effect). When concreteness is controlled, instead, we found that dispreferred orders are associated with larger N400s to the second adjective and following noun. This suggests that dispreferred adjective orders impact lexico-semantic predictability and the ability to generate mental images of the referent but do not result in syntactic processing difficulties. PMID:22885290

  4. Effects of event knowledge in processing verbal arguments

    PubMed Central

    Bicknell, Klinton; Elman, Jeffrey L.; Hare, Mary; McRae, Ken; Kutas, Marta

    2010-01-01

    This research tests whether comprehenders use their knowledge of typical events in real time to process verbal arguments. In self-paced reading and event-related brain potential (ERP) experiments, we used materials in which the likelihood of a specific patient noun (brakes or spelling) depended on the combination of an agent and verb (mechanic checked vs. journalist checked). Reading times were shorter at the word directly following the patient for the congruent than the incongruent items. Differential N400s were found earlier, immediately at the patient. Norming studies ruled out any account of these results based on direct relations between the agent and patient. Thus, comprehenders dynamically combine information about real-world events based on intrasentential agents and verbs, and this combination then rapidly influences online sentence interpretation. PMID:21076629

  5. Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP)

    PubMed Central

    Kutas, Marta; Federmeier, Kara D.

    2014-01-01

    We overview the discovery, characterization, and evolving use of the N400, an event-related brain potential response linked to meaning processing. We describe the elicitation of N400s by an impressive range of stimulus types -- including written, spoken, and signed (pseudo)words, drawings, photos, and videos of faces, objects and actions, sounds, and mathematical symbols -- and outline the sensitivity of N400 amplitude (as its latency is remarkably constant) to linguistic and nonlinguistic manipulations. We emphasize the effectiveness of the N400 as a dependent variable for examining almost every aspect of language processing, and highlight its expanding use to probe semantic memory and to determine how the neurocognitive system dynamically and flexibly uses bottom-up and top-down information to make sense of the world. We conclude with different theories of the N400’s functional significance and offer an N400-inspired re-conceptualization of how meaning processing might unfold. PMID:20809790

  6. A subsurface structure change associated with the eruptive activity at Sakurajima Volcano, Japan, inferred from an accurately controlled source

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Yamaoka, Koshun; Miyamachi, Hiroki; Watanabe, Toshiki; Kunitomo, Takahiro; Ikuta, Ryoya; Yakiwara, Hiroshi; Iguchi, Masato

    2015-07-01

    Temporal variations of Green functions associated with the eruptive activity at Sakurajima Volcano, Japan, were estimated using an accurately controlled routinely operated signal system (ACROSS). We deconvolved 400 s waveforms of the ACROSS signal at nearby stations by a known source time function and stacked the results based on the time relative to individual eruptions and the eruption intervals; the quantities obtained by this procedure are Green functions corresponding to various stages of the eruptive activity. We found an energy decrease in the later phase of the Green functions in active eruptive periods. This energy decrease, localized in the 2-6 s window of the Green functions, is difficult to explain by contamination from volcanic earthquakes and tremors. The decrease could be more reasonably attributed to a subsurface structure change caused by the volcanic activity.

  7. SYNCHROTRON SELF-COMPTON EMISSION AS THE ORIGIN OF THE GAMMA-RAY AFTERGLOW OBSERVED IN GRB 980923

    SciTech Connect

    Fraija, N.; Gonzalez, M. M.; Lee, W. H. E-mail: magda@astro.unam.mx

    2012-05-20

    GRB 980923 was one of the brightest bursts observed by the Burst and Transient Source Experiment. Previous studies have detected two distinct components in addition to the main prompt episode, which is well described by a Band function. The first of these is a tail with a duration of {approx_equal} 400 s, while the second is a high-energy component lasting {approx_equal} 2 s. We summarize the observations and argue for a unified model in which the tail can be understood as the early {gamma}-ray afterglow from forward shock synchrotron emission, while the high-energy component arises from synchrotron self-Compton from the reverse shock. Consistency between the main assumption of thick shell emission and agreement between the observed and computed values for fluxes, break energies, starting times, and spectral indices leads to a requirement that the ejecta must be highly magnetized.

  8. Rapid, Site-Selective Loading of a Scalable Array of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Colin; McConnell, Robert; Chiaverini, John; Sage, Jeremy

    2016-05-01

    Rapid trap reloading is a requirement for any scalable quantum information processor based on trapped-ion qubits. Even cryogenic systems with trap lifetimes in excess of 10 hours will require loading rates of approximately 100 s-1 to maintain arrays of millions of ions. Further, the reloading process should not introduce unacceptable levels of decoherence into other ions within the array. Here, we demonstrate rapid, site-selective, random-access loading of a 2x2 array of trapped ions that satisfies the major criteria for scalable quantum processing. This scheme uses a continuous flux of pre-cooled strontium atoms and a pair of orthogonal photo-ionization lasers to load surface-electrode point Paul traps at average rates greater than 400 s-1. Additionally, we have conducted a series of Ramsey experiments to measure the effects of loading on the coherence of nearby trapped ions.

  9. Reduced Field-of-View Diffusion-Weighted Magnetic Resonance Imaging of the Pancreas: Comparison with Conventional Single-Shot Echo-Planar Imaging

    PubMed Central

    Kim, Hyungjin; Yoon, Jeong Hee; Jang, Jin-Young; Kim, Sun-Whe; Ryu, Ji Kon; Kannengiesser, Stephan; Han, Joon Koo; Choi, Byung Ihn

    2015-01-01

    Objective To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) di-ffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. Materials and Methods In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm2) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm2). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. Results On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm2 and 2.81 ± 0.64 at b = 400 s/mm2), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm2 and 3.15 ± 0.79 at b = 400 s/mm2), IQ score (8.51 ± 2.05 at b = 0 s/mm2 and 8.79 ± 1.60 at b = 400 s/mm2), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm2 and 2.56 ± 0.47 at b = 500 s/mm2; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm2 and 2.89 ± 0.86 at b = 500 s/mm2; IQ score, 7.13 ± 1.83 at b = 0 s/mm2 and 8.17 ± 1.31 at b = 500 s/mm2; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm2 (full FOV DWI, 2.41 ± 0.63) (p < 0.001). On quantitative analysis, there were

  10. Geophysical characterization of shallow karst

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Jordi, Claudio; Sollberger, David; Doetsch, Joseph; Kaufmann, Manuela; Robertsson, Johan; Maurer, Hansruedi; Greenhalgh, Stewart

    2015-04-01

    -wave velocity tomograms and resistivity images exhibit significant parameter variations in both the horizontal and vertical directions; the P-wave tomograms, for example, indicate velocity changes from a few hundred to a few thousand m/s over short distances for carbonate rocks close to the surface. These variations in physical parameters are likely caused by changes in the lithology and in the degree of karstification, with the latter seeming to be the dominating factor. With respect to the karst impact on seismic wave propagation, we observe pronounced lateral changes in the characteristics of the densely sampled wavefield. For example, distinct changes in the surface-wavetrain characteristics can be related to strong lateral seismic-velocity changes observed in the tomograms. ERT-derived resistivity models show sub-horizontal layering at the 10-meter scale with an orientation (dip, strike) that agrees with the geological model of the area. The complementary EM soundings largely concur with the shallow ERT models, but ERT and EM results show only moderate correlation with the P-wave tomograms indicating that seismic and electric/electromagnetic properties of the karstified carbonates are only weakly linked. The GPR images show shallowly dipping reflectors with dips that are in overall agreement with observed dips of the surface-exposed bedding.

  11. Prospects of electromagnetic methods application for evaluation of deep geothermal resources of intraplate regions

    NASA Astrophysics Data System (ADS)

    Pushkarev, P.; Khmelevskoy, V.; Golubtsova, N.

    2013-12-01

    reaches 10 km and more, and in intraplate regions, especially within cratons, the most of it corresponds to consolidated crust. As a result of EM soundings, especially magnetotelluric (MT), a lot of information about crustal conductivity anomalies were obtained. Maps of anomalies were compiled in different scales, from small regions to Northern Eurasia and even the World. Connection between conductivity anomalies and geothermal regime is being studied for several decades. The nature of some anomalies may be caused by modern tectonic activation, followed by magma and fluid intrusions. Many anomalies are connected with deep suture zones, graphitized and/or fluid saturated, which may provide increase heat-and-mass transfer. Therefore, although the nature of some anomalies is still questionable, in our opinion, information about crustal conductivity, in complex with other geological and geophysical data, should be used for petrothermal resources prognosis. This publication is based on work supported by Award No. RUG1-7026-MO-11 of the U.S. Civilian Research & Development Foundation (CRDF) and by the Russian Foundation for Basic Research (RFBR), project 11-05-92501.

  12. Causal Link Between Flood Basalts and Large Impacts: Were The K-t and P-tr Impactors `verneshots' Fired From Terrestrial Plume-fed Co2-guns?

    NASA Astrophysics Data System (ADS)

    Phipps Morgan, J.; Reston, T.; Ranero, C.

    Both bolide impacts (Alvarez et al., 1980) and Continental Flood Basalt (CFB) events (Courtillot, 1996; Courtillot et al., 1994; Morgan, 1986) have been proposed to be the cause of the three largest Phanerozoic mass-extinctions. The Cretaceous-Tertiary (K-T) boundary is the age of both one of the largest known terrestrial impact struc- tures (the Chixculub site on the Yucatan peninsula) and a very large continental flood basalt (the Deccan Traps event, the first well-documented trace of the Reunion plume- hotspot). In the past year, two papers (Becker et al., 2001; Kaiho et al., 2001) have suggested that the Permian-Triassic (P-Tr) boundary, the age of the largest well- documented CFB (the Siberian Traps), is also marked, in some marine sediments, by the geochemical signature of a large bolide impact. If correct, this would require that both a bolide impact and a CFB occurred at the P-Tr boundary. Finally, the Frasnian- Famennian (Late Devonian) event appears to be contemporaneous with an impact or impacts (e.g. Siljan Ring - Grieve and Robertson, 1987), the eruption of both a Siberian Kimberlite field (Agashev et al., 2001), and the Dniepr-Donets CFB (Wilson et al., 1996). Both large bolide impacts (

  13. A new high-resolution electromagnetic method for subsurface imaging

    NASA Astrophysics Data System (ADS)

    Feng, Wanjie

    high-power (moment of about 6800 Am2) vertical-array DTAC system was designed, developed and tested on controlled buried targets and surface interference to illustrate that the DTAC system was insensitive to surface interference even with a high-power transmitter and having higher resolution by using the large-moment transmitter. From the theoretical and practical analysis and tests, several characteristics of the DTAC method were found: (1) The DTAC method can null out the effect of 1D layered and 2D structures, because magnetic fields are orientation independent which lead to no difference among the null vector directions. This characteristic allows for the measurements of smaller subsurface targets; (2) The DTAC method is insensitive to the orientation errors. It is a robust EM null coupling method. Even large orientation errors do not affect the measured target responses, when a reference frequency and one or more data frequencies are used; (3) The vertical-array DTAC method is effective in reducing the geologic noise and insensitive to the surface interference, e.g., fences, vehicles, power line and buildings; (4) The DTAC method is a high-resolution EM sounding method. It can distinguish the depth and orientation of subsurface targets; (5) The vertical-array DTAC method can be adapted to a variety of rapidly moving survey applications. The transmitter moment can be scaled for effective study of near-surface targets (civil engineering, water resource, and environmental restoration) as well as deep targets (mining and other natural-resource exploration).

  14. Out-of-equilibrium dynamics in the cytoskeleton of the living cell

    NASA Astrophysics Data System (ADS)

    Lenormand, Guillaume; Bursac, Predrag; Butler, James P.; Fredberg, Jeffrey J.

    2007-10-01

    We report here measurements of rheological properties of the human airway smooth muscle cell using forced nanoscale motions of Arg-Gly-Asp RGD-coated microbeads tightly bound to the cytoskeleton. With changes of forcing amplitude, the storage modulus showed small but systematic nonlinearities, especially after treatment with a contractile agonist. In a dose-dependent manner, a large oscillatory shear applied from a few seconds up to 400s caused the cytoskeleton matrix to soften, a behavior comparable to physical rejuvenation observed in certain inert soft materials; the stiffness remained constant for as long as the large oscillatory shear was maintained, but suddenly fell with shear cessation. Stiffness then followed a slow scale-free recovery, a phenomenon comparable to physical aging. However, acetylated low-density lipoprotein acLDL-coated microbeads, which connect mainly to scavenger receptors, did not show similar out-of-equilibrium behaviors. Taken together, these data demonstrate in the cytoskeleton of the living cell behaviors with all the same signatures as that of soft inert condensed systems. This unexpected intersection of condensed matter physics and cytoskeletal biology suggests that trapping, intermittency, and approach to kinetic arrest represent central mesoscale features linking underlying molecular events to integrative cellular functions.

  15. Low-cycle impact fatigue of SiC{sub W}/7475Al composite

    SciTech Connect

    Yang, P.; Liu, Y.; Xu, F.

    1998-10-01

    Important uses in the future for metal-matrix composites are in aerospace, weaponry, and high-speed power plants in which the inertial force produced by great acceleration is a load of high strain rate. Therefore close attention is given to the mechanical behavior of a composite at high strain rates. This paper reports a study of the behavior and mechanisms of a SiC{sub w}/7475 composite in low-cycle impact fatigue (LCIF). The LCIF and impact tension tests were conducted by using the push-pull impact fatigue apparatus developed by the authors, in which the loading assembly was actually a combination of a Hopkinson`s pressure bar and an extension bar. In the apparatus the trapezoidal stress wave loads were produced. The strain rates in specimens may reach 400 s{sup {minus}1}. The results show that for a SiC{sub w}/7475 composite, the strain-rate effects on yield stress, ductility, cyclic hardening and softening, {Delta}{epsilon}{sub e}/2 {minus} N{sub f} relation, and transition life were slight. In low-cycle impact fatigue the cracks often initiated within or near the SiC particles, which mingled in the composite. The SiC{sub w}/7475 composite was found to be less ductile than its alloy matrix; in low-cycle fatigue brittleness appears. Therefore great attention must be given to the behavior of the composite when it is used as a structural material.

  16. Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders.

    PubMed

    Na, Wonjun; Lee, Albert S; Lee, Jin Hong; Hwang, Seung Sang; Kim, Eunkyoung; Hong, Soon Man; Koo, Chong Min

    2016-05-25

    For the first time, an inorganic-organic hybrid polymer binder was used for the coating of hybrid composites on separators to enhance thermal stability and to prevent formation of lithium dendrite in lithium metal batteries. The fabricated hybrid-composite-coated separators exhibited minimal thermal shrinkage compared with the previous composite separators (<5% change in dimension), maintenance of porosity (Gurley number ∼400 s/100 cm(3)), and high ionic conductivity (0.82 mS/cm). Lithium metal battery cell examinations with our hybrid-composite-coated separators revealed excellent C-rate and cyclability performance due to the prevention of lithium dendrite growth on the lithium anode even after 200 cycles under 0.2-5C (charge-discharge) conditions. The mechanism for lithium dendrite prevention was attributed to exceptional nanoscale surface mechanical properties of the hybrid composite coating layer compared with the lithium metal anode, as the elastic modulus of the hybrid-composite-coated separator far exceeded those of both the lithium metal anode and the required threshold for lithium metal dendrite prevention. PMID:27148625

  17. Evaluation of Incoherent Interface Strength of Solid-State-Bonded Ti64/Stainless Steel Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Singh, Jogender; Varma, Amit H.; Tomar, Vikas

    2015-08-01

    Ti/steel interfaces are produced using field-assisted sintering technology, a technique known to bring about full consolidation of materials using much lower sintering temperatures and durations. The interface thickness is verified using the energy-dispersive x-ray analysis exhibiting the extent of diffusion in interface regions. The interface mechanical strength is characterized using dynamic indentation experiments at strain rates approaching 400 s-1. The experiments were conducted on the interfaces within the spatial error tolerance of less than 3 µm. The measurements of dynamic hardness values, strain rates, and plastic-residual depths were correlated to show the relation of interface mechanical strength with the bulk-phase mechanical strength properties of Ti and steel. The Johnson-Cook model is fitted to the obtained interface normal stress-normal strain data based on the nanoimpact experiments. The coefficient of restitution in the mechanical loading and its dependence on the interface dynamic hardness and interface impact velocity validate the experimental results. The results show that interfacial properties are affected by the rate of loading and are largely dependent upon the interface structural inhomogeneity.

  18. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation.

    PubMed

    Zhou, D; Xie, D; Shi, F; Wang, D H; Ge, X; Xia, X H; Wang, X L; Gu, C D; Tu, J P

    2015-12-15

    High-performance electrochromic films with large color contrast and fast switching speed are of great importance for developing advanced smart windows. In this work, crystalline/amorphous WO3 core/shell (c-WO3@a-WO3) nanowire arrays rationally are synthesized by combining hydrothermal and electrodeposition methods. The 1D c-WO3@a-WO3 core/shell hierarchical structures show a synergistic effect for the enhancement of optical modulation, especially in the infrared (IR) region. By optimizing the electrodeposition time of 400s, the core/shell array exhibits a significant optical modulation (70.3% at 750nm, 42.0% at 2000nm and 51.4% at 10μm), fast switching speed (3.5s and 4.8s), high coloration efficiency (43.2cm(2)C(-1) at 750nm) and excellent cycling performance (68.5% after 3000 cycles). The crystalline/amorphous nanostructured film can provide an alternative way for developing high-performance electrochromic materials. PMID:26321573

  19. Autoclassification of the Variable 3XMM Sources Using the Random Forest Machine Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K.

    2015-11-01

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of a random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.

  20. Kinetics of hot-gas desulfurization sorbents for transport reactors

    SciTech Connect

    K.C. Kwon

    2000-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, to understand effects of space time of reaction gas mixtures on initial reaction kinetics of the sorbent-hydrogen sulfide system, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 sorbent and AHI-1 was examined. These sorbents were obtained from the Research Triangle Institute (RTI). The sorbents in the form of 70 {micro}m particles are reacted with 1,000--4,000 ppm hydrogen sulfide at 450--600 C. The range of space time of reaction gas mixtures is 0.03--0.09 s. The range of reaction duration is 4--14,400 s.

  1. Effect of nitridation surface treatment on silicon (1 1 1) substrate for the growth of high quality single-crystalline GaN hetero-epitaxy layer by MOCVD

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Nazri Abd.; Yusuf, Yusnizam; Mansor, Mazwan; Shuhaimi, Ahmad

    2016-01-01

    A single-crystalline with high quality of gallium nitride epilayers was grown on silicon (1 1 1) substrate by metal organic chemical vapor deposition. The process of nitridation surface treatment was accomplished on silicon (1 1 1) substrate by flowing the ammonia gaseous. Then, it was followed by a thin aluminum nitride nucleation layer, aluminum nitride/gallium nitride multi-layer and a thick gallium nitride epilayer. The influence of in situ nitridation surface treatment on the crystallinity quality of gallium nitride epilayers was studied by varying the nitridation times at 40, 220 and 400 s, respectively. It was shown that the nitridation times greatly affect the structural properties of the grown top gallium nitride epilayer on silicon (1 1 1) substrate. In the (0 0 0 2) and (1 0 1 bar 2) X-ray rocking curve analysis, a narrower value of full width at half-maximum has been obtained as the nitridation time increased. This is signifying the reduction of dislocation density in the gallium nitride epilayer. This result was supported by the value of bowing and root mean square roughness measured by surface profilometer and atomic force microscopy. Furthermore, a crack-free gallium nitride surface with an abrupt cross-sectional structure that observed using field effect scanning electron microscopy was also been obtained. The phi-scan curve of asymmetric gallium nitride proved the top gallium nitride epilayer exhibited a single-crystalline structure.

  2. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Koïtka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-09-01

    A significant transient increase in laser Doppler flowmetry (LDF) signals is observed in response to a local and progressive cutaneous pressure application in healthy subjects. This reflex may be impaired in diabetic patients. The work presents a signal processing providing the clarification of this phenomenon. Scalogram analyses of LDF signals recorded at rest and during a local and progressive cutaneous pressure application are performed on healthy and type 1 diabetic subjects. Three frequency bands, corresponding to myogenic, neurogenic and endothelial related metabolic activities, are studied. The results show that, at rest, the scalogram energy of each frequency band is significantly lower for diabetic patients than for healthy subjects, but the scalogram relative energies do not show any statistical difference between the two groups. Moreover, the neurogenic and endothelial related metabolic activities are significantly higher during the progressive pressure than at rest, in healthy and diabetic subjects. However, the relative contribution of the endothelial related metabolic activity is significantly higher during the progressive pressure than at rest, in the interval 200-400 s following the beginning of the pressure application, but only for healthy subjects. These results may improve knowledge on cutaneous microvascular responses to injuries or local pressures initiating diabetic complications.

  3. Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia

    PubMed Central

    Harris, Ashley D; Roberton, Victoria H; Huckle, Danielle L; Saxena, Neeraj; Evans, C John; Murphy, Kevin; Hall, Judith E; Bailey, Damian M; Mitsis, Georgios; Edden, Richard A E; Wise, Richard G

    2012-01-01

    Purpose To demonstrate the feasibility of measuring the temporal dynamics of cerebral lactate concentration and examine these dynamics in human subjects using MRS during hypoxia. Methods A respiratory protocol consisting of 10 min baseline normoxia, 20 min inspiratory hypoxia and ending with 10 min normoxic recovery was used, throughout which lactate-edited MRS was performed. This was repeated four times in three subjects. A separate session was performed to measure blood lactate. Impulse response functions using end-tidal oxygen and blood lactate as system inputs and cerebral lactate as the system output were examined to describe the dynamics of the cerebral lactate response to a hypoxic challenge. Results The average lactate increase was 20%±15% during the last half of the hypoxic challenge. Significant changes in cerebral lactate concentration were observed after 400s. The average relative increase in blood lactate was 188%±95%. The temporal dynamics of cerebral lactate concentration was reproducibly demonstrated with 200s time bins of MRS data (coefficient of variation 0.063±0.035 between time bins in normoxia). The across subject coefficient of variation was 0.333. Conclusions The methods for measuring the dynamics of the cerebral lactate response developed here would be useful to further investigate the brain’s response to hypoxia. PMID:23197421

  4. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II

    NASA Astrophysics Data System (ADS)

    Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta; Stewart, Beverly; Privalov, Timofei; Llobet, Antoni; Sun, Licheng

    2012-05-01

    Across chemical disciplines, an interest in developing artificial water splitting to O2 and H2, driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that ‘two orders of magnitude’ gap with a rationally designed molecular catalyst [Ru(bda)(isoq)2] (H2bda = 2,2‧-bipyridine-6,6‧-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s-1. This value is, for the first time, moderately comparable with the reaction rate of 100-400 s-1 of the oxygen-evolving complex of photosystem II in vivo.

  5. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    PubMed

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales. PMID:18660437

  6. Hemispheric differences in orthographic and semantic processing as revealed by event-related potentials

    PubMed Central

    Dickson, Danielle S.; Federmeier, Kara D.

    2015-01-01

    Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. PMID:25278134

  7. Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films

    NASA Astrophysics Data System (ADS)

    Sigdel, Ajaya K.; Ndione, Paul F.; Perkins, John D.; Gennett, Thomas; van Hest, Maikel F. A. M.; Shaheen, Sean E.; Ginley, David S.; Berry, Joseph J.

    2012-05-01

    The utilization of radio-frequency (RF) superimposed direct-current (DC) magnetron sputtering deposition on the properties of gallium doped ZnO (GZO) based transparent conducting oxides has been examined. The GZO films were deposited using 76.2 mm diameter ZnO:Ga2O3 (5 at. % Ga vs. Zn) ceramic oxide target on heated non-alkaline glass substrates by varying total power from 60 W to 120 W in steps of 20 W and at various power ratios of RF to DC changing from 0 to 1 in steps of 0.25. The GZO thin films grown with pure DC, mixed approach, and pure RF resulted in conductivities of 2200 ± 200 S/cm, 3920 ± 600 S/cm, and 3610 ± 400 S/cm, respectively. X-ray diffraction showed all films have wurtzite ZnO structure with the c-axis oriented perpendicular to the substrate. The films grown with increasing RF portion of the total power resulted in the improvement of crystallographic texture with smaller full-width half maximum in χ and broadening of optical gap with increased carrier concentration via more efficient doping. Independent of the total sputtering power, all films grown with 50% or higher RF power portion resulted in high mobility (˜28 ± 1 cm2/Vs), consistent with observed improvements in crystallographic texture. All films showed optical transmittance of ˜90% in the visible range.

  8. Language effects in second-language learners: A longitudinal electrophysiological study of spanish classroom learning.

    PubMed

    Soskey, Laura; Holcomb, Phillip J; Midgley, Katherine J

    2016-09-01

    How do the neural mechanisms involved in word recognition evolve over the course of word learning in adult learners of a new second language? The current study sought to closely track language effects, which are differences in electrophysiological indices of word processing between one's native and second languages, in beginning university learners over the course of a single semester of learning. Monolingual L1 English-speakers enrolled in introductory Spanish were first trained on a list of 228 Spanish words chosen from the vocabulary to be learned in class. Behavioral data from the training session and the following experimental sessions spaced over the course of the semester showed expected learning effects. In the three laboratory sessions participants read words in three lists (English, Spanish and mixed) while performing a go/no-go lexical decision task in which event-related potentials (ERPs) were recorded. As observed in previous studies there were ERP language effects with larger N400s to native than second language words. Importantly, this difference declined over the course of L2 learning with N400 amplitude increasing for new second language words. These results suggest that even over a single semester of learning that new second language words are rapidly incorporated into the word recognition system and begin to take on lexical and semantic properties similar to native language words. Moreover, the results suggest that electrophysiological measures can be used as sensitive measures for tracking the acquisition of new linguistic knowledge. PMID:27233808

  9. Removal of clomazone herbicide from a synthetic effluent by electrocoagulation.

    PubMed

    Benincá, Cristina; Vargas, Fernanda T; Martins, Manoel L; Gonçalves, Fábio F; Vargas, Rodrigo P; Freire, Flavio B; Zanoelo, Everton F

    2016-01-01

    The aim of this work was to investigate the kinetics of removal of clomazone herbicide from an aqueous solution by electrocoagulation. The experiments were performed in a cylindrical batch reactor with six aluminum electrodes in monopolar mode, arranged in series and connected to a digital DC power. The aqueous solution (tap water + clomazone) with initial pH close to 7.9 was always treated at ambient temperature (≈20 °C) and atmospheric pressure for 5,400 s. For a confidence level of 95% the rate constant of electrocoagulation and the efficiency of removal of clomazone at equilibrium were 2.1 × 10(-3) ± 0.5 × 10(-3) s(-1) and 97.7 ± 2.2%, respectively. The final chemical oxygen demand was 88% lower than that measured initially, while turbidity and apparent color were totally removed from the synthetic solution at a rate close to that of formation of aluminum hydroxides. Some reaction intermediates, such as benzonitrile-2-chloro and 2-chloro-hex-2,4-diene-1,6-dioic-acid determined by gas chromatography mass spectrometry (GC-MS) analysis, explain the ratio of equilibrium to initial total organic carbon approximately between 0.6 and 0.8 at a probability of 95%. PMID:27332840

  10. Organic single-crystal surface-induced polymerization of conducting polypyrroles.

    PubMed

    Jeon, Sang Soo; Park, Jun Kyu; Yoon, Chong Seung; Im, Seung Soon

    2009-10-01

    Polypyrrole hexagonal microplates (PHMs) (50-100 microm long, 10-20 microm wide, and 0.8-1.2 microm thick) with a quasicrystalline structure and high electrical conductivity (up to 400 S/cm) are simply fabricated using single crystals of 4-sulfobenzoic acid monopotassium salt (KSBA) in aqueous medium. Moreover, the fabrication process described here differs strikingly from traditional methods, such as template-free, soft template, and hard template methods. Synthetic time-resolved polypyrrole (PPy) morphology dynamics reveals that the fabrication process of PHMs composed of PPy nanostructures combines a shape-copying process for forming a PPy preform that imitates the shape of a KSBA single crystal and the self-assembly process of PPys on the preform. The PHMs exhibit the improved pi-stacking and bipolaron structure. The strong pi-stacks among PPy rings of bipolaron structures lead to a high quasicrystalline structural order and the metallic conduction. Other single organic crystals that can act as dopants could also be grown using this approach, which will also enable the fabrication of complex micro/nanostructures on organic single crystals. PMID:19681625

  11. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  12. Comparative study of the topical effectiveness of the Andiroba oil (Carapa guianensis) and DEET 50% as repellent for Aedes sp.

    PubMed

    Miot, Hélio Amante; Batistella, Rafaelle Fernandes; Batista, Khristiani de Almeida; Volpato, Dimas Eduardo Carneiro; Augusto, Leonardo Silveira Teixeira; Madeira, Newton Goulart; Haddad, Vidal; Miot, Luciane Donida Bartoli

    2004-01-01

    DEET (N,N-diethyl-3-methylbenzamide) is nowadays the most effective mosquito repellent available, however, its use can present some topical and systemic side effects. Some botanical compositions, as Andiroba (Carapa guianensis), have been proved repellent properties at low cost and toxicity. An experimental study was driven involving four volunteers submitting their forearms covered with Andiroba oil at 100%, DEET 50%, refined soy oil, Andiroba oil 15% and in the absence of products, directly to healthy females of Aedes sp. The times of first and third bites were checked. The results showed that the median of the first bite without any product was 17.5s and the third bite, 40.0s. In the soy oil, the bites happened in 60.0s and 101.5s, in the presence of Andiroba oil 100%, in 56.0s and 142.5s and in Andiroba oil 15%, in 63.0s and 97.5s. The volunteers using DEET 50% had not received bites after 3600s in most of the experiments (p < 0.001 Wilcoxon). Pure Andiroba oil compared to the soy oil, forearm without product and Andiroba oil 15%, showed discreet superiority (p < 0.001 Wilcoxon). Our conclusion is that this study demonstrated that the pure Andiroba oil presents discreet repellent effect against bite of Aedes sp., being significantly inferior to DEET 50%. PMID:15517027

  13. NASA PS400: A New Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Edmonds, B. J.

    2009-01-01

    A new solid lubricant coating, NASA PS400, has been developed for high temperature tribological applications. This plasma sprayed coating is a variant of the patented PS304 coating and has been formulated to provide higher density, smoother surface finish and better dimensional stability than PS304. PS400 is comprised of a nickel-molybdenum binder that provides strength, creep resistance and extreme oxidative and dimensional stability. Chromium oxide, silver and barium-calcium fluoride eutectic are added to the binder to form PS400.Tribological properties were evaluated with a pin-on-disk test rig in sliding contact to 650 C. Coating material samples were exposed to air, argon and vacuum at 760 C followed by cross section microscopic analysis to assess microstructure stability. Oil-Free microturbine engine hot section foil bearing tests were undertaken to assess PS400 s suitability for hot foil gas bearing applications. The preliminary results indicate that PS400 exhibits tribological characteristics comparable to the PS304 coating but with enhanced creep resistance and dimensional stability suitable for demanding, dynamic applications.

  14. Tooth bleaching using three laser systems, halogen-light unit, and chemical action agents

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Housova, Devana; Sulc, Jan; Nemec, Michal; Koranda, Petr; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2004-09-01

    μThe study describes the preclinical experience with laser-activated bleaching agent for discolored teeth. Extracted human upper central incisors were selected, and in the bleaching experiment 35% hydrogen peroxide was used. Three various laser systems and halogen-light unit for activation of the bleaching agent were applied. They were Alexandrite laser (wavelength 750 nm and 375 nm - SHG), Nd:YAG laser (wavelength 1.064 m), and Er:YAG laser (wavelength 2.94 μm). The halogen-light unit was used in a standard regime. The enamel surface was analyzed in the scanning electron microscope. The method of chemical oxidation results in a 2-3 shade change in one treatment. The halogen-light units produced the same effect with shorter time of bleaching process (from 630 s to 300 s). The Alexandrite laser (750 nm) and bleaching agent helped to reach the desired color shade after a shorter time (400 s). Alexandrite laser (375 nm) and Nd:YAG laser had no effect on the longevity of the process of bleaching. Overheating of the chemical bleaching agent was visible after Er:YAG laser activation (195 s). Slight surface modification after bleaching process was detected in SEM.

  15. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    PubMed

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD. PMID:27166737

  16. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Kogut, D.; Lyssoivan, A.; Brezinsek, S.; Belonohy, E.; Blackman, T.; Bobkov, V.; Crombé, K.; Drenik, A.; Graham, M.; Joffrin, E.; Lerche, E.; Loarer, T.; Lomas, P. L.; Mayoral, M.-L.; Monakhov, I.; Oberkofler, M.; Philipps, V.; Plyusnin, V.; Sergienko, G.; Van Eester, D.

    2015-08-01

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1-7.5 × 10-3 Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H2-ICWC at ITER half field conditions on the JET-ILW preloaded by D2 tokamak operation is estimated to be 7.3 × 1022 hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  17. Evaluation of polymerization shrinkage of dental composites by an optical method.

    PubMed

    Weig, K M; Magalhães Filho, T R; Costa Neto, C A; Costa, M F

    2015-02-01

    This study proposes an alternative methodology for evaluating polymerization shrinkage of dental composites using an advanced video extensometer (AVE) system. This equipment measures the displacement between two points drawn on a tooth's wall without requiring physical contact with the tooth. By doing so, the polymerization process was monitored by the cusp deflection. This technique was used in human and bovine teeth, where the cavities were prepared under controlled conditions so that the volume of the composite used was the same in both types of teeth. After the cavity preparation, the specimens were acid etched, washed and dried, and then the adhesive was applied and polymerized. The composite was then inserted into the cavity. Polymerization was performed with two different light polymerizing units (LD Max and Optilight Max - Gnatus do Brasil), and the displacement curve of the tooth cusp was recorded for a period of 400 s. After a statistical analysis, it was concluded that the technique was capable of evaluating shrinkage by the deflection from the cusps and that the human and bovine teeth do not react in a similar manner towards the polymerization shrinkage of composites. PMID:25492174

  18. ERP evidence for conceptual mappings and comparison processes during the comprehension of conventional and novel metaphors.

    PubMed

    Lai, Vicky Tzuyin; Curran, Tim

    2013-12-01

    Cognitive linguists suggest that understanding metaphors requires activation of conceptual mappings between the involved concepts. We tested whether mappings are indeed in use during metaphor comprehension, and what mapping means as a cognitive process with Event-Related Potentials. Participants read literal, conventional metaphorical, novel metaphorical, and anomalous target sentences preceded by primes with related or unrelated mappings. Experiment 1 used sentence-primes to activate related mappings, and Experiment 2 used simile-primes to induce comparison thinking. In the unprimed conditions of both experiments, metaphors elicited N400s more negative than the literals. In Experiment 1, related sentence-primes reduced the metaphor-literal N400 difference in conventional, but not in novel metaphors. In Experiment 2, related simile-primes reduced the metaphor-literal N400 difference in novel, but not clearly in conventional metaphors. We suggest that mapping as a process occurs in metaphors, and the ways in which it can be facilitated by comparison differ between conventional and novel metaphors. PMID:24182839

  19. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.

    PubMed

    Zuo, Zicheng; Kim, Tae Young; Kholmanov, Iskandar; Li, Huifeng; Chou, Harry; Li, Yuliang

    2015-10-01

    A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 μF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)). PMID:26153327

  20. Time frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Koïtka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-03-01

    The laser Doppler flowmetry technique has recently been used to report a significant transient increase of the cutaneous blood flow signal, in response to a local non-noxious pressure applied progressively on the skin of both healthy humans and rats. This phenomenon is not entirely understood yet. In the present work, a time-frequency analysis is applied to signals recorded on anaesthetized healthy rats, at rest and during a cutaneous pressure-induced vasodilation (PIV). The comparison, at rest and during PIV, of the scalogram relative energies and scalogram relative amplitudes in five bands, corresponding to five characteristic frequencies, shows an increased contribution for the endothelial related metabolic activity in PIV signals, till 400 s after the beginning of the progressive pressure application. The other subsystems (heart, respiration, myogenic and neurogenic activities) contribute relatively less during PIV than at rest. The differences are statistically significant for all the relative activities in the interval 0-200 s following the beginning of the pressure. These results and others obtained on patients, such as diabetics, could increase the understanding of some cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers.

  1. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  2. High-latitude HF Doppler observations of ULF waves. 1. Waves with large spatial scale sizes

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Chapman, P. J.

    1997-12-01

    A quantitative study of observations of the ionospheric signatures of magnetospheric ultra low frequency (ULF) waves by a high-latitude (geographic: 69.6°N 19.2°E) high-frequency Doppler sounder has been undertaken. The signatures, which are clearly correlated with pulsations in ground magnetometer data, exhibit periods in the range 100-400 s and have azimuthal wave numbers in the range 3-8. They are interpreted here as local field line resonances. Phase information provided by O- and X-mode Doppler data support the view that these are associated with field line resonances having large azimuthal scale sizes. The relative phases and amplitudes of the signatures in the Doppler and ground magnetometer data are compared with a model for the generation of Doppler signatures from incident ULF waves. The outcome suggests that the dominant mechanism involved in producing the Doppler signature is the vertical component of an E × B bulk motion of the local plasma caused by the electric field perturbation of the ULF wave.

  3. Simultaneous determination of antioxidants, preservatives and sweetener additives in food and cosmetics by flow injection analysis coupled to a monolithic column.

    PubMed

    García-Jiménez, J F; Valencia, M C; Capitán-Vallvey, L F

    2007-07-01

    Today it is common to find samples with various additives from several families. This is the case of sweeteners, preservatives and antioxidants. We have selected a set of additives broadly used in foods and cosmetics with an ample variety of polarities, namely: aspartame (AS), acesulfame (AK)/saccharin (SA), methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), propylgallate (PG) and butylhydroxyanisole (BA). The monolithic column used as separative system is a 5 mm commercial precolumn of silica C18 coupled to a flow injection manifold working with a peristaltic pump. The mixture was separated in only 400 s with resolution factors greater than 1.1 in all cases. To achieve the separation in the FIA system we used two carriers: first, a mixture of ACN/water buffered with 10 mM pH 6.0 phosphate buffer and second, a methanol:water mixture to improve the carrier strength and speed up the more apolar analytes at 3.5 mL min(-1). Detection is accomplished by means of a diode array spectrometer at the respective wavelength of each compound. The comparison of the analytical parameters obtained for this procedure with a standard HPLC method validates our new method, obtaining a method that is quick, with high repeatability and reproducibility and with good resolution between analytes. We have successfully applied the method to real food and cosmetics samples. PMID:17586119

  4. Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB980923

    NASA Technical Reports Server (NTRS)

    Giblin, Tim; vanParadijs, Jan; Kouveliotou, Chryssa; Connaughton, Valerie; Wijers, Ralph A. M. J.; Fishman, Gerald

    1999-01-01

    In this letter, we present for the first time evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a Gamma-Ray Burst (GRB), GRB980923. The event ranks third highest in fluence (>25 keV) in the BATSE catalog and consists of a period of rapid variability lasting about 40 s followed by a smooth power law emission tail lasting about 400 s beyond the trigger time. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for GRBS. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the primary gamma-ray emission phase, as in the case of GRB990123.

  5. Study of the SEE decay processes in application to mechanisms of dissipation of the HF plasma turbulence and diagnostics of the ionospheric plasma parameters

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny

    Results of the investigations of the decay process for different stimulated electromagnetic emission (SEE) features at the SURA heating facility (Russia) are presented. The data of the measurements are used to analyze the nonlinear energy transformation through the spectra of the Langmuir and upper hybrid plasma turbulence as well as to determine a relationship between the electron collision frequency and the collisionless decay rate of the plasma waves under different ionospheric conditions. In particular, due to the SEE decay time measurements at the upper hybrid turbulence development stage it is found an increase of the decay rate γ of the emission from the collision values γ = τ -1 = 300 - 400 s-1 to the collisionless values γ = 2000 - 10000 s-1 in a wide frequency band (up to 600 kHz) near the 4th - 7th cyclotron electron gyroharmonics. On the other hand, the SEE decay times didn't found any dependence on the pump power but they slightly increase under change from day to night condition. The results of the daily SEE decay rate monitoring in dependence on the pumping frequency (re- flection altitude) are presented. The work was supported by RFBR grants 07-02-00464 and 06-02-17334.

  6. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  7. Transport of platelets in flowing blood.

    PubMed

    Eckstein, E C; Bilsker, D L; Waters, C M; Kippenhan, J S; Tilles, A W

    1987-01-01

    Distribution and transport of platelets in flowing blood were studied experimentally using suspensions of washed red cells and fluorescent latex beads as platelet analogues. Distributions of the platelet analogues were obtained from stroboscopic epifluorescence photomicrographs of flow in 50-micron channels and from images of the cut cross sections of cryogenically frozen thin-walled 200-micron tubes. Concentration profiles of platelet analogues had a substantial near-wall excess for situations with a substantial hematocrit (greater than 10%) and a substantial wall shear rate (greater than 400 s-1). The viscosity of the suspending fluid was found to affect the size of the near-wall excess and its shear-dependent onset. Additionally, the shear-rate dependence of the near-wall excess did not occur with suspensions of hardened red cells. The excess extended a substantial distance from the wall in the 200-micron tubes and a portion of the profile could be fitted to an exponential curve. The random walk model that is used to describe enhanced platelet diffusion is envisioned as a walk (lateral platelet motion) caused by shear-induced collisions with red cells. A more comprehensive random walk model that includes biased collisions produces an effective lateral motion of convective nature in addition to a diffusional motion; it is used to explain the observed nonuniform distributions of platelet analogues. PMID:3439741

  8. Different mechanisms for role relations versus verb-action congruence effects: evidence from ERPs in picture-sentence verification.

    PubMed

    Knoeferle, Pia; Urbach, Thomas P; Kutas, Marta

    2014-10-01

    Extant accounts of visually situated language processing do make general predictions about visual context effects on incremental sentence comprehension; these, however, are not sufficiently detailed to accommodate potentially different visual context effects (such as a scene-sentence mismatch based on actions versus thematic role relations, e.g., (Altmann & Kamide, 2007; Knoeferle & Crocker, 2007; Taylor & Zwaan, 2008; Zwaan & Radvansky, 1998)). To provide additional data for theory testing and development, we collected event-related brain potentials (ERPs) as participants read a subject-verb-object sentence (500 ms SOA in Experiment 1 and 300 ms SOA in Experiment 2), and post-sentence verification times indicating whether or not the verb and/or the thematic role relations matched a preceding picture (depicting two participants engaged in an action). Though incrementally processed, these two types of mismatch yielded different ERP effects. Role-relation mismatch effects emerged at the subject noun as anterior negativities to the mismatching noun, preceding action mismatch effects manifest as centro-parietal N400s greater to the mismatching verb, regardless of SOAs. These two types of mismatch manipulations also yielded different effects post-verbally, correlated differently with a participant's mean accuracy, verbal working memory and visual-spatial scores, and differed in their interactions with SOA. Taken together these results clearly implicate more than a single mismatch mechanism for extant accounts of picture-sentence processing to accommodate. PMID:25216075

  9. Stuttering and Natural Speech Processing of Semantic and Syntactic Constraints on Verbs

    PubMed Central

    Weber-Fox, Christine; Hampton, Amanda

    2009-01-01

    Purpose Previous findings from event-related brain potentials (ERPs) indicate that adults who stutter (AWS) exhibit processing differences for visually presented linguistic information. This study explores how neural activations for AWS may differ for a linguistic task that does not require preparation for overt articulation and/or engage the articulatory loop for silent speech. Method Syntactic and semantic processing constraints were examined in AWS and adults who are normally fluent (AWNF) by assessing their behavioral performance and ERPs in a natural speech listening task. Results AWS performed similarly to AWNF in identifying verb-agreement violations and semantic anomalies, but ERPs elicited by syntactic and semantic constraints indicated atypical neural functions for AWS. ERPs of the AWNF displayed an expected N400 for reduced semantic expectations and a typical P600 for verb-agreement violations. In contrast, both N400s and P600s for the semantic and verb-agreement conditions were observed in the ERPs of the AWS. Conclusions The findings suggest that AWS may engage semantic-syntactic mechanisms more generally for semantic and syntactic processing. These findings converge with earlier studies using visual stimuli to indicate that, while linguistic abilities are normal in AWS, underlying brain activity mediating some aspects of language processing may function differently. PMID:18664690

  10. Plasma modification of HEMA and EOEMA surface properties

    NASA Astrophysics Data System (ADS)

    Svorcik, V.; Kolarova, K.; Dvorankova, B.; Michalek, J.; Krumbholcova, E.; Hnatowicz, V.

    2006-01-01

    Process of plasma etching of poly(2-hydroxyethylmethacrylate) (HEMA) and poly(2-ethyloxyethyl methacrylate) (EOEMA) in Ar atmosphere at room temperature was studied. Ablation of the samples exposed to the plasma was determined by gravimetry, surface wettability by goniometry, chemical structure by FTIR spectroscopy and surface morphology by Scanning Electron (SEM) microscopy. Adhesion and proliferation of 3T3 mouse fibroblasts was studied in vitro in order to determine biological activity of plasma-modified HEMA and EOEMA substrates. It was demonstrated that the plasma etching leads to oxidation of HEMA and to an increase of its wettability. More estheric structures are produced in EOEMA. For both polymers, a surface layer similar to 2 mu m thick is ablated after plasma etching for 400 s. The etching changes the sample surface morphology and its biological activity. The surface becomes smoother after etching. The results obtained after 3T3 cells cultivation show that the plasma etching decreases cell adhesion and increases cell proliferation in comparison with pristine polymers.

  11. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant.

    PubMed

    Li, Ting-Feng; Painter, Richard G; Ban, Bhupal; Blake, Robert C

    2015-07-24

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s(-1). The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment. PMID:26041781

  12. Diffusion tensor imaging in the cervical spinal cord.

    PubMed

    Song, Ting; Chen, Wen-Jun; Yang, Bo; Zhao, Hong-Pu; Huang, Jian-Wei; Cai, Ming-Jin; Dong, Tian-Fa; Li, Tang-Sheng

    2011-03-01

    There are discrepancy between MR findings and clinical presentations. The compressed cervical cord in patients of the spondylotic myelopathy may be normal on conventional MRI when it is at the earlier stage or even if patients had severe symptoms. Therefore, it is necessary to take a developed MR technique--diffusion tensor imaging (DTI)--to detect the intramedullary lesions. Prospective MR and DTI were performed in 53 patients with cervical compressive myelopathy and twenty healthy volunteers. DTI was performed along six non-collinear directions with single-shot spin echo echo-planar imaging (EPI) sequence. Intramedullary apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in four segments (C2/3, C3/4, C4/5, C5/6) for volunteers, in lesions (or the compressed cord) and normal cord for patients. DTI original images were processed to produce color DTI maps. In the volunteers' group, cervical cord exhibited blue on the color DTI map. FA values between four segments had a significant difference (P < 0.01), with the highest FA value (0.85 ± 0.03) at C2/3 level. However, ADC value between them had no significant difference (P > 0.05). For patients, only 24 cases showed hyperintense on T2-weighted image, while 39 cases shown patchy green signal on color DTI maps. ADC and FA values between lesions or the compressed cord and normal spinal cord of patients had a significant difference (both P < 0.01). FA value at C2/3 cord is the highest of other segments and it gradually decreases towards the caudal direction. Using single-shot spin echo EPI sequence and six non-collinear diffusion directions with b value of 400 s mm(-2), DTI can clearly show the intramedullary microstructure and more lesions than conventional MRI. PMID:20938788

  13. A microscopic model of the Tian-Calvet microcalorimeter, cell design for a faster response, and measurement by a continuous procedure.

    PubMed

    Kobayashi, Y; Wang, F; Li, Q X; Wang, D Z

    2014-03-01

    The transient heat conduction equation was used as the microscopic model of the Tian-Calvet microcalorimeter. It was verified by comparing simulated and experimental calorimetric curves and used to guide sample cell design for a faster response time, for which it gave the guidelines to minimize the heat flow distance and use a heat flux that is uniform and onto the whole face of the thermopile sensor. The resulting sample cell was disc-shaped with the sample powder placed in it as a thin 0.2 mm layer on a stainless steel base with a wall thickness of 0.5 mm that covered the whole face of the thermopile on which it was placed. The rise time of the heat response curve to a step change in sample temperature, which is the response time for measuring the differential heat released, was 45 s. The response curve from a gas dose returned to the baseline within 400 s, which is the time needed to measure the integrated heat in a pulsed dosage. The accuracy of the heats measured by the calorimeter was verified by comparison with data in the literature on the adsorption of ethanol and ammonia on HZSM-5 and adsorption of methanol and ammonia on SAPO-34. The differential heat of methanol adsorption on SAPO-34 at 333 K and ammonia adsorption on HZSM-5 at 423 K were measured by both the conventional discontinuous procedure and a new continuous procedure. In the continuous procedure, gas was continuously dosed at a very slow flow rate that was kept slow enough for the gas and adsorbate to reach quasi-equilibrium. The continuous procedure has the advantages of high resolution results and a simpler experimental procedure, and a calorimetric curve could be measured within 3 h. PMID:24689600

  14. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  15. Particle Detectors and Data Analysis for Cusp Transient Features Campaign

    NASA Technical Reports Server (NTRS)

    Sharber, James R.

    1999-01-01

    On December 3, 1997, a rocket payload (36.152) was launched from N(sub y) Alesund into the dark cusp at 0906:00 U (1206:00 LT) during an interval of southward B(sub z) and positive B(sub y). Launch occurred during a time interval of northeastward moving auroral forms observed between 0845 and 0945 UT by ground-based meridian scanning photometers. Ground photometric measurements during the flight show that the payload passed over the poleward portion of the most intense 6300 A emissions of the dayside cusp/cleft region. Electrons of energy up to a few hundred eV were detected immediately upon instrument turn-on at an altitude of 205 km and throughout the flight until the payload reached an altitude of -197 km on the downleg. Electron spectra were either quasithermal with peak energies -100 eV or showed evidence of acceleration along the magnetic field line by potentials of 100-200 V. Precipitating ions were observed throughout much of the flight. Their spectra were broadly peaked in energy with the peak energy decreasing from -500 eV to -250 eV as the payload flew approximately westward over the dayside precipitation region. Structure (spatial or temporal intensity variation) was observed between T + 180 s and T + -400 s. At the rocket altitudes (<450 km) the ions were observed to be precipitating. During the flight, the DMSP F-13 satellite passed through the all-sky imager field-of-view just poleward of the brightest dayside emissions enabling the identification of plasma sheet and boundary layer regions along the orbit. We thus conclude that particle fluxes detected by the rocket flight were either cusp plasma or boundary layer/mantle plasma just poleward of the dayside cusp/cleft. A paper describing the fields and plasmas observed during the flight is now being prepared for publication.

  16. Particle Detectors and Data Analysis for Cusp Transient Features Campaign

    NASA Technical Reports Server (NTRS)

    Sharber, James R.

    1998-01-01

    On December 3, 1997, a rocket payload (36.152) was launched from Ny Alesund into the dark cusp at 0906:00 U (1206:00 LT) during an interval of southward B(sub Z), and positive B(sub y). Launch occurred during a time interval of northeastward moving auroral forms observed between 0845 and 0945 UT by ground-based meridian scanning photometers. Ground photometric measurements during the flight show that the payload passed over the poleward portion of the most intense 6300 A emissions of the dayside cusp/cleft region. Electrons of energy up to a few hundred eV were detected immediately upon instrument turn-on at an altitude of 205 km and throughout the flight until the payload reached an altitude of approximately 197 km on the downleg. Electron spectra were either quasithermal with peak energies approximately 100 eV or showed evidence of acceleration along the magnetic field line by potentials of 100-200 V. Precipitating ions were observed throughout much of the flight. Their spectra were broadly peaked in energy with the peak energy decreasing from approximately 500 eV to approximately 250 eV as the payload flew approximately westward over the dayside precipitationregion. Structure(spatial or temporal intensity variation) was observed between T + 180 s and T + approximately 400 s. At the rocket altitudes(less than 450km) the ions were observed to be precipitating. During the flight, the DMSPF-13 satellite passed through the all-sky imager field-of-view just poleward of the brightest dayside emissions enabling the identification of plasma sheet and boundary layer regions along the orbit. We thus conclude that particle fluxes detected by the rocket flight were either cusp plasma or boundary layer/mantle plasmajust poleward of the dayside cusp/cleft. Further investigation of the particle characteristics and their relationship to ionospheric convection patterns is continuing.

  17. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-04-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  18. The Truth Before and After: Brain Potentials Reveal Automatic Activation of Event Knowledge during Sentence Comprehension.

    PubMed

    Nieuwland, Mante S

    2015-11-01

    How does knowledge of real-world events shape our understanding of incoming language? Do temporal terms like "before" and "after" impact the online recruitment of real-world event knowledge? These questions were addressed in two ERP experiments, wherein participants read sentences that started with "before" or "after" and contained a critical word that rendered each sentence true or false (e.g., "Before/After the global economic crisis, securing a mortgage was easy/harder"). The critical words were matched on predictability, rated truth value, and semantic relatedness to the words in the sentence. Regardless of whether participants explicitly verified the sentences or not, false-after-sentences elicited larger N400s than true-after-sentences, consistent with the well-established finding that semantic retrieval of concepts is facilitated when they are consistent with real-world knowledge. However, although the truth judgments did not differ between before- and after-sentences, no such sentence N400 truth value effect occurred in before-sentences, whereas false-before-sentences elicited an enhanced subsequent positive ERPs. The temporal term "before" itself elicited more negative ERPs at central electrode channels than "after." These patterns of results show that, irrespective of ultimate sentence truth value judgments, semantic retrieval of concepts is momentarily facilitated when they are consistent with the known event outcome compared to when they are not. However, this inappropriate facilitation incurs later processing costs as reflected in the subsequent positive ERP deflections. The results suggest that automatic activation of event knowledge can impede the incremental semantic processes required to establish sentence truth value. PMID:26244719

  19. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  20. The feasibility of a sensitive low-dose method for the in vivo evaluation of Fe in skin using K-shell x-ray fluorescence (XRF)

    NASA Astrophysics Data System (ADS)

    Farquharson, Michael J.; Bradley, David A.

    1999-04-01

    An x-ray fluorescence (XRF) system designed for monitoring of skin Fe concentrations has been performance tested for use on patients treated for -thalassaemia. The essentials of the system are: a collimated x-ray tube operated at 20 kV and 20 mA; energy selection of the x-ray beam by means of a Cu K-edge filter; use of skin phantoms containing concentrations of Fe in the range 10 to 100 parts per million (ppm); and a high-purity germanium detector placed at to the incident beam. For a Cu K-edge filter of 0.15 mm thickness a quasi-monoenergetic beam of approximately 8.4 keV is obtained which is close to the absorption edge of Fe (7.11 keV). For a real-time counting period of 400 s the system is capable of detecting Fe concentrations of ppm at a skin dose of the order of 5 mSv. This level of Fe is at the higher end of the normal range found in the skin. In using the same system and operating parameters, measurements on a sample of ferritin obtained from a rat's liver yield an Fe concentration of ppm for a measurement time of 500 s; this can be compared with suppliers' data indicating an Fe level of 36 ppm.

  1. Q tomography of the upper mantle using three-component long-period waveforms

    NASA Astrophysics Data System (ADS)

    Gung, Y.; Romanowicz, B.

    2004-05-01

    We present a degree-8 3-D Q model (QRLW8) of the upper mantle, derived from three-component surface waveform data in the period range 60-400 s. The inversion procedure involves two steps. In the first step, 3-D whole-mantle velocity models are derived separately for elastic SH (transverse component) and SV (vertical and longitudinal component) velocity models, using both surface and body waveforms and the non-linear asymptotic coupling theory (NACT) approach. In the second step, the surface waveforms thus aligned in phase are inverted to obtain a 3-D Q model in the depth range 80-670 km. Various stability tests are performed to assess the quality of the resulting Q model and, in particular, to assess possible contamination from focusing effects. We find that the 3-D patterns obtained are stable, but the amplitude of the lateral variations in Q is not well constrained, because large damping is necessary to extract the weak Q signal from data. The model obtained agrees with previous results in that a strong correlation of Q with tectonics is observed in the first 250 km of the upper mantle, with high attenuation under oceanic regions and low attenuation under continental shields. It is gradually replaced by a simpler pattern at larger depth. At the depths below 400 km, the Q distribution is generally dominated by two strong minima, one under the southern Pacific and one under Africa, yielding a strong degree-2 pattern. Most hotspots are located above regions of low Q at this depth. Ridges are shallow features in both velocity and Q models.

  2. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Choe, Wonho; Kim, Holak; Park, Joo Young

    2015-06-01

    Electron diagnostics based on electron-neutral atom (e-a) bremsstrahlung in the UV and visible range emitted from atmospheric pressure plasmas is presented. Since the spectral emissivity of the e-a bremsstrahlung is determined by electron density (ne) and mean electron temperature (Te) representing the Maxwellian electron energy distribution, their diagnostics is possible. As an example, emission spectra measured from capacitive discharges are presented, which show good agreement with the theoretically calculated emissivity of the e-a bremsstrahlung. For a single pin electrode nanosecond-pulsed plasma jet (n-PPJ) in argon, we investigate the electron properties and the temporal behavior of the positive streamers. Streamers with many branches are clearly observed inside the dielectric tube, while a few main streamers propagate outside the tube along the jet axis. A two-dimensional (2D) measurement of the time-averaged Te distribution was developed using a commercial digital camera and optical band pass filters based on the emissivity ratio of two wavelengths of the e-a bremsstrahlung. The viable measurement range of Te is 0.5-7 eV for the choice of two wavelengths of 300s and 900s nm and 0.5-4 eV for two wavelengths of 400s and 900s nm, which are uncontaminated by the atomic and/or molecular spectra. The 2D Te distribution obtained using 514.5 and 632.8 nm emissions helps to reveal the role of electrons in streamer characteristics in the argon n-PPJ. Time-averaged Te of 2.0 eV and 1.0 eV inside and outside the tube, respectively, were measured. The streamer dynamics of the n-PPJ is shown to be dependent on Te.

  3. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    PubMed Central

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  4. Longitudinal compressive behaviour of 3D braided composite under various temperatures and strain rates

    NASA Astrophysics Data System (ADS)

    Pan, Zhongxiang; Gu, Bohong; Sun, Baozhong

    2015-03-01

    This paper reports the longitudinal compressive behaviour of 3D braided basalt fibre tows/epoxy composite materials under strain-rate range of 1,200-2,400 s-1 and temperature range of 23-210 °C both in experimental and finite element analyses (FEA). A split Hopkinson pressure bar system with a heating device was designed to test the longitudinal compressive behaviour of 3D braided composite materials. Testing results indicate that longitudinal compression modulus, specific energy absorption and peak stress decreased with elevated temperatures, whereas the failure strain increased with elevated temperatures. At some temperatures above the T g of epoxy resin, such as at 120 and 150 °C, strain distributions and deformations in fibre tows and epoxy resin tended to be the same. It results in relatively slighter damage status of the 3D braided composite material. The FEA results reveal that heating of the material due to the dissipative energy of the inelastic deformation and damage processes generated in resin is more than that in fibre tows. The braiding structure has a significant influence on thermomechanical failure via two aspects: distribution and accumulation of the heating leads to the development of the shear band paths along braiding angle; the buckling inflection segment rather than the straight segment generates the maximum of the heating in each fibre tows. The damage occurs at the early stage when the temperature is below T g, while at the temperature above T g, damage stage occurs at the rear of plastic deformation.

  5. Fabrication and In vivo Thrombogenicity Testing of Nitric Oxide Generating Artificial Lungs

    PubMed Central

    Amoako, Kagya A; Montoya, Patrick J; Major, Terry C; Suhaib, Ahmed B; Handa, Hitesh; Brant, David O; Meyerhoff, Mark E; Bartlett, Robert H; Cook, Keith E

    2013-01-01

    Hollow fiber artificial lungs are increasingly being used for long-term applications. However, clot formation limits their use to 1-2 weeks. This study investigated the effect of nitric oxide generating (NOgen) hollow fibers on artificial lung thrombogenicity. Silicone hollow fibers were fabricated to incorporate 50 nm copper particles as a catalyst for NO generation from the blood. Fibers with and without (control) these particles were incorporated into artificial lungs with a 0.1 m2 surface area and inserted in circuits coated tip-to-tip with the NOgen material. Circuits (N=5/each) were attached to rabbits in a pumpless, arterio-venous configuration and run for 4 hrs at an activated clotting time of 350-400s. Three control circuits clotted completely, while none of the NOgen circuits failed. Accordingly, blood flows were significantly higher in the NOgen group (95.9 ± 11.7, p < 0.01) compared to the controls (35.2 ± 19.7) (ml/min), and resistance was significantly higher in the control group after 4 hours (15.38 ± 9.65, p<0.001) than in NOgen (0.09 ± 0.03) (mmHg/mL/min). On the other hand, platelet counts and plasma fibrinogen concentration expressed as percent of baseline in control group (63.7 ± 5.7%, 77.2 ± 5.6% [p<0.05]) were greater than those in the NOgen group (60.4 ± 5.1%, 63.2 ± 3.7%). Plasma copper levels in the NOgen group were 2.8 times baseline at 4 hours (132.8 ± 4.5 μg/dl) and unchanged in the controls. This work demonstrates that NO generating gas exchange fibers could be a potentially effective way to control coagulation inside artificial lungs. PMID:23613156

  6. A microscopic model of the Tian-Calvet microcalorimeter, cell design for a faster response, and measurement by a continuous procedure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Wang, F.; Li, Q. X.; Wang, D. Z.

    2014-03-01

    The transient heat conduction equation was used as the microscopic model of the Tian-Calvet microcalorimeter. It was verified by comparing simulated and experimental calorimetric curves and used to guide sample cell design for a faster response time, for which it gave the guidelines to minimize the heat flow distance and use a heat flux that is uniform and onto the whole face of the thermopile sensor. The resulting sample cell was disc-shaped with the sample powder placed in it as a thin 0.2 mm layer on a stainless steel base with a wall thickness of 0.5 mm that covered the whole face of the thermopile on which it was placed. The rise time of the heat response curve to a step change in sample temperature, which is the response time for measuring the differential heat released, was 45 s. The response curve from a gas dose returned to the baseline within 400 s, which is the time needed to measure the integrated heat in a pulsed dosage. The accuracy of the heats measured by the calorimeter was verified by comparison with data in the literature on the adsorption of ethanol and ammonia on HZSM-5 and adsorption of methanol and ammonia on SAPO-34. The differential heat of methanol adsorption on SAPO-34 at 333 K and ammonia adsorption on HZSM-5 at 423 K were measured by both the conventional discontinuous procedure and a new continuous procedure. In the continuous procedure, gas was continuously dosed at a very slow flow rate that was kept slow enough for the gas and adsorbate to reach quasi-equilibrium. The continuous procedure has the advantages of high resolution results and a simpler experimental procedure, and a calorimetric curve could be measured within 3 h.

  7. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    SciTech Connect

    Kuckein, C.; Collados, M.; Sainz, R. Manso

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  8. Optimization of a nanomedicine-based silicon phthalocyanine 4 photodynamic therapy (Pc 4-PDT) strategy for targeted treatment of EGFR-overexpressing cancers.

    PubMed

    Master, Alyssa M; Livingston, Megan; Oleinick, Nancy L; Sen Gupta, Anirban

    2012-08-01

    The current clinical mainstays for cancer treatment, namely, surgical resection, chemotherapy, and radiotherapy, can cause significant trauma, systemic toxicity, and functional/cosmetic debilitation of tissue, especially if repetitive treatment becomes necessary due to tumor recurrence. Hence there is significant clinical interest in alternate treatment strategies like photodynamic therapy (PDT) which can effectively and selectively eradicate tumors and can be safely repeated if needed. We have previously demonstrated that the second-generation photosensitizer Pc 4 (silicon phthalocyanine 4) can be formulated within polymeric micelles, and these micelles can be specifically targeted to EGFR-overexpressing cancer cells using GE11 peptide ligands, to enhance cell-specific Pc 4 delivery and internalization. In the current study, we report on the in vitro optimization of the EGFR-targeting, Pc 4 loading of the micellar nanoformulation, along with optimization of the corresponding photoirradiation conditions to maximize Pc 4 delivery, internalization, and subsequent PDT-induced cytotoxicity in EGFR-overexpressing cells in vitro. In our studies, absorption and fluorescence spectroscopy were used to monitor the cell-specific uptake of the GE11-decorated Pc 4-loaded micelles and the cytotoxic singlet oxygen production from the micelle-encapsulated Pc 4, to determine the optimum ligand density and Pc 4 loading. It was found that the micelle formulations bearing 10 mol % of GE11-modified polymer component resulted in the highest cellular uptake in EGFR-overexpressing A431 cells within the shortest incubation periods. Also, the loading of ∼ 50 μg of Pc 4 per mg of polymer in these micellar formulations resulted in the highest levels of singlet oxygen production. When formulations bearing these optimized parameters were tested in vitro on A431 cells for PDT effect, a formulation dose containing 400 nM Pc 4 and photoirradiation duration of 400 s at a fluence of 200 mJ/cm(2

  9. Recent experiments in the EAST and HT-7 superconducting tokamaks

    NASA Astrophysics Data System (ADS)

    Wan, Baonian; International EAST Collaborators; HT-7 Teams

    2009-10-01

    First divertor plasma configuration in Experimental Advanced Superconducting Tokamak (EAST) was obtained in the second campaign after the last IAEA meeting. To achieve long pulse diverted plasma discharges, new capabilities including the fully actively water cooled in-vessel components, current drive and heating systems, diagnostics and real-time plasma control algorithm were developed. Pre-programmed shape and feedback control of plasma position and current (RZIP) produced a variety of shaped plasma configurations, covering most of the configurations foreseen at the design stage of the machine. Control algorithm based on real-time equilibrium reconstruction and iso-flux control for the last closed magnetic flux surface (RTEFIT/ISOFLUX) has also been realized. A number of operational issues, such as plasma initiation and ramp up under constraints of superconducting coils were successfully investigated. First LHCD experiments demonstrated long pulse discharges longer than 20 s and nearly full non-inductive current drive. The physical engineering capability on the superconducting magnetic system was assessed by simulating discharges. Since the last IAEA meeting, experiments in HT-7 have been focusing on long pulse operation to support the EAST experiments on both physics and technical aspects. Long pulse discharges up to 400 s have now been achieved in HT-7. Investigation of sawtooth activities in ohmic and LHCD plasmas supports the turbulence model instead of the fast reconnection of the m = 1 magnetic island. Coexistence of electron mode and ion mode in high density ohmic plasmas has been observed by 2D ECE imaging (ECEI) in HT-7. The spectral characteristics of geodesic acoustic mode at the plasma boundary have been investigated by Langmuir probe arrays.

  10. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    PubMed

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  11. Copper vapor laser machining of polyimide and polymethylmethacrylate in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Ventzek, P. L. G.; Gilgenbach, R. M.; Ching, C. H.; Lindley, R. A.; McColl, W. B.

    1992-10-01

    A repetitively pulsed copper vapor laser (510 and 578 nm) is used to machine an opaque polymer (polyimide-Vespel) and a transparent polymer (polymethylmethacrylate-Lucite). Lucite is machinable by coating the surface with an ink which is semi-opaque to the green and yellow laser light. The repetition rate of the laser was 10 kHz with approximately 0.35 mJ/pulse and 3.5 W average power at the copper vapor laser wavelengths for a pulse width of 40 ns. The copper vapor laser thermally loads the target, generating thermal waves and sound waves in the gas which are investigated using HeNe laser beam deflection. The gas adjacent to the target is heated to steady state on the order of 100-400 s. Above the etching threshold, at approximately 10 mJ/cm2/pulse, the target is rapidly machined: 2-mm-diam, 2-mm-deep holes are drilled in 300 s in Vespel. At higher fluences of 100-150 mJ/cm2/pulse in 760 Torr of air it takes 180 s to bore through a 2-mm-thick disk of Vespel. The machined surfaces of the two polymers are very different. Machined Vespel samples are charred and cratered, whereas the Lucite samples show evidence of melting with little charring. The machining of polymers by visible-light copper vapor lasers is being compared to UV photoablation by KrF excimer laser light in order to study thermal versus nonthermal etching mechanisms.

  12. Analysis of the Relationship between Peak Stress and Proteoglycan Loss Following Injurious Compression of Human Post-mortem Knee and Ankle Cartilage

    PubMed Central

    Patwari, Parth; Cheng, Debbie M.; Cole, Ada A.; Kuettner, Klaus E.; Grodzinsky, Alan J.

    2009-01-01

    While traumatic joint injuries are known to increase the risk of osteoarthritis (OA), the mechanism is not known. Models for injurious compression of cartilage may identify predictors of injury that suggest a clinical mechanism. We investigated the relationship between peak stress during compression and glycosaminoglycan (GAG) loss after injury for knee and ankle cartilages. Human cartilage explant disks were harvested post-mortem from the knee and ankle of three organ donors with no history of OA and subjected to injurious compression to 65% strain in uniaxial unconfined compression at 2 mm/s (400%/s). The GAG content of the conditioned medium was measured three days after injury. After injury of knee cartilage disks, damage was visible in 18 of 39 disks (46%). Three days after injury, the increase in GAG loss to the medium (GAG loss from injured disks minus GAG loss from location-matched uncompressed controls) was 1.5 ± 0.3 μg/disk (mean ± SEM). With final strain and compression velocity held constant, we observed that increasing peak stress during injury was associated with less GAG loss after injury (p<0.001). In contrast, ankle cartilage appeared damaged after injury in only one of 16 disks (6%), there was no increase in GAG loss (0.0 ± 0.3 μg/disk), and no relationship between peak stress and increase in GAG loss was detected (p=0.51). By itself, increasing peak stress did not appear to be an important cause of GAG loss from human cartilage in our injurious compression model. However, we observed further evidence for differences in the response of knee and ankle cartilages to injury. PMID:16715319

  13. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage.

    PubMed

    Patwari, Parth; Cheng, Debbie M; Cole, Ada A; Kuettner, Klaus E; Grodzinsky, Alan J

    2007-01-01

    While traumatic joint injuries are known to increase the risk of osteoarthritis (OA), the mechanism is not known. Models for injurious compression of cartilage may identify predictors of injury that suggest a clinical mechanism. We investigated the relationship between peak stress during compression and glycosaminoglycan (GAG) loss after injury for knee and ankle cartilages. Human cartilage explant disks were harvested post-mortem from the knee and ankle of three organ donors with no history of OA and subjected to injurious compression to 65% strain in uniaxial unconfined compression at 2 mm/s (400%/s). The GAG content of the conditioned medium was measured 3 days after injury. After injury of knee cartilage disks, damage was visible in 18 of 39 disks (36%). Three days after injury, the increase in GAG loss to the medium (GAG loss from injured disks minus GAG loss from location-matched uncompressed controls) was 1.5+/-0.3 microg/disk (mean +/- SEM). With final strain and compression velocity held constant, we observed that increasing peak stress during injury was associated with less GAG loss after injury (P<0.001). In contrast, ankle cartilage appeared damaged after injury in only 1 of 16 disks (6%), there was no increase in GAG loss (0.0+/-0.3 microg/disk), and no relationship between peak stress and increase in GAG loss was detected (P=0.51). By itself, increasing peak stress did not appear to be an important cause of GAG loss from human cartilage in our injurious compression model. However, we observed further evidence for differences in the response of knee and ankle cartilages to injury. PMID:16715319

  14. Quantification, Prediction, and the Online Impact of Sentence Truth-Value: Evidence From Event-Related Potentials

    PubMed Central

    2015-01-01

    Do negative quantifiers like “few” reduce people’s ability to rapidly evaluate incoming language with respect to world knowledge? Previous research has addressed this question by examining whether online measures of quantifier comprehension match the “final” interpretation reflected in verification judgments. However, these studies confounded quantifier valence with its impact on the unfolding expectations for upcoming words, yielding mixed results. In the current event-related potentials study, participants read negative and positive quantifier sentences matched on cloze probability and on truth-value (e.g., “Most/Few gardeners plant their flowers during the spring/winter for best results”). Regardless of whether participants explicitly verified the sentences or not, true-positive quantifier sentences elicited reduced N400s compared with false-positive quantifier sentences, reflecting the facilitated semantic retrieval of words that render a sentence true. No such facilitation was seen in negative quantifier sentences. However, mixed-effects model analyses (with cloze value and truth-value as continuous predictors) revealed that decreasing cloze values were associated with an interaction pattern between truth-value and quantifier, whereas increasing cloze values were associated with more similar truth-value effects regardless of quantifier. Quantifier sentences are thus understood neither always in 2 sequential stages, nor always in a partial-incremental fashion, nor always in a maximally incremental fashion. Instead, and in accordance with prediction-based views of sentence comprehension, quantifier sentence comprehension depends on incorporation of quantifier meaning into an online, knowledge-based prediction for upcoming words. Fully incremental quantifier interpretation occurs when quantifiers are incorporated into sufficiently strong online predictions for upcoming words. PMID:26375784

  15. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  16. Ozone loss rates calculated along ER-2 flight tracks

    SciTech Connect

    Murphy, D.M. )

    1991-03-20

    Local ozone loss rates due to the ClO+ClO and BrO+ClO cycles are calculated using ClO, pressure, and temperature from in-situ aircraft measurements and representative BrO mixing ratios. Ozone loss during the vertical profiles executed by the ER-2 near 72{degree}S usually extended over a deep altitude range rather than reaching a maximum at the top of the profiles. This is due to the strong pressure dependence of the rate determining steps. In the Antarctic, very high ozone loss rates (>5{center dot}10{sup 6} cm{sup {minus}3} s{sup {minus}1}) were observed at altitudes with potential temperatures below 400 K, where advective exchange is likely to be much more rapid than at higher altitudes. On September 22, 1987, the ER-2 measured an ozone loss rate of aboutn 2.8 Dobson units (DU) per 12 sunlit hours in the 350-400 K range and 2.0 DU in the 400-450 K range near 72{degree}S. Rapid ozone loss in the Arctic did not extend below 400 K in the available data. The calculated average loss rate, which is nonlinear, in general depends on the order in which the terms are averaged. Loss rates calculated by averaging the ClO, pressure and temperature for up to 2,400 s (about 500 km) generally agree with the average of the local loss rate to within one percent except at the edge of the vortex, where the difference can be up to 30%. Adiabatic temperature and pressure effects nearly cancel. Thermal decomposition of Cl{sub 2}O{sub 2} was not important along sunlit portions of ER-2 flight tracks if equilibrium is assumed between ClO and Cl{sub 2}O{sub 2}. The effect of recalibration of the ClO data on the calculated loss rates is discussed.

  17. Development of a Compact-Sized Falling Needle Rheometer for Measurement of Flow Properties of Fresh Human Blood

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Kawamura, Kimito; Omura, Kazunobu; Tokudome, Shogo

    2010-12-01

    A compact-sized falling needle rheometer with rapid operation and automatic flow analysis has been developed for viscometry of fresh human blood without anticoagulant. The volume of a fresh blood sample only needs to be 3 mL, and the measuring time is within 2 min after taking a blood sample from the human body. Measured flow properties of human blood are evaluated as a flow curve, that is, the relationship between the shear stress ( τ) and shear rate ( γ). Observed flow curves of fresh human blood show three typical fluid regions, that is, the Casson fluid region for a low shear rate range of 0 < γ > 140 s-1, the transition region for a shear rate near 140 s-1 < γ < 160 s-1, and the Newtonian fluid region for a high shear rate range of 160 s-1 < γ > 400 s-1. Flow properties of human blood such as the yield stress ( τ y) in the Casson fluid region and the apparent viscosity ( μ) in the Newtonian fluid region are measured, and they are compared between male and female blood. It is found that the range of human blood viscosity for males is (5.5 to 6.4) mPa · s, and for females is (4.5 to 5.3) mPa · s. The viscosities of male blood without anticoagulant show higher values than those of female blood. Human blood viscosities with anticoagulant show a lower value than that without anticoagulant. A linear relationship between the hematocrit value, that is, the volume percentage of red corpuscles in the human blood, and the apparent viscosity are observed for both male and female blood. This article is concerned with the flow analysis of fresh human blood viscosity without anticoagulant using a newly developed compact-sized falling needle rheometer.

  18. Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture.

    PubMed

    Pemberton, R M; Xu, J; Pittson, R; Biddle, N; Drago, G A; Jackson, S K; Hart, J P

    2009-02-15

    Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 degrees C, at an operating potential of +0.4V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol(-1) was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n=4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R(2)=0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20mM, with those determined spectrophotometrically (R(2)=0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(10(6) cells min) based on a 24-h period in culture. PMID:19027709

  19. QUANTIFYING SPICULES

    SciTech Connect

    Pereira, Tiago M. D.; De Pontieu, Bart; Carlsson, Mats

    2012-11-01

    Understanding the dynamic solar chromosphere is fundamental in solar physics. Spicules are an important feature of the chromosphere, connecting the photosphere to the corona, potentially mediating the transfer of energy and mass. The aim of this work is to study the properties of spicules over different regions of the Sun. Our goal is to investigate if there is more than one type of spicule, and how spicules behave in the quiet Sun, coronal holes, and active regions. We make use of high cadence and high spatial resolution Ca II H observations taken by Hinode/Solar Optical Telescope. Making use of a semi-automated detection algorithm, we self-consistently track and measure the properties of 519 spicules over different regions. We find clear evidence of two types of spicules. Type I spicules show a rise and fall and have typical lifetimes of 150-400 s and maximum ascending velocities of 15-40 km s{sup -1}, while type II spicules have shorter lifetimes of 50-150 s, faster velocities of 30-110 km s{sup -1}, and are not seen to fall down, but rather fade at around their maximum length. Type II spicules are the most common, seen in the quiet Sun and coronal holes. Type I spicules are seen mostly in active regions. There are regional differences between quiet-Sun and coronal hole spicules, likely attributable to the different field configurations. The properties of type II spicules are consistent with published results of rapid blueshifted events (RBEs), supporting the hypothesis that RBEs are their disk counterparts. For type I spicules we find the relations between their properties to be consistent with a magnetoacoustic shock wave driver, and with dynamic fibrils as their disk counterpart. The driver of type II spicules remains unclear from limb observations.

  20. Substrate-Triggered Addition of Dioxygen to the Diferrous Cofactor of Aldehyde-Deformylating Oxygenase to form a Diferric-Peroxide Intermediate†

    PubMed Central

    Nørgaard, Hanne; Warui, Douglas M.; Rajakovich, Lauren J.; Chang, Wei-chen; Booker, Squire J.; Krebs, Carsten; Bollinger, J. Martin

    2013-01-01

    Cyanobacterial aldehyde-deformylating oxygenases (ADOs) belong to the ferritin-like diiron-carboxylate superfamily of dioxygen-activating proteins. They catalyze conversion of saturated or mono-unsaturated Cn fatty aldehydes to formate and the corresponding Cn-1 alkanes or alkenes, respectively. This unusual, apparently redox-neutral transformation actually requires four electrons per turnover to reduce the O2 co-substrate to the oxidation state of water and incorporates one O-atom from O2 into the formate co-product. We show here that the complex of the diiron(II/II) form of ADO from Nostoc punctiforme (Np) with an aldehyde substrate reacts with O2 to form a colored intermediate with spectroscopic properties suggestive of a Fe2III/III complex with a bound peroxide. Its Mössbauer spectra reveal that the intermediate possesses an antiferromagnetically (AF) coupled Fe2III/III center with resolved sub-sites. The intermediate is long-lived in the absence of a reducing system, decaying slowly (t1/2 ~ 400 s at 5 °C) to produce a very modest yield of formate (< 0.15 enzyme equivalents), but reacts rapidly with the fully reduced form of 1-methoxy-5-methylphenazine (MeOPMS) to yield product, albeit at only ~ 50% of the maximum theoretical yield (owing to competition from one or more unproductive pathway). The results represent the most definitive evidence to date that ADO can use a diiron cofactor (rather than a homo- or hetero-dinuclear cluster involving another transition metal) and provide support for a mechanism involving attack on the carbonyl of the bound substrate by the reduced O2 moiety to form a Fe2III/III-peroxyhemiacetal complex, which undergoes reductive O-O-bond cleavage, leading to C1–C2 radical fragmentation and formation of the alk(a/e)ne and formate products. PMID:23987523

  1. Conceptual Design, Implementation and Commissioning of Data Acquisition and Control System for Negative Ion Source at IPR

    NASA Astrophysics Data System (ADS)

    Soni, Jignesh; Yadav, Ratnakar; Gahlaut, A.; Bansal, G.; Singh, M. J.; Bandyopadhyay, M.; Parmar, K. G.; Pandya, K.; Chakraborty, A.

    2011-09-01

    Negative ion Experimental facility has been setup at IPR. The facility consists of a RF based negative ion source (ROBIN)—procured under a license agreement with IPP Garching, as a replica of BATMAN, presently operating in IPP, 100 kW 1 MHz RF generators and a set of low and high voltage power supplies, vacuum system and diagnostics. 35 keV 10A H- beam is expected from this setup. Automated successful operation of the system requires an advanced, rugged, time proven and flexible control system. Further the data generated in the experimental phase needs to be acquired, monitored and analyzed to verify and judge the system performance. In the present test bed, this is done using a combination of PLC based control system and a PXI based data acquisition system. The control system consists of three different Siemens PLC systems viz. (1) S-7 400 PLC as a Master Control, (2) S-7 300 PLC for Vacuum system control and (3) C-7 PLC for RF generator control. Master control PLC directly controls all the subsystems except the Vacuum system and RF generator. The Vacuum system and RF generator have their own dedicated PLCs (S-7 300 and C-7 respectively). Further, these two PLC systems work as a slave for the Master control PLC system. Communication between PLC S-7 400, S-7 300 and central control room computer is done through Industrial Ethernet (IE). Control program and GUI are developed in Siemens Step-7 PLC programming software and Wincc SCADA software, respectively. There are approximately 150 analog and 200 digital control and monitoring signals required to perform complete closed loop control of the system. Since the source floats at high potential (˜35 kV); a combination of galvanic and fiber optic isolation has been implemented. PXI based Data Acquisition system (DAS) is a combination of PXI RT (Real time) system, front end signal conditioning electronics, host system and DAQ program. All the acquisition signals coming from various sub-systems are connected and

  2. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    SciTech Connect

    Langridge, Justin M.; Shillings, Alexander J. L.; Jones, Roderic L.; Ball, Stephen M.

    2008-12-15

    of 0.25 pptv for a 10 s acquisition time, which improves with further signal averaging to 0.09 pptv in 400 s. Finally, an example of the instrument's performance under field work conditions is presented, in this case of measurements of the sum of NO{sub 3}+N{sub 2}O{sub 5} concentrations in the marine boundary layer acquired during the Reactive Halogens in the Marine Boundary Layer field campaign.

  3. Plasma-surface interaction issues of an all-metal ITER

    NASA Astrophysics Data System (ADS)

    Brooks, J.N.; Allain, J.P.; Doerner, R.P.; Hassanein, A.; Nygren, R.; Rognlien, T.D.; Whyte, D.G.

    2009-03-01

    We assess key plasma-surface interaction issues of an all-metal plasma facing component (PFC) system for ITER, in particular a tungsten divertor, and a beryllium or tungsten first wall. Such a system eliminates problems with carbon divertor erosion and T/C codeposition, and for an all-tungsten system would better extrapolate to post-ITER devices. The issues studied are sputtering, transport and formation of mixed surface layers, tritium codeposition, plasma contamination, edge-localized mode (ELM) response and He-on-W irradiation effects. Code package OMEGA computes PFC sputtering erosion/redeposition in an ITER full power D-T plasma with convective edge transport. The HEIGHTS package analyses plasma transient response. PISCES and other data are used with code results to assess PFC performance. Predicted outer-wall sputter erosion rates are acceptable for Be (0.3 nm s-1) or bare (stainless steel/Fe) wall (0.05 nm s-1) for the low duty factor ITER, and are very low (0.002 nm s-1) for W. T/Be codeposition in redeposited wall material could be significant (~2 gT/400 s-ITER pulse). Core plasma contamination from wall sputtering appears acceptable for Be (~2%) and negligible for W (or Fe). A W divertor has negligible sputter erosion, plasma contamination and T/W codeposition. Be can grow at/near the strike point region of a W divertor, but for the predicted maximum surface temperature of ~800 °C, deleterious Be/W alloy formation as well as major He/W surface degradation will probably be avoided. ELMs are a serious challenge to the divertor, but this is true for all materials. We identify acceptable ELM parameters for W. We conclude that an all-metal PFC system is likely a much better choice for ITER D-T operation than a system using C. We discuss critical R&D needs, testing requirements, and suggest employing a 350-400 °C baking capability for T/Be reduction and using a deposited tungsten first wall test section.

  4. Influence of Shear History on the Growth Rate and Equilibrium Size of Mud Flocs

    NASA Astrophysics Data System (ADS)

    Keyvani, A.; Strom, K.

    2013-12-01

    Effects of repeated exposure to multiple cycles of high and low turbulent shear rate on the floc growth pattern and equilibrium size were investigated through a laboratory study on a suspension of mud. The specific research questions examined are: (1) does repeated cycles of flocculation and deflocculation change the equilibrium floc size from one cycle to another?; and (2) do these repeated cycles impact the floc growth rate and path to equilibrium? For the experiments, a mixture of kaolinite and montmorillonite clay was sonicated and introduced to a mixing chamber to allow for flocculation under a mean turbulent shear rate of 35 s-1. Floc size time series, floc circularity index, and time series of the number of flocs were measured using a camera system and image processing routines. After the flocs reached an equilibrium size, the sample was deflocculated with vigorous turbulent mixing (400 s-1) for 15 hours, and then reflocculated by returning the shear rate to the initial value of 35 s-1. This procedure was repeated seven consecutive times. Results show that the different initial states of particles after sonication and after intense shearing had almost no effect on the equilibrium floc size, but that the initial state did significantly impact the floc growth pattern before the equilibrium was reached. With each repeated deflocculation and reflocculation cycle, the rate of floc growth decreased. Each of the seven reflocculation growth cycles were modeled with the Winterwerp (1998) equation for the mean floc size by calibrating the collision and breakup efficiency coefficients for each cycle. To obtain a good fit to the data, both the collision and breakup efficiency coefficients had to be reduced further with each successive cycle; the modeling suggests that flocs become stronger and less reactive with each repeated cycles of flocculation and defloccualtion. These results indicate that inclusion of shear history and initial condition impacts on mud flocs in

  5. Azimuthal anisotropy layering and plate motion in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Romanowicz, B. A.

    2012-12-01

    We recently developed a three dimensional radially and azimuthally anisotropic model of the upper mantle in north America, using a combination of long-period 3-component surface and overtone waveforms, and SKS splitting measurements (Yuan and Romanowicz, 2010, Yuan et al., 2011). We showed that azimuthal anisotropy is a powerful tool to detect layering in the upper mantle, revealing two domains in the cratonic lithosphere, separated by a sharp laterally varying boundary in the depth range 100-150 km, which seems to coincide with the mid-lithospheric boundary (MLD) found in receiver function studies. Contrary to receiver functions, azimuthal anisotropy also detects the lithosphere-asthenosphere boundary (LAB) as manifested by a change in the fast axis direction, which becomes quasi-parallel to the absolute plate motion below ~250 km depth. A zone of stronger azimuthal anisotropy is found below the LAB both in the western US (peaking at depths of 100-150km) and in the craton (peaking at a depth of about 300 km). Here we show preliminary attempts at expanding our approach to the global scale, with a specific goal of determining whether such an anisotropic LAB can also be observed in the Pacific ocean. We started with our most recent global upper mantle radially anisotropic shear velocity model, determined using the Spectral Element Method (SEMum2; French et al., this meeting). We augment the corresponding global surface wave and overtone dataset (period range 60 to 400 s) with deep events and shorter period body waves, in order to ensure optimal deeper depth (>250km) anisotropy recovery due to the paucity of shear wave splitting measurements in the oceans. Our preliminary results, which do not yet incorporate SKS splitting measurements, look promising as they confirm the layering found previously in North America, using a different, global dataset and starting model. In the Pacific, our study confirms earlier azimuthal anisotropy results in the region (e.g. Smith et

  6. Global Upper-Mantle Tomography With the Automated Multimode Inversion of Surface and S Wave Forms

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; van der Hilst, R. D.

    2006-12-01

    We apply the Automated Multimode Inversion (AMI) to a large global dataset, examine the accuracy of our techniques and assumptions, and compute an Sv-velocity model of the upper mantle (crust--660 km) using 61000 seismograms. Structure of the mantle and crust is constrained by waveform information from 306000 time-frequency windows with the fundamental-mode Rayleigh waves (periods from 20 to 400 s) and from windows with 19600 distinct higher-mode wavepackets (S and multiple S wave arrivals). We implement AMI with a 3D reference model; linear equations obtained from all the seismograms of the dataset are inverted for anomalies relative to the 3D reference, in this study composed of a 3D model of the crust and a 1D depth profile in the mantle. Waveform information is related to S- and P-velocity structure within approximate waveform sensitivity areas. Inverting for isotropic variations in S- and P-wave velocities, we also allow for S-wave azimuthal anisotropy---in order to minimize errors due to mapping of anisotropy into isotropic heterogeneity. The lateral resolution of the resulting isotropic upper-mantle images is a few hundred km, varying with data sampling. We validate the imaging technique with a novel, "spectral-element" resolution test: inverting a global synthetic data set computed with the spectral-element method (Capdeville et al. 2003) through a laterally heterogeneous mantle model we are able to reconstruct the synthetic model accurately. This test confirms both the accuracy of the implementation of the method and the validity of the JWKB and path-average approximations as applied in it. Reviewing the tomographic model, we observe that low-Sv-velocity anomalies beneath mid-ocean ridges and back-arc basins extend down to ~100 km depth only; this corresponds to estimates of primary melt production depth ranges there. Seismic lithosphere beneath cratons bottoms at depths up to 200 km. Pronounced low-velocity zones beneath cratonic lithosphere are rare

  7. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    NASA Astrophysics Data System (ADS)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-01

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin. However, the exact mechanism of flavin involvement is unclear; while some indicate that flavins mediate electron transfer (Marsili et al., 2008), others point to flavin serving as co-factors to outer membrane proteins (Okamoto et al., 2013). In this work, we used methyl viologen (MVrad +)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of microbially produced flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 μM) by MELs ([MVrad +] ∼ 40 μM and MtrABC ⩽ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MVrad + and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where (i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and (ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 s. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (⩽1 μM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. For LEP, with the highest reduction

  8. Non-linear 3D Born Shear Wave Tomography in Southeastern Asia

    NASA Astrophysics Data System (ADS)

    Cao, A.; Panning, M.; Kim, A.; Romanowicz, B.

    2007-12-01

    We have developed a 3D radially anisotropic shear velocity model of the upper mantle in southeastern Asia from the inversion of long period seismic multimode waveforms. Our approach is based on normal mode perturbation theory, specifically, on a recent modification of the Born approximation, which we call "N-Born", and which includes a non-linear term that allows the accurate inclusion of accumulated phase shifts which arise when the wavepath traverses a spatially extended region with a smooth velocity anomaly of constant sign. We apply the N-Born approximation in the forward modeling part and calculate linear 3D Born kernels in the inverse part. Our starting model is a 3D radially anisotropic model which we derived from a large dataset of teleseismic multimode long period waveforms in the period range 60 to 400 s, using a finite-frequency 2D approximation (NACT, Li and Romanowicz, 1995). This model covered a larger region of East Asia (longitude 30 to 150 degrees and latitude -10 to 60 degrees), while our N-Born model is restricted to a smaller subregion (longitude 75 to 150 degrees and latitude 0 to 45 degrees) for computational efficiency. In this subregion, our N-Born isotropic and anisotropic models are both parameterized at relatively short wavelengths corresponding to a spherical spline level 6 (~200km). Our N-Born model can fit waveforms as well as the NACT model, with up to ~ 83% variance reduction. While the models agree in general, the N-Born isotropic model shows a stronger fast velocity anomaly beneath the Tibetan plateau in the depth range of 150 km to 250 km, which disappears at greater depth, consistent with other studies. More importantly, the N-Born anisotropic model can recover well the downwelling structure associated with subducted slabs. Beneath the Tibet plateau, radial anisotropy shows VSH>VSV, which is indicative of horizontal rather than vertical flow and may help distinguish between end member models of the tectonics of Tibet.

  9. A novel rheo-optical device for studying complex fluids in a double shear plate geometry

    NASA Astrophysics Data System (ADS)

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s-1), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD® promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non

  10. Arne - Exploring the Mare Tranquillitatis Pit

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Thangavelautham, J.; Wagner, R.; Hernandez, V. A.; Finch, J.

    2014-12-01

    Lunar mare "pits" are key science and exploration targets. The first three pits were discovered within Selene observations [1,2] and were proposed to represent collapses into lava tubes. Subsequent LROC images revealed 5 new mare pits and showed that the Mare Tranquillitatis pit (MTP; 8.335°N, 33.222°E) opens into a sublunarean void at least 20-meters in extent [3,4]. A key remaining task is determining pit subsurface extents, and thus fully understanding their exploration and scientific value. We propose a simple and cost effective reconnaissance of the MTP using a small lander (<130 kg) named Arne, that carries three flying microbots (or pit-bots) [5,6,7]. Key measurement objectives include decimeter scale characterization of the pit walls, 5-cm scale imaging of the eastern floor, determination of the extent of sublunarean void(s), and measurement of the magnetic and thermal environment. After landing and initial surface systems check Arne will transmit full resolution descent and surface images. Within two hours the first pit-bot will launch and fly into the eastern void. Depending on results from the first pit-bot the second and third will launch and perform follow-up observations. The primary mission is expected to last 48-hours; before the Sun sets on the lander there should be enough time to execute ten flights with each pit-bot. The pit-bots are 30-cm diameter spherical flying robots [5,6,7] equipped with stereo cameras, temperature sensors, sensors for obstacle avoidance and a laser rangefinder. Lithium hydride [5,6] and water/hydrogen peroxide power three micro-thrusters and achieve a specific impulse of 350-400 s. Each pit-bot can fly for 2 min at 2 m/s for more than 100 cycles; recharge time is 20 min. Arne will carry a magnetometer, thermometer, 2 high resolution cameras, and 6 wide angle cameras and obstacle avoidance infrared sensors enabling detailed characterization of extant sublunarean voids. [1] Haruyama et al. (2010) 41st LPSC, #1285. [2

  11. Brain responses to nouns, verbs and class-ambiguous words in context.

    PubMed

    Federmeier, K D; Segal, J B; Lombrozo, T; Kutas, M

    2000-12-01

    Recent neuropsychological and imaging data have implicated different brain networks in the processing of different word classes, nouns being linked primarily to posterior, visual object-processing regions and verbs to frontal, motor-processing areas. However, as most of these studies have examined words in isolation, the consequences of such anatomically based representational differences, if any, for the processing of these items in sentences remains unclear. Additionally, in some languages many words (e.g. 'drink') are class-ambiguous, i.e. they can play either role depending on context, and it is not yet known how the brain stores and uses information associated with such lexical items in context. We examined these issues by recording event-related potentials (ERPs) in response to unambiguous nouns (e.g. 'beer'), unambiguous verbs (e. g. 'eat'), class-ambiguous words and pseudowords used as nouns or verbs within two types of minimally contrastive sentence contexts: noun-predicting (e.g. 'John wanted THE [target] but.') and verb-predicting ('John wanted TO [target] but.'). Our results indicate that the nature of neural processing for nouns and verbs is a function of both the type of stimulus and the role it is playing. Even when the context completely specifies their role, word class-ambiguous items differ from unambiguous ones over frontal regions by approximately 150 ms. Moreover, whereas pseudowords elicit larger N400s when used as verbs than when used as nouns, unambiguous nouns and ambiguous words used as nouns elicit more frontocentral negativity than unambiguous verbs and ambiguous words used as verbs, respectively. Additionally, unambiguous verbs elicit a left-lateralized, anterior positivity (approximately 200 ms) not observed for any other stimulus type, though only when these items are used appropriately as verbs (i.e. in verb-predicting contexts). In summary, the pattern of neural activity observed in response to lexical items depends on their general

  12. NuSTAR observations of the state transition of millisecond pulsar binary PSR J1023+0038

    SciTech Connect

    Tendulkar, Shriharsh P.; Bellm, Eric; Harrison, Fiona A.; Yang, Chengwei; An, Hongjun; Kaspi, Victoria M.; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Bogdanov, Slavko; Lyne, Andrew G.; Stappers, Benjamin; Patruno, Alessandro; Stern, Daniel; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Chakrabarty, Deepto; Christensen, Finn E.; and others

    2014-08-20

    We report NuSTAR observations of the millisecond pulsar-low-mass X-ray binary (LMXB) transition system PSR J1023+0038 from 2013 June and October, before and after the formation of an accretion disk around the neutron star. Between June 10 and 12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Γ=1.17{sub −0.07}{sup +0.08} (at 90% confidence) with a 3-79 keV luminosity of 7.4 ± 0.4 × 10{sup 32} erg s{sup –1}. Significant orbital modulation was observed with a modulation fraction of 36% ± 10%. During the October 19-21 observation, the spectrum is described by a softer power law (Γ=1.66{sub −0.05}{sup +0.06}) with an average luminosity of 5.8 ± 0.2 × 10{sup 33} erg s{sup –1} and a peak luminosity of ≈1.2 × 10{sup 34} erg s{sup –1} observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multiwavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp-edged, flat-bottomed dips are observed with widths between 30 and 1000 s and ingress and egress timescales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824–2452I and XSS J1227.0–4859 and discuss possible interpretations based on the transitions in the inner disk.

  13. Conceptual Design, Implementation and Commissioning of Data Acquisition and Control System for Negative Ion Source at IPR

    SciTech Connect

    Soni, Jignesh; Gahlaut, A.; Bansal, G.; Parmar, K. G.; Pandya, K.; Chakraborty, A.; Yadav, Ratnakar; Singh, M. J.; Bandyopadhyay, M.

    2011-09-26

    Negative ion Experimental facility has been setup at IPR. The facility consists of a RF based negative ion source (ROBIN)--procured under a license agreement with IPP Garching, as a replica of BATMAN, presently operating in IPP, 100 kW 1 MHz RF generators and a set of low and high voltage power supplies, vacuum system and diagnostics. 35 keV 10A H- beam is expected from this setup. Automated successful operation of the system requires an advanced, rugged, time proven and flexible control system. Further the data generated in the experimental phase needs to be acquired, monitored and analyzed to verify and judge the system performance. In the present test bed, this is done using a combination of PLC based control system and a PXI based data acquisition system. The control system consists of three different Siemens PLC systems viz. (1) S-7 400 PLC as a Master Control, (2) S-7 300 PLC for Vacuum system control and (3) C-7 PLC for RF generator control. Master control PLC directly controls all the subsystems except the Vacuum system and RF generator. The Vacuum system and RF generator have their own dedicated PLCs (S-7 300 and C-7 respectively). Further, these two PLC systems work as a slave for the Master control PLC system. Communication between PLC S-7 400, S-7 300 and central control room computer is done through Industrial Ethernet (IE). Control program and GUI are developed in Siemens Step-7 PLC programming software and Wincc SCADA software, respectively. There are approximately 150 analog and 200 digital control and monitoring signals required to perform complete closed loop control of the system. Since the source floats at high potential ({approx}35 kV); a combination of galvanic and fiber optic isolation has been implemented. PXI based Data Acquisition system (DAS) is a combination of PXI RT (Real time) system, front end signal conditioning electronics, host system and DAQ program. All the acquisition signals coming from various sub-systems are connected and

  14. Remote sensing of nitric oxide emissions from planes, trains and automobiles

    NASA Astrophysics Data System (ADS)

    Popp, Peter John

    Remote sensing has been proven as an effective method for measuring in-use mobile source emissions. This document describes the development of a remote sensor for mobile source nitric oxide, based on an instrument previously developed at the University of Denver for measuring carbon monoxide and hydrocarbon emissions. The new remote sensor makes use of a high-speed ultraviolet spectrometer to quantify nitric oxide by absorption spectroscopy at 226 nm in the ultraviolet region. The high-speed spectrometer is coupled to an existing FEAT remote sensor, for the simultaneous measurement of CO, CO2 and hydrocarbons by non-dispersive infrared absorption spectroscopy. The utility of the instrument was demonstrated in the measurement of nitric oxide emissions from automobiles, commercial aircraft, and railroad locomotives. The remote sensor was used to measure nitric oxide emissions from motor vehicles in Chicago in 1997 and 1998, as part of a five-year study to characterize motor vehicle emissions and deterioration in that city. Emissions data were collected for over 19,000 vehicles in 1997 and almost 23,000 vehicles in 1998. All of these records contained valid measurements for carbon monoxide and hydrocarbons, in addition to nitric oxide. In September of 1997, a study was conducted with the cooperation of British Airways and the British Airports Authority to demonstrate the capability of the remote sensor in measuring nitric oxide emissions from in-use commercial aircraft. In two days of sampling at London Heathrow Airport, a total of 122 measurements were made of 90 different aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s. The measured nitric oxide emission indices were not inconsistent with commercial aircraft emission indices published by the International Civil Aviation Organization. The utility of the remote sensor in measuring nitric oxide emissions from railroad locomotives was demonstrated in January of 1999, in a study conducted with

  15. S/Se In Sulfide Inclusion In Diamond

    NASA Astrophysics Data System (ADS)

    Thomassot, E.; Couffignal, F.; Lorand, J.; Bureau, H.; Cartigny, P.; Harris, J. W.

    2009-05-01

    Sulfides are among the most common minerals found as inclusions in diamonds. Being protected from any alteration after diamond formation, they likely represent the most pristine sulfide sample of mantle rocks. Their chemical composition in major and minor elements (mainly Ni, Cu and Cr), as determined using Electron Probe Micro Analyse (EPMA), is commonly used to determine the rock type in which the diamond formed. Here we propose to apply the same technique to the trace element abundance determination. We performed selenium (Se) on sulfide inclusion in diamonds. The S/Se value could help understanding whether the diamond formed in an eclogitic or peridotitic environment and may also constrain on the magmatic differentiation of diamonds host rock as well as provide a potential surface (hydrothermal) signature in diamond inclusions. A trace element measurement scheme has been developed by EPMA at the CAMPARIS centre (Paris). Se-abundance was obtained using a 30 kV accelerating voltage and 100nA probe current. Total counting time was 800s for peak (1.1 Å ) and 400s for background on both side of peak. Analyses were duplicated by μPIXE using the LPS nuclear microprobe facility (SIS2M CEA Saclay, France). Maps from 30x30 μm2 to 70x70 μm2 were obtained by scanning a 4x4 μm2 proton beam of 3MeV, 600 pA, (0.4 to 2 μC). The two techniques show good agreement and we conclude that EPMA is well suited for accurate and precise Se measurements. We analysed five samples; two monosulfide solid solution (MSS) (Ni>22wt%) typical of the peridotitic paragenesis (P-type), and three Ni-poor sulfides (Ni<7wt%) typical of the eclogitic paragenesis (E-type). In P-type sulfides, Se-content (260 ppm) is significantly higher than previously reported in sulfides from mantle-derived lherzolites (40-160 ppm), pyroxenites (25-45 ppm) or harzburgite. The value of S/Se in MSS is low (˜1400) compared to those of the primitive mantle reservoir (3,300; McDounough et al., 1995 Chemical Geology

  16. Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements

    NASA Astrophysics Data System (ADS)

    Adam, Joanne M.-C.; Lebedev, Sergei

    2012-10-01

    Seismic anisotropy within the lithosphere of cratons preserves an important record of their ancient assembly. In southern Africa, anisotropy across the Archean Kaapvaal Craton and Limpopo Belt has been detected previously by observations of SKS-wave splitting. Because SKS-splitting measurements lack vertical resolution, however, the depth distribution of anisotropy has remained uncertain. End-member interpretations invoked the dominance of either anisotropy in the lithosphere (due to the fabric formed by deformation in Archean or Palaeoproterozoic orogenies) or that in the asthenosphere (due to the fabric formed by the recent plate motion), each with significant geodynamic implications. To determine the distribution of anisotropy with depth, we measured phase velocities of seismic surface waves between stations of the Southern African Seismic Experiment. We applied two complementary measurement approaches, very broad-band cross-correlation and multimode waveform inversion. Robust, Rayleigh- and Love-wave dispersion curves were derived for four different subregions of the Archean southern Africa in a period range from 5 s to 250-400 s (Rayleigh) and 5 s to 100-250 s (Love), depending on the region. Rayleigh-wave anisotropy was determined in each region at periods from 5 s to 150-200 s, sampling from the upper crust down to the asthenosphere. The jackknife method was used to estimate uncertainties, and the F-test to verify the statistical significance of anisotropy. We detected strong anisotropy with a N-S fast-propagation azimuth in the upper crust of the Limpopo Belt. We attribute it to aligned cracks, formed by the regional, E-W extensional stress associated with the southward propagation of the East African Rift. Our results show that it is possible to estimate regional stress from short-period, surface wave anisotropy, measured in this study using broad-band array recordings of teleseismic surface waves. Rayleigh-wave anisotropy at 70-120 s periods shows that

  17. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; van der Hilst, Rob D.

    2008-05-01

    We apply the Automated Multimode Inversion of surface and S-wave forms to a large global data set, verify the accuracy of the method and assumptions behind it, and compute an Sv-velocity model of the upper mantle (crust-660 km). The model is constrained with ~51000 seismograms recorded at 368 permanent and temporary broadband seismic stations. Structure of the mantle and crust is constrained by waveform information both from the fundamental-mode Rayleigh waves (periods from 20 to 400 s) and from S and multiple S waves (higher modes). In order to enhance the validity of the path-average approximation, we implement the automated inversion of surface- and S-wave forms with a three-dimensional (3-D) reference model. Linear equations obtained from the processing of all the seismograms of the data set are inverted for seismic velocity variations also relative to a 3-D reference, in this study composed of a 3-D model of the crust and a one-dimensional (1-D), global-average depth profile in the mantle below. Waveform information is related to shear- and compressional-velocity structure within approximate waveform sensitivity areas. We use two global triangular grids of knots with approximately equal interknot spacing within each: a finely spaced grid for integration over sensitivity areas and a rougher-spaced one for the model parametrization. For the tomographic inversion we use LSQR with horizontal and vertical smoothing and norm damping. We invert for isotropic variations in S- and P-wave velocities but also allow for S-wave azimuthal anisotropy-in order to minimize errors due to possible mapping of anisotropy into isotropic heterogeneity. The lateral resolution of the resulting isotropic upper-mantle images is a few hundred kilometres, varying with data sampling. We validate the imaging technique with a `spectral-element' resolution test: inverting a published global synthetic data set computed with the spectral-element method using a laterally heterogeneous mantle

  18. Abnormal N400 word repetition effects in fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Chan, Shiaohui; Wong, Ling M.; Schneider, Andrea; Seritan, Andreea; Niese, Adam; Yang, Jin-Chen; Laird, Kelsey; Teichholtz, Sara; Khan, Sara; Tassone, Flora; Hagerman, Randi

    2010-01-01

    .04 for group effect). Reduced P600 repetition effect amplitude was associated with poorer recall within fragile X-associated tremor/ataxia syndrome patients (r = 0.66) and across all subjects (r = 0.52). Larger P600 amplitude to new congruous words also correlated significantly with higher free recall scores (r = 0.37, P < 0.01) across all subjects. We found a correlation between the amplitude of late positivity and CGG repeat length in those with fragile X-associated tremor/ataxia syndrome (r = 0.47, P = 0.006). Higher levels of FMR1 mRNA were associated with smaller N400s to incongruous words and larger positive amplitudes (between 300 and 500 ms) to congruous words. In conclusion, event-related potential word repetition effects appear sensitive to the cognitive dysfunction present in patients with mild fragile X-associated tremor/ataxia syndrome. Their more severe reduction in N400 repetition effect, than P600, is in contrast to the reverse pattern reported in amnestic mild cognitive impairment and incipient Alzheimer’s disease (Olichney et al., 2008). PMID:20410144

  19. Performance evaluation of the microwave electrothermal thruster using nitrogen, simulated hydrazine, and ammonia

    NASA Astrophysics Data System (ADS)

    Clemens, Daniel E.

    using ammonia. The feasibility of operating the MET at various frequencies and power levels using simulated hydrazine and ammonia has been demonstrated. In the MET plasma, microwave energy is coupled to the propellant gas through free electrons in the plasma. The electric field accelerates free electrons, which then transfer their kinetic energy to heavy particles through collision. Thus, electric field strength and chamber pressure play important roles in the power deposition and energy exchange mechanisms. These roles were examined theoretically through numerical modeling of the cavity electric field and experimentally through the variation of several MET components and parameters. In this program, testing was conducted on the 7.5-GHz MET at a power level of 70--100 W using pure nitrogen and various mixtures of N2, H2, and NH3 to simulate decomposed hydrazine. Parametric studies of the effects of nozzle throat diameter, microwave frequency, and microwave power were performed. Testing was also conducted on the 2.45-GHz MET at a power level of 1--2 kW using pure nitrogen, simulated hydrazine, and pure ammonia. Parametric studies of the effects of nozzle throat diameter, antenna probe depth, propellant injector diameter, and the inclusion of an impedance matching unit were performed. Thrust and specific impulse measurements for the 2.45- and 7.5-GHz METs were obtained using thrust stands. At the present time, the 2.45- and 7.5-GHz METs are not optimized for operation with simulated hydrazine or ammonia, but key areas of study that have potential for significant performance enhancement have been identified. For the 2.45-GHz thruster, calculated specific impulses with ammonia and simulated hydrazine approach 400 s and 425 s, respectively, whereas, for the 7.5-GHz thruster, calculated specific impulse with simulated hydrazine approaches 220 s. However, experimental performance measurements were up to 40% lower than theoretical calculations. Numerical electromagnetic